Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/kvm/vgic/vgic.c
29271 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2015, 2016 ARM Ltd.
4
*/
5
6
#include <linux/interrupt.h>
7
#include <linux/irq.h>
8
#include <linux/kvm.h>
9
#include <linux/kvm_host.h>
10
#include <linux/list_sort.h>
11
#include <linux/nospec.h>
12
13
#include <asm/kvm_hyp.h>
14
15
#include "vgic.h"
16
17
#define CREATE_TRACE_POINTS
18
#include "trace.h"
19
20
struct vgic_global kvm_vgic_global_state __ro_after_init = {
21
.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22
};
23
24
/*
25
* Locking order is always:
26
* kvm->lock (mutex)
27
* vcpu->mutex (mutex)
28
* kvm->arch.config_lock (mutex)
29
* its->cmd_lock (mutex)
30
* its->its_lock (mutex)
31
* vgic_dist->lpi_xa.xa_lock
32
* vgic_cpu->ap_list_lock must be taken with IRQs disabled
33
* vgic_irq->irq_lock must be taken with IRQs disabled
34
*
35
* As the ap_list_lock might be taken from the timer interrupt handler,
36
* we have to disable IRQs before taking this lock and everything lower
37
* than it.
38
*
39
* The config_lock has additional ordering requirements:
40
* kvm->slots_lock
41
* kvm->srcu
42
* kvm->arch.config_lock
43
*
44
* If you need to take multiple locks, always take the upper lock first,
45
* then the lower ones, e.g. first take the its_lock, then the irq_lock.
46
* If you are already holding a lock and need to take a higher one, you
47
* have to drop the lower ranking lock first and re-acquire it after having
48
* taken the upper one.
49
*
50
* When taking more than one ap_list_lock at the same time, always take the
51
* lowest numbered VCPU's ap_list_lock first, so:
52
* vcpuX->vcpu_id < vcpuY->vcpu_id:
53
* raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54
* raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55
*
56
* Since the VGIC must support injecting virtual interrupts from ISRs, we have
57
* to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58
* spinlocks for any lock that may be taken while injecting an interrupt.
59
*/
60
61
/*
62
* Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63
* structure. The caller is expected to call vgic_put_irq() later once it's
64
* finished with the IRQ.
65
*/
66
static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67
{
68
struct vgic_dist *dist = &kvm->arch.vgic;
69
struct vgic_irq *irq = NULL;
70
71
rcu_read_lock();
72
73
irq = xa_load(&dist->lpi_xa, intid);
74
if (!vgic_try_get_irq_ref(irq))
75
irq = NULL;
76
77
rcu_read_unlock();
78
79
return irq;
80
}
81
82
/*
83
* This looks up the virtual interrupt ID to get the corresponding
84
* struct vgic_irq. It also increases the refcount, so any caller is expected
85
* to call vgic_put_irq() once it's finished with this IRQ.
86
*/
87
struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88
{
89
/* SPIs */
90
if (intid >= VGIC_NR_PRIVATE_IRQS &&
91
intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92
intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93
return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94
}
95
96
/* LPIs */
97
if (intid >= VGIC_MIN_LPI)
98
return vgic_get_lpi(kvm, intid);
99
100
return NULL;
101
}
102
103
struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104
{
105
if (WARN_ON(!vcpu))
106
return NULL;
107
108
/* SGIs and PPIs */
109
if (intid < VGIC_NR_PRIVATE_IRQS) {
110
intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111
return &vcpu->arch.vgic_cpu.private_irqs[intid];
112
}
113
114
return vgic_get_irq(vcpu->kvm, intid);
115
}
116
117
static void vgic_release_lpi_locked(struct vgic_dist *dist, struct vgic_irq *irq)
118
{
119
lockdep_assert_held(&dist->lpi_xa.xa_lock);
120
__xa_erase(&dist->lpi_xa, irq->intid);
121
kfree_rcu(irq, rcu);
122
}
123
124
static __must_check bool __vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
125
{
126
if (irq->intid < VGIC_MIN_LPI)
127
return false;
128
129
return refcount_dec_and_test(&irq->refcount);
130
}
131
132
static __must_check bool vgic_put_irq_norelease(struct kvm *kvm, struct vgic_irq *irq)
133
{
134
if (!__vgic_put_irq(kvm, irq))
135
return false;
136
137
irq->pending_release = true;
138
return true;
139
}
140
141
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
142
{
143
struct vgic_dist *dist = &kvm->arch.vgic;
144
145
if (irq->intid >= VGIC_MIN_LPI)
146
might_lock(&dist->lpi_xa.xa_lock);
147
148
if (!__vgic_put_irq(kvm, irq))
149
return;
150
151
xa_lock(&dist->lpi_xa);
152
vgic_release_lpi_locked(dist, irq);
153
xa_unlock(&dist->lpi_xa);
154
}
155
156
static void vgic_release_deleted_lpis(struct kvm *kvm)
157
{
158
struct vgic_dist *dist = &kvm->arch.vgic;
159
unsigned long intid;
160
struct vgic_irq *irq;
161
162
xa_lock(&dist->lpi_xa);
163
164
xa_for_each(&dist->lpi_xa, intid, irq) {
165
if (irq->pending_release)
166
vgic_release_lpi_locked(dist, irq);
167
}
168
169
xa_unlock(&dist->lpi_xa);
170
}
171
172
void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
173
{
174
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
175
struct vgic_irq *irq, *tmp;
176
bool deleted = false;
177
unsigned long flags;
178
179
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
180
181
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
182
if (irq->intid >= VGIC_MIN_LPI) {
183
raw_spin_lock(&irq->irq_lock);
184
list_del(&irq->ap_list);
185
irq->vcpu = NULL;
186
raw_spin_unlock(&irq->irq_lock);
187
deleted |= vgic_put_irq_norelease(vcpu->kvm, irq);
188
}
189
}
190
191
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
192
193
if (deleted)
194
vgic_release_deleted_lpis(vcpu->kvm);
195
}
196
197
void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
198
{
199
WARN_ON(irq_set_irqchip_state(irq->host_irq,
200
IRQCHIP_STATE_PENDING,
201
pending));
202
}
203
204
bool vgic_get_phys_line_level(struct vgic_irq *irq)
205
{
206
bool line_level;
207
208
BUG_ON(!irq->hw);
209
210
if (irq->ops && irq->ops->get_input_level)
211
return irq->ops->get_input_level(irq->intid);
212
213
WARN_ON(irq_get_irqchip_state(irq->host_irq,
214
IRQCHIP_STATE_PENDING,
215
&line_level));
216
return line_level;
217
}
218
219
/* Set/Clear the physical active state */
220
void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
221
{
222
223
BUG_ON(!irq->hw);
224
WARN_ON(irq_set_irqchip_state(irq->host_irq,
225
IRQCHIP_STATE_ACTIVE,
226
active));
227
}
228
229
/**
230
* vgic_target_oracle - compute the target vcpu for an irq
231
*
232
* @irq: The irq to route. Must be already locked.
233
*
234
* Based on the current state of the interrupt (enabled, pending,
235
* active, vcpu and target_vcpu), compute the next vcpu this should be
236
* given to. Return NULL if this shouldn't be injected at all.
237
*
238
* Requires the IRQ lock to be held.
239
*/
240
static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
241
{
242
lockdep_assert_held(&irq->irq_lock);
243
244
/* If the interrupt is active, it must stay on the current vcpu */
245
if (irq->active)
246
return irq->vcpu ? : irq->target_vcpu;
247
248
/*
249
* If the IRQ is not active but enabled and pending, we should direct
250
* it to its configured target VCPU.
251
* If the distributor is disabled, pending interrupts shouldn't be
252
* forwarded.
253
*/
254
if (irq->enabled && irq_is_pending(irq)) {
255
if (unlikely(irq->target_vcpu &&
256
!irq->target_vcpu->kvm->arch.vgic.enabled))
257
return NULL;
258
259
return irq->target_vcpu;
260
}
261
262
/* If neither active nor pending and enabled, then this IRQ should not
263
* be queued to any VCPU.
264
*/
265
return NULL;
266
}
267
268
/*
269
* The order of items in the ap_lists defines how we'll pack things in LRs as
270
* well, the first items in the list being the first things populated in the
271
* LRs.
272
*
273
* A hard rule is that active interrupts can never be pushed out of the LRs
274
* (and therefore take priority) since we cannot reliably trap on deactivation
275
* of IRQs and therefore they have to be present in the LRs.
276
*
277
* Otherwise things should be sorted by the priority field and the GIC
278
* hardware support will take care of preemption of priority groups etc.
279
*
280
* Return negative if "a" sorts before "b", 0 to preserve order, and positive
281
* to sort "b" before "a".
282
*/
283
static int vgic_irq_cmp(void *priv, const struct list_head *a,
284
const struct list_head *b)
285
{
286
struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
287
struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
288
bool penda, pendb;
289
int ret;
290
291
/*
292
* list_sort may call this function with the same element when
293
* the list is fairly long.
294
*/
295
if (unlikely(irqa == irqb))
296
return 0;
297
298
raw_spin_lock(&irqa->irq_lock);
299
raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
300
301
if (irqa->active || irqb->active) {
302
ret = (int)irqb->active - (int)irqa->active;
303
goto out;
304
}
305
306
penda = irqa->enabled && irq_is_pending(irqa);
307
pendb = irqb->enabled && irq_is_pending(irqb);
308
309
if (!penda || !pendb) {
310
ret = (int)pendb - (int)penda;
311
goto out;
312
}
313
314
/* Both pending and enabled, sort by priority */
315
ret = irqa->priority - irqb->priority;
316
out:
317
raw_spin_unlock(&irqb->irq_lock);
318
raw_spin_unlock(&irqa->irq_lock);
319
return ret;
320
}
321
322
/* Must be called with the ap_list_lock held */
323
static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
324
{
325
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
326
327
lockdep_assert_held(&vgic_cpu->ap_list_lock);
328
329
list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
330
}
331
332
/*
333
* Only valid injection if changing level for level-triggered IRQs or for a
334
* rising edge, and in-kernel connected IRQ lines can only be controlled by
335
* their owner.
336
*/
337
static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
338
{
339
if (irq->owner != owner)
340
return false;
341
342
switch (irq->config) {
343
case VGIC_CONFIG_LEVEL:
344
return irq->line_level != level;
345
case VGIC_CONFIG_EDGE:
346
return level;
347
}
348
349
return false;
350
}
351
352
/*
353
* Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
354
* Do the queuing if necessary, taking the right locks in the right order.
355
* Returns true when the IRQ was queued, false otherwise.
356
*
357
* Needs to be entered with the IRQ lock already held, but will return
358
* with all locks dropped.
359
*/
360
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
361
unsigned long flags) __releases(&irq->irq_lock)
362
{
363
struct kvm_vcpu *vcpu;
364
365
lockdep_assert_held(&irq->irq_lock);
366
367
retry:
368
vcpu = vgic_target_oracle(irq);
369
if (irq->vcpu || !vcpu) {
370
/*
371
* If this IRQ is already on a VCPU's ap_list, then it
372
* cannot be moved or modified and there is no more work for
373
* us to do.
374
*
375
* Otherwise, if the irq is not pending and enabled, it does
376
* not need to be inserted into an ap_list and there is also
377
* no more work for us to do.
378
*/
379
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
380
381
/*
382
* We have to kick the VCPU here, because we could be
383
* queueing an edge-triggered interrupt for which we
384
* get no EOI maintenance interrupt. In that case,
385
* while the IRQ is already on the VCPU's AP list, the
386
* VCPU could have EOI'ed the original interrupt and
387
* won't see this one until it exits for some other
388
* reason.
389
*/
390
if (vcpu) {
391
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
392
kvm_vcpu_kick(vcpu);
393
}
394
return false;
395
}
396
397
/*
398
* We must unlock the irq lock to take the ap_list_lock where
399
* we are going to insert this new pending interrupt.
400
*/
401
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
402
403
/* someone can do stuff here, which we re-check below */
404
405
raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
406
raw_spin_lock(&irq->irq_lock);
407
408
/*
409
* Did something change behind our backs?
410
*
411
* There are two cases:
412
* 1) The irq lost its pending state or was disabled behind our
413
* backs and/or it was queued to another VCPU's ap_list.
414
* 2) Someone changed the affinity on this irq behind our
415
* backs and we are now holding the wrong ap_list_lock.
416
*
417
* In both cases, drop the locks and retry.
418
*/
419
420
if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
421
raw_spin_unlock(&irq->irq_lock);
422
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
423
flags);
424
425
raw_spin_lock_irqsave(&irq->irq_lock, flags);
426
goto retry;
427
}
428
429
/*
430
* Grab a reference to the irq to reflect the fact that it is
431
* now in the ap_list. This is safe as the caller must already hold a
432
* reference on the irq.
433
*/
434
vgic_get_irq_ref(irq);
435
list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
436
irq->vcpu = vcpu;
437
438
raw_spin_unlock(&irq->irq_lock);
439
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
440
441
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
442
kvm_vcpu_kick(vcpu);
443
444
return true;
445
}
446
447
/**
448
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
449
* @kvm: The VM structure pointer
450
* @vcpu: The CPU for PPIs or NULL for global interrupts
451
* @intid: The INTID to inject a new state to.
452
* @level: Edge-triggered: true: to trigger the interrupt
453
* false: to ignore the call
454
* Level-sensitive true: raise the input signal
455
* false: lower the input signal
456
* @owner: The opaque pointer to the owner of the IRQ being raised to verify
457
* that the caller is allowed to inject this IRQ. Userspace
458
* injections will have owner == NULL.
459
*
460
* The VGIC is not concerned with devices being active-LOW or active-HIGH for
461
* level-sensitive interrupts. You can think of the level parameter as 1
462
* being HIGH and 0 being LOW and all devices being active-HIGH.
463
*/
464
int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
465
unsigned int intid, bool level, void *owner)
466
{
467
struct vgic_irq *irq;
468
unsigned long flags;
469
int ret;
470
471
ret = vgic_lazy_init(kvm);
472
if (ret)
473
return ret;
474
475
if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
476
return -EINVAL;
477
478
trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
479
480
if (intid < VGIC_NR_PRIVATE_IRQS)
481
irq = vgic_get_vcpu_irq(vcpu, intid);
482
else
483
irq = vgic_get_irq(kvm, intid);
484
if (!irq)
485
return -EINVAL;
486
487
raw_spin_lock_irqsave(&irq->irq_lock, flags);
488
489
if (!vgic_validate_injection(irq, level, owner)) {
490
/* Nothing to see here, move along... */
491
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
492
vgic_put_irq(kvm, irq);
493
return 0;
494
}
495
496
if (irq->config == VGIC_CONFIG_LEVEL)
497
irq->line_level = level;
498
else
499
irq->pending_latch = true;
500
501
vgic_queue_irq_unlock(kvm, irq, flags);
502
vgic_put_irq(kvm, irq);
503
504
return 0;
505
}
506
507
/* @irq->irq_lock must be held */
508
static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
509
unsigned int host_irq,
510
struct irq_ops *ops)
511
{
512
struct irq_desc *desc;
513
struct irq_data *data;
514
515
/*
516
* Find the physical IRQ number corresponding to @host_irq
517
*/
518
desc = irq_to_desc(host_irq);
519
if (!desc) {
520
kvm_err("%s: no interrupt descriptor\n", __func__);
521
return -EINVAL;
522
}
523
data = irq_desc_get_irq_data(desc);
524
while (data->parent_data)
525
data = data->parent_data;
526
527
irq->hw = true;
528
irq->host_irq = host_irq;
529
irq->hwintid = data->hwirq;
530
irq->ops = ops;
531
return 0;
532
}
533
534
/* @irq->irq_lock must be held */
535
static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
536
{
537
irq->hw = false;
538
irq->hwintid = 0;
539
irq->ops = NULL;
540
}
541
542
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
543
u32 vintid, struct irq_ops *ops)
544
{
545
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
546
unsigned long flags;
547
int ret;
548
549
BUG_ON(!irq);
550
551
raw_spin_lock_irqsave(&irq->irq_lock, flags);
552
ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
553
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
554
vgic_put_irq(vcpu->kvm, irq);
555
556
return ret;
557
}
558
559
/**
560
* kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
561
* @vcpu: The VCPU pointer
562
* @vintid: The INTID of the interrupt
563
*
564
* Reset the active and pending states of a mapped interrupt. Kernel
565
* subsystems injecting mapped interrupts should reset their interrupt lines
566
* when we are doing a reset of the VM.
567
*/
568
void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
569
{
570
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
571
unsigned long flags;
572
573
if (!irq->hw)
574
goto out;
575
576
raw_spin_lock_irqsave(&irq->irq_lock, flags);
577
irq->active = false;
578
irq->pending_latch = false;
579
irq->line_level = false;
580
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
581
out:
582
vgic_put_irq(vcpu->kvm, irq);
583
}
584
585
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
586
{
587
struct vgic_irq *irq;
588
unsigned long flags;
589
590
if (!vgic_initialized(vcpu->kvm))
591
return -EAGAIN;
592
593
irq = vgic_get_vcpu_irq(vcpu, vintid);
594
BUG_ON(!irq);
595
596
raw_spin_lock_irqsave(&irq->irq_lock, flags);
597
kvm_vgic_unmap_irq(irq);
598
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
599
vgic_put_irq(vcpu->kvm, irq);
600
601
return 0;
602
}
603
604
int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
605
{
606
struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
607
unsigned long flags;
608
int ret = -1;
609
610
raw_spin_lock_irqsave(&irq->irq_lock, flags);
611
if (irq->hw)
612
ret = irq->hwintid;
613
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
614
615
vgic_put_irq(vcpu->kvm, irq);
616
return ret;
617
}
618
619
/**
620
* kvm_vgic_set_owner - Set the owner of an interrupt for a VM
621
*
622
* @vcpu: Pointer to the VCPU (used for PPIs)
623
* @intid: The virtual INTID identifying the interrupt (PPI or SPI)
624
* @owner: Opaque pointer to the owner
625
*
626
* Returns 0 if intid is not already used by another in-kernel device and the
627
* owner is set, otherwise returns an error code.
628
*/
629
int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
630
{
631
struct vgic_irq *irq;
632
unsigned long flags;
633
int ret = 0;
634
635
if (!vgic_initialized(vcpu->kvm))
636
return -EAGAIN;
637
638
/* SGIs and LPIs cannot be wired up to any device */
639
if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
640
return -EINVAL;
641
642
irq = vgic_get_vcpu_irq(vcpu, intid);
643
raw_spin_lock_irqsave(&irq->irq_lock, flags);
644
if (irq->owner && irq->owner != owner)
645
ret = -EEXIST;
646
else
647
irq->owner = owner;
648
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
649
650
return ret;
651
}
652
653
/**
654
* vgic_prune_ap_list - Remove non-relevant interrupts from the list
655
*
656
* @vcpu: The VCPU pointer
657
*
658
* Go over the list of "interesting" interrupts, and prune those that we
659
* won't have to consider in the near future.
660
*/
661
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
662
{
663
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
664
struct vgic_irq *irq, *tmp;
665
bool deleted_lpis = false;
666
667
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
668
669
retry:
670
raw_spin_lock(&vgic_cpu->ap_list_lock);
671
672
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
673
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
674
bool target_vcpu_needs_kick = false;
675
676
raw_spin_lock(&irq->irq_lock);
677
678
BUG_ON(vcpu != irq->vcpu);
679
680
target_vcpu = vgic_target_oracle(irq);
681
682
if (!target_vcpu) {
683
/*
684
* We don't need to process this interrupt any
685
* further, move it off the list.
686
*/
687
list_del(&irq->ap_list);
688
irq->vcpu = NULL;
689
raw_spin_unlock(&irq->irq_lock);
690
691
/*
692
* This vgic_put_irq call matches the
693
* vgic_get_irq_ref in vgic_queue_irq_unlock,
694
* where we added the LPI to the ap_list. As
695
* we remove the irq from the list, we drop
696
* also drop the refcount.
697
*/
698
deleted_lpis |= vgic_put_irq_norelease(vcpu->kvm, irq);
699
continue;
700
}
701
702
if (target_vcpu == vcpu) {
703
/* We're on the right CPU */
704
raw_spin_unlock(&irq->irq_lock);
705
continue;
706
}
707
708
/* This interrupt looks like it has to be migrated. */
709
710
raw_spin_unlock(&irq->irq_lock);
711
raw_spin_unlock(&vgic_cpu->ap_list_lock);
712
713
/*
714
* Ensure locking order by always locking the smallest
715
* ID first.
716
*/
717
if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
718
vcpuA = vcpu;
719
vcpuB = target_vcpu;
720
} else {
721
vcpuA = target_vcpu;
722
vcpuB = vcpu;
723
}
724
725
raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
726
raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
727
SINGLE_DEPTH_NESTING);
728
raw_spin_lock(&irq->irq_lock);
729
730
/*
731
* If the affinity has been preserved, move the
732
* interrupt around. Otherwise, it means things have
733
* changed while the interrupt was unlocked, and we
734
* need to replay this.
735
*
736
* In all cases, we cannot trust the list not to have
737
* changed, so we restart from the beginning.
738
*/
739
if (target_vcpu == vgic_target_oracle(irq)) {
740
struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
741
742
list_del(&irq->ap_list);
743
irq->vcpu = target_vcpu;
744
list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
745
target_vcpu_needs_kick = true;
746
}
747
748
raw_spin_unlock(&irq->irq_lock);
749
raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
750
raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
751
752
if (target_vcpu_needs_kick) {
753
kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
754
kvm_vcpu_kick(target_vcpu);
755
}
756
757
goto retry;
758
}
759
760
raw_spin_unlock(&vgic_cpu->ap_list_lock);
761
762
if (unlikely(deleted_lpis))
763
vgic_release_deleted_lpis(vcpu->kvm);
764
}
765
766
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
767
{
768
if (kvm_vgic_global_state.type == VGIC_V2)
769
vgic_v2_fold_lr_state(vcpu);
770
else
771
vgic_v3_fold_lr_state(vcpu);
772
}
773
774
/* Requires the irq_lock to be held. */
775
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
776
struct vgic_irq *irq, int lr)
777
{
778
lockdep_assert_held(&irq->irq_lock);
779
780
if (kvm_vgic_global_state.type == VGIC_V2)
781
vgic_v2_populate_lr(vcpu, irq, lr);
782
else
783
vgic_v3_populate_lr(vcpu, irq, lr);
784
}
785
786
static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
787
{
788
if (kvm_vgic_global_state.type == VGIC_V2)
789
vgic_v2_clear_lr(vcpu, lr);
790
else
791
vgic_v3_clear_lr(vcpu, lr);
792
}
793
794
static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
795
{
796
if (kvm_vgic_global_state.type == VGIC_V2)
797
vgic_v2_set_underflow(vcpu);
798
else
799
vgic_v3_set_underflow(vcpu);
800
}
801
802
/* Requires the ap_list_lock to be held. */
803
static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
804
bool *multi_sgi)
805
{
806
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
807
struct vgic_irq *irq;
808
int count = 0;
809
810
*multi_sgi = false;
811
812
lockdep_assert_held(&vgic_cpu->ap_list_lock);
813
814
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
815
int w;
816
817
raw_spin_lock(&irq->irq_lock);
818
/* GICv2 SGIs can count for more than one... */
819
w = vgic_irq_get_lr_count(irq);
820
raw_spin_unlock(&irq->irq_lock);
821
822
count += w;
823
*multi_sgi |= (w > 1);
824
}
825
return count;
826
}
827
828
/* Requires the VCPU's ap_list_lock to be held. */
829
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
830
{
831
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
832
struct vgic_irq *irq;
833
int count;
834
bool multi_sgi;
835
u8 prio = 0xff;
836
int i = 0;
837
838
lockdep_assert_held(&vgic_cpu->ap_list_lock);
839
840
count = compute_ap_list_depth(vcpu, &multi_sgi);
841
if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
842
vgic_sort_ap_list(vcpu);
843
844
count = 0;
845
846
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
847
raw_spin_lock(&irq->irq_lock);
848
849
/*
850
* If we have multi-SGIs in the pipeline, we need to
851
* guarantee that they are all seen before any IRQ of
852
* lower priority. In that case, we need to filter out
853
* these interrupts by exiting early. This is easy as
854
* the AP list has been sorted already.
855
*/
856
if (multi_sgi && irq->priority > prio) {
857
raw_spin_unlock(&irq->irq_lock);
858
break;
859
}
860
861
if (likely(vgic_target_oracle(irq) == vcpu)) {
862
vgic_populate_lr(vcpu, irq, count++);
863
864
if (irq->source)
865
prio = irq->priority;
866
}
867
868
raw_spin_unlock(&irq->irq_lock);
869
870
if (count == kvm_vgic_global_state.nr_lr) {
871
if (!list_is_last(&irq->ap_list,
872
&vgic_cpu->ap_list_head))
873
vgic_set_underflow(vcpu);
874
break;
875
}
876
}
877
878
/* Nuke remaining LRs */
879
for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
880
vgic_clear_lr(vcpu, i);
881
882
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
883
vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
884
else
885
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
886
}
887
888
static inline bool can_access_vgic_from_kernel(void)
889
{
890
/*
891
* GICv2 can always be accessed from the kernel because it is
892
* memory-mapped, and VHE systems can access GICv3 EL2 system
893
* registers.
894
*/
895
return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
896
}
897
898
static inline void vgic_save_state(struct kvm_vcpu *vcpu)
899
{
900
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
901
vgic_v2_save_state(vcpu);
902
else
903
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
904
}
905
906
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
907
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
908
{
909
int used_lrs;
910
911
/* If nesting, emulate the HW effect from L0 to L1 */
912
if (vgic_state_is_nested(vcpu)) {
913
vgic_v3_sync_nested(vcpu);
914
return;
915
}
916
917
if (vcpu_has_nv(vcpu))
918
vgic_v3_nested_update_mi(vcpu);
919
920
/* An empty ap_list_head implies used_lrs == 0 */
921
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
922
return;
923
924
if (can_access_vgic_from_kernel())
925
vgic_save_state(vcpu);
926
927
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
928
used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
929
else
930
used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
931
932
if (used_lrs)
933
vgic_fold_lr_state(vcpu);
934
vgic_prune_ap_list(vcpu);
935
}
936
937
static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
938
{
939
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
940
vgic_v2_restore_state(vcpu);
941
else
942
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
943
}
944
945
/* Flush our emulation state into the GIC hardware before entering the guest. */
946
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
947
{
948
/*
949
* If in a nested state, we must return early. Two possibilities:
950
*
951
* - If we have any pending IRQ for the guest and the guest
952
* expects IRQs to be handled in its virtual EL2 mode (the
953
* virtual IMO bit is set) and it is not already running in
954
* virtual EL2 mode, then we have to emulate an IRQ
955
* exception to virtual EL2.
956
*
957
* We do that by placing a request to ourselves which will
958
* abort the entry procedure and inject the exception at the
959
* beginning of the run loop.
960
*
961
* - Otherwise, do exactly *NOTHING*. The guest state is
962
* already loaded, and we can carry on with running it.
963
*
964
* If we have NV, but are not in a nested state, compute the
965
* maintenance interrupt state, as it may fire.
966
*/
967
if (vgic_state_is_nested(vcpu)) {
968
if (kvm_vgic_vcpu_pending_irq(vcpu))
969
kvm_make_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu);
970
971
return;
972
}
973
974
if (vcpu_has_nv(vcpu))
975
vgic_v3_nested_update_mi(vcpu);
976
977
/*
978
* If there are no virtual interrupts active or pending for this
979
* VCPU, then there is no work to do and we can bail out without
980
* taking any lock. There is a potential race with someone injecting
981
* interrupts to the VCPU, but it is a benign race as the VCPU will
982
* either observe the new interrupt before or after doing this check,
983
* and introducing additional synchronization mechanism doesn't change
984
* this.
985
*
986
* Note that we still need to go through the whole thing if anything
987
* can be directly injected (GICv4).
988
*/
989
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
990
!vgic_supports_direct_irqs(vcpu->kvm))
991
return;
992
993
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
994
995
if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
996
raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
997
vgic_flush_lr_state(vcpu);
998
raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
999
}
1000
1001
if (can_access_vgic_from_kernel())
1002
vgic_restore_state(vcpu);
1003
1004
if (vgic_supports_direct_irqs(vcpu->kvm))
1005
vgic_v4_commit(vcpu);
1006
}
1007
1008
void kvm_vgic_load(struct kvm_vcpu *vcpu)
1009
{
1010
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1011
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1012
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1013
return;
1014
}
1015
1016
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1017
vgic_v2_load(vcpu);
1018
else
1019
vgic_v3_load(vcpu);
1020
}
1021
1022
void kvm_vgic_put(struct kvm_vcpu *vcpu)
1023
{
1024
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
1025
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1026
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
1027
return;
1028
}
1029
1030
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
1031
vgic_v2_put(vcpu);
1032
else
1033
vgic_v3_put(vcpu);
1034
}
1035
1036
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1037
{
1038
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1039
struct vgic_irq *irq;
1040
bool pending = false;
1041
unsigned long flags;
1042
struct vgic_vmcr vmcr;
1043
1044
if (!vcpu->kvm->arch.vgic.enabled)
1045
return false;
1046
1047
if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
1048
return true;
1049
1050
vgic_get_vmcr(vcpu, &vmcr);
1051
1052
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
1053
1054
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
1055
raw_spin_lock(&irq->irq_lock);
1056
pending = irq_is_pending(irq) && irq->enabled &&
1057
!irq->active &&
1058
irq->priority < vmcr.pmr;
1059
raw_spin_unlock(&irq->irq_lock);
1060
1061
if (pending)
1062
break;
1063
}
1064
1065
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
1066
1067
return pending;
1068
}
1069
1070
void vgic_kick_vcpus(struct kvm *kvm)
1071
{
1072
struct kvm_vcpu *vcpu;
1073
unsigned long c;
1074
1075
/*
1076
* We've injected an interrupt, time to find out who deserves
1077
* a good kick...
1078
*/
1079
kvm_for_each_vcpu(c, vcpu, kvm) {
1080
if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1081
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1082
kvm_vcpu_kick(vcpu);
1083
}
1084
}
1085
}
1086
1087
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1088
{
1089
struct vgic_irq *irq;
1090
bool map_is_active;
1091
unsigned long flags;
1092
1093
if (!vgic_initialized(vcpu->kvm))
1094
return false;
1095
1096
irq = vgic_get_vcpu_irq(vcpu, vintid);
1097
raw_spin_lock_irqsave(&irq->irq_lock, flags);
1098
map_is_active = irq->hw && irq->active;
1099
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1100
vgic_put_irq(vcpu->kvm, irq);
1101
1102
return map_is_active;
1103
}
1104
1105
/*
1106
* Level-triggered mapped IRQs are special because we only observe rising
1107
* edges as input to the VGIC.
1108
*
1109
* If the guest never acked the interrupt we have to sample the physical
1110
* line and set the line level, because the device state could have changed
1111
* or we simply need to process the still pending interrupt later.
1112
*
1113
* We could also have entered the guest with the interrupt active+pending.
1114
* On the next exit, we need to re-evaluate the pending state, as it could
1115
* otherwise result in a spurious interrupt by injecting a now potentially
1116
* stale pending state.
1117
*
1118
* If this causes us to lower the level, we have to also clear the physical
1119
* active state, since we will otherwise never be told when the interrupt
1120
* becomes asserted again.
1121
*
1122
* Another case is when the interrupt requires a helping hand on
1123
* deactivation (no HW deactivation, for example).
1124
*/
1125
void vgic_irq_handle_resampling(struct vgic_irq *irq,
1126
bool lr_deactivated, bool lr_pending)
1127
{
1128
if (vgic_irq_is_mapped_level(irq)) {
1129
bool resample = false;
1130
1131
if (unlikely(vgic_irq_needs_resampling(irq))) {
1132
resample = !(irq->active || irq->pending_latch);
1133
} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1134
irq->line_level = vgic_get_phys_line_level(irq);
1135
resample = !irq->line_level;
1136
}
1137
1138
if (resample)
1139
vgic_irq_set_phys_active(irq, false);
1140
}
1141
}
1142
1143