Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kernel/cpufeature.c
29269 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Contains CPU feature definitions
4
*
5
* Copyright (C) 2015 ARM Ltd.
6
*
7
* A note for the weary kernel hacker: the code here is confusing and hard to
8
* follow! That's partly because it's solving a nasty problem, but also because
9
* there's a little bit of over-abstraction that tends to obscure what's going
10
* on behind a maze of helper functions and macros.
11
*
12
* The basic problem is that hardware folks have started gluing together CPUs
13
* with distinct architectural features; in some cases even creating SoCs where
14
* user-visible instructions are available only on a subset of the available
15
* cores. We try to address this by snapshotting the feature registers of the
16
* boot CPU and comparing these with the feature registers of each secondary
17
* CPU when bringing them up. If there is a mismatch, then we update the
18
* snapshot state to indicate the lowest-common denominator of the feature,
19
* known as the "safe" value. This snapshot state can be queried to view the
20
* "sanitised" value of a feature register.
21
*
22
* The sanitised register values are used to decide which capabilities we
23
* have in the system. These may be in the form of traditional "hwcaps"
24
* advertised to userspace or internal "cpucaps" which are used to configure
25
* things like alternative patching and static keys. While a feature mismatch
26
* may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27
* may prevent a CPU from being onlined at all.
28
*
29
* Some implementation details worth remembering:
30
*
31
* - Mismatched features are *always* sanitised to a "safe" value, which
32
* usually indicates that the feature is not supported.
33
*
34
* - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35
* warning when onlining an offending CPU and the kernel will be tainted
36
* with TAINT_CPU_OUT_OF_SPEC.
37
*
38
* - Features marked as FTR_VISIBLE have their sanitised value visible to
39
* userspace. FTR_VISIBLE features in registers that are only visible
40
* to EL0 by trapping *must* have a corresponding HWCAP so that late
41
* onlining of CPUs cannot lead to features disappearing at runtime.
42
*
43
* - A "feature" is typically a 4-bit register field. A "capability" is the
44
* high-level description derived from the sanitised field value.
45
*
46
* - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47
* scheme for fields in ID registers") to understand when feature fields
48
* may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49
*
50
* - KVM exposes its own view of the feature registers to guest operating
51
* systems regardless of FTR_VISIBLE. This is typically driven from the
52
* sanitised register values to allow virtual CPUs to be migrated between
53
* arbitrary physical CPUs, but some features not present on the host are
54
* also advertised and emulated. Look at sys_reg_descs[] for the gory
55
* details.
56
*
57
* - If the arm64_ftr_bits[] for a register has a missing field, then this
58
* field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59
* This is stronger than FTR_HIDDEN and can be used to hide features from
60
* KVM guests.
61
*/
62
63
#define pr_fmt(fmt) "CPU features: " fmt
64
65
#include <linux/bsearch.h>
66
#include <linux/cpumask.h>
67
#include <linux/crash_dump.h>
68
#include <linux/kstrtox.h>
69
#include <linux/sort.h>
70
#include <linux/stop_machine.h>
71
#include <linux/sysfs.h>
72
#include <linux/types.h>
73
#include <linux/minmax.h>
74
#include <linux/mm.h>
75
#include <linux/cpu.h>
76
#include <linux/kasan.h>
77
#include <linux/percpu.h>
78
#include <linux/sched/isolation.h>
79
80
#include <asm/cpu.h>
81
#include <asm/cpufeature.h>
82
#include <asm/cpu_ops.h>
83
#include <asm/fpsimd.h>
84
#include <asm/hwcap.h>
85
#include <asm/insn.h>
86
#include <asm/kvm_host.h>
87
#include <asm/mmu.h>
88
#include <asm/mmu_context.h>
89
#include <asm/mte.h>
90
#include <asm/hypervisor.h>
91
#include <asm/processor.h>
92
#include <asm/smp.h>
93
#include <asm/sysreg.h>
94
#include <asm/traps.h>
95
#include <asm/vectors.h>
96
#include <asm/virt.h>
97
98
/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
99
static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
100
101
#ifdef CONFIG_COMPAT
102
#define COMPAT_ELF_HWCAP_DEFAULT \
103
(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
104
COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
105
COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
106
COMPAT_HWCAP_LPAE)
107
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
108
unsigned int compat_elf_hwcap2 __read_mostly;
109
unsigned int compat_elf_hwcap3 __read_mostly;
110
#endif
111
112
DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
113
EXPORT_SYMBOL(system_cpucaps);
114
static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
115
116
DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
117
118
/*
119
* arm64_use_ng_mappings must be placed in the .data section, otherwise it
120
* ends up in the .bss section where it is initialized in early_map_kernel()
121
* after the MMU (with the idmap) was enabled. create_init_idmap() - which
122
* runs before early_map_kernel() and reads the variable via PTE_MAYBE_NG -
123
* may end up generating an incorrect idmap page table attributes.
124
*/
125
bool arm64_use_ng_mappings __read_mostly = false;
126
EXPORT_SYMBOL(arm64_use_ng_mappings);
127
128
DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
129
130
/*
131
* Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
132
* support it?
133
*/
134
static bool __read_mostly allow_mismatched_32bit_el0;
135
136
/*
137
* Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
138
* seen at least one CPU capable of 32-bit EL0.
139
*/
140
DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
141
142
/*
143
* Mask of CPUs supporting 32-bit EL0.
144
* Only valid if arm64_mismatched_32bit_el0 is enabled.
145
*/
146
static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
147
148
void dump_cpu_features(void)
149
{
150
/* file-wide pr_fmt adds "CPU features: " prefix */
151
pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
152
}
153
154
#define __ARM64_MAX_POSITIVE(reg, field) \
155
((reg##_##field##_SIGNED ? \
156
BIT(reg##_##field##_WIDTH - 1) : \
157
BIT(reg##_##field##_WIDTH)) - 1)
158
159
#define __ARM64_MIN_NEGATIVE(reg, field) BIT(reg##_##field##_WIDTH - 1)
160
161
#define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value) \
162
.sys_reg = SYS_##reg, \
163
.field_pos = reg##_##field##_SHIFT, \
164
.field_width = reg##_##field##_WIDTH, \
165
.sign = reg##_##field##_SIGNED, \
166
.min_field_value = min_value, \
167
.max_field_value = max_value,
168
169
/*
170
* ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
171
* an implicit maximum that depends on the sign-ess of the field.
172
*
173
* An unsigned field will be capped at all ones, while a signed field
174
* will be limited to the positive half only.
175
*/
176
#define ARM64_CPUID_FIELDS(reg, field, min_value) \
177
__ARM64_CPUID_FIELDS(reg, field, \
178
SYS_FIELD_VALUE(reg, field, min_value), \
179
__ARM64_MAX_POSITIVE(reg, field))
180
181
/*
182
* ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
183
* implicit minimal value to max_value. This should be used when
184
* matching a non-implemented property.
185
*/
186
#define ARM64_CPUID_FIELDS_NEG(reg, field, max_value) \
187
__ARM64_CPUID_FIELDS(reg, field, \
188
__ARM64_MIN_NEGATIVE(reg, field), \
189
SYS_FIELD_VALUE(reg, field, max_value))
190
191
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
192
{ \
193
.sign = SIGNED, \
194
.visible = VISIBLE, \
195
.strict = STRICT, \
196
.type = TYPE, \
197
.shift = SHIFT, \
198
.width = WIDTH, \
199
.safe_val = SAFE_VAL, \
200
}
201
202
/* Define a feature with unsigned values */
203
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
204
__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
205
206
/* Define a feature with a signed value */
207
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
208
__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
209
210
#define ARM64_FTR_END \
211
{ \
212
.width = 0, \
213
}
214
215
static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
216
217
static bool __system_matches_cap(unsigned int n);
218
219
/*
220
* NOTE: Any changes to the visibility of features should be kept in
221
* sync with the documentation of the CPU feature register ABI.
222
*/
223
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
224
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
225
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
226
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
227
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
228
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
229
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
230
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
231
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
232
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
233
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
234
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
235
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
236
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
237
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
238
ARM64_FTR_END,
239
};
240
241
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
242
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_XS_SHIFT, 4, 0),
243
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
244
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
245
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
246
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
247
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
248
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
249
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
250
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
251
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
252
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
253
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
254
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
255
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
256
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
257
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
258
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
259
FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
260
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
261
ARM64_FTR_END,
262
};
263
264
static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
265
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
266
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
267
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
268
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
269
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
270
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
271
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
272
FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
273
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
274
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
275
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
276
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
277
ARM64_FTR_END,
278
};
279
280
static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
281
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FPRCVT_SHIFT, 4, 0),
282
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_LSFE_SHIFT, 4, 0),
283
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
284
ARM64_FTR_END,
285
};
286
287
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
288
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
289
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
290
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
291
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
292
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
293
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
294
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
295
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
296
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
297
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
298
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
299
S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
300
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
301
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
302
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_EL1_IMP),
303
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_EL0_IMP),
304
ARM64_FTR_END,
305
};
306
307
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
308
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_DF2_SHIFT, 4, 0),
309
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_GCS),
310
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_GCS_SHIFT, 4, 0),
311
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_frac_SHIFT, 4, 0),
312
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
313
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
314
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
315
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
316
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
317
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
318
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
319
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
320
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
321
ARM64_FTR_END,
322
};
323
324
static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
325
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
326
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTEFAR_SHIFT, 4, ID_AA64PFR2_EL1_MTEFAR_NI),
327
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_MTESTOREONLY_SHIFT, 4, ID_AA64PFR2_EL1_MTESTOREONLY_NI),
328
ARM64_FTR_END,
329
};
330
331
static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
332
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
333
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
334
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
335
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
336
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
337
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F16MM_SHIFT, 4, 0),
338
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
339
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
340
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
341
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
342
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
343
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
344
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
345
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
346
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
347
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
348
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
349
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
350
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
351
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_EltPerm_SHIFT, 4, 0),
352
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
353
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
354
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
355
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
356
ARM64_FTR_END,
357
};
358
359
static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
360
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
362
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
364
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
366
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
368
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
370
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
372
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
373
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
374
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
375
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
376
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
377
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
378
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
379
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
380
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
381
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
382
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
383
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
384
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
385
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
386
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
387
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
388
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
389
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
390
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
391
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
392
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
393
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
394
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
395
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
396
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
397
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SBitPerm_SHIFT, 1, 0),
398
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
399
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_AES_SHIFT, 1, 0),
400
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
401
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SFEXPA_SHIFT, 1, 0),
402
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
403
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_STMOP_SHIFT, 1, 0),
404
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
405
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMOP4_SHIFT, 1, 0),
406
ARM64_FTR_END,
407
};
408
409
static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
410
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
411
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
412
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
413
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
414
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM8_SHIFT, 1, 0),
415
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8MM4_SHIFT, 1, 0),
416
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
417
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
418
ARM64_FTR_END,
419
};
420
421
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
422
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
423
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
424
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
425
/*
426
* Page size not being supported at Stage-2 is not fatal. You
427
* just give up KVM if PAGE_SIZE isn't supported there. Go fix
428
* your favourite nesting hypervisor.
429
*
430
* There is a small corner case where the hypervisor explicitly
431
* advertises a given granule size at Stage-2 (value 2) on some
432
* vCPUs, and uses the fallback to Stage-1 (value 0) for other
433
* vCPUs. Although this is not forbidden by the architecture, it
434
* indicates that the hypervisor is being silly (or buggy).
435
*
436
* We make no effort to cope with this and pretend that if these
437
* fields are inconsistent across vCPUs, then it isn't worth
438
* trying to bring KVM up.
439
*/
440
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
441
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
442
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
443
/*
444
* We already refuse to boot CPUs that don't support our configured
445
* page size, so we can only detect mismatches for a page size other
446
* than the one we're currently using. Unfortunately, SoCs like this
447
* exist in the wild so, even though we don't like it, we'll have to go
448
* along with it and treat them as non-strict.
449
*/
450
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
451
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
452
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
453
454
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
455
/* Linux shouldn't care about secure memory */
456
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
457
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
458
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
459
/*
460
* Differing PARange is fine as long as all peripherals and memory are mapped
461
* within the minimum PARange of all CPUs
462
*/
463
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
464
ARM64_FTR_END,
465
};
466
467
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
468
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ECBHB_SHIFT, 4, 0),
469
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
470
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
471
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
472
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
473
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
474
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
475
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
476
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
477
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
478
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
479
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
480
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
481
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
482
ARM64_FTR_END,
483
};
484
485
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
486
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
487
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
488
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
489
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
490
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
491
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
492
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
493
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
494
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
495
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
496
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
497
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
498
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
499
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
500
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
501
ARM64_FTR_END,
502
};
503
504
static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
505
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_POE),
506
FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1POE_SHIFT, 4, 0),
507
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
508
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_SCTLRX_SHIFT, 4, 0),
509
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
510
ARM64_FTR_END,
511
};
512
513
static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
514
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
515
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_NV_frac_SHIFT, 4, 0),
516
ARM64_FTR_END,
517
};
518
519
static const struct arm64_ftr_bits ftr_ctr[] = {
520
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
521
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
522
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
523
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
524
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
525
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
526
/*
527
* Linux can handle differing I-cache policies. Userspace JITs will
528
* make use of *minLine.
529
* If we have differing I-cache policies, report it as the weakest - VIPT.
530
*/
531
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
532
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
533
ARM64_FTR_END,
534
};
535
536
static struct arm64_ftr_override __ro_after_init no_override = { };
537
538
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
539
.name = "SYS_CTR_EL0",
540
.ftr_bits = ftr_ctr,
541
.override = &no_override,
542
};
543
544
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
545
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
546
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
547
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
548
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
549
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
550
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
551
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
552
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
553
ARM64_FTR_END,
554
};
555
556
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
557
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
558
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
559
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
560
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
561
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
562
/*
563
* We can instantiate multiple PMU instances with different levels
564
* of support.
565
*/
566
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
567
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
568
ARM64_FTR_END,
569
};
570
571
static const struct arm64_ftr_bits ftr_mvfr0[] = {
572
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
573
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
574
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
575
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
576
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
577
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
578
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
579
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
580
ARM64_FTR_END,
581
};
582
583
static const struct arm64_ftr_bits ftr_mvfr1[] = {
584
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
585
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
586
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
587
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
588
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
589
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
590
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
591
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
592
ARM64_FTR_END,
593
};
594
595
static const struct arm64_ftr_bits ftr_mvfr2[] = {
596
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
597
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
598
ARM64_FTR_END,
599
};
600
601
static const struct arm64_ftr_bits ftr_dczid[] = {
602
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
603
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
604
ARM64_FTR_END,
605
};
606
607
static const struct arm64_ftr_bits ftr_gmid[] = {
608
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
609
ARM64_FTR_END,
610
};
611
612
static const struct arm64_ftr_bits ftr_id_isar0[] = {
613
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
614
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
615
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
616
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
617
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
618
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
619
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
620
ARM64_FTR_END,
621
};
622
623
static const struct arm64_ftr_bits ftr_id_isar5[] = {
624
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
625
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
626
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
627
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
628
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
629
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
630
ARM64_FTR_END,
631
};
632
633
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
634
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
635
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
636
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
637
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
638
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
639
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
640
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
641
642
/*
643
* SpecSEI = 1 indicates that the PE might generate an SError on an
644
* external abort on speculative read. It is safe to assume that an
645
* SError might be generated than it will not be. Hence it has been
646
* classified as FTR_HIGHER_SAFE.
647
*/
648
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
649
ARM64_FTR_END,
650
};
651
652
static const struct arm64_ftr_bits ftr_id_isar4[] = {
653
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
654
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
655
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
656
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
657
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
658
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
659
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
660
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
661
ARM64_FTR_END,
662
};
663
664
static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
665
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
666
ARM64_FTR_END,
667
};
668
669
static const struct arm64_ftr_bits ftr_id_isar6[] = {
670
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
671
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
672
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
673
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
674
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
675
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
676
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
677
ARM64_FTR_END,
678
};
679
680
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
681
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
682
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
683
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
684
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
685
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
686
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
687
ARM64_FTR_END,
688
};
689
690
static const struct arm64_ftr_bits ftr_id_pfr1[] = {
691
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
692
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
693
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
694
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
695
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
696
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
697
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
698
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
699
ARM64_FTR_END,
700
};
701
702
static const struct arm64_ftr_bits ftr_id_pfr2[] = {
703
ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
704
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
705
ARM64_FTR_END,
706
};
707
708
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
709
/* [31:28] TraceFilt */
710
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
711
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
712
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
713
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
714
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
715
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
716
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
717
ARM64_FTR_END,
718
};
719
720
static const struct arm64_ftr_bits ftr_id_dfr1[] = {
721
S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
722
ARM64_FTR_END,
723
};
724
725
static const struct arm64_ftr_bits ftr_mpamidr[] = {
726
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PMG_MAX_SHIFT, MPAMIDR_EL1_PMG_MAX_WIDTH, 0),
727
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_VPMR_MAX_SHIFT, MPAMIDR_EL1_VPMR_MAX_WIDTH, 0),
728
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_HAS_HCR_SHIFT, 1, 0),
729
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, MPAMIDR_EL1_PARTID_MAX_SHIFT, MPAMIDR_EL1_PARTID_MAX_WIDTH, 0),
730
ARM64_FTR_END,
731
};
732
733
/*
734
* Common ftr bits for a 32bit register with all hidden, strict
735
* attributes, with 4bit feature fields and a default safe value of
736
* 0. Covers the following 32bit registers:
737
* id_isar[1-3], id_mmfr[1-3]
738
*/
739
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
740
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
741
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
742
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
743
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
744
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
745
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
746
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
747
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
748
ARM64_FTR_END,
749
};
750
751
/* Table for a single 32bit feature value */
752
static const struct arm64_ftr_bits ftr_single32[] = {
753
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
754
ARM64_FTR_END,
755
};
756
757
static const struct arm64_ftr_bits ftr_raz[] = {
758
ARM64_FTR_END,
759
};
760
761
#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
762
.sys_id = id, \
763
.reg = &(struct arm64_ftr_reg){ \
764
.name = id_str, \
765
.override = (ovr), \
766
.ftr_bits = &((table)[0]), \
767
}}
768
769
#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
770
__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
771
772
#define ARM64_FTR_REG(id, table) \
773
__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
774
775
struct arm64_ftr_override __read_mostly id_aa64mmfr0_override;
776
struct arm64_ftr_override __read_mostly id_aa64mmfr1_override;
777
struct arm64_ftr_override __read_mostly id_aa64mmfr2_override;
778
struct arm64_ftr_override __read_mostly id_aa64pfr0_override;
779
struct arm64_ftr_override __read_mostly id_aa64pfr1_override;
780
struct arm64_ftr_override __read_mostly id_aa64zfr0_override;
781
struct arm64_ftr_override __read_mostly id_aa64smfr0_override;
782
struct arm64_ftr_override __read_mostly id_aa64isar1_override;
783
struct arm64_ftr_override __read_mostly id_aa64isar2_override;
784
785
struct arm64_ftr_override __read_mostly arm64_sw_feature_override;
786
787
static const struct __ftr_reg_entry {
788
u32 sys_id;
789
struct arm64_ftr_reg *reg;
790
} arm64_ftr_regs[] = {
791
792
/* Op1 = 0, CRn = 0, CRm = 1 */
793
ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
794
ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
795
ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
796
ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
797
ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
798
ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
799
ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
800
801
/* Op1 = 0, CRn = 0, CRm = 2 */
802
ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
803
ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
804
ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
805
ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
806
ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
807
ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
808
ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
809
ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
810
811
/* Op1 = 0, CRn = 0, CRm = 3 */
812
ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
813
ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
814
ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
815
ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
816
ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
817
ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
818
819
/* Op1 = 0, CRn = 0, CRm = 4 */
820
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
821
&id_aa64pfr0_override),
822
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
823
&id_aa64pfr1_override),
824
ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
825
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
826
&id_aa64zfr0_override),
827
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
828
&id_aa64smfr0_override),
829
ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
830
831
/* Op1 = 0, CRn = 0, CRm = 5 */
832
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
833
ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
834
835
/* Op1 = 0, CRn = 0, CRm = 6 */
836
ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
837
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
838
&id_aa64isar1_override),
839
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
840
&id_aa64isar2_override),
841
ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
842
843
/* Op1 = 0, CRn = 0, CRm = 7 */
844
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
845
&id_aa64mmfr0_override),
846
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
847
&id_aa64mmfr1_override),
848
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
849
&id_aa64mmfr2_override),
850
ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
851
ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
852
853
/* Op1 = 0, CRn = 10, CRm = 4 */
854
ARM64_FTR_REG(SYS_MPAMIDR_EL1, ftr_mpamidr),
855
856
/* Op1 = 1, CRn = 0, CRm = 0 */
857
ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
858
859
/* Op1 = 3, CRn = 0, CRm = 0 */
860
{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
861
ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
862
863
/* Op1 = 3, CRn = 14, CRm = 0 */
864
ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
865
};
866
867
static int search_cmp_ftr_reg(const void *id, const void *regp)
868
{
869
return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
870
}
871
872
/*
873
* get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
874
* its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
875
* ascending order of sys_id, we use binary search to find a matching
876
* entry.
877
*
878
* returns - Upon success, matching ftr_reg entry for id.
879
* - NULL on failure. It is upto the caller to decide
880
* the impact of a failure.
881
*/
882
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
883
{
884
const struct __ftr_reg_entry *ret;
885
886
ret = bsearch((const void *)(unsigned long)sys_id,
887
arm64_ftr_regs,
888
ARRAY_SIZE(arm64_ftr_regs),
889
sizeof(arm64_ftr_regs[0]),
890
search_cmp_ftr_reg);
891
if (ret)
892
return ret->reg;
893
return NULL;
894
}
895
896
/*
897
* get_arm64_ftr_reg - Looks up a feature register entry using
898
* its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
899
*
900
* returns - Upon success, matching ftr_reg entry for id.
901
* - NULL on failure but with an WARN_ON().
902
*/
903
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
904
{
905
struct arm64_ftr_reg *reg;
906
907
reg = get_arm64_ftr_reg_nowarn(sys_id);
908
909
/*
910
* Requesting a non-existent register search is an error. Warn
911
* and let the caller handle it.
912
*/
913
WARN_ON(!reg);
914
return reg;
915
}
916
917
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
918
s64 ftr_val)
919
{
920
u64 mask = arm64_ftr_mask(ftrp);
921
922
reg &= ~mask;
923
reg |= (ftr_val << ftrp->shift) & mask;
924
return reg;
925
}
926
927
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
928
s64 cur)
929
{
930
s64 ret = 0;
931
932
switch (ftrp->type) {
933
case FTR_EXACT:
934
ret = ftrp->safe_val;
935
break;
936
case FTR_LOWER_SAFE:
937
ret = min(new, cur);
938
break;
939
case FTR_HIGHER_OR_ZERO_SAFE:
940
if (!cur || !new)
941
break;
942
fallthrough;
943
case FTR_HIGHER_SAFE:
944
ret = max(new, cur);
945
break;
946
default:
947
BUG();
948
}
949
950
return ret;
951
}
952
953
static void __init sort_ftr_regs(void)
954
{
955
unsigned int i;
956
957
for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
958
const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
959
const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
960
unsigned int j = 0;
961
962
/*
963
* Features here must be sorted in descending order with respect
964
* to their shift values and should not overlap with each other.
965
*/
966
for (; ftr_bits->width != 0; ftr_bits++, j++) {
967
unsigned int width = ftr_reg->ftr_bits[j].width;
968
unsigned int shift = ftr_reg->ftr_bits[j].shift;
969
unsigned int prev_shift;
970
971
WARN((shift + width) > 64,
972
"%s has invalid feature at shift %d\n",
973
ftr_reg->name, shift);
974
975
/*
976
* Skip the first feature. There is nothing to
977
* compare against for now.
978
*/
979
if (j == 0)
980
continue;
981
982
prev_shift = ftr_reg->ftr_bits[j - 1].shift;
983
WARN((shift + width) > prev_shift,
984
"%s has feature overlap at shift %d\n",
985
ftr_reg->name, shift);
986
}
987
988
/*
989
* Skip the first register. There is nothing to
990
* compare against for now.
991
*/
992
if (i == 0)
993
continue;
994
/*
995
* Registers here must be sorted in ascending order with respect
996
* to sys_id for subsequent binary search in get_arm64_ftr_reg()
997
* to work correctly.
998
*/
999
BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
1000
}
1001
}
1002
1003
/*
1004
* Initialise the CPU feature register from Boot CPU values.
1005
* Also initiliases the strict_mask for the register.
1006
* Any bits that are not covered by an arm64_ftr_bits entry are considered
1007
* RES0 for the system-wide value, and must strictly match.
1008
*/
1009
static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
1010
{
1011
u64 val = 0;
1012
u64 strict_mask = ~0x0ULL;
1013
u64 user_mask = 0;
1014
u64 valid_mask = 0;
1015
1016
const struct arm64_ftr_bits *ftrp;
1017
struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
1018
1019
if (!reg)
1020
return;
1021
1022
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1023
u64 ftr_mask = arm64_ftr_mask(ftrp);
1024
s64 ftr_new = arm64_ftr_value(ftrp, new);
1025
s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
1026
1027
if ((ftr_mask & reg->override->mask) == ftr_mask) {
1028
s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
1029
char *str = NULL;
1030
1031
if (ftr_ovr != tmp) {
1032
/* Unsafe, remove the override */
1033
reg->override->mask &= ~ftr_mask;
1034
reg->override->val &= ~ftr_mask;
1035
tmp = ftr_ovr;
1036
str = "ignoring override";
1037
} else if (ftr_new != tmp) {
1038
/* Override was valid */
1039
ftr_new = tmp;
1040
str = "forced";
1041
} else {
1042
/* Override was the safe value */
1043
str = "already set";
1044
}
1045
1046
pr_warn("%s[%d:%d]: %s to %llx\n",
1047
reg->name,
1048
ftrp->shift + ftrp->width - 1,
1049
ftrp->shift, str,
1050
tmp & (BIT(ftrp->width) - 1));
1051
} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1052
reg->override->val &= ~ftr_mask;
1053
pr_warn("%s[%d:%d]: impossible override, ignored\n",
1054
reg->name,
1055
ftrp->shift + ftrp->width - 1,
1056
ftrp->shift);
1057
}
1058
1059
val = arm64_ftr_set_value(ftrp, val, ftr_new);
1060
1061
valid_mask |= ftr_mask;
1062
if (!ftrp->strict)
1063
strict_mask &= ~ftr_mask;
1064
if (ftrp->visible)
1065
user_mask |= ftr_mask;
1066
else
1067
reg->user_val = arm64_ftr_set_value(ftrp,
1068
reg->user_val,
1069
ftrp->safe_val);
1070
}
1071
1072
val &= valid_mask;
1073
1074
reg->sys_val = val;
1075
reg->strict_mask = strict_mask;
1076
reg->user_mask = user_mask;
1077
}
1078
1079
extern const struct arm64_cpu_capabilities arm64_errata[];
1080
static const struct arm64_cpu_capabilities arm64_features[];
1081
1082
static void __init
1083
init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1084
{
1085
for (; caps->matches; caps++) {
1086
if (WARN(caps->capability >= ARM64_NCAPS,
1087
"Invalid capability %d\n", caps->capability))
1088
continue;
1089
if (WARN(cpucap_ptrs[caps->capability],
1090
"Duplicate entry for capability %d\n",
1091
caps->capability))
1092
continue;
1093
cpucap_ptrs[caps->capability] = caps;
1094
}
1095
}
1096
1097
static void __init init_cpucap_indirect_list(void)
1098
{
1099
init_cpucap_indirect_list_from_array(arm64_features);
1100
init_cpucap_indirect_list_from_array(arm64_errata);
1101
}
1102
1103
static void __init setup_boot_cpu_capabilities(void);
1104
1105
static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1106
{
1107
init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1108
init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1109
init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1110
init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1111
init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1112
init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1113
init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1114
init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1115
init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1116
init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1117
init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1118
init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1119
init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1120
init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1121
init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1122
init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1123
init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1124
init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1125
init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1126
init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1127
init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1128
}
1129
1130
#ifdef CONFIG_ARM64_PSEUDO_NMI
1131
static bool enable_pseudo_nmi;
1132
1133
static int __init early_enable_pseudo_nmi(char *p)
1134
{
1135
return kstrtobool(p, &enable_pseudo_nmi);
1136
}
1137
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1138
1139
static __init void detect_system_supports_pseudo_nmi(void)
1140
{
1141
struct device_node *np;
1142
1143
if (!enable_pseudo_nmi)
1144
return;
1145
1146
/*
1147
* Detect broken MediaTek firmware that doesn't properly save and
1148
* restore GIC priorities.
1149
*/
1150
np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1151
if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1152
pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1153
enable_pseudo_nmi = false;
1154
}
1155
of_node_put(np);
1156
}
1157
#else /* CONFIG_ARM64_PSEUDO_NMI */
1158
static inline void detect_system_supports_pseudo_nmi(void) { }
1159
#endif
1160
1161
void __init init_cpu_features(struct cpuinfo_arm64 *info)
1162
{
1163
/* Before we start using the tables, make sure it is sorted */
1164
sort_ftr_regs();
1165
1166
init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1167
init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1168
init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1169
init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1170
init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1171
init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1172
init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1173
init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1174
init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1175
init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1176
init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1177
init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1178
init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1179
init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1180
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1181
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1182
init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1183
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1184
init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1185
init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1186
1187
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1188
init_32bit_cpu_features(&info->aarch32);
1189
1190
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1191
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1192
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1193
1194
vec_init_vq_map(ARM64_VEC_SVE);
1195
1196
cpacr_restore(cpacr);
1197
}
1198
1199
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1200
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1201
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1202
1203
vec_init_vq_map(ARM64_VEC_SME);
1204
1205
cpacr_restore(cpacr);
1206
}
1207
1208
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1209
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1210
init_cpu_ftr_reg(SYS_MPAMIDR_EL1, info->reg_mpamidr);
1211
}
1212
1213
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1214
init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1215
}
1216
1217
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1218
{
1219
const struct arm64_ftr_bits *ftrp;
1220
1221
for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1222
s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1223
s64 ftr_new = arm64_ftr_value(ftrp, new);
1224
1225
if (ftr_cur == ftr_new)
1226
continue;
1227
/* Find a safe value */
1228
ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1229
reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1230
}
1231
1232
}
1233
1234
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1235
{
1236
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1237
1238
if (!regp)
1239
return 0;
1240
1241
update_cpu_ftr_reg(regp, val);
1242
if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1243
return 0;
1244
pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1245
regp->name, boot, cpu, val);
1246
return 1;
1247
}
1248
1249
static void relax_cpu_ftr_reg(u32 sys_id, int field)
1250
{
1251
const struct arm64_ftr_bits *ftrp;
1252
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1253
1254
if (!regp)
1255
return;
1256
1257
for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1258
if (ftrp->shift == field) {
1259
regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1260
break;
1261
}
1262
}
1263
1264
/* Bogus field? */
1265
WARN_ON(!ftrp->width);
1266
}
1267
1268
static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1269
struct cpuinfo_arm64 *boot)
1270
{
1271
static bool boot_cpu_32bit_regs_overridden = false;
1272
1273
if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1274
return;
1275
1276
if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1277
return;
1278
1279
boot->aarch32 = info->aarch32;
1280
init_32bit_cpu_features(&boot->aarch32);
1281
boot_cpu_32bit_regs_overridden = true;
1282
}
1283
1284
static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1285
struct cpuinfo_32bit *boot)
1286
{
1287
int taint = 0;
1288
u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1289
1290
/*
1291
* If we don't have AArch32 at EL1, then relax the strictness of
1292
* EL1-dependent register fields to avoid spurious sanity check fails.
1293
*/
1294
if (!id_aa64pfr0_32bit_el1(pfr0)) {
1295
relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1296
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1297
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1298
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1299
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1300
relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1301
}
1302
1303
taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1304
info->reg_id_dfr0, boot->reg_id_dfr0);
1305
taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1306
info->reg_id_dfr1, boot->reg_id_dfr1);
1307
taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1308
info->reg_id_isar0, boot->reg_id_isar0);
1309
taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1310
info->reg_id_isar1, boot->reg_id_isar1);
1311
taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1312
info->reg_id_isar2, boot->reg_id_isar2);
1313
taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1314
info->reg_id_isar3, boot->reg_id_isar3);
1315
taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1316
info->reg_id_isar4, boot->reg_id_isar4);
1317
taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1318
info->reg_id_isar5, boot->reg_id_isar5);
1319
taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1320
info->reg_id_isar6, boot->reg_id_isar6);
1321
1322
/*
1323
* Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1324
* ACTLR formats could differ across CPUs and therefore would have to
1325
* be trapped for virtualization anyway.
1326
*/
1327
taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1328
info->reg_id_mmfr0, boot->reg_id_mmfr0);
1329
taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1330
info->reg_id_mmfr1, boot->reg_id_mmfr1);
1331
taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1332
info->reg_id_mmfr2, boot->reg_id_mmfr2);
1333
taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1334
info->reg_id_mmfr3, boot->reg_id_mmfr3);
1335
taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1336
info->reg_id_mmfr4, boot->reg_id_mmfr4);
1337
taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1338
info->reg_id_mmfr5, boot->reg_id_mmfr5);
1339
taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1340
info->reg_id_pfr0, boot->reg_id_pfr0);
1341
taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1342
info->reg_id_pfr1, boot->reg_id_pfr1);
1343
taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1344
info->reg_id_pfr2, boot->reg_id_pfr2);
1345
taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1346
info->reg_mvfr0, boot->reg_mvfr0);
1347
taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1348
info->reg_mvfr1, boot->reg_mvfr1);
1349
taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1350
info->reg_mvfr2, boot->reg_mvfr2);
1351
1352
return taint;
1353
}
1354
1355
/*
1356
* Update system wide CPU feature registers with the values from a
1357
* non-boot CPU. Also performs SANITY checks to make sure that there
1358
* aren't any insane variations from that of the boot CPU.
1359
*/
1360
void update_cpu_features(int cpu,
1361
struct cpuinfo_arm64 *info,
1362
struct cpuinfo_arm64 *boot)
1363
{
1364
int taint = 0;
1365
1366
/*
1367
* The kernel can handle differing I-cache policies, but otherwise
1368
* caches should look identical. Userspace JITs will make use of
1369
* *minLine.
1370
*/
1371
taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1372
info->reg_ctr, boot->reg_ctr);
1373
1374
/*
1375
* Userspace may perform DC ZVA instructions. Mismatched block sizes
1376
* could result in too much or too little memory being zeroed if a
1377
* process is preempted and migrated between CPUs.
1378
*/
1379
taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1380
info->reg_dczid, boot->reg_dczid);
1381
1382
/* If different, timekeeping will be broken (especially with KVM) */
1383
taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1384
info->reg_cntfrq, boot->reg_cntfrq);
1385
1386
/*
1387
* The kernel uses self-hosted debug features and expects CPUs to
1388
* support identical debug features. We presently need CTX_CMPs, WRPs,
1389
* and BRPs to be identical.
1390
* ID_AA64DFR1 is currently RES0.
1391
*/
1392
taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1393
info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1394
taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1395
info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1396
/*
1397
* Even in big.LITTLE, processors should be identical instruction-set
1398
* wise.
1399
*/
1400
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1401
info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1402
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1403
info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1404
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1405
info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1406
taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1407
info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1408
1409
/*
1410
* Differing PARange support is fine as long as all peripherals and
1411
* memory are mapped within the minimum PARange of all CPUs.
1412
* Linux should not care about secure memory.
1413
*/
1414
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1415
info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1416
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1417
info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1418
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1419
info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1420
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1421
info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1422
taint |= check_update_ftr_reg(SYS_ID_AA64MMFR4_EL1, cpu,
1423
info->reg_id_aa64mmfr4, boot->reg_id_aa64mmfr4);
1424
1425
taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1426
info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1427
taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1428
info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1429
taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1430
info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1431
1432
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1433
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1434
1435
taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1436
info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1437
1438
taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1439
info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1440
1441
/* Probe vector lengths */
1442
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1443
id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1444
if (!system_capabilities_finalized()) {
1445
unsigned long cpacr = cpacr_save_enable_kernel_sve();
1446
1447
vec_update_vq_map(ARM64_VEC_SVE);
1448
1449
cpacr_restore(cpacr);
1450
}
1451
}
1452
1453
if (IS_ENABLED(CONFIG_ARM64_SME) &&
1454
id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1455
unsigned long cpacr = cpacr_save_enable_kernel_sme();
1456
1457
/* Probe vector lengths */
1458
if (!system_capabilities_finalized())
1459
vec_update_vq_map(ARM64_VEC_SME);
1460
1461
cpacr_restore(cpacr);
1462
}
1463
1464
if (id_aa64pfr0_mpam(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1465
info->reg_mpamidr = read_cpuid(MPAMIDR_EL1);
1466
taint |= check_update_ftr_reg(SYS_MPAMIDR_EL1, cpu,
1467
info->reg_mpamidr, boot->reg_mpamidr);
1468
}
1469
1470
/*
1471
* The kernel uses the LDGM/STGM instructions and the number of tags
1472
* they read/write depends on the GMID_EL1.BS field. Check that the
1473
* value is the same on all CPUs.
1474
*/
1475
if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1476
id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1477
taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1478
info->reg_gmid, boot->reg_gmid);
1479
}
1480
1481
/*
1482
* If we don't have AArch32 at all then skip the checks entirely
1483
* as the register values may be UNKNOWN and we're not going to be
1484
* using them for anything.
1485
*
1486
* This relies on a sanitised view of the AArch64 ID registers
1487
* (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1488
*/
1489
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1490
lazy_init_32bit_cpu_features(info, boot);
1491
taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1492
&boot->aarch32);
1493
}
1494
1495
/*
1496
* Mismatched CPU features are a recipe for disaster. Don't even
1497
* pretend to support them.
1498
*/
1499
if (taint) {
1500
pr_warn_once("Unsupported CPU feature variation detected.\n");
1501
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1502
}
1503
}
1504
1505
u64 read_sanitised_ftr_reg(u32 id)
1506
{
1507
struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1508
1509
if (!regp)
1510
return 0;
1511
return regp->sys_val;
1512
}
1513
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1514
1515
#define read_sysreg_case(r) \
1516
case r: val = read_sysreg_s(r); break;
1517
1518
/*
1519
* __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1520
* Read the system register on the current CPU
1521
*/
1522
u64 __read_sysreg_by_encoding(u32 sys_id)
1523
{
1524
struct arm64_ftr_reg *regp;
1525
u64 val;
1526
1527
switch (sys_id) {
1528
read_sysreg_case(SYS_ID_PFR0_EL1);
1529
read_sysreg_case(SYS_ID_PFR1_EL1);
1530
read_sysreg_case(SYS_ID_PFR2_EL1);
1531
read_sysreg_case(SYS_ID_DFR0_EL1);
1532
read_sysreg_case(SYS_ID_DFR1_EL1);
1533
read_sysreg_case(SYS_ID_MMFR0_EL1);
1534
read_sysreg_case(SYS_ID_MMFR1_EL1);
1535
read_sysreg_case(SYS_ID_MMFR2_EL1);
1536
read_sysreg_case(SYS_ID_MMFR3_EL1);
1537
read_sysreg_case(SYS_ID_MMFR4_EL1);
1538
read_sysreg_case(SYS_ID_MMFR5_EL1);
1539
read_sysreg_case(SYS_ID_ISAR0_EL1);
1540
read_sysreg_case(SYS_ID_ISAR1_EL1);
1541
read_sysreg_case(SYS_ID_ISAR2_EL1);
1542
read_sysreg_case(SYS_ID_ISAR3_EL1);
1543
read_sysreg_case(SYS_ID_ISAR4_EL1);
1544
read_sysreg_case(SYS_ID_ISAR5_EL1);
1545
read_sysreg_case(SYS_ID_ISAR6_EL1);
1546
read_sysreg_case(SYS_MVFR0_EL1);
1547
read_sysreg_case(SYS_MVFR1_EL1);
1548
read_sysreg_case(SYS_MVFR2_EL1);
1549
1550
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1551
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1552
read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1553
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1554
read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1555
read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1556
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1557
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1558
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1559
read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1560
read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1561
read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1562
read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1563
read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1564
read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1565
read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1566
read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1567
1568
read_sysreg_case(SYS_CNTFRQ_EL0);
1569
read_sysreg_case(SYS_CTR_EL0);
1570
read_sysreg_case(SYS_DCZID_EL0);
1571
1572
default:
1573
BUG();
1574
return 0;
1575
}
1576
1577
regp = get_arm64_ftr_reg(sys_id);
1578
if (regp) {
1579
val &= ~regp->override->mask;
1580
val |= (regp->override->val & regp->override->mask);
1581
}
1582
1583
return val;
1584
}
1585
1586
#include <linux/irqchip/arm-gic-v3.h>
1587
1588
static bool
1589
has_always(const struct arm64_cpu_capabilities *entry, int scope)
1590
{
1591
return true;
1592
}
1593
1594
static bool
1595
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1596
{
1597
int val, min, max;
1598
u64 tmp;
1599
1600
val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1601
entry->field_width,
1602
entry->sign);
1603
1604
tmp = entry->min_field_value;
1605
tmp <<= entry->field_pos;
1606
1607
min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1608
entry->field_width,
1609
entry->sign);
1610
1611
tmp = entry->max_field_value;
1612
tmp <<= entry->field_pos;
1613
1614
max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1615
entry->field_width,
1616
entry->sign);
1617
1618
return val >= min && val <= max;
1619
}
1620
1621
static u64
1622
read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1623
{
1624
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1625
if (scope == SCOPE_SYSTEM)
1626
return read_sanitised_ftr_reg(entry->sys_reg);
1627
else
1628
return __read_sysreg_by_encoding(entry->sys_reg);
1629
}
1630
1631
static bool
1632
has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1633
{
1634
int mask;
1635
struct arm64_ftr_reg *regp;
1636
u64 val = read_scoped_sysreg(entry, scope);
1637
1638
regp = get_arm64_ftr_reg(entry->sys_reg);
1639
if (!regp)
1640
return false;
1641
1642
mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1643
entry->field_pos,
1644
entry->field_width);
1645
if (!mask)
1646
return false;
1647
1648
return feature_matches(val, entry);
1649
}
1650
1651
static bool
1652
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1653
{
1654
u64 val = read_scoped_sysreg(entry, scope);
1655
return feature_matches(val, entry);
1656
}
1657
1658
const struct cpumask *system_32bit_el0_cpumask(void)
1659
{
1660
if (!system_supports_32bit_el0())
1661
return cpu_none_mask;
1662
1663
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1664
return cpu_32bit_el0_mask;
1665
1666
return cpu_possible_mask;
1667
}
1668
1669
const struct cpumask *task_cpu_fallback_mask(struct task_struct *p)
1670
{
1671
return __task_cpu_possible_mask(p, housekeeping_cpumask(HK_TYPE_TICK));
1672
}
1673
1674
static int __init parse_32bit_el0_param(char *str)
1675
{
1676
allow_mismatched_32bit_el0 = true;
1677
return 0;
1678
}
1679
early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1680
1681
static ssize_t aarch32_el0_show(struct device *dev,
1682
struct device_attribute *attr, char *buf)
1683
{
1684
const struct cpumask *mask = system_32bit_el0_cpumask();
1685
1686
return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1687
}
1688
static const DEVICE_ATTR_RO(aarch32_el0);
1689
1690
static int __init aarch32_el0_sysfs_init(void)
1691
{
1692
struct device *dev_root;
1693
int ret = 0;
1694
1695
if (!allow_mismatched_32bit_el0)
1696
return 0;
1697
1698
dev_root = bus_get_dev_root(&cpu_subsys);
1699
if (dev_root) {
1700
ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1701
put_device(dev_root);
1702
}
1703
return ret;
1704
}
1705
device_initcall(aarch32_el0_sysfs_init);
1706
1707
static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1708
{
1709
if (!has_cpuid_feature(entry, scope))
1710
return allow_mismatched_32bit_el0;
1711
1712
if (scope == SCOPE_SYSTEM)
1713
pr_info("detected: 32-bit EL0 Support\n");
1714
1715
return true;
1716
}
1717
1718
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1719
{
1720
bool has_sre;
1721
1722
if (!has_cpuid_feature(entry, scope))
1723
return false;
1724
1725
has_sre = gic_enable_sre();
1726
if (!has_sre)
1727
pr_warn_once("%s present but disabled by higher exception level\n",
1728
entry->desc);
1729
1730
return has_sre;
1731
}
1732
1733
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1734
int scope)
1735
{
1736
u64 ctr;
1737
1738
if (scope == SCOPE_SYSTEM)
1739
ctr = arm64_ftr_reg_ctrel0.sys_val;
1740
else
1741
ctr = read_cpuid_effective_cachetype();
1742
1743
return ctr & BIT(CTR_EL0_IDC_SHIFT);
1744
}
1745
1746
static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1747
{
1748
/*
1749
* If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1750
* CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1751
* to the CTR_EL0 on this CPU and emulate it with the real/safe
1752
* value.
1753
*/
1754
if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1755
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1756
}
1757
1758
static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1759
int scope)
1760
{
1761
u64 ctr;
1762
1763
if (scope == SCOPE_SYSTEM)
1764
ctr = arm64_ftr_reg_ctrel0.sys_val;
1765
else
1766
ctr = read_cpuid_cachetype();
1767
1768
return ctr & BIT(CTR_EL0_DIC_SHIFT);
1769
}
1770
1771
static bool __maybe_unused
1772
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1773
{
1774
/*
1775
* Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1776
* may share TLB entries with a CPU stuck in the crashed
1777
* kernel.
1778
*/
1779
if (is_kdump_kernel())
1780
return false;
1781
1782
if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1783
return false;
1784
1785
return has_cpuid_feature(entry, scope);
1786
}
1787
1788
static bool __meltdown_safe = true;
1789
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1790
1791
static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1792
int scope)
1793
{
1794
/* List of CPUs that are not vulnerable and don't need KPTI */
1795
static const struct midr_range kpti_safe_list[] = {
1796
MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1797
MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1798
MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1799
MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1800
MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1801
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1802
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1803
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1804
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1805
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1806
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1807
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1808
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1809
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1810
MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1811
{ /* sentinel */ }
1812
};
1813
char const *str = "kpti command line option";
1814
bool meltdown_safe;
1815
1816
meltdown_safe = is_midr_in_range_list(kpti_safe_list);
1817
1818
/* Defer to CPU feature registers */
1819
if (has_cpuid_feature(entry, scope))
1820
meltdown_safe = true;
1821
1822
if (!meltdown_safe)
1823
__meltdown_safe = false;
1824
1825
/*
1826
* For reasons that aren't entirely clear, enabling KPTI on Cavium
1827
* ThunderX leads to apparent I-cache corruption of kernel text, which
1828
* ends as well as you might imagine. Don't even try. We cannot rely
1829
* on the cpus_have_*cap() helpers here to detect the CPU erratum
1830
* because cpucap detection order may change. However, since we know
1831
* affected CPUs are always in a homogeneous configuration, it is
1832
* safe to rely on this_cpu_has_cap() here.
1833
*/
1834
if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1835
str = "ARM64_WORKAROUND_CAVIUM_27456";
1836
__kpti_forced = -1;
1837
}
1838
1839
/* Useful for KASLR robustness */
1840
if (kaslr_enabled() && kaslr_requires_kpti()) {
1841
if (!__kpti_forced) {
1842
str = "KASLR";
1843
__kpti_forced = 1;
1844
}
1845
}
1846
1847
if (cpu_mitigations_off() && !__kpti_forced) {
1848
str = "mitigations=off";
1849
__kpti_forced = -1;
1850
}
1851
1852
if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1853
pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1854
return false;
1855
}
1856
1857
/* Forced? */
1858
if (__kpti_forced) {
1859
pr_info_once("kernel page table isolation forced %s by %s\n",
1860
__kpti_forced > 0 ? "ON" : "OFF", str);
1861
return __kpti_forced > 0;
1862
}
1863
1864
return !meltdown_safe;
1865
}
1866
1867
static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1868
{
1869
/*
1870
* Although the Apple M2 family appears to support NV1, the
1871
* PTW barfs on the nVHE EL2 S1 page table format. Pretend
1872
* that it doesn't support NV1 at all.
1873
*/
1874
static const struct midr_range nv1_ni_list[] = {
1875
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1876
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1877
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1878
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1879
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1880
MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1881
{}
1882
};
1883
1884
return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1885
!(has_cpuid_feature(entry, scope) ||
1886
is_midr_in_range_list(nv1_ni_list)));
1887
}
1888
1889
#if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1890
static bool has_lpa2_at_stage1(u64 mmfr0)
1891
{
1892
unsigned int tgran;
1893
1894
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1895
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1896
return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1897
}
1898
1899
static bool has_lpa2_at_stage2(u64 mmfr0)
1900
{
1901
unsigned int tgran;
1902
1903
tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1904
ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1905
return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1906
}
1907
1908
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1909
{
1910
u64 mmfr0;
1911
1912
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1913
return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1914
}
1915
#else
1916
static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1917
{
1918
return false;
1919
}
1920
#endif
1921
1922
#ifdef CONFIG_HW_PERF_EVENTS
1923
static bool has_pmuv3(const struct arm64_cpu_capabilities *entry, int scope)
1924
{
1925
u64 dfr0 = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1926
unsigned int pmuver;
1927
1928
/*
1929
* PMUVer follows the standard ID scheme for an unsigned field with the
1930
* exception of 0xF (IMP_DEF) which is treated specially and implies
1931
* FEAT_PMUv3 is not implemented.
1932
*
1933
* See DDI0487L.a D24.1.3.2 for more details.
1934
*/
1935
pmuver = cpuid_feature_extract_unsigned_field(dfr0,
1936
ID_AA64DFR0_EL1_PMUVer_SHIFT);
1937
if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1938
return false;
1939
1940
return pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP;
1941
}
1942
#endif
1943
1944
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1945
#define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1946
1947
extern
1948
void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1949
phys_addr_t size, pgprot_t prot,
1950
phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags);
1951
1952
static phys_addr_t __initdata kpti_ng_temp_alloc;
1953
1954
static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1955
{
1956
kpti_ng_temp_alloc -= PAGE_SIZE;
1957
return kpti_ng_temp_alloc;
1958
}
1959
1960
static int __init __kpti_install_ng_mappings(void *__unused)
1961
{
1962
typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1963
extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1964
kpti_remap_fn *remap_fn;
1965
1966
int cpu = smp_processor_id();
1967
int levels = CONFIG_PGTABLE_LEVELS;
1968
int order = order_base_2(levels);
1969
u64 kpti_ng_temp_pgd_pa = 0;
1970
pgd_t *kpti_ng_temp_pgd;
1971
u64 alloc = 0;
1972
1973
if (levels == 5 && !pgtable_l5_enabled())
1974
levels = 4;
1975
else if (levels == 4 && !pgtable_l4_enabled())
1976
levels = 3;
1977
1978
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1979
1980
if (!cpu) {
1981
alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1982
kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1983
kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1984
1985
//
1986
// Create a minimal page table hierarchy that permits us to map
1987
// the swapper page tables temporarily as we traverse them.
1988
//
1989
// The physical pages are laid out as follows:
1990
//
1991
// +--------+-/-------+-/------ +-/------ +-\\\--------+
1992
// : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1993
// +--------+-\-------+-\------ +-\------ +-///--------+
1994
// ^
1995
// The first page is mapped into this hierarchy at a PMD_SHIFT
1996
// aligned virtual address, so that we can manipulate the PTE
1997
// level entries while the mapping is active. The first entry
1998
// covers the PTE[] page itself, the remaining entries are free
1999
// to be used as a ad-hoc fixmap.
2000
//
2001
create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
2002
KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
2003
kpti_ng_pgd_alloc, 0);
2004
}
2005
2006
cpu_install_idmap();
2007
remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
2008
cpu_uninstall_idmap();
2009
2010
if (!cpu) {
2011
free_pages(alloc, order);
2012
arm64_use_ng_mappings = true;
2013
}
2014
2015
return 0;
2016
}
2017
2018
static void __init kpti_install_ng_mappings(void)
2019
{
2020
/* Check whether KPTI is going to be used */
2021
if (!arm64_kernel_unmapped_at_el0())
2022
return;
2023
2024
/*
2025
* We don't need to rewrite the page-tables if either we've done
2026
* it already or we have KASLR enabled and therefore have not
2027
* created any global mappings at all.
2028
*/
2029
if (arm64_use_ng_mappings)
2030
return;
2031
2032
init_idmap_kpti_bbml2_flag();
2033
stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
2034
}
2035
2036
#else
2037
static inline void kpti_install_ng_mappings(void)
2038
{
2039
}
2040
#endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
2041
2042
static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
2043
{
2044
if (__this_cpu_read(this_cpu_vector) == vectors) {
2045
const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
2046
2047
__this_cpu_write(this_cpu_vector, v);
2048
}
2049
2050
}
2051
2052
static int __init parse_kpti(char *str)
2053
{
2054
bool enabled;
2055
int ret = kstrtobool(str, &enabled);
2056
2057
if (ret)
2058
return ret;
2059
2060
__kpti_forced = enabled ? 1 : -1;
2061
return 0;
2062
}
2063
early_param("kpti", parse_kpti);
2064
2065
#ifdef CONFIG_ARM64_HW_AFDBM
2066
static struct cpumask dbm_cpus __read_mostly;
2067
2068
static inline void __cpu_enable_hw_dbm(void)
2069
{
2070
u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
2071
2072
write_sysreg(tcr, tcr_el1);
2073
isb();
2074
local_flush_tlb_all();
2075
}
2076
2077
static bool cpu_has_broken_dbm(void)
2078
{
2079
/* List of CPUs which have broken DBM support. */
2080
static const struct midr_range cpus[] = {
2081
#ifdef CONFIG_ARM64_ERRATUM_1024718
2082
MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2083
/* Kryo4xx Silver (rdpe => r1p0) */
2084
MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2085
#endif
2086
#ifdef CONFIG_ARM64_ERRATUM_2051678
2087
MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2088
#endif
2089
{},
2090
};
2091
2092
return is_midr_in_range_list(cpus);
2093
}
2094
2095
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2096
{
2097
return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2098
!cpu_has_broken_dbm();
2099
}
2100
2101
static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2102
{
2103
if (cpu_can_use_dbm(cap)) {
2104
__cpu_enable_hw_dbm();
2105
cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2106
}
2107
}
2108
2109
static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2110
int __unused)
2111
{
2112
/*
2113
* DBM is a non-conflicting feature. i.e, the kernel can safely
2114
* run a mix of CPUs with and without the feature. So, we
2115
* unconditionally enable the capability to allow any late CPU
2116
* to use the feature. We only enable the control bits on the
2117
* CPU, if it is supported.
2118
*/
2119
2120
return true;
2121
}
2122
2123
#endif
2124
2125
#ifdef CONFIG_ARM64_AMU_EXTN
2126
2127
/*
2128
* The "amu_cpus" cpumask only signals that the CPU implementation for the
2129
* flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2130
* information regarding all the events that it supports. When a CPU bit is
2131
* set in the cpumask, the user of this feature can only rely on the presence
2132
* of the 4 fixed counters for that CPU. But this does not guarantee that the
2133
* counters are enabled or access to these counters is enabled by code
2134
* executed at higher exception levels (firmware).
2135
*/
2136
static struct cpumask amu_cpus __read_mostly;
2137
2138
bool cpu_has_amu_feat(int cpu)
2139
{
2140
return cpumask_test_cpu(cpu, &amu_cpus);
2141
}
2142
2143
int get_cpu_with_amu_feat(void)
2144
{
2145
return cpumask_any(&amu_cpus);
2146
}
2147
2148
static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2149
{
2150
if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2151
cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2152
2153
/* 0 reference values signal broken/disabled counters */
2154
if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2155
update_freq_counters_refs();
2156
}
2157
}
2158
2159
static bool has_amu(const struct arm64_cpu_capabilities *cap,
2160
int __unused)
2161
{
2162
/*
2163
* The AMU extension is a non-conflicting feature: the kernel can
2164
* safely run a mix of CPUs with and without support for the
2165
* activity monitors extension. Therefore, unconditionally enable
2166
* the capability to allow any late CPU to use the feature.
2167
*
2168
* With this feature unconditionally enabled, the cpu_enable
2169
* function will be called for all CPUs that match the criteria,
2170
* including secondary and hotplugged, marking this feature as
2171
* present on that respective CPU. The enable function will also
2172
* print a detection message.
2173
*/
2174
2175
return true;
2176
}
2177
#else
2178
int get_cpu_with_amu_feat(void)
2179
{
2180
return nr_cpu_ids;
2181
}
2182
#endif
2183
2184
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2185
{
2186
return is_kernel_in_hyp_mode();
2187
}
2188
2189
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2190
{
2191
/*
2192
* Copy register values that aren't redirected by hardware.
2193
*
2194
* Before code patching, we only set tpidr_el1, all CPUs need to copy
2195
* this value to tpidr_el2 before we patch the code. Once we've done
2196
* that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2197
* do anything here.
2198
*/
2199
if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2200
write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2201
}
2202
2203
static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2204
int scope)
2205
{
2206
if (kvm_get_mode() != KVM_MODE_NV)
2207
return false;
2208
2209
if (!cpucap_multi_entry_cap_matches(cap, scope)) {
2210
pr_warn("unavailable: %s\n", cap->desc);
2211
return false;
2212
}
2213
2214
return true;
2215
}
2216
2217
static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2218
int __unused)
2219
{
2220
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2221
}
2222
2223
bool cpu_supports_bbml2_noabort(void)
2224
{
2225
/*
2226
* We want to allow usage of BBML2 in as wide a range of kernel contexts
2227
* as possible. This list is therefore an allow-list of known-good
2228
* implementations that both support BBML2 and additionally, fulfill the
2229
* extra constraint of never generating TLB conflict aborts when using
2230
* the relaxed BBML2 semantics (such aborts make use of BBML2 in certain
2231
* kernel contexts difficult to prove safe against recursive aborts).
2232
*
2233
* Note that implementations can only be considered "known-good" if their
2234
* implementors attest to the fact that the implementation never raises
2235
* TLB conflict aborts for BBML2 mapping granularity changes.
2236
*/
2237
static const struct midr_range supports_bbml2_noabort_list[] = {
2238
MIDR_REV_RANGE(MIDR_CORTEX_X4, 0, 3, 0xf),
2239
MIDR_REV_RANGE(MIDR_NEOVERSE_V3, 0, 2, 0xf),
2240
MIDR_REV_RANGE(MIDR_NEOVERSE_V3AE, 0, 2, 0xf),
2241
MIDR_ALL_VERSIONS(MIDR_NVIDIA_OLYMPUS),
2242
MIDR_ALL_VERSIONS(MIDR_AMPERE1),
2243
MIDR_ALL_VERSIONS(MIDR_AMPERE1A),
2244
{}
2245
};
2246
2247
/* Does our cpu guarantee to never raise TLB conflict aborts? */
2248
if (!is_midr_in_range_list(supports_bbml2_noabort_list))
2249
return false;
2250
2251
/*
2252
* We currently ignore the ID_AA64MMFR2_EL1 register, and only care
2253
* about whether the MIDR check passes.
2254
*/
2255
2256
return true;
2257
}
2258
2259
static bool has_bbml2_noabort(const struct arm64_cpu_capabilities *caps, int scope)
2260
{
2261
return cpu_supports_bbml2_noabort();
2262
}
2263
2264
#ifdef CONFIG_ARM64_PAN
2265
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2266
{
2267
/*
2268
* We modify PSTATE. This won't work from irq context as the PSTATE
2269
* is discarded once we return from the exception.
2270
*/
2271
WARN_ON_ONCE(in_interrupt());
2272
2273
sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2274
set_pstate_pan(1);
2275
}
2276
#endif /* CONFIG_ARM64_PAN */
2277
2278
#ifdef CONFIG_ARM64_RAS_EXTN
2279
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2280
{
2281
/* Firmware may have left a deferred SError in this register. */
2282
write_sysreg_s(0, SYS_DISR_EL1);
2283
}
2284
static bool has_rasv1p1(const struct arm64_cpu_capabilities *__unused, int scope)
2285
{
2286
const struct arm64_cpu_capabilities rasv1p1_caps[] = {
2287
{
2288
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, V1P1)
2289
},
2290
{
2291
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2292
},
2293
{
2294
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, RAS_frac, RASv1p1)
2295
},
2296
};
2297
2298
return (has_cpuid_feature(&rasv1p1_caps[0], scope) ||
2299
(has_cpuid_feature(&rasv1p1_caps[1], scope) &&
2300
has_cpuid_feature(&rasv1p1_caps[2], scope)));
2301
}
2302
#endif /* CONFIG_ARM64_RAS_EXTN */
2303
2304
#ifdef CONFIG_ARM64_PTR_AUTH
2305
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2306
{
2307
int boot_val, sec_val;
2308
2309
/* We don't expect to be called with SCOPE_SYSTEM */
2310
WARN_ON(scope == SCOPE_SYSTEM);
2311
/*
2312
* The ptr-auth feature levels are not intercompatible with lower
2313
* levels. Hence we must match ptr-auth feature level of the secondary
2314
* CPUs with that of the boot CPU. The level of boot cpu is fetched
2315
* from the sanitised register whereas direct register read is done for
2316
* the secondary CPUs.
2317
* The sanitised feature state is guaranteed to match that of the
2318
* boot CPU as a mismatched secondary CPU is parked before it gets
2319
* a chance to update the state, with the capability.
2320
*/
2321
boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2322
entry->field_pos, entry->sign);
2323
if (scope & SCOPE_BOOT_CPU)
2324
return boot_val >= entry->min_field_value;
2325
/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2326
sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2327
entry->field_pos, entry->sign);
2328
return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2329
}
2330
2331
static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2332
int scope)
2333
{
2334
bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2335
bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2336
bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2337
2338
return apa || apa3 || api;
2339
}
2340
2341
static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2342
int __unused)
2343
{
2344
bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2345
bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2346
bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2347
2348
return gpa || gpa3 || gpi;
2349
}
2350
#endif /* CONFIG_ARM64_PTR_AUTH */
2351
2352
#ifdef CONFIG_ARM64_E0PD
2353
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2354
{
2355
if (this_cpu_has_cap(ARM64_HAS_E0PD))
2356
sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2357
}
2358
#endif /* CONFIG_ARM64_E0PD */
2359
2360
#ifdef CONFIG_ARM64_PSEUDO_NMI
2361
static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2362
int scope)
2363
{
2364
/*
2365
* ARM64_HAS_GICV3_CPUIF has a lower index, and is a boot CPU
2366
* feature, so will be detected earlier.
2367
*/
2368
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GICV3_CPUIF);
2369
if (!cpus_have_cap(ARM64_HAS_GICV3_CPUIF))
2370
return false;
2371
2372
return enable_pseudo_nmi;
2373
}
2374
2375
static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2376
int scope)
2377
{
2378
/*
2379
* If we're not using priority masking then we won't be poking PMR_EL1,
2380
* and there's no need to relax synchronization of writes to it, and
2381
* ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2382
* that.
2383
*
2384
* ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2385
* feature, so will be detected earlier.
2386
*/
2387
BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2388
if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2389
return false;
2390
2391
/*
2392
* When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2393
* hint for interrupt distribution, a DSB is not necessary when
2394
* unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2395
*
2396
* Linux itself doesn't use 1:N distribution, so has no need to
2397
* set PMHE. The only reason to have it set is if EL3 requires it
2398
* (and we can't change it).
2399
*/
2400
return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2401
}
2402
#endif
2403
2404
#ifdef CONFIG_ARM64_BTI
2405
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2406
{
2407
/*
2408
* Use of X16/X17 for tail-calls and trampolines that jump to
2409
* function entry points using BR is a requirement for
2410
* marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2411
* So, be strict and forbid other BRs using other registers to
2412
* jump onto a PACIxSP instruction:
2413
*/
2414
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2415
isb();
2416
}
2417
#endif /* CONFIG_ARM64_BTI */
2418
2419
#ifdef CONFIG_ARM64_MTE
2420
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2421
{
2422
sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2423
2424
mte_cpu_setup();
2425
2426
/*
2427
* Clear the tags in the zero page. This needs to be done via the
2428
* linear map which has the Tagged attribute.
2429
*/
2430
if (try_page_mte_tagging(ZERO_PAGE(0))) {
2431
mte_clear_page_tags(lm_alias(empty_zero_page));
2432
set_page_mte_tagged(ZERO_PAGE(0));
2433
}
2434
2435
kasan_init_hw_tags_cpu();
2436
}
2437
#endif /* CONFIG_ARM64_MTE */
2438
2439
static void user_feature_fixup(void)
2440
{
2441
if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2442
struct arm64_ftr_reg *regp;
2443
2444
regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2445
if (regp)
2446
regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2447
}
2448
2449
if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) {
2450
struct arm64_ftr_reg *regp;
2451
2452
regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1);
2453
if (regp)
2454
regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK;
2455
}
2456
}
2457
2458
static void elf_hwcap_fixup(void)
2459
{
2460
#ifdef CONFIG_COMPAT
2461
if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2462
compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2463
#endif /* CONFIG_COMPAT */
2464
}
2465
2466
#ifdef CONFIG_KVM
2467
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2468
{
2469
return kvm_get_mode() == KVM_MODE_PROTECTED;
2470
}
2471
#endif /* CONFIG_KVM */
2472
2473
static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2474
{
2475
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2476
}
2477
2478
static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2479
{
2480
set_pstate_dit(1);
2481
}
2482
2483
static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2484
{
2485
sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2486
}
2487
2488
#ifdef CONFIG_ARM64_POE
2489
static void cpu_enable_poe(const struct arm64_cpu_capabilities *__unused)
2490
{
2491
sysreg_clear_set(REG_TCR2_EL1, 0, TCR2_EL1_E0POE);
2492
sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_E0POE);
2493
}
2494
#endif
2495
2496
#ifdef CONFIG_ARM64_GCS
2497
static void cpu_enable_gcs(const struct arm64_cpu_capabilities *__unused)
2498
{
2499
/* GCSPR_EL0 is always readable */
2500
write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
2501
}
2502
#endif
2503
2504
/* Internal helper functions to match cpu capability type */
2505
static bool
2506
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2507
{
2508
return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2509
}
2510
2511
static bool
2512
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2513
{
2514
return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2515
}
2516
2517
static bool
2518
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2519
{
2520
return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2521
}
2522
2523
static bool
2524
test_has_mpam(const struct arm64_cpu_capabilities *entry, int scope)
2525
{
2526
if (!has_cpuid_feature(entry, scope))
2527
return false;
2528
2529
/* Check firmware actually enabled MPAM on this cpu. */
2530
return (read_sysreg_s(SYS_MPAM1_EL1) & MPAM1_EL1_MPAMEN);
2531
}
2532
2533
static void
2534
cpu_enable_mpam(const struct arm64_cpu_capabilities *entry)
2535
{
2536
/*
2537
* Access by the kernel (at EL1) should use the reserved PARTID
2538
* which is configured unrestricted. This avoids priority-inversion
2539
* where latency sensitive tasks have to wait for a task that has
2540
* been throttled to release the lock.
2541
*/
2542
write_sysreg_s(0, SYS_MPAM1_EL1);
2543
}
2544
2545
static bool
2546
test_has_mpam_hcr(const struct arm64_cpu_capabilities *entry, int scope)
2547
{
2548
u64 idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
2549
2550
return idr & MPAMIDR_EL1_HAS_HCR;
2551
}
2552
2553
static const struct arm64_cpu_capabilities arm64_features[] = {
2554
{
2555
.capability = ARM64_ALWAYS_BOOT,
2556
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2557
.matches = has_always,
2558
},
2559
{
2560
.capability = ARM64_ALWAYS_SYSTEM,
2561
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2562
.matches = has_always,
2563
},
2564
{
2565
.desc = "GICv3 CPU interface",
2566
.capability = ARM64_HAS_GICV3_CPUIF,
2567
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2568
.matches = has_useable_gicv3_cpuif,
2569
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2570
},
2571
{
2572
.desc = "Enhanced Counter Virtualization",
2573
.capability = ARM64_HAS_ECV,
2574
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2575
.matches = has_cpuid_feature,
2576
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2577
},
2578
{
2579
.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2580
.capability = ARM64_HAS_ECV_CNTPOFF,
2581
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2582
.matches = has_cpuid_feature,
2583
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2584
},
2585
#ifdef CONFIG_ARM64_PAN
2586
{
2587
.desc = "Privileged Access Never",
2588
.capability = ARM64_HAS_PAN,
2589
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2590
.matches = has_cpuid_feature,
2591
.cpu_enable = cpu_enable_pan,
2592
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2593
},
2594
#endif /* CONFIG_ARM64_PAN */
2595
#ifdef CONFIG_ARM64_EPAN
2596
{
2597
.desc = "Enhanced Privileged Access Never",
2598
.capability = ARM64_HAS_EPAN,
2599
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2600
.matches = has_cpuid_feature,
2601
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2602
},
2603
#endif /* CONFIG_ARM64_EPAN */
2604
#ifdef CONFIG_ARM64_LSE_ATOMICS
2605
{
2606
.desc = "LSE atomic instructions",
2607
.capability = ARM64_HAS_LSE_ATOMICS,
2608
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2609
.matches = has_cpuid_feature,
2610
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2611
},
2612
#endif /* CONFIG_ARM64_LSE_ATOMICS */
2613
{
2614
.desc = "Virtualization Host Extensions",
2615
.capability = ARM64_HAS_VIRT_HOST_EXTN,
2616
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2617
.matches = runs_at_el2,
2618
.cpu_enable = cpu_copy_el2regs,
2619
},
2620
{
2621
.desc = "Nested Virtualization Support",
2622
.capability = ARM64_HAS_NESTED_VIRT,
2623
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2624
.matches = has_nested_virt_support,
2625
.match_list = (const struct arm64_cpu_capabilities []){
2626
{
2627
.matches = has_cpuid_feature,
2628
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2629
},
2630
{
2631
.matches = has_cpuid_feature,
2632
ARM64_CPUID_FIELDS(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)
2633
},
2634
{ /* Sentinel */ }
2635
},
2636
},
2637
{
2638
.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2639
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2640
.matches = has_32bit_el0,
2641
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2642
},
2643
#ifdef CONFIG_KVM
2644
{
2645
.desc = "32-bit EL1 Support",
2646
.capability = ARM64_HAS_32BIT_EL1,
2647
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2648
.matches = has_cpuid_feature,
2649
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2650
},
2651
{
2652
.desc = "Protected KVM",
2653
.capability = ARM64_KVM_PROTECTED_MODE,
2654
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2655
.matches = is_kvm_protected_mode,
2656
},
2657
{
2658
.desc = "HCRX_EL2 register",
2659
.capability = ARM64_HAS_HCX,
2660
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2661
.matches = has_cpuid_feature,
2662
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2663
},
2664
#endif
2665
{
2666
.desc = "Kernel page table isolation (KPTI)",
2667
.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2668
.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2669
.cpu_enable = cpu_enable_kpti,
2670
.matches = unmap_kernel_at_el0,
2671
/*
2672
* The ID feature fields below are used to indicate that
2673
* the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2674
* more details.
2675
*/
2676
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2677
},
2678
{
2679
.capability = ARM64_HAS_FPSIMD,
2680
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2681
.matches = has_cpuid_feature,
2682
.cpu_enable = cpu_enable_fpsimd,
2683
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2684
},
2685
#ifdef CONFIG_ARM64_PMEM
2686
{
2687
.desc = "Data cache clean to Point of Persistence",
2688
.capability = ARM64_HAS_DCPOP,
2689
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2690
.matches = has_cpuid_feature,
2691
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2692
},
2693
{
2694
.desc = "Data cache clean to Point of Deep Persistence",
2695
.capability = ARM64_HAS_DCPODP,
2696
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2697
.matches = has_cpuid_feature,
2698
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2699
},
2700
#endif
2701
#ifdef CONFIG_ARM64_SVE
2702
{
2703
.desc = "Scalable Vector Extension",
2704
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2705
.capability = ARM64_SVE,
2706
.cpu_enable = cpu_enable_sve,
2707
.matches = has_cpuid_feature,
2708
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2709
},
2710
#endif /* CONFIG_ARM64_SVE */
2711
#ifdef CONFIG_ARM64_RAS_EXTN
2712
{
2713
.desc = "RAS Extension Support",
2714
.capability = ARM64_HAS_RAS_EXTN,
2715
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2716
.matches = has_cpuid_feature,
2717
.cpu_enable = cpu_clear_disr,
2718
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2719
},
2720
{
2721
.desc = "RASv1p1 Extension Support",
2722
.capability = ARM64_HAS_RASV1P1_EXTN,
2723
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2724
.matches = has_rasv1p1,
2725
},
2726
#endif /* CONFIG_ARM64_RAS_EXTN */
2727
#ifdef CONFIG_ARM64_AMU_EXTN
2728
{
2729
.desc = "Activity Monitors Unit (AMU)",
2730
.capability = ARM64_HAS_AMU_EXTN,
2731
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2732
.matches = has_amu,
2733
.cpu_enable = cpu_amu_enable,
2734
.cpus = &amu_cpus,
2735
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2736
},
2737
#endif /* CONFIG_ARM64_AMU_EXTN */
2738
{
2739
.desc = "Data cache clean to the PoU not required for I/D coherence",
2740
.capability = ARM64_HAS_CACHE_IDC,
2741
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2742
.matches = has_cache_idc,
2743
.cpu_enable = cpu_emulate_effective_ctr,
2744
},
2745
{
2746
.desc = "Instruction cache invalidation not required for I/D coherence",
2747
.capability = ARM64_HAS_CACHE_DIC,
2748
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2749
.matches = has_cache_dic,
2750
},
2751
{
2752
.desc = "Stage-2 Force Write-Back",
2753
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754
.capability = ARM64_HAS_STAGE2_FWB,
2755
.matches = has_cpuid_feature,
2756
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2757
},
2758
{
2759
.desc = "ARMv8.4 Translation Table Level",
2760
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2761
.capability = ARM64_HAS_ARMv8_4_TTL,
2762
.matches = has_cpuid_feature,
2763
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2764
},
2765
{
2766
.desc = "TLB range maintenance instructions",
2767
.capability = ARM64_HAS_TLB_RANGE,
2768
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2769
.matches = has_cpuid_feature,
2770
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2771
},
2772
#ifdef CONFIG_ARM64_HW_AFDBM
2773
{
2774
.desc = "Hardware dirty bit management",
2775
.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2776
.capability = ARM64_HW_DBM,
2777
.matches = has_hw_dbm,
2778
.cpu_enable = cpu_enable_hw_dbm,
2779
.cpus = &dbm_cpus,
2780
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2781
},
2782
#endif
2783
#ifdef CONFIG_ARM64_HAFT
2784
{
2785
.desc = "Hardware managed Access Flag for Table Descriptors",
2786
/*
2787
* Contrary to the page/block access flag, the table access flag
2788
* cannot be emulated in software (no access fault will occur).
2789
* Therefore this should be used only if it's supported system
2790
* wide.
2791
*/
2792
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2793
.capability = ARM64_HAFT,
2794
.matches = has_cpuid_feature,
2795
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, HAFT)
2796
},
2797
#endif
2798
{
2799
.desc = "CRC32 instructions",
2800
.capability = ARM64_HAS_CRC32,
2801
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2802
.matches = has_cpuid_feature,
2803
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2804
},
2805
{
2806
.desc = "Speculative Store Bypassing Safe (SSBS)",
2807
.capability = ARM64_SSBS,
2808
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2809
.matches = has_cpuid_feature,
2810
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2811
},
2812
#ifdef CONFIG_ARM64_CNP
2813
{
2814
.desc = "Common not Private translations",
2815
.capability = ARM64_HAS_CNP,
2816
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2817
.matches = has_useable_cnp,
2818
.cpu_enable = cpu_enable_cnp,
2819
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2820
},
2821
#endif
2822
{
2823
.desc = "Speculation barrier (SB)",
2824
.capability = ARM64_HAS_SB,
2825
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2826
.matches = has_cpuid_feature,
2827
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2828
},
2829
#ifdef CONFIG_ARM64_PTR_AUTH
2830
{
2831
.desc = "Address authentication (architected QARMA5 algorithm)",
2832
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2833
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2834
.matches = has_address_auth_cpucap,
2835
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2836
},
2837
{
2838
.desc = "Address authentication (architected QARMA3 algorithm)",
2839
.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2840
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2841
.matches = has_address_auth_cpucap,
2842
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2843
},
2844
{
2845
.desc = "Address authentication (IMP DEF algorithm)",
2846
.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2847
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2848
.matches = has_address_auth_cpucap,
2849
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2850
},
2851
{
2852
.capability = ARM64_HAS_ADDRESS_AUTH,
2853
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2854
.matches = has_address_auth_metacap,
2855
},
2856
{
2857
.desc = "Generic authentication (architected QARMA5 algorithm)",
2858
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2859
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2860
.matches = has_cpuid_feature,
2861
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2862
},
2863
{
2864
.desc = "Generic authentication (architected QARMA3 algorithm)",
2865
.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2866
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2867
.matches = has_cpuid_feature,
2868
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2869
},
2870
{
2871
.desc = "Generic authentication (IMP DEF algorithm)",
2872
.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2873
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2874
.matches = has_cpuid_feature,
2875
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2876
},
2877
{
2878
.capability = ARM64_HAS_GENERIC_AUTH,
2879
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2880
.matches = has_generic_auth,
2881
},
2882
#endif /* CONFIG_ARM64_PTR_AUTH */
2883
#ifdef CONFIG_ARM64_PSEUDO_NMI
2884
{
2885
/*
2886
* Depends on having GICv3
2887
*/
2888
.desc = "IRQ priority masking",
2889
.capability = ARM64_HAS_GIC_PRIO_MASKING,
2890
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2891
.matches = can_use_gic_priorities,
2892
},
2893
{
2894
/*
2895
* Depends on ARM64_HAS_GIC_PRIO_MASKING
2896
*/
2897
.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2898
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2899
.matches = has_gic_prio_relaxed_sync,
2900
},
2901
#endif
2902
#ifdef CONFIG_ARM64_E0PD
2903
{
2904
.desc = "E0PD",
2905
.capability = ARM64_HAS_E0PD,
2906
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2907
.cpu_enable = cpu_enable_e0pd,
2908
.matches = has_cpuid_feature,
2909
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2910
},
2911
#endif
2912
{
2913
.desc = "Random Number Generator",
2914
.capability = ARM64_HAS_RNG,
2915
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2916
.matches = has_cpuid_feature,
2917
ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2918
},
2919
#ifdef CONFIG_ARM64_BTI
2920
{
2921
.desc = "Branch Target Identification",
2922
.capability = ARM64_BTI,
2923
#ifdef CONFIG_ARM64_BTI_KERNEL
2924
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2925
#else
2926
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2927
#endif
2928
.matches = has_cpuid_feature,
2929
.cpu_enable = bti_enable,
2930
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2931
},
2932
#endif
2933
#ifdef CONFIG_ARM64_MTE
2934
{
2935
.desc = "Memory Tagging Extension",
2936
.capability = ARM64_MTE,
2937
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2938
.matches = has_cpuid_feature,
2939
.cpu_enable = cpu_enable_mte,
2940
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2941
},
2942
{
2943
.desc = "Asymmetric MTE Tag Check Fault",
2944
.capability = ARM64_MTE_ASYMM,
2945
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2946
.matches = has_cpuid_feature,
2947
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2948
},
2949
{
2950
.desc = "FAR on MTE Tag Check Fault",
2951
.capability = ARM64_MTE_FAR,
2952
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2953
.matches = has_cpuid_feature,
2954
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTEFAR, IMP)
2955
},
2956
{
2957
.desc = "Store Only MTE Tag Check",
2958
.capability = ARM64_MTE_STORE_ONLY,
2959
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2960
.matches = has_cpuid_feature,
2961
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, MTESTOREONLY, IMP)
2962
},
2963
#endif /* CONFIG_ARM64_MTE */
2964
{
2965
.desc = "RCpc load-acquire (LDAPR)",
2966
.capability = ARM64_HAS_LDAPR,
2967
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2968
.matches = has_cpuid_feature,
2969
ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2970
},
2971
{
2972
.desc = "Fine Grained Traps",
2973
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2974
.capability = ARM64_HAS_FGT,
2975
.matches = has_cpuid_feature,
2976
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2977
},
2978
{
2979
.desc = "Fine Grained Traps 2",
2980
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2981
.capability = ARM64_HAS_FGT2,
2982
.matches = has_cpuid_feature,
2983
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, FGT2)
2984
},
2985
#ifdef CONFIG_ARM64_SME
2986
{
2987
.desc = "Scalable Matrix Extension",
2988
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2989
.capability = ARM64_SME,
2990
.matches = has_cpuid_feature,
2991
.cpu_enable = cpu_enable_sme,
2992
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2993
},
2994
/* FA64 should be sorted after the base SME capability */
2995
{
2996
.desc = "FA64",
2997
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2998
.capability = ARM64_SME_FA64,
2999
.matches = has_cpuid_feature,
3000
.cpu_enable = cpu_enable_fa64,
3001
ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
3002
},
3003
{
3004
.desc = "SME2",
3005
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3006
.capability = ARM64_SME2,
3007
.matches = has_cpuid_feature,
3008
.cpu_enable = cpu_enable_sme2,
3009
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
3010
},
3011
#endif /* CONFIG_ARM64_SME */
3012
{
3013
.desc = "WFx with timeout",
3014
.capability = ARM64_HAS_WFXT,
3015
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3016
.matches = has_cpuid_feature,
3017
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
3018
},
3019
{
3020
.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
3021
.capability = ARM64_HAS_TIDCP1,
3022
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3023
.matches = has_cpuid_feature,
3024
.cpu_enable = cpu_trap_el0_impdef,
3025
ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
3026
},
3027
{
3028
.desc = "Data independent timing control (DIT)",
3029
.capability = ARM64_HAS_DIT,
3030
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3031
.matches = has_cpuid_feature,
3032
.cpu_enable = cpu_enable_dit,
3033
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
3034
},
3035
{
3036
.desc = "Memory Copy and Memory Set instructions",
3037
.capability = ARM64_HAS_MOPS,
3038
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3039
.matches = has_cpuid_feature,
3040
.cpu_enable = cpu_enable_mops,
3041
ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
3042
},
3043
{
3044
.capability = ARM64_HAS_TCR2,
3045
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3046
.matches = has_cpuid_feature,
3047
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
3048
},
3049
{
3050
.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
3051
.capability = ARM64_HAS_S1PIE,
3052
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3053
.matches = has_cpuid_feature,
3054
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
3055
},
3056
{
3057
.desc = "VHE for hypervisor only",
3058
.capability = ARM64_KVM_HVHE,
3059
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3060
.matches = hvhe_possible,
3061
},
3062
{
3063
.desc = "Enhanced Virtualization Traps",
3064
.capability = ARM64_HAS_EVT,
3065
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3066
.matches = has_cpuid_feature,
3067
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
3068
},
3069
{
3070
.desc = "BBM Level 2 without TLB conflict abort",
3071
.capability = ARM64_HAS_BBML2_NOABORT,
3072
.type = ARM64_CPUCAP_EARLY_LOCAL_CPU_FEATURE,
3073
.matches = has_bbml2_noabort,
3074
},
3075
{
3076
.desc = "52-bit Virtual Addressing for KVM (LPA2)",
3077
.capability = ARM64_HAS_LPA2,
3078
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3079
.matches = has_lpa2,
3080
},
3081
{
3082
.desc = "FPMR",
3083
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3084
.capability = ARM64_HAS_FPMR,
3085
.matches = has_cpuid_feature,
3086
.cpu_enable = cpu_enable_fpmr,
3087
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
3088
},
3089
#ifdef CONFIG_ARM64_VA_BITS_52
3090
{
3091
.capability = ARM64_HAS_VA52,
3092
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3093
.matches = has_cpuid_feature,
3094
#ifdef CONFIG_ARM64_64K_PAGES
3095
.desc = "52-bit Virtual Addressing (LVA)",
3096
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
3097
#else
3098
.desc = "52-bit Virtual Addressing (LPA2)",
3099
#ifdef CONFIG_ARM64_4K_PAGES
3100
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
3101
#else
3102
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
3103
#endif
3104
#endif
3105
},
3106
#endif
3107
{
3108
.desc = "Memory Partitioning And Monitoring",
3109
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3110
.capability = ARM64_MPAM,
3111
.matches = test_has_mpam,
3112
.cpu_enable = cpu_enable_mpam,
3113
ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, MPAM, 1)
3114
},
3115
{
3116
.desc = "Memory Partitioning And Monitoring Virtualisation",
3117
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3118
.capability = ARM64_MPAM_HCR,
3119
.matches = test_has_mpam_hcr,
3120
},
3121
{
3122
.desc = "NV1",
3123
.capability = ARM64_HAS_HCR_NV1,
3124
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3125
.matches = has_nv1,
3126
ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
3127
},
3128
#ifdef CONFIG_ARM64_POE
3129
{
3130
.desc = "Stage-1 Permission Overlay Extension (S1POE)",
3131
.capability = ARM64_HAS_S1POE,
3132
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
3133
.matches = has_cpuid_feature,
3134
.cpu_enable = cpu_enable_poe,
3135
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1POE, IMP)
3136
},
3137
#endif
3138
#ifdef CONFIG_ARM64_GCS
3139
{
3140
.desc = "Guarded Control Stack (GCS)",
3141
.capability = ARM64_HAS_GCS,
3142
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3143
.cpu_enable = cpu_enable_gcs,
3144
.matches = has_cpuid_feature,
3145
ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, GCS, IMP)
3146
},
3147
#endif
3148
#ifdef CONFIG_HW_PERF_EVENTS
3149
{
3150
.desc = "PMUv3",
3151
.capability = ARM64_HAS_PMUV3,
3152
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3153
.matches = has_pmuv3,
3154
},
3155
#endif
3156
{
3157
.desc = "SCTLR2",
3158
.capability = ARM64_HAS_SCTLR2,
3159
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
3160
.matches = has_cpuid_feature,
3161
ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, SCTLRX, IMP)
3162
},
3163
{
3164
.desc = "GICv5 CPU interface",
3165
.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
3166
.capability = ARM64_HAS_GICV5_CPUIF,
3167
.matches = has_cpuid_feature,
3168
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, GCIE, IMP)
3169
},
3170
{},
3171
};
3172
3173
#define HWCAP_CPUID_MATCH(reg, field, min_value) \
3174
.matches = has_user_cpuid_feature, \
3175
ARM64_CPUID_FIELDS(reg, field, min_value)
3176
3177
#define __HWCAP_CAP(name, cap_type, cap) \
3178
.desc = name, \
3179
.type = ARM64_CPUCAP_SYSTEM_FEATURE, \
3180
.hwcap_type = cap_type, \
3181
.hwcap = cap, \
3182
3183
#define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
3184
{ \
3185
__HWCAP_CAP(#cap, cap_type, cap) \
3186
HWCAP_CPUID_MATCH(reg, field, min_value) \
3187
}
3188
3189
#define HWCAP_MULTI_CAP(list, cap_type, cap) \
3190
{ \
3191
__HWCAP_CAP(#cap, cap_type, cap) \
3192
.matches = cpucap_multi_entry_cap_matches, \
3193
.match_list = list, \
3194
}
3195
3196
#define HWCAP_CAP_MATCH(match, cap_type, cap) \
3197
{ \
3198
__HWCAP_CAP(#cap, cap_type, cap) \
3199
.matches = match, \
3200
}
3201
3202
#define HWCAP_CAP_MATCH_ID(match, reg, field, min_value, cap_type, cap) \
3203
{ \
3204
__HWCAP_CAP(#cap, cap_type, cap) \
3205
HWCAP_CPUID_MATCH(reg, field, min_value) \
3206
.matches = match, \
3207
}
3208
3209
#ifdef CONFIG_ARM64_PTR_AUTH
3210
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
3211
{
3212
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
3213
},
3214
{
3215
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
3216
},
3217
{
3218
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
3219
},
3220
{},
3221
};
3222
3223
static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
3224
{
3225
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
3226
},
3227
{
3228
HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
3229
},
3230
{
3231
HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
3232
},
3233
{},
3234
};
3235
#endif
3236
3237
#ifdef CONFIG_ARM64_SVE
3238
static bool has_sve_feature(const struct arm64_cpu_capabilities *cap, int scope)
3239
{
3240
return system_supports_sve() && has_user_cpuid_feature(cap, scope);
3241
}
3242
#endif
3243
3244
#ifdef CONFIG_ARM64_SME
3245
static bool has_sme_feature(const struct arm64_cpu_capabilities *cap, int scope)
3246
{
3247
return system_supports_sme() && has_user_cpuid_feature(cap, scope);
3248
}
3249
#endif
3250
3251
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
3252
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
3253
HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
3254
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
3255
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
3256
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
3257
HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
3258
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
3259
HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
3260
HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
3261
HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
3262
HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
3263
HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
3264
HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
3265
HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
3266
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
3267
HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
3268
HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
3269
HWCAP_CAP(ID_AA64ISAR3_EL1, FPRCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_FPRCVT),
3270
HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
3271
HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
3272
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
3273
HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
3274
HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
3275
HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
3276
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
3277
HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
3278
HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
3279
HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
3280
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
3281
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
3282
HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
3283
HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
3284
HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
3285
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
3286
HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
3287
HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
3288
HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
3289
HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
3290
HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
3291
HWCAP_CAP(ID_AA64ISAR3_EL1, LSFE, IMP, CAP_HWCAP, KERNEL_HWCAP_LSFE),
3292
HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
3293
#ifdef CONFIG_ARM64_SVE
3294
HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
3295
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p2, CAP_HWCAP, KERNEL_HWCAP_SVE2P2),
3296
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
3297
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
3298
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
3299
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
3300
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, AES, AES2, CAP_HWCAP, KERNEL_HWCAP_SVE_AES2),
3301
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
3302
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
3303
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, B16B16, BFSCALE, CAP_HWCAP, KERNEL_HWCAP_SVE_BFSCALE),
3304
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
3305
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
3306
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
3307
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
3308
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
3309
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
3310
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
3311
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, F16MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_F16MM),
3312
HWCAP_CAP_MATCH_ID(has_sve_feature, ID_AA64ZFR0_EL1, EltPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_ELTPERM),
3313
#endif
3314
#ifdef CONFIG_ARM64_GCS
3315
HWCAP_CAP(ID_AA64PFR1_EL1, GCS, IMP, CAP_HWCAP, KERNEL_HWCAP_GCS),
3316
#endif
3317
HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
3318
#ifdef CONFIG_ARM64_BTI
3319
HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
3320
#endif
3321
#ifdef CONFIG_ARM64_PTR_AUTH
3322
HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
3323
HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
3324
#endif
3325
#ifdef CONFIG_ARM64_MTE
3326
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
3327
HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
3328
HWCAP_CAP(ID_AA64PFR2_EL1, MTEFAR, IMP, CAP_HWCAP, KERNEL_HWCAP_MTE_FAR),
3329
HWCAP_CAP(ID_AA64PFR2_EL1, MTESTOREONLY, IMP, CAP_HWCAP , KERNEL_HWCAP_MTE_STORE_ONLY),
3330
#endif /* CONFIG_ARM64_MTE */
3331
HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
3332
HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
3333
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
3334
HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, CMPBR, CAP_HWCAP, KERNEL_HWCAP_CMPBR),
3335
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
3336
HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
3337
HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
3338
HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
3339
HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3340
#ifdef CONFIG_ARM64_SME
3341
HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3342
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3343
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3344
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p2, CAP_HWCAP, KERNEL_HWCAP_SME2P2),
3345
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3346
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3347
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3348
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3349
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3350
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3351
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3352
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3353
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3354
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3355
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3356
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3357
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3358
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3359
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3360
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3361
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3362
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SBitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SBITPERM),
3363
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_AES),
3364
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SFEXPA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SFEXPA),
3365
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, STMOP, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_STMOP),
3366
HWCAP_CAP_MATCH_ID(has_sme_feature, ID_AA64SMFR0_EL1, SMOP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SMOP4),
3367
#endif /* CONFIG_ARM64_SME */
3368
HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3369
HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3370
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3371
HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3372
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM8, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM8),
3373
HWCAP_CAP(ID_AA64FPFR0_EL1, F8MM4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8MM4),
3374
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3375
HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3376
#ifdef CONFIG_ARM64_POE
3377
HWCAP_CAP(ID_AA64MMFR3_EL1, S1POE, IMP, CAP_HWCAP, KERNEL_HWCAP_POE),
3378
#endif
3379
{},
3380
};
3381
3382
#ifdef CONFIG_COMPAT
3383
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3384
{
3385
/*
3386
* Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3387
* in line with that of arm32 as in vfp_init(). We make sure that the
3388
* check is future proof, by making sure value is non-zero.
3389
*/
3390
u32 mvfr1;
3391
3392
WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3393
if (scope == SCOPE_SYSTEM)
3394
mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3395
else
3396
mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3397
3398
return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3399
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3400
cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3401
}
3402
#endif
3403
3404
static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3405
#ifdef CONFIG_COMPAT
3406
HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3407
HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3408
/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3409
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3410
HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3411
HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3412
HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3413
HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3414
HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3415
HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3416
HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3417
HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3418
HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3419
HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3420
HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3421
HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3422
HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3423
HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3424
#endif
3425
{},
3426
};
3427
3428
static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3429
{
3430
switch (cap->hwcap_type) {
3431
case CAP_HWCAP:
3432
cpu_set_feature(cap->hwcap);
3433
break;
3434
#ifdef CONFIG_COMPAT
3435
case CAP_COMPAT_HWCAP:
3436
compat_elf_hwcap |= (u32)cap->hwcap;
3437
break;
3438
case CAP_COMPAT_HWCAP2:
3439
compat_elf_hwcap2 |= (u32)cap->hwcap;
3440
break;
3441
#endif
3442
default:
3443
WARN_ON(1);
3444
break;
3445
}
3446
}
3447
3448
/* Check if we have a particular HWCAP enabled */
3449
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3450
{
3451
bool rc;
3452
3453
switch (cap->hwcap_type) {
3454
case CAP_HWCAP:
3455
rc = cpu_have_feature(cap->hwcap);
3456
break;
3457
#ifdef CONFIG_COMPAT
3458
case CAP_COMPAT_HWCAP:
3459
rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3460
break;
3461
case CAP_COMPAT_HWCAP2:
3462
rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3463
break;
3464
#endif
3465
default:
3466
WARN_ON(1);
3467
rc = false;
3468
}
3469
3470
return rc;
3471
}
3472
3473
static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3474
{
3475
/* We support emulation of accesses to CPU ID feature registers */
3476
cpu_set_named_feature(CPUID);
3477
for (; hwcaps->matches; hwcaps++)
3478
if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3479
cap_set_elf_hwcap(hwcaps);
3480
}
3481
3482
static void update_cpu_capabilities(u16 scope_mask)
3483
{
3484
int i;
3485
const struct arm64_cpu_capabilities *caps;
3486
3487
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3488
for (i = 0; i < ARM64_NCAPS; i++) {
3489
bool match_all = false;
3490
bool caps_set = false;
3491
bool boot_cpu = false;
3492
3493
caps = cpucap_ptrs[i];
3494
if (!caps || !(caps->type & scope_mask))
3495
continue;
3496
3497
match_all = cpucap_match_all_early_cpus(caps);
3498
caps_set = cpus_have_cap(caps->capability);
3499
boot_cpu = scope_mask & SCOPE_BOOT_CPU;
3500
3501
/*
3502
* Unless it's a match-all CPUs feature, avoid probing if
3503
* already detected.
3504
*/
3505
if (!match_all && caps_set)
3506
continue;
3507
3508
/*
3509
* A match-all CPUs capability is only set when probing the
3510
* boot CPU. It may be cleared subsequently if not detected on
3511
* secondary ones.
3512
*/
3513
if (match_all && !caps_set && !boot_cpu)
3514
continue;
3515
3516
if (!caps->matches(caps, cpucap_default_scope(caps))) {
3517
if (match_all)
3518
__clear_bit(caps->capability, system_cpucaps);
3519
continue;
3520
}
3521
3522
/*
3523
* Match-all CPUs capabilities are logged later when the
3524
* system capabilities are finalised.
3525
*/
3526
if (!match_all && caps->desc && !caps->cpus)
3527
pr_info("detected: %s\n", caps->desc);
3528
3529
__set_bit(caps->capability, system_cpucaps);
3530
3531
if (boot_cpu && (caps->type & SCOPE_BOOT_CPU))
3532
set_bit(caps->capability, boot_cpucaps);
3533
}
3534
}
3535
3536
/*
3537
* Enable all the available capabilities on this CPU. The capabilities
3538
* with BOOT_CPU scope are handled separately and hence skipped here.
3539
*/
3540
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3541
{
3542
int i;
3543
u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3544
3545
for_each_available_cap(i) {
3546
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3547
3548
if (WARN_ON(!cap))
3549
continue;
3550
3551
if (!(cap->type & non_boot_scope))
3552
continue;
3553
3554
if (cap->cpu_enable)
3555
cap->cpu_enable(cap);
3556
}
3557
return 0;
3558
}
3559
3560
/*
3561
* Run through the enabled capabilities and enable() it on all active
3562
* CPUs
3563
*/
3564
static void __init enable_cpu_capabilities(u16 scope_mask)
3565
{
3566
int i;
3567
const struct arm64_cpu_capabilities *caps;
3568
bool boot_scope;
3569
3570
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3571
boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3572
3573
for (i = 0; i < ARM64_NCAPS; i++) {
3574
caps = cpucap_ptrs[i];
3575
if (!caps || !(caps->type & scope_mask) ||
3576
!cpus_have_cap(caps->capability))
3577
continue;
3578
3579
if (boot_scope && caps->cpu_enable)
3580
/*
3581
* Capabilities with SCOPE_BOOT_CPU scope are finalised
3582
* before any secondary CPU boots. Thus, each secondary
3583
* will enable the capability as appropriate via
3584
* check_local_cpu_capabilities(). The only exception is
3585
* the boot CPU, for which the capability must be
3586
* enabled here. This approach avoids costly
3587
* stop_machine() calls for this case.
3588
*/
3589
caps->cpu_enable(caps);
3590
}
3591
3592
/*
3593
* For all non-boot scope capabilities, use stop_machine()
3594
* as it schedules the work allowing us to modify PSTATE,
3595
* instead of on_each_cpu() which uses an IPI, giving us a
3596
* PSTATE that disappears when we return.
3597
*/
3598
if (!boot_scope)
3599
stop_machine(cpu_enable_non_boot_scope_capabilities,
3600
NULL, cpu_online_mask);
3601
}
3602
3603
/*
3604
* Run through the list of capabilities to check for conflicts.
3605
* If the system has already detected a capability, take necessary
3606
* action on this CPU.
3607
*/
3608
static void verify_local_cpu_caps(u16 scope_mask)
3609
{
3610
int i;
3611
bool cpu_has_cap, system_has_cap;
3612
const struct arm64_cpu_capabilities *caps;
3613
3614
scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3615
3616
for (i = 0; i < ARM64_NCAPS; i++) {
3617
caps = cpucap_ptrs[i];
3618
if (!caps || !(caps->type & scope_mask))
3619
continue;
3620
3621
cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3622
system_has_cap = cpus_have_cap(caps->capability);
3623
3624
if (system_has_cap) {
3625
/*
3626
* Check if the new CPU misses an advertised feature,
3627
* which is not safe to miss.
3628
*/
3629
if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3630
break;
3631
/*
3632
* We have to issue cpu_enable() irrespective of
3633
* whether the CPU has it or not, as it is enabeld
3634
* system wide. It is upto the call back to take
3635
* appropriate action on this CPU.
3636
*/
3637
if (caps->cpu_enable)
3638
caps->cpu_enable(caps);
3639
} else {
3640
/*
3641
* Check if the CPU has this capability if it isn't
3642
* safe to have when the system doesn't.
3643
*/
3644
if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3645
break;
3646
}
3647
}
3648
3649
if (i < ARM64_NCAPS) {
3650
pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3651
smp_processor_id(), caps->capability,
3652
caps->desc, system_has_cap, cpu_has_cap);
3653
3654
if (cpucap_panic_on_conflict(caps))
3655
cpu_panic_kernel();
3656
else
3657
cpu_die_early();
3658
}
3659
}
3660
3661
/*
3662
* Check for CPU features that are used in early boot
3663
* based on the Boot CPU value.
3664
*/
3665
static void check_early_cpu_features(void)
3666
{
3667
verify_cpu_asid_bits();
3668
3669
verify_local_cpu_caps(SCOPE_BOOT_CPU);
3670
}
3671
3672
static void
3673
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3674
{
3675
3676
for (; caps->matches; caps++)
3677
if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3678
pr_crit("CPU%d: missing HWCAP: %s\n",
3679
smp_processor_id(), caps->desc);
3680
cpu_die_early();
3681
}
3682
}
3683
3684
static void verify_local_elf_hwcaps(void)
3685
{
3686
__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3687
3688
if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3689
__verify_local_elf_hwcaps(compat_elf_hwcaps);
3690
}
3691
3692
static void verify_sve_features(void)
3693
{
3694
unsigned long cpacr = cpacr_save_enable_kernel_sve();
3695
3696
if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3697
pr_crit("CPU%d: SVE: vector length support mismatch\n",
3698
smp_processor_id());
3699
cpu_die_early();
3700
}
3701
3702
cpacr_restore(cpacr);
3703
}
3704
3705
static void verify_sme_features(void)
3706
{
3707
unsigned long cpacr = cpacr_save_enable_kernel_sme();
3708
3709
if (vec_verify_vq_map(ARM64_VEC_SME)) {
3710
pr_crit("CPU%d: SME: vector length support mismatch\n",
3711
smp_processor_id());
3712
cpu_die_early();
3713
}
3714
3715
cpacr_restore(cpacr);
3716
}
3717
3718
static void verify_hyp_capabilities(void)
3719
{
3720
u64 safe_mmfr1, mmfr0, mmfr1;
3721
int parange, ipa_max;
3722
unsigned int safe_vmid_bits, vmid_bits;
3723
3724
if (!IS_ENABLED(CONFIG_KVM))
3725
return;
3726
3727
safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3728
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
3729
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3730
3731
/* Verify VMID bits */
3732
safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3733
vmid_bits = get_vmid_bits(mmfr1);
3734
if (vmid_bits < safe_vmid_bits) {
3735
pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3736
cpu_die_early();
3737
}
3738
3739
/* Verify IPA range */
3740
parange = cpuid_feature_extract_unsigned_field(mmfr0,
3741
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3742
ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3743
if (ipa_max < get_kvm_ipa_limit()) {
3744
pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3745
cpu_die_early();
3746
}
3747
}
3748
3749
static void verify_mpam_capabilities(void)
3750
{
3751
u64 cpu_idr = read_cpuid(ID_AA64PFR0_EL1);
3752
u64 sys_idr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
3753
u16 cpu_partid_max, cpu_pmg_max, sys_partid_max, sys_pmg_max;
3754
3755
if (FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, cpu_idr) !=
3756
FIELD_GET(ID_AA64PFR0_EL1_MPAM_MASK, sys_idr)) {
3757
pr_crit("CPU%d: MPAM version mismatch\n", smp_processor_id());
3758
cpu_die_early();
3759
}
3760
3761
cpu_idr = read_cpuid(MPAMIDR_EL1);
3762
sys_idr = read_sanitised_ftr_reg(SYS_MPAMIDR_EL1);
3763
if (FIELD_GET(MPAMIDR_EL1_HAS_HCR, cpu_idr) !=
3764
FIELD_GET(MPAMIDR_EL1_HAS_HCR, sys_idr)) {
3765
pr_crit("CPU%d: Missing MPAM HCR\n", smp_processor_id());
3766
cpu_die_early();
3767
}
3768
3769
cpu_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, cpu_idr);
3770
cpu_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, cpu_idr);
3771
sys_partid_max = FIELD_GET(MPAMIDR_EL1_PARTID_MAX, sys_idr);
3772
sys_pmg_max = FIELD_GET(MPAMIDR_EL1_PMG_MAX, sys_idr);
3773
if (cpu_partid_max < sys_partid_max || cpu_pmg_max < sys_pmg_max) {
3774
pr_crit("CPU%d: MPAM PARTID/PMG max values are mismatched\n", smp_processor_id());
3775
cpu_die_early();
3776
}
3777
}
3778
3779
/*
3780
* Run through the enabled system capabilities and enable() it on this CPU.
3781
* The capabilities were decided based on the available CPUs at the boot time.
3782
* Any new CPU should match the system wide status of the capability. If the
3783
* new CPU doesn't have a capability which the system now has enabled, we
3784
* cannot do anything to fix it up and could cause unexpected failures. So
3785
* we park the CPU.
3786
*/
3787
static void verify_local_cpu_capabilities(void)
3788
{
3789
/*
3790
* The capabilities with SCOPE_BOOT_CPU are checked from
3791
* check_early_cpu_features(), as they need to be verified
3792
* on all secondary CPUs.
3793
*/
3794
verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3795
verify_local_elf_hwcaps();
3796
3797
if (system_supports_sve())
3798
verify_sve_features();
3799
3800
if (system_supports_sme())
3801
verify_sme_features();
3802
3803
if (is_hyp_mode_available())
3804
verify_hyp_capabilities();
3805
3806
if (system_supports_mpam())
3807
verify_mpam_capabilities();
3808
}
3809
3810
void check_local_cpu_capabilities(void)
3811
{
3812
/*
3813
* All secondary CPUs should conform to the early CPU features
3814
* in use by the kernel based on boot CPU.
3815
*/
3816
check_early_cpu_features();
3817
3818
/*
3819
* If we haven't finalised the system capabilities, this CPU gets
3820
* a chance to update the errata work arounds and local features.
3821
* Otherwise, this CPU should verify that it has all the system
3822
* advertised capabilities.
3823
*/
3824
if (!system_capabilities_finalized())
3825
update_cpu_capabilities(SCOPE_LOCAL_CPU);
3826
else
3827
verify_local_cpu_capabilities();
3828
}
3829
3830
bool this_cpu_has_cap(unsigned int n)
3831
{
3832
if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3833
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3834
3835
if (cap)
3836
return cap->matches(cap, SCOPE_LOCAL_CPU);
3837
}
3838
3839
return false;
3840
}
3841
EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3842
3843
/*
3844
* This helper function is used in a narrow window when,
3845
* - The system wide safe registers are set with all the SMP CPUs and,
3846
* - The SYSTEM_FEATURE system_cpucaps may not have been set.
3847
*/
3848
static bool __maybe_unused __system_matches_cap(unsigned int n)
3849
{
3850
if (n < ARM64_NCAPS) {
3851
const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3852
3853
if (cap)
3854
return cap->matches(cap, SCOPE_SYSTEM);
3855
}
3856
return false;
3857
}
3858
3859
void cpu_set_feature(unsigned int num)
3860
{
3861
set_bit(num, elf_hwcap);
3862
}
3863
3864
bool cpu_have_feature(unsigned int num)
3865
{
3866
return test_bit(num, elf_hwcap);
3867
}
3868
EXPORT_SYMBOL_GPL(cpu_have_feature);
3869
3870
unsigned long cpu_get_elf_hwcap(void)
3871
{
3872
/*
3873
* We currently only populate the first 32 bits of AT_HWCAP. Please
3874
* note that for userspace compatibility we guarantee that bits 62
3875
* and 63 will always be returned as 0.
3876
*/
3877
return elf_hwcap[0];
3878
}
3879
3880
unsigned long cpu_get_elf_hwcap2(void)
3881
{
3882
return elf_hwcap[1];
3883
}
3884
3885
unsigned long cpu_get_elf_hwcap3(void)
3886
{
3887
return elf_hwcap[2];
3888
}
3889
3890
static void __init setup_boot_cpu_capabilities(void)
3891
{
3892
kvm_arm_target_impl_cpu_init();
3893
/*
3894
* The boot CPU's feature register values have been recorded. Detect
3895
* boot cpucaps and local cpucaps for the boot CPU, then enable and
3896
* patch alternatives for the available boot cpucaps.
3897
*/
3898
update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3899
enable_cpu_capabilities(SCOPE_BOOT_CPU);
3900
apply_boot_alternatives();
3901
}
3902
3903
void __init setup_boot_cpu_features(void)
3904
{
3905
/*
3906
* Initialize the indirect array of CPU capabilities pointers before we
3907
* handle the boot CPU.
3908
*/
3909
init_cpucap_indirect_list();
3910
3911
/*
3912
* Detect broken pseudo-NMI. Must be called _before_ the call to
3913
* setup_boot_cpu_capabilities() since it interacts with
3914
* can_use_gic_priorities().
3915
*/
3916
detect_system_supports_pseudo_nmi();
3917
3918
setup_boot_cpu_capabilities();
3919
}
3920
3921
static void __init setup_system_capabilities(void)
3922
{
3923
/*
3924
* The system-wide safe feature register values have been finalized.
3925
* Detect, enable, and patch alternatives for the available system
3926
* cpucaps.
3927
*/
3928
update_cpu_capabilities(SCOPE_SYSTEM);
3929
enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3930
apply_alternatives_all();
3931
3932
for (int i = 0; i < ARM64_NCAPS; i++) {
3933
const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3934
3935
if (!caps || !caps->desc)
3936
continue;
3937
3938
/*
3939
* Log any cpucaps with a cpumask as these aren't logged by
3940
* update_cpu_capabilities().
3941
*/
3942
if (caps->cpus && cpumask_any(caps->cpus) < nr_cpu_ids)
3943
pr_info("detected: %s on CPU%*pbl\n",
3944
caps->desc, cpumask_pr_args(caps->cpus));
3945
3946
/* Log match-all CPUs capabilities */
3947
if (cpucap_match_all_early_cpus(caps) &&
3948
cpus_have_cap(caps->capability))
3949
pr_info("detected: %s\n", caps->desc);
3950
}
3951
3952
/*
3953
* TTBR0 PAN doesn't have its own cpucap, so log it manually.
3954
*/
3955
if (system_uses_ttbr0_pan())
3956
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3957
}
3958
3959
void __init setup_system_features(void)
3960
{
3961
setup_system_capabilities();
3962
3963
linear_map_maybe_split_to_ptes();
3964
kpti_install_ng_mappings();
3965
3966
sve_setup();
3967
sme_setup();
3968
3969
/*
3970
* Check for sane CTR_EL0.CWG value.
3971
*/
3972
if (!cache_type_cwg())
3973
pr_warn("No Cache Writeback Granule information, assuming %d\n",
3974
ARCH_DMA_MINALIGN);
3975
}
3976
3977
void __init setup_user_features(void)
3978
{
3979
user_feature_fixup();
3980
3981
setup_elf_hwcaps(arm64_elf_hwcaps);
3982
3983
if (system_supports_32bit_el0()) {
3984
setup_elf_hwcaps(compat_elf_hwcaps);
3985
elf_hwcap_fixup();
3986
}
3987
3988
minsigstksz_setup();
3989
}
3990
3991
static int enable_mismatched_32bit_el0(unsigned int cpu)
3992
{
3993
/*
3994
* The first 32-bit-capable CPU we detected and so can no longer
3995
* be offlined by userspace. -1 indicates we haven't yet onlined
3996
* a 32-bit-capable CPU.
3997
*/
3998
static int lucky_winner = -1;
3999
4000
struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
4001
bool cpu_32bit = false;
4002
4003
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
4004
if (!housekeeping_cpu(cpu, HK_TYPE_TICK))
4005
pr_info("Treating adaptive-ticks CPU %u as 64-bit only\n", cpu);
4006
else
4007
cpu_32bit = true;
4008
}
4009
4010
if (cpu_32bit) {
4011
cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
4012
static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
4013
}
4014
4015
if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
4016
return 0;
4017
4018
if (lucky_winner >= 0)
4019
return 0;
4020
4021
/*
4022
* We've detected a mismatch. We need to keep one of our CPUs with
4023
* 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
4024
* every CPU in the system for a 32-bit task.
4025
*/
4026
lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
4027
cpu_active_mask);
4028
get_cpu_device(lucky_winner)->offline_disabled = true;
4029
setup_elf_hwcaps(compat_elf_hwcaps);
4030
elf_hwcap_fixup();
4031
pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
4032
cpu, lucky_winner);
4033
return 0;
4034
}
4035
4036
static int __init init_32bit_el0_mask(void)
4037
{
4038
if (!allow_mismatched_32bit_el0)
4039
return 0;
4040
4041
if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
4042
return -ENOMEM;
4043
4044
return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
4045
"arm64/mismatched_32bit_el0:online",
4046
enable_mismatched_32bit_el0, NULL);
4047
}
4048
subsys_initcall_sync(init_32bit_el0_mask);
4049
4050
static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
4051
{
4052
cpu_enable_swapper_cnp();
4053
}
4054
4055
/*
4056
* We emulate only the following system register space.
4057
* Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
4058
* See Table C5-6 System instruction encodings for System register accesses,
4059
* ARMv8 ARM(ARM DDI 0487A.f) for more details.
4060
*/
4061
static inline bool __attribute_const__ is_emulated(u32 id)
4062
{
4063
return (sys_reg_Op0(id) == 0x3 &&
4064
sys_reg_CRn(id) == 0x0 &&
4065
sys_reg_Op1(id) == 0x0 &&
4066
(sys_reg_CRm(id) == 0 ||
4067
((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
4068
}
4069
4070
/*
4071
* With CRm == 0, reg should be one of :
4072
* MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
4073
*/
4074
static inline int emulate_id_reg(u32 id, u64 *valp)
4075
{
4076
switch (id) {
4077
case SYS_MIDR_EL1:
4078
*valp = read_cpuid_id();
4079
break;
4080
case SYS_MPIDR_EL1:
4081
*valp = SYS_MPIDR_SAFE_VAL;
4082
break;
4083
case SYS_REVIDR_EL1:
4084
/* IMPLEMENTATION DEFINED values are emulated with 0 */
4085
*valp = 0;
4086
break;
4087
default:
4088
return -EINVAL;
4089
}
4090
4091
return 0;
4092
}
4093
4094
static int emulate_sys_reg(u32 id, u64 *valp)
4095
{
4096
struct arm64_ftr_reg *regp;
4097
4098
if (!is_emulated(id))
4099
return -EINVAL;
4100
4101
if (sys_reg_CRm(id) == 0)
4102
return emulate_id_reg(id, valp);
4103
4104
regp = get_arm64_ftr_reg_nowarn(id);
4105
if (regp)
4106
*valp = arm64_ftr_reg_user_value(regp);
4107
else
4108
/*
4109
* The untracked registers are either IMPLEMENTATION DEFINED
4110
* (e.g, ID_AFR0_EL1) or reserved RAZ.
4111
*/
4112
*valp = 0;
4113
return 0;
4114
}
4115
4116
int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
4117
{
4118
int rc;
4119
u64 val;
4120
4121
rc = emulate_sys_reg(sys_reg, &val);
4122
if (!rc) {
4123
pt_regs_write_reg(regs, rt, val);
4124
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
4125
}
4126
return rc;
4127
}
4128
4129
bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
4130
{
4131
u32 sys_reg, rt;
4132
4133
if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
4134
return false;
4135
4136
/*
4137
* sys_reg values are defined as used in mrs/msr instruction.
4138
* shift the imm value to get the encoding.
4139
*/
4140
sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
4141
rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
4142
return do_emulate_mrs(regs, sys_reg, rt) == 0;
4143
}
4144
4145
enum mitigation_state arm64_get_meltdown_state(void)
4146
{
4147
if (__meltdown_safe)
4148
return SPECTRE_UNAFFECTED;
4149
4150
if (arm64_kernel_unmapped_at_el0())
4151
return SPECTRE_MITIGATED;
4152
4153
return SPECTRE_VULNERABLE;
4154
}
4155
4156
ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
4157
char *buf)
4158
{
4159
switch (arm64_get_meltdown_state()) {
4160
case SPECTRE_UNAFFECTED:
4161
return sprintf(buf, "Not affected\n");
4162
4163
case SPECTRE_MITIGATED:
4164
return sprintf(buf, "Mitigation: PTI\n");
4165
4166
default:
4167
return sprintf(buf, "Vulnerable\n");
4168
}
4169
}
4170
4171