Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/mm/mmu.c
29284 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Based on arch/arm/mm/mmu.c
4
*
5
* Copyright (C) 1995-2005 Russell King
6
* Copyright (C) 2012 ARM Ltd.
7
*/
8
9
#include <linux/cache.h>
10
#include <linux/export.h>
11
#include <linux/kernel.h>
12
#include <linux/errno.h>
13
#include <linux/init.h>
14
#include <linux/ioport.h>
15
#include <linux/kexec.h>
16
#include <linux/libfdt.h>
17
#include <linux/mman.h>
18
#include <linux/nodemask.h>
19
#include <linux/memblock.h>
20
#include <linux/memremap.h>
21
#include <linux/memory.h>
22
#include <linux/fs.h>
23
#include <linux/io.h>
24
#include <linux/mm.h>
25
#include <linux/vmalloc.h>
26
#include <linux/set_memory.h>
27
#include <linux/kfence.h>
28
#include <linux/pkeys.h>
29
#include <linux/mm_inline.h>
30
#include <linux/pagewalk.h>
31
#include <linux/stop_machine.h>
32
33
#include <asm/barrier.h>
34
#include <asm/cputype.h>
35
#include <asm/fixmap.h>
36
#include <asm/kasan.h>
37
#include <asm/kernel-pgtable.h>
38
#include <asm/sections.h>
39
#include <asm/setup.h>
40
#include <linux/sizes.h>
41
#include <asm/tlb.h>
42
#include <asm/mmu_context.h>
43
#include <asm/ptdump.h>
44
#include <asm/tlbflush.h>
45
#include <asm/pgalloc.h>
46
#include <asm/kfence.h>
47
48
#define NO_BLOCK_MAPPINGS BIT(0)
49
#define NO_CONT_MAPPINGS BIT(1)
50
#define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52
DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54
u64 kimage_voffset __ro_after_init;
55
EXPORT_SYMBOL(kimage_voffset);
56
57
u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59
static bool rodata_is_rw __ro_after_init = true;
60
61
/*
62
* The booting CPU updates the failed status @__early_cpu_boot_status,
63
* with MMU turned off.
64
*/
65
long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67
/*
68
* Empty_zero_page is a special page that is used for zero-initialized data
69
* and COW.
70
*/
71
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72
EXPORT_SYMBOL(empty_zero_page);
73
74
static DEFINE_SPINLOCK(swapper_pgdir_lock);
75
static DEFINE_MUTEX(fixmap_lock);
76
77
void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78
{
79
pgd_t *fixmap_pgdp;
80
81
/*
82
* Don't bother with the fixmap if swapper_pg_dir is still mapped
83
* writable in the kernel mapping.
84
*/
85
if (rodata_is_rw) {
86
WRITE_ONCE(*pgdp, pgd);
87
dsb(ishst);
88
isb();
89
return;
90
}
91
92
spin_lock(&swapper_pgdir_lock);
93
fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94
WRITE_ONCE(*fixmap_pgdp, pgd);
95
/*
96
* We need dsb(ishst) here to ensure the page-table-walker sees
97
* our new entry before set_p?d() returns. The fixmap's
98
* flush_tlb_kernel_range() via clear_fixmap() does this for us.
99
*/
100
pgd_clear_fixmap();
101
spin_unlock(&swapper_pgdir_lock);
102
}
103
104
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105
unsigned long size, pgprot_t vma_prot)
106
{
107
if (!pfn_is_map_memory(pfn))
108
return pgprot_noncached(vma_prot);
109
else if (file->f_flags & O_SYNC)
110
return pgprot_writecombine(vma_prot);
111
return vma_prot;
112
}
113
EXPORT_SYMBOL(phys_mem_access_prot);
114
115
static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116
{
117
phys_addr_t phys;
118
119
phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120
MEMBLOCK_ALLOC_NOLEAKTRACE);
121
if (!phys)
122
panic("Failed to allocate page table page\n");
123
124
return phys;
125
}
126
127
bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128
{
129
/*
130
* The following mapping attributes may be updated in live
131
* kernel mappings without the need for break-before-make.
132
*/
133
pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134
PTE_SWBITS_MASK;
135
136
/* creating or taking down mappings is always safe */
137
if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138
return true;
139
140
/* A live entry's pfn should not change */
141
if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142
return false;
143
144
/* live contiguous mappings may not be manipulated at all */
145
if ((old | new) & PTE_CONT)
146
return false;
147
148
/* Transitioning from Non-Global to Global is unsafe */
149
if (old & ~new & PTE_NG)
150
return false;
151
152
/*
153
* Changing the memory type between Normal and Normal-Tagged is safe
154
* since Tagged is considered a permission attribute from the
155
* mismatched attribute aliases perspective.
156
*/
157
if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158
(old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159
((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160
(new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161
mask |= PTE_ATTRINDX_MASK;
162
163
return ((old ^ new) & ~mask) == 0;
164
}
165
166
static void init_clear_pgtable(void *table)
167
{
168
clear_page(table);
169
170
/* Ensure the zeroing is observed by page table walks. */
171
dsb(ishst);
172
}
173
174
static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175
phys_addr_t phys, pgprot_t prot)
176
{
177
do {
178
pte_t old_pte = __ptep_get(ptep);
179
180
/*
181
* Required barriers to make this visible to the table walker
182
* are deferred to the end of alloc_init_cont_pte().
183
*/
184
__set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186
/*
187
* After the PTE entry has been populated once, we
188
* only allow updates to the permission attributes.
189
*/
190
BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191
pte_val(__ptep_get(ptep))));
192
193
phys += PAGE_SIZE;
194
} while (ptep++, addr += PAGE_SIZE, addr != end);
195
}
196
197
static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198
unsigned long end, phys_addr_t phys,
199
pgprot_t prot,
200
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201
int flags)
202
{
203
unsigned long next;
204
pmd_t pmd = READ_ONCE(*pmdp);
205
pte_t *ptep;
206
207
BUG_ON(pmd_sect(pmd));
208
if (pmd_none(pmd)) {
209
pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210
phys_addr_t pte_phys;
211
212
if (flags & NO_EXEC_MAPPINGS)
213
pmdval |= PMD_TABLE_PXN;
214
BUG_ON(!pgtable_alloc);
215
pte_phys = pgtable_alloc(TABLE_PTE);
216
ptep = pte_set_fixmap(pte_phys);
217
init_clear_pgtable(ptep);
218
ptep += pte_index(addr);
219
__pmd_populate(pmdp, pte_phys, pmdval);
220
} else {
221
BUG_ON(pmd_bad(pmd));
222
ptep = pte_set_fixmap_offset(pmdp, addr);
223
}
224
225
do {
226
pgprot_t __prot = prot;
227
228
next = pte_cont_addr_end(addr, end);
229
230
/* use a contiguous mapping if the range is suitably aligned */
231
if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
232
(flags & NO_CONT_MAPPINGS) == 0)
233
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
234
235
init_pte(ptep, addr, next, phys, __prot);
236
237
ptep += pte_index(next) - pte_index(addr);
238
phys += next - addr;
239
} while (addr = next, addr != end);
240
241
/*
242
* Note: barriers and maintenance necessary to clear the fixmap slot
243
* ensure that all previous pgtable writes are visible to the table
244
* walker.
245
*/
246
pte_clear_fixmap();
247
}
248
249
static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
250
phys_addr_t phys, pgprot_t prot,
251
phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
252
{
253
unsigned long next;
254
255
do {
256
pmd_t old_pmd = READ_ONCE(*pmdp);
257
258
next = pmd_addr_end(addr, end);
259
260
/* try section mapping first */
261
if (((addr | next | phys) & ~PMD_MASK) == 0 &&
262
(flags & NO_BLOCK_MAPPINGS) == 0) {
263
pmd_set_huge(pmdp, phys, prot);
264
265
/*
266
* After the PMD entry has been populated once, we
267
* only allow updates to the permission attributes.
268
*/
269
BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
270
READ_ONCE(pmd_val(*pmdp))));
271
} else {
272
alloc_init_cont_pte(pmdp, addr, next, phys, prot,
273
pgtable_alloc, flags);
274
275
BUG_ON(pmd_val(old_pmd) != 0 &&
276
pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
277
}
278
phys += next - addr;
279
} while (pmdp++, addr = next, addr != end);
280
}
281
282
static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
283
unsigned long end, phys_addr_t phys,
284
pgprot_t prot,
285
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
286
int flags)
287
{
288
unsigned long next;
289
pud_t pud = READ_ONCE(*pudp);
290
pmd_t *pmdp;
291
292
/*
293
* Check for initial section mappings in the pgd/pud.
294
*/
295
BUG_ON(pud_sect(pud));
296
if (pud_none(pud)) {
297
pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
298
phys_addr_t pmd_phys;
299
300
if (flags & NO_EXEC_MAPPINGS)
301
pudval |= PUD_TABLE_PXN;
302
BUG_ON(!pgtable_alloc);
303
pmd_phys = pgtable_alloc(TABLE_PMD);
304
pmdp = pmd_set_fixmap(pmd_phys);
305
init_clear_pgtable(pmdp);
306
pmdp += pmd_index(addr);
307
__pud_populate(pudp, pmd_phys, pudval);
308
} else {
309
BUG_ON(pud_bad(pud));
310
pmdp = pmd_set_fixmap_offset(pudp, addr);
311
}
312
313
do {
314
pgprot_t __prot = prot;
315
316
next = pmd_cont_addr_end(addr, end);
317
318
/* use a contiguous mapping if the range is suitably aligned */
319
if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
320
(flags & NO_CONT_MAPPINGS) == 0)
321
__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
322
323
init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
324
325
pmdp += pmd_index(next) - pmd_index(addr);
326
phys += next - addr;
327
} while (addr = next, addr != end);
328
329
pmd_clear_fixmap();
330
}
331
332
static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
333
phys_addr_t phys, pgprot_t prot,
334
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
335
int flags)
336
{
337
unsigned long next;
338
p4d_t p4d = READ_ONCE(*p4dp);
339
pud_t *pudp;
340
341
if (p4d_none(p4d)) {
342
p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
343
phys_addr_t pud_phys;
344
345
if (flags & NO_EXEC_MAPPINGS)
346
p4dval |= P4D_TABLE_PXN;
347
BUG_ON(!pgtable_alloc);
348
pud_phys = pgtable_alloc(TABLE_PUD);
349
pudp = pud_set_fixmap(pud_phys);
350
init_clear_pgtable(pudp);
351
pudp += pud_index(addr);
352
__p4d_populate(p4dp, pud_phys, p4dval);
353
} else {
354
BUG_ON(p4d_bad(p4d));
355
pudp = pud_set_fixmap_offset(p4dp, addr);
356
}
357
358
do {
359
pud_t old_pud = READ_ONCE(*pudp);
360
361
next = pud_addr_end(addr, end);
362
363
/*
364
* For 4K granule only, attempt to put down a 1GB block
365
*/
366
if (pud_sect_supported() &&
367
((addr | next | phys) & ~PUD_MASK) == 0 &&
368
(flags & NO_BLOCK_MAPPINGS) == 0) {
369
pud_set_huge(pudp, phys, prot);
370
371
/*
372
* After the PUD entry has been populated once, we
373
* only allow updates to the permission attributes.
374
*/
375
BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
376
READ_ONCE(pud_val(*pudp))));
377
} else {
378
alloc_init_cont_pmd(pudp, addr, next, phys, prot,
379
pgtable_alloc, flags);
380
381
BUG_ON(pud_val(old_pud) != 0 &&
382
pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
383
}
384
phys += next - addr;
385
} while (pudp++, addr = next, addr != end);
386
387
pud_clear_fixmap();
388
}
389
390
static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
391
phys_addr_t phys, pgprot_t prot,
392
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
393
int flags)
394
{
395
unsigned long next;
396
pgd_t pgd = READ_ONCE(*pgdp);
397
p4d_t *p4dp;
398
399
if (pgd_none(pgd)) {
400
pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
401
phys_addr_t p4d_phys;
402
403
if (flags & NO_EXEC_MAPPINGS)
404
pgdval |= PGD_TABLE_PXN;
405
BUG_ON(!pgtable_alloc);
406
p4d_phys = pgtable_alloc(TABLE_P4D);
407
p4dp = p4d_set_fixmap(p4d_phys);
408
init_clear_pgtable(p4dp);
409
p4dp += p4d_index(addr);
410
__pgd_populate(pgdp, p4d_phys, pgdval);
411
} else {
412
BUG_ON(pgd_bad(pgd));
413
p4dp = p4d_set_fixmap_offset(pgdp, addr);
414
}
415
416
do {
417
p4d_t old_p4d = READ_ONCE(*p4dp);
418
419
next = p4d_addr_end(addr, end);
420
421
alloc_init_pud(p4dp, addr, next, phys, prot,
422
pgtable_alloc, flags);
423
424
BUG_ON(p4d_val(old_p4d) != 0 &&
425
p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
426
427
phys += next - addr;
428
} while (p4dp++, addr = next, addr != end);
429
430
p4d_clear_fixmap();
431
}
432
433
static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
434
unsigned long virt, phys_addr_t size,
435
pgprot_t prot,
436
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
437
int flags)
438
{
439
unsigned long addr, end, next;
440
pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
441
442
/*
443
* If the virtual and physical address don't have the same offset
444
* within a page, we cannot map the region as the caller expects.
445
*/
446
if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
447
return;
448
449
phys &= PAGE_MASK;
450
addr = virt & PAGE_MASK;
451
end = PAGE_ALIGN(virt + size);
452
453
do {
454
next = pgd_addr_end(addr, end);
455
alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
456
flags);
457
phys += next - addr;
458
} while (pgdp++, addr = next, addr != end);
459
}
460
461
static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
462
unsigned long virt, phys_addr_t size,
463
pgprot_t prot,
464
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
465
int flags)
466
{
467
mutex_lock(&fixmap_lock);
468
__create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
469
pgtable_alloc, flags);
470
mutex_unlock(&fixmap_lock);
471
}
472
473
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
474
extern __alias(__create_pgd_mapping_locked)
475
void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
476
phys_addr_t size, pgprot_t prot,
477
phys_addr_t (*pgtable_alloc)(enum pgtable_type),
478
int flags);
479
#endif
480
481
#define INVALID_PHYS_ADDR (-1ULL)
482
483
static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
484
enum pgtable_type pgtable_type)
485
{
486
/* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
487
struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
488
phys_addr_t pa;
489
490
if (!ptdesc)
491
return INVALID_PHYS_ADDR;
492
493
pa = page_to_phys(ptdesc_page(ptdesc));
494
495
switch (pgtable_type) {
496
case TABLE_PTE:
497
BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
498
break;
499
case TABLE_PMD:
500
BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
501
break;
502
case TABLE_PUD:
503
pagetable_pud_ctor(ptdesc);
504
break;
505
case TABLE_P4D:
506
pagetable_p4d_ctor(ptdesc);
507
break;
508
}
509
510
return pa;
511
}
512
513
static phys_addr_t
514
try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type, gfp_t gfp)
515
{
516
return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
517
}
518
519
static phys_addr_t __maybe_unused
520
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
521
{
522
phys_addr_t pa;
523
524
pa = __pgd_pgtable_alloc(&init_mm, GFP_PGTABLE_KERNEL, pgtable_type);
525
BUG_ON(pa == INVALID_PHYS_ADDR);
526
return pa;
527
}
528
529
static phys_addr_t
530
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
531
{
532
phys_addr_t pa;
533
534
pa = __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
535
BUG_ON(pa == INVALID_PHYS_ADDR);
536
return pa;
537
}
538
539
static void split_contpte(pte_t *ptep)
540
{
541
int i;
542
543
ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
544
for (i = 0; i < CONT_PTES; i++, ptep++)
545
__set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
546
}
547
548
static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
549
{
550
pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
551
unsigned long pfn = pmd_pfn(pmd);
552
pgprot_t prot = pmd_pgprot(pmd);
553
phys_addr_t pte_phys;
554
pte_t *ptep;
555
int i;
556
557
pte_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PTE, gfp);
558
if (pte_phys == INVALID_PHYS_ADDR)
559
return -ENOMEM;
560
ptep = (pte_t *)phys_to_virt(pte_phys);
561
562
if (pgprot_val(prot) & PMD_SECT_PXN)
563
tableprot |= PMD_TABLE_PXN;
564
565
prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
566
prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
567
if (to_cont)
568
prot = __pgprot(pgprot_val(prot) | PTE_CONT);
569
570
for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
571
__set_pte(ptep, pfn_pte(pfn, prot));
572
573
/*
574
* Ensure the pte entries are visible to the table walker by the time
575
* the pmd entry that points to the ptes is visible.
576
*/
577
dsb(ishst);
578
__pmd_populate(pmdp, pte_phys, tableprot);
579
580
return 0;
581
}
582
583
static void split_contpmd(pmd_t *pmdp)
584
{
585
int i;
586
587
pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
588
for (i = 0; i < CONT_PMDS; i++, pmdp++)
589
set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
590
}
591
592
static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
593
{
594
pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
595
unsigned int step = PMD_SIZE >> PAGE_SHIFT;
596
unsigned long pfn = pud_pfn(pud);
597
pgprot_t prot = pud_pgprot(pud);
598
phys_addr_t pmd_phys;
599
pmd_t *pmdp;
600
int i;
601
602
pmd_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PMD, gfp);
603
if (pmd_phys == INVALID_PHYS_ADDR)
604
return -ENOMEM;
605
pmdp = (pmd_t *)phys_to_virt(pmd_phys);
606
607
if (pgprot_val(prot) & PMD_SECT_PXN)
608
tableprot |= PUD_TABLE_PXN;
609
610
prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
611
prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
612
if (to_cont)
613
prot = __pgprot(pgprot_val(prot) | PTE_CONT);
614
615
for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
616
set_pmd(pmdp, pfn_pmd(pfn, prot));
617
618
/*
619
* Ensure the pmd entries are visible to the table walker by the time
620
* the pud entry that points to the pmds is visible.
621
*/
622
dsb(ishst);
623
__pud_populate(pudp, pmd_phys, tableprot);
624
625
return 0;
626
}
627
628
static int split_kernel_leaf_mapping_locked(unsigned long addr)
629
{
630
pgd_t *pgdp, pgd;
631
p4d_t *p4dp, p4d;
632
pud_t *pudp, pud;
633
pmd_t *pmdp, pmd;
634
pte_t *ptep, pte;
635
int ret = 0;
636
637
/*
638
* PGD: If addr is PGD aligned then addr already describes a leaf
639
* boundary. If not present then there is nothing to split.
640
*/
641
if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
642
goto out;
643
pgdp = pgd_offset_k(addr);
644
pgd = pgdp_get(pgdp);
645
if (!pgd_present(pgd))
646
goto out;
647
648
/*
649
* P4D: If addr is P4D aligned then addr already describes a leaf
650
* boundary. If not present then there is nothing to split.
651
*/
652
if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
653
goto out;
654
p4dp = p4d_offset(pgdp, addr);
655
p4d = p4dp_get(p4dp);
656
if (!p4d_present(p4d))
657
goto out;
658
659
/*
660
* PUD: If addr is PUD aligned then addr already describes a leaf
661
* boundary. If not present then there is nothing to split. Otherwise,
662
* if we have a pud leaf, split to contpmd.
663
*/
664
if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
665
goto out;
666
pudp = pud_offset(p4dp, addr);
667
pud = pudp_get(pudp);
668
if (!pud_present(pud))
669
goto out;
670
if (pud_leaf(pud)) {
671
ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
672
if (ret)
673
goto out;
674
}
675
676
/*
677
* CONTPMD: If addr is CONTPMD aligned then addr already describes a
678
* leaf boundary. If not present then there is nothing to split.
679
* Otherwise, if we have a contpmd leaf, split to pmd.
680
*/
681
if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
682
goto out;
683
pmdp = pmd_offset(pudp, addr);
684
pmd = pmdp_get(pmdp);
685
if (!pmd_present(pmd))
686
goto out;
687
if (pmd_leaf(pmd)) {
688
if (pmd_cont(pmd))
689
split_contpmd(pmdp);
690
/*
691
* PMD: If addr is PMD aligned then addr already describes a
692
* leaf boundary. Otherwise, split to contpte.
693
*/
694
if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
695
goto out;
696
ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
697
if (ret)
698
goto out;
699
}
700
701
/*
702
* CONTPTE: If addr is CONTPTE aligned then addr already describes a
703
* leaf boundary. If not present then there is nothing to split.
704
* Otherwise, if we have a contpte leaf, split to pte.
705
*/
706
if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
707
goto out;
708
ptep = pte_offset_kernel(pmdp, addr);
709
pte = __ptep_get(ptep);
710
if (!pte_present(pte))
711
goto out;
712
if (pte_cont(pte))
713
split_contpte(ptep);
714
715
out:
716
return ret;
717
}
718
719
static DEFINE_MUTEX(pgtable_split_lock);
720
721
int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
722
{
723
int ret;
724
725
/*
726
* !BBML2_NOABORT systems should not be trying to change permissions on
727
* anything that is not pte-mapped in the first place. Just return early
728
* and let the permission change code raise a warning if not already
729
* pte-mapped.
730
*/
731
if (!system_supports_bbml2_noabort())
732
return 0;
733
734
/*
735
* Ensure start and end are at least page-aligned since this is the
736
* finest granularity we can split to.
737
*/
738
if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
739
return -EINVAL;
740
741
mutex_lock(&pgtable_split_lock);
742
arch_enter_lazy_mmu_mode();
743
744
/*
745
* The split_kernel_leaf_mapping_locked() may sleep, it is not a
746
* problem for ARM64 since ARM64's lazy MMU implementation allows
747
* sleeping.
748
*
749
* Optimize for the common case of splitting out a single page from a
750
* larger mapping. Here we can just split on the "least aligned" of
751
* start and end and this will guarantee that there must also be a split
752
* on the more aligned address since the both addresses must be in the
753
* same contpte block and it must have been split to ptes.
754
*/
755
if (end - start == PAGE_SIZE) {
756
start = __ffs(start) < __ffs(end) ? start : end;
757
ret = split_kernel_leaf_mapping_locked(start);
758
} else {
759
ret = split_kernel_leaf_mapping_locked(start);
760
if (!ret)
761
ret = split_kernel_leaf_mapping_locked(end);
762
}
763
764
arch_leave_lazy_mmu_mode();
765
mutex_unlock(&pgtable_split_lock);
766
return ret;
767
}
768
769
static int __init split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
770
unsigned long next,
771
struct mm_walk *walk)
772
{
773
pud_t pud = pudp_get(pudp);
774
int ret = 0;
775
776
if (pud_leaf(pud))
777
ret = split_pud(pudp, pud, GFP_ATOMIC, false);
778
779
return ret;
780
}
781
782
static int __init split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
783
unsigned long next,
784
struct mm_walk *walk)
785
{
786
pmd_t pmd = pmdp_get(pmdp);
787
int ret = 0;
788
789
if (pmd_leaf(pmd)) {
790
if (pmd_cont(pmd))
791
split_contpmd(pmdp);
792
ret = split_pmd(pmdp, pmd, GFP_ATOMIC, false);
793
794
/*
795
* We have split the pmd directly to ptes so there is no need to
796
* visit each pte to check if they are contpte.
797
*/
798
walk->action = ACTION_CONTINUE;
799
}
800
801
return ret;
802
}
803
804
static int __init split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
805
unsigned long next,
806
struct mm_walk *walk)
807
{
808
pte_t pte = __ptep_get(ptep);
809
810
if (pte_cont(pte))
811
split_contpte(ptep);
812
813
return 0;
814
}
815
816
static const struct mm_walk_ops split_to_ptes_ops __initconst = {
817
.pud_entry = split_to_ptes_pud_entry,
818
.pmd_entry = split_to_ptes_pmd_entry,
819
.pte_entry = split_to_ptes_pte_entry,
820
};
821
822
static bool linear_map_requires_bbml2 __initdata;
823
824
u32 idmap_kpti_bbml2_flag;
825
826
void __init init_idmap_kpti_bbml2_flag(void)
827
{
828
WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
829
/* Must be visible to other CPUs before stop_machine() is called. */
830
smp_mb();
831
}
832
833
static int __init linear_map_split_to_ptes(void *__unused)
834
{
835
/*
836
* Repainting the linear map must be done by CPU0 (the boot CPU) because
837
* that's the only CPU that we know supports BBML2. The other CPUs will
838
* be held in a waiting area with the idmap active.
839
*/
840
if (!smp_processor_id()) {
841
unsigned long lstart = _PAGE_OFFSET(vabits_actual);
842
unsigned long lend = PAGE_END;
843
unsigned long kstart = (unsigned long)lm_alias(_stext);
844
unsigned long kend = (unsigned long)lm_alias(__init_begin);
845
int ret;
846
847
/*
848
* Wait for all secondary CPUs to be put into the waiting area.
849
*/
850
smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
851
852
/*
853
* Walk all of the linear map [lstart, lend), except the kernel
854
* linear map alias [kstart, kend), and split all mappings to
855
* PTE. The kernel alias remains static throughout runtime so
856
* can continue to be safely mapped with large mappings.
857
*/
858
ret = walk_kernel_page_table_range_lockless(lstart, kstart,
859
&split_to_ptes_ops, NULL, NULL);
860
if (!ret)
861
ret = walk_kernel_page_table_range_lockless(kend, lend,
862
&split_to_ptes_ops, NULL, NULL);
863
if (ret)
864
panic("Failed to split linear map\n");
865
flush_tlb_kernel_range(lstart, lend);
866
867
/*
868
* Relies on dsb in flush_tlb_kernel_range() to avoid reordering
869
* before any page table split operations.
870
*/
871
WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
872
} else {
873
typedef void (wait_split_fn)(void);
874
extern wait_split_fn wait_linear_map_split_to_ptes;
875
wait_split_fn *wait_fn;
876
877
wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
878
879
/*
880
* At least one secondary CPU doesn't support BBML2 so cannot
881
* tolerate the size of the live mappings changing. So have the
882
* secondary CPUs wait for the boot CPU to make the changes
883
* with the idmap active and init_mm inactive.
884
*/
885
cpu_install_idmap();
886
wait_fn();
887
cpu_uninstall_idmap();
888
}
889
890
return 0;
891
}
892
893
void __init linear_map_maybe_split_to_ptes(void)
894
{
895
if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
896
init_idmap_kpti_bbml2_flag();
897
stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
898
}
899
}
900
901
/*
902
* This function can only be used to modify existing table entries,
903
* without allocating new levels of table. Note that this permits the
904
* creation of new section or page entries.
905
*/
906
void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
907
phys_addr_t size, pgprot_t prot)
908
{
909
if (virt < PAGE_OFFSET) {
910
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
911
&phys, virt);
912
return;
913
}
914
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
915
NO_CONT_MAPPINGS);
916
}
917
918
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
919
unsigned long virt, phys_addr_t size,
920
pgprot_t prot, bool page_mappings_only)
921
{
922
int flags = 0;
923
924
BUG_ON(mm == &init_mm);
925
926
if (page_mappings_only)
927
flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
928
929
__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
930
pgd_pgtable_alloc_special_mm, flags);
931
}
932
933
static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
934
phys_addr_t size, pgprot_t prot)
935
{
936
if (virt < PAGE_OFFSET) {
937
pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
938
&phys, virt);
939
return;
940
}
941
942
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
943
NO_CONT_MAPPINGS);
944
945
/* flush the TLBs after updating live kernel mappings */
946
flush_tlb_kernel_range(virt, virt + size);
947
}
948
949
static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
950
phys_addr_t end, pgprot_t prot, int flags)
951
{
952
__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
953
prot, early_pgtable_alloc, flags);
954
}
955
956
void __init mark_linear_text_alias_ro(void)
957
{
958
/*
959
* Remove the write permissions from the linear alias of .text/.rodata
960
*/
961
update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
962
(unsigned long)__init_begin - (unsigned long)_text,
963
PAGE_KERNEL_RO);
964
}
965
966
#ifdef CONFIG_KFENCE
967
968
bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
969
970
/* early_param() will be parsed before map_mem() below. */
971
static int __init parse_kfence_early_init(char *arg)
972
{
973
int val;
974
975
if (get_option(&arg, &val))
976
kfence_early_init = !!val;
977
return 0;
978
}
979
early_param("kfence.sample_interval", parse_kfence_early_init);
980
981
static phys_addr_t __init arm64_kfence_alloc_pool(void)
982
{
983
phys_addr_t kfence_pool;
984
985
if (!kfence_early_init)
986
return 0;
987
988
kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
989
if (!kfence_pool) {
990
pr_err("failed to allocate kfence pool\n");
991
kfence_early_init = false;
992
return 0;
993
}
994
995
/* Temporarily mark as NOMAP. */
996
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
997
998
return kfence_pool;
999
}
1000
1001
static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
1002
{
1003
if (!kfence_pool)
1004
return;
1005
1006
/* KFENCE pool needs page-level mapping. */
1007
__map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1008
pgprot_tagged(PAGE_KERNEL),
1009
NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1010
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1011
__kfence_pool = phys_to_virt(kfence_pool);
1012
}
1013
#else /* CONFIG_KFENCE */
1014
1015
static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
1016
static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1017
1018
#endif /* CONFIG_KFENCE */
1019
1020
static inline bool force_pte_mapping(void)
1021
{
1022
bool bbml2 = system_capabilities_finalized() ?
1023
system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
1024
1025
return (!bbml2 && (rodata_full || arm64_kfence_can_set_direct_map() ||
1026
is_realm_world())) ||
1027
debug_pagealloc_enabled();
1028
}
1029
1030
static void __init map_mem(pgd_t *pgdp)
1031
{
1032
static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1033
phys_addr_t kernel_start = __pa_symbol(_text);
1034
phys_addr_t kernel_end = __pa_symbol(__init_begin);
1035
phys_addr_t start, end;
1036
phys_addr_t early_kfence_pool;
1037
int flags = NO_EXEC_MAPPINGS;
1038
u64 i;
1039
1040
/*
1041
* Setting hierarchical PXNTable attributes on table entries covering
1042
* the linear region is only possible if it is guaranteed that no table
1043
* entries at any level are being shared between the linear region and
1044
* the vmalloc region. Check whether this is true for the PGD level, in
1045
* which case it is guaranteed to be true for all other levels as well.
1046
* (Unless we are running with support for LPA2, in which case the
1047
* entire reduced VA space is covered by a single pgd_t which will have
1048
* been populated without the PXNTable attribute by the time we get here.)
1049
*/
1050
BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1051
pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1052
1053
early_kfence_pool = arm64_kfence_alloc_pool();
1054
1055
linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1056
1057
if (force_pte_mapping())
1058
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1059
1060
/*
1061
* Take care not to create a writable alias for the
1062
* read-only text and rodata sections of the kernel image.
1063
* So temporarily mark them as NOMAP to skip mappings in
1064
* the following for-loop
1065
*/
1066
memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1067
1068
/* map all the memory banks */
1069
for_each_mem_range(i, &start, &end) {
1070
if (start >= end)
1071
break;
1072
/*
1073
* The linear map must allow allocation tags reading/writing
1074
* if MTE is present. Otherwise, it has the same attributes as
1075
* PAGE_KERNEL.
1076
*/
1077
__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1078
flags);
1079
}
1080
1081
/*
1082
* Map the linear alias of the [_text, __init_begin) interval
1083
* as non-executable now, and remove the write permission in
1084
* mark_linear_text_alias_ro() below (which will be called after
1085
* alternative patching has completed). This makes the contents
1086
* of the region accessible to subsystems such as hibernate,
1087
* but protects it from inadvertent modification or execution.
1088
* Note that contiguous mappings cannot be remapped in this way,
1089
* so we should avoid them here.
1090
*/
1091
__map_memblock(pgdp, kernel_start, kernel_end,
1092
PAGE_KERNEL, NO_CONT_MAPPINGS);
1093
memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1094
arm64_kfence_map_pool(early_kfence_pool, pgdp);
1095
}
1096
1097
void mark_rodata_ro(void)
1098
{
1099
unsigned long section_size;
1100
1101
/*
1102
* mark .rodata as read only. Use __init_begin rather than __end_rodata
1103
* to cover NOTES and EXCEPTION_TABLE.
1104
*/
1105
section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1106
WRITE_ONCE(rodata_is_rw, false);
1107
update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1108
section_size, PAGE_KERNEL_RO);
1109
/* mark the range between _text and _stext as read only. */
1110
update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1111
(unsigned long)_stext - (unsigned long)_text,
1112
PAGE_KERNEL_RO);
1113
}
1114
1115
static void __init declare_vma(struct vm_struct *vma,
1116
void *va_start, void *va_end,
1117
unsigned long vm_flags)
1118
{
1119
phys_addr_t pa_start = __pa_symbol(va_start);
1120
unsigned long size = va_end - va_start;
1121
1122
BUG_ON(!PAGE_ALIGNED(pa_start));
1123
BUG_ON(!PAGE_ALIGNED(size));
1124
1125
if (!(vm_flags & VM_NO_GUARD))
1126
size += PAGE_SIZE;
1127
1128
vma->addr = va_start;
1129
vma->phys_addr = pa_start;
1130
vma->size = size;
1131
vma->flags = VM_MAP | vm_flags;
1132
vma->caller = __builtin_return_address(0);
1133
1134
vm_area_add_early(vma);
1135
}
1136
1137
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1138
static pgprot_t kernel_exec_prot(void)
1139
{
1140
return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1141
}
1142
1143
static int __init map_entry_trampoline(void)
1144
{
1145
int i;
1146
1147
if (!arm64_kernel_unmapped_at_el0())
1148
return 0;
1149
1150
pgprot_t prot = kernel_exec_prot();
1151
phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1152
1153
/* The trampoline is always mapped and can therefore be global */
1154
pgprot_val(prot) &= ~PTE_NG;
1155
1156
/* Map only the text into the trampoline page table */
1157
memset(tramp_pg_dir, 0, PGD_SIZE);
1158
__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1159
entry_tramp_text_size(), prot,
1160
pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1161
1162
/* Map both the text and data into the kernel page table */
1163
for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1164
__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1165
pa_start + i * PAGE_SIZE, prot);
1166
1167
if (IS_ENABLED(CONFIG_RELOCATABLE))
1168
__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1169
pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1170
1171
return 0;
1172
}
1173
core_initcall(map_entry_trampoline);
1174
#endif
1175
1176
/*
1177
* Declare the VMA areas for the kernel
1178
*/
1179
static void __init declare_kernel_vmas(void)
1180
{
1181
static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1182
1183
declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1184
declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1185
declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1186
declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1187
declare_vma(&vmlinux_seg[4], _data, _end, 0);
1188
}
1189
1190
void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1191
pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1192
u64 va_offset);
1193
1194
static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1195
kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1196
1197
static void __init create_idmap(void)
1198
{
1199
phys_addr_t start = __pa_symbol(__idmap_text_start);
1200
phys_addr_t end = __pa_symbol(__idmap_text_end);
1201
phys_addr_t ptep = __pa_symbol(idmap_ptes);
1202
1203
__pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1204
IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1205
__phys_to_virt(ptep) - ptep);
1206
1207
if (linear_map_requires_bbml2 ||
1208
(IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1209
phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1210
1211
/*
1212
* The KPTI G-to-nG conversion code needs a read-write mapping
1213
* of its synchronization flag in the ID map. This is also used
1214
* when splitting the linear map to ptes if a secondary CPU
1215
* doesn't support bbml2.
1216
*/
1217
ptep = __pa_symbol(kpti_bbml2_ptes);
1218
__pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1219
IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1220
__phys_to_virt(ptep) - ptep);
1221
}
1222
}
1223
1224
void __init paging_init(void)
1225
{
1226
map_mem(swapper_pg_dir);
1227
1228
memblock_allow_resize();
1229
1230
create_idmap();
1231
declare_kernel_vmas();
1232
}
1233
1234
#ifdef CONFIG_MEMORY_HOTPLUG
1235
static void free_hotplug_page_range(struct page *page, size_t size,
1236
struct vmem_altmap *altmap)
1237
{
1238
if (altmap) {
1239
vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1240
} else {
1241
WARN_ON(PageReserved(page));
1242
__free_pages(page, get_order(size));
1243
}
1244
}
1245
1246
static void free_hotplug_pgtable_page(struct page *page)
1247
{
1248
free_hotplug_page_range(page, PAGE_SIZE, NULL);
1249
}
1250
1251
static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1252
unsigned long floor, unsigned long ceiling,
1253
unsigned long mask)
1254
{
1255
start &= mask;
1256
if (start < floor)
1257
return false;
1258
1259
if (ceiling) {
1260
ceiling &= mask;
1261
if (!ceiling)
1262
return false;
1263
}
1264
1265
if (end - 1 > ceiling - 1)
1266
return false;
1267
return true;
1268
}
1269
1270
static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1271
unsigned long end, bool free_mapped,
1272
struct vmem_altmap *altmap)
1273
{
1274
pte_t *ptep, pte;
1275
1276
do {
1277
ptep = pte_offset_kernel(pmdp, addr);
1278
pte = __ptep_get(ptep);
1279
if (pte_none(pte))
1280
continue;
1281
1282
WARN_ON(!pte_present(pte));
1283
__pte_clear(&init_mm, addr, ptep);
1284
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1285
if (free_mapped)
1286
free_hotplug_page_range(pte_page(pte),
1287
PAGE_SIZE, altmap);
1288
} while (addr += PAGE_SIZE, addr < end);
1289
}
1290
1291
static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1292
unsigned long end, bool free_mapped,
1293
struct vmem_altmap *altmap)
1294
{
1295
unsigned long next;
1296
pmd_t *pmdp, pmd;
1297
1298
do {
1299
next = pmd_addr_end(addr, end);
1300
pmdp = pmd_offset(pudp, addr);
1301
pmd = READ_ONCE(*pmdp);
1302
if (pmd_none(pmd))
1303
continue;
1304
1305
WARN_ON(!pmd_present(pmd));
1306
if (pmd_sect(pmd)) {
1307
pmd_clear(pmdp);
1308
1309
/*
1310
* One TLBI should be sufficient here as the PMD_SIZE
1311
* range is mapped with a single block entry.
1312
*/
1313
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1314
if (free_mapped)
1315
free_hotplug_page_range(pmd_page(pmd),
1316
PMD_SIZE, altmap);
1317
continue;
1318
}
1319
WARN_ON(!pmd_table(pmd));
1320
unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1321
} while (addr = next, addr < end);
1322
}
1323
1324
static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1325
unsigned long end, bool free_mapped,
1326
struct vmem_altmap *altmap)
1327
{
1328
unsigned long next;
1329
pud_t *pudp, pud;
1330
1331
do {
1332
next = pud_addr_end(addr, end);
1333
pudp = pud_offset(p4dp, addr);
1334
pud = READ_ONCE(*pudp);
1335
if (pud_none(pud))
1336
continue;
1337
1338
WARN_ON(!pud_present(pud));
1339
if (pud_sect(pud)) {
1340
pud_clear(pudp);
1341
1342
/*
1343
* One TLBI should be sufficient here as the PUD_SIZE
1344
* range is mapped with a single block entry.
1345
*/
1346
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1347
if (free_mapped)
1348
free_hotplug_page_range(pud_page(pud),
1349
PUD_SIZE, altmap);
1350
continue;
1351
}
1352
WARN_ON(!pud_table(pud));
1353
unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1354
} while (addr = next, addr < end);
1355
}
1356
1357
static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1358
unsigned long end, bool free_mapped,
1359
struct vmem_altmap *altmap)
1360
{
1361
unsigned long next;
1362
p4d_t *p4dp, p4d;
1363
1364
do {
1365
next = p4d_addr_end(addr, end);
1366
p4dp = p4d_offset(pgdp, addr);
1367
p4d = READ_ONCE(*p4dp);
1368
if (p4d_none(p4d))
1369
continue;
1370
1371
WARN_ON(!p4d_present(p4d));
1372
unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1373
} while (addr = next, addr < end);
1374
}
1375
1376
static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1377
bool free_mapped, struct vmem_altmap *altmap)
1378
{
1379
unsigned long next;
1380
pgd_t *pgdp, pgd;
1381
1382
/*
1383
* altmap can only be used as vmemmap mapping backing memory.
1384
* In case the backing memory itself is not being freed, then
1385
* altmap is irrelevant. Warn about this inconsistency when
1386
* encountered.
1387
*/
1388
WARN_ON(!free_mapped && altmap);
1389
1390
do {
1391
next = pgd_addr_end(addr, end);
1392
pgdp = pgd_offset_k(addr);
1393
pgd = READ_ONCE(*pgdp);
1394
if (pgd_none(pgd))
1395
continue;
1396
1397
WARN_ON(!pgd_present(pgd));
1398
unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1399
} while (addr = next, addr < end);
1400
}
1401
1402
static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1403
unsigned long end, unsigned long floor,
1404
unsigned long ceiling)
1405
{
1406
pte_t *ptep, pte;
1407
unsigned long i, start = addr;
1408
1409
do {
1410
ptep = pte_offset_kernel(pmdp, addr);
1411
pte = __ptep_get(ptep);
1412
1413
/*
1414
* This is just a sanity check here which verifies that
1415
* pte clearing has been done by earlier unmap loops.
1416
*/
1417
WARN_ON(!pte_none(pte));
1418
} while (addr += PAGE_SIZE, addr < end);
1419
1420
if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1421
return;
1422
1423
/*
1424
* Check whether we can free the pte page if the rest of the
1425
* entries are empty. Overlap with other regions have been
1426
* handled by the floor/ceiling check.
1427
*/
1428
ptep = pte_offset_kernel(pmdp, 0UL);
1429
for (i = 0; i < PTRS_PER_PTE; i++) {
1430
if (!pte_none(__ptep_get(&ptep[i])))
1431
return;
1432
}
1433
1434
pmd_clear(pmdp);
1435
__flush_tlb_kernel_pgtable(start);
1436
free_hotplug_pgtable_page(virt_to_page(ptep));
1437
}
1438
1439
static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1440
unsigned long end, unsigned long floor,
1441
unsigned long ceiling)
1442
{
1443
pmd_t *pmdp, pmd;
1444
unsigned long i, next, start = addr;
1445
1446
do {
1447
next = pmd_addr_end(addr, end);
1448
pmdp = pmd_offset(pudp, addr);
1449
pmd = READ_ONCE(*pmdp);
1450
if (pmd_none(pmd))
1451
continue;
1452
1453
WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1454
free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1455
} while (addr = next, addr < end);
1456
1457
if (CONFIG_PGTABLE_LEVELS <= 2)
1458
return;
1459
1460
if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1461
return;
1462
1463
/*
1464
* Check whether we can free the pmd page if the rest of the
1465
* entries are empty. Overlap with other regions have been
1466
* handled by the floor/ceiling check.
1467
*/
1468
pmdp = pmd_offset(pudp, 0UL);
1469
for (i = 0; i < PTRS_PER_PMD; i++) {
1470
if (!pmd_none(READ_ONCE(pmdp[i])))
1471
return;
1472
}
1473
1474
pud_clear(pudp);
1475
__flush_tlb_kernel_pgtable(start);
1476
free_hotplug_pgtable_page(virt_to_page(pmdp));
1477
}
1478
1479
static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1480
unsigned long end, unsigned long floor,
1481
unsigned long ceiling)
1482
{
1483
pud_t *pudp, pud;
1484
unsigned long i, next, start = addr;
1485
1486
do {
1487
next = pud_addr_end(addr, end);
1488
pudp = pud_offset(p4dp, addr);
1489
pud = READ_ONCE(*pudp);
1490
if (pud_none(pud))
1491
continue;
1492
1493
WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1494
free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1495
} while (addr = next, addr < end);
1496
1497
if (!pgtable_l4_enabled())
1498
return;
1499
1500
if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1501
return;
1502
1503
/*
1504
* Check whether we can free the pud page if the rest of the
1505
* entries are empty. Overlap with other regions have been
1506
* handled by the floor/ceiling check.
1507
*/
1508
pudp = pud_offset(p4dp, 0UL);
1509
for (i = 0; i < PTRS_PER_PUD; i++) {
1510
if (!pud_none(READ_ONCE(pudp[i])))
1511
return;
1512
}
1513
1514
p4d_clear(p4dp);
1515
__flush_tlb_kernel_pgtable(start);
1516
free_hotplug_pgtable_page(virt_to_page(pudp));
1517
}
1518
1519
static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1520
unsigned long end, unsigned long floor,
1521
unsigned long ceiling)
1522
{
1523
p4d_t *p4dp, p4d;
1524
unsigned long i, next, start = addr;
1525
1526
do {
1527
next = p4d_addr_end(addr, end);
1528
p4dp = p4d_offset(pgdp, addr);
1529
p4d = READ_ONCE(*p4dp);
1530
if (p4d_none(p4d))
1531
continue;
1532
1533
WARN_ON(!p4d_present(p4d));
1534
free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1535
} while (addr = next, addr < end);
1536
1537
if (!pgtable_l5_enabled())
1538
return;
1539
1540
if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1541
return;
1542
1543
/*
1544
* Check whether we can free the p4d page if the rest of the
1545
* entries are empty. Overlap with other regions have been
1546
* handled by the floor/ceiling check.
1547
*/
1548
p4dp = p4d_offset(pgdp, 0UL);
1549
for (i = 0; i < PTRS_PER_P4D; i++) {
1550
if (!p4d_none(READ_ONCE(p4dp[i])))
1551
return;
1552
}
1553
1554
pgd_clear(pgdp);
1555
__flush_tlb_kernel_pgtable(start);
1556
free_hotplug_pgtable_page(virt_to_page(p4dp));
1557
}
1558
1559
static void free_empty_tables(unsigned long addr, unsigned long end,
1560
unsigned long floor, unsigned long ceiling)
1561
{
1562
unsigned long next;
1563
pgd_t *pgdp, pgd;
1564
1565
do {
1566
next = pgd_addr_end(addr, end);
1567
pgdp = pgd_offset_k(addr);
1568
pgd = READ_ONCE(*pgdp);
1569
if (pgd_none(pgd))
1570
continue;
1571
1572
WARN_ON(!pgd_present(pgd));
1573
free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1574
} while (addr = next, addr < end);
1575
}
1576
#endif
1577
1578
void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1579
unsigned long addr, unsigned long next)
1580
{
1581
pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1582
}
1583
1584
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1585
unsigned long addr, unsigned long next)
1586
{
1587
vmemmap_verify((pte_t *)pmdp, node, addr, next);
1588
1589
return pmd_sect(READ_ONCE(*pmdp));
1590
}
1591
1592
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1593
struct vmem_altmap *altmap)
1594
{
1595
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1596
/* [start, end] should be within one section */
1597
WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1598
1599
if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1600
(end - start < PAGES_PER_SECTION * sizeof(struct page)))
1601
return vmemmap_populate_basepages(start, end, node, altmap);
1602
else
1603
return vmemmap_populate_hugepages(start, end, node, altmap);
1604
}
1605
1606
#ifdef CONFIG_MEMORY_HOTPLUG
1607
void vmemmap_free(unsigned long start, unsigned long end,
1608
struct vmem_altmap *altmap)
1609
{
1610
WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1611
1612
unmap_hotplug_range(start, end, true, altmap);
1613
free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1614
}
1615
#endif /* CONFIG_MEMORY_HOTPLUG */
1616
1617
int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1618
{
1619
pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1620
1621
/* Only allow permission changes for now */
1622
if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1623
pud_val(new_pud)))
1624
return 0;
1625
1626
VM_BUG_ON(phys & ~PUD_MASK);
1627
set_pud(pudp, new_pud);
1628
return 1;
1629
}
1630
1631
int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1632
{
1633
pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1634
1635
/* Only allow permission changes for now */
1636
if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1637
pmd_val(new_pmd)))
1638
return 0;
1639
1640
VM_BUG_ON(phys & ~PMD_MASK);
1641
set_pmd(pmdp, new_pmd);
1642
return 1;
1643
}
1644
1645
#ifndef __PAGETABLE_P4D_FOLDED
1646
void p4d_clear_huge(p4d_t *p4dp)
1647
{
1648
}
1649
#endif
1650
1651
int pud_clear_huge(pud_t *pudp)
1652
{
1653
if (!pud_sect(READ_ONCE(*pudp)))
1654
return 0;
1655
pud_clear(pudp);
1656
return 1;
1657
}
1658
1659
int pmd_clear_huge(pmd_t *pmdp)
1660
{
1661
if (!pmd_sect(READ_ONCE(*pmdp)))
1662
return 0;
1663
pmd_clear(pmdp);
1664
return 1;
1665
}
1666
1667
static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1668
bool acquire_mmap_lock)
1669
{
1670
pte_t *table;
1671
pmd_t pmd;
1672
1673
pmd = READ_ONCE(*pmdp);
1674
1675
if (!pmd_table(pmd)) {
1676
VM_WARN_ON(1);
1677
return 1;
1678
}
1679
1680
/* See comment in pud_free_pmd_page for static key logic */
1681
table = pte_offset_kernel(pmdp, addr);
1682
pmd_clear(pmdp);
1683
__flush_tlb_kernel_pgtable(addr);
1684
if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1685
mmap_read_lock(&init_mm);
1686
mmap_read_unlock(&init_mm);
1687
}
1688
1689
pte_free_kernel(NULL, table);
1690
return 1;
1691
}
1692
1693
int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1694
{
1695
/* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1696
return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1697
}
1698
1699
int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1700
{
1701
pmd_t *table;
1702
pmd_t *pmdp;
1703
pud_t pud;
1704
unsigned long next, end;
1705
1706
pud = READ_ONCE(*pudp);
1707
1708
if (!pud_table(pud)) {
1709
VM_WARN_ON(1);
1710
return 1;
1711
}
1712
1713
table = pmd_offset(pudp, addr);
1714
1715
/*
1716
* Our objective is to prevent ptdump from reading a PMD table which has
1717
* been freed. In this race, if pud_free_pmd_page observes the key on
1718
* (which got flipped by ptdump) then the mmap lock sequence here will,
1719
* as a result of the mmap write lock/unlock sequence in ptdump, give
1720
* us the correct synchronization. If not, this means that ptdump has
1721
* yet not started walking the pagetables - the sequence of barriers
1722
* issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1723
* observe an empty PUD.
1724
*/
1725
pud_clear(pudp);
1726
__flush_tlb_kernel_pgtable(addr);
1727
if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1728
mmap_read_lock(&init_mm);
1729
mmap_read_unlock(&init_mm);
1730
}
1731
1732
pmdp = table;
1733
next = addr;
1734
end = addr + PUD_SIZE;
1735
do {
1736
if (pmd_present(pmdp_get(pmdp)))
1737
/*
1738
* PMD has been isolated, so ptdump won't see it. No
1739
* need to acquire init_mm.mmap_lock.
1740
*/
1741
__pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1742
} while (pmdp++, next += PMD_SIZE, next != end);
1743
1744
pmd_free(NULL, table);
1745
return 1;
1746
}
1747
1748
#ifdef CONFIG_MEMORY_HOTPLUG
1749
static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1750
{
1751
unsigned long end = start + size;
1752
1753
WARN_ON(pgdir != init_mm.pgd);
1754
WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1755
1756
unmap_hotplug_range(start, end, false, NULL);
1757
free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1758
}
1759
1760
struct range arch_get_mappable_range(void)
1761
{
1762
struct range mhp_range;
1763
phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1764
phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1765
1766
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1767
/*
1768
* Check for a wrap, it is possible because of randomized linear
1769
* mapping the start physical address is actually bigger than
1770
* the end physical address. In this case set start to zero
1771
* because [0, end_linear_pa] range must still be able to cover
1772
* all addressable physical addresses.
1773
*/
1774
if (start_linear_pa > end_linear_pa)
1775
start_linear_pa = 0;
1776
}
1777
1778
WARN_ON(start_linear_pa > end_linear_pa);
1779
1780
/*
1781
* Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1782
* accommodating both its ends but excluding PAGE_END. Max physical
1783
* range which can be mapped inside this linear mapping range, must
1784
* also be derived from its end points.
1785
*/
1786
mhp_range.start = start_linear_pa;
1787
mhp_range.end = end_linear_pa;
1788
1789
return mhp_range;
1790
}
1791
1792
int arch_add_memory(int nid, u64 start, u64 size,
1793
struct mhp_params *params)
1794
{
1795
int ret, flags = NO_EXEC_MAPPINGS;
1796
1797
VM_BUG_ON(!mhp_range_allowed(start, size, true));
1798
1799
if (force_pte_mapping())
1800
flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1801
1802
__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1803
size, params->pgprot, pgd_pgtable_alloc_init_mm,
1804
flags);
1805
1806
memblock_clear_nomap(start, size);
1807
1808
ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1809
params);
1810
if (ret)
1811
__remove_pgd_mapping(swapper_pg_dir,
1812
__phys_to_virt(start), size);
1813
else {
1814
/* Address of hotplugged memory can be smaller */
1815
max_pfn = max(max_pfn, PFN_UP(start + size));
1816
max_low_pfn = max_pfn;
1817
}
1818
1819
return ret;
1820
}
1821
1822
void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1823
{
1824
unsigned long start_pfn = start >> PAGE_SHIFT;
1825
unsigned long nr_pages = size >> PAGE_SHIFT;
1826
1827
__remove_pages(start_pfn, nr_pages, altmap);
1828
__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1829
}
1830
1831
/*
1832
* This memory hotplug notifier helps prevent boot memory from being
1833
* inadvertently removed as it blocks pfn range offlining process in
1834
* __offline_pages(). Hence this prevents both offlining as well as
1835
* removal process for boot memory which is initially always online.
1836
* In future if and when boot memory could be removed, this notifier
1837
* should be dropped and free_hotplug_page_range() should handle any
1838
* reserved pages allocated during boot.
1839
*/
1840
static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1841
unsigned long action, void *data)
1842
{
1843
struct mem_section *ms;
1844
struct memory_notify *arg = data;
1845
unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1846
unsigned long pfn = arg->start_pfn;
1847
1848
if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1849
return NOTIFY_OK;
1850
1851
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1852
unsigned long start = PFN_PHYS(pfn);
1853
unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1854
1855
ms = __pfn_to_section(pfn);
1856
if (!early_section(ms))
1857
continue;
1858
1859
if (action == MEM_GOING_OFFLINE) {
1860
/*
1861
* Boot memory removal is not supported. Prevent
1862
* it via blocking any attempted offline request
1863
* for the boot memory and just report it.
1864
*/
1865
pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1866
return NOTIFY_BAD;
1867
} else if (action == MEM_OFFLINE) {
1868
/*
1869
* This should have never happened. Boot memory
1870
* offlining should have been prevented by this
1871
* very notifier. Probably some memory removal
1872
* procedure might have changed which would then
1873
* require further debug.
1874
*/
1875
pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1876
1877
/*
1878
* Core memory hotplug does not process a return
1879
* code from the notifier for MEM_OFFLINE events.
1880
* The error condition has been reported. Return
1881
* from here as if ignored.
1882
*/
1883
return NOTIFY_DONE;
1884
}
1885
}
1886
return NOTIFY_OK;
1887
}
1888
1889
static struct notifier_block prevent_bootmem_remove_nb = {
1890
.notifier_call = prevent_bootmem_remove_notifier,
1891
};
1892
1893
/*
1894
* This ensures that boot memory sections on the platform are online
1895
* from early boot. Memory sections could not be prevented from being
1896
* offlined, unless for some reason they are not online to begin with.
1897
* This helps validate the basic assumption on which the above memory
1898
* event notifier works to prevent boot memory section offlining and
1899
* its possible removal.
1900
*/
1901
static void validate_bootmem_online(void)
1902
{
1903
phys_addr_t start, end, addr;
1904
struct mem_section *ms;
1905
u64 i;
1906
1907
/*
1908
* Scanning across all memblock might be expensive
1909
* on some big memory systems. Hence enable this
1910
* validation only with DEBUG_VM.
1911
*/
1912
if (!IS_ENABLED(CONFIG_DEBUG_VM))
1913
return;
1914
1915
for_each_mem_range(i, &start, &end) {
1916
for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1917
ms = __pfn_to_section(PHYS_PFN(addr));
1918
1919
/*
1920
* All memory ranges in the system at this point
1921
* should have been marked as early sections.
1922
*/
1923
WARN_ON(!early_section(ms));
1924
1925
/*
1926
* Memory notifier mechanism here to prevent boot
1927
* memory offlining depends on the fact that each
1928
* early section memory on the system is initially
1929
* online. Otherwise a given memory section which
1930
* is already offline will be overlooked and can
1931
* be removed completely. Call out such sections.
1932
*/
1933
if (!online_section(ms))
1934
pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1935
addr, addr + (1UL << PA_SECTION_SHIFT));
1936
}
1937
}
1938
}
1939
1940
static int __init prevent_bootmem_remove_init(void)
1941
{
1942
int ret = 0;
1943
1944
if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1945
return ret;
1946
1947
validate_bootmem_online();
1948
ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1949
if (ret)
1950
pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1951
1952
return ret;
1953
}
1954
early_initcall(prevent_bootmem_remove_init);
1955
#endif
1956
1957
pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
1958
pte_t *ptep, unsigned int nr)
1959
{
1960
pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
1961
1962
if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
1963
/*
1964
* Break-before-make (BBM) is required for all user space mappings
1965
* when the permission changes from executable to non-executable
1966
* in cases where cpu is affected with errata #2645198.
1967
*/
1968
if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
1969
__flush_tlb_range(vma, addr, nr * PAGE_SIZE,
1970
PAGE_SIZE, true, 3);
1971
}
1972
1973
return pte;
1974
}
1975
1976
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
1977
{
1978
return modify_prot_start_ptes(vma, addr, ptep, 1);
1979
}
1980
1981
void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1982
pte_t *ptep, pte_t old_pte, pte_t pte,
1983
unsigned int nr)
1984
{
1985
set_ptes(vma->vm_mm, addr, ptep, pte, nr);
1986
}
1987
1988
void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1989
pte_t old_pte, pte_t pte)
1990
{
1991
modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
1992
}
1993
1994
/*
1995
* Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
1996
* avoiding the possibility of conflicting TLB entries being allocated.
1997
*/
1998
void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
1999
{
2000
typedef void (ttbr_replace_func)(phys_addr_t);
2001
extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2002
ttbr_replace_func *replace_phys;
2003
unsigned long daif;
2004
2005
/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2006
phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2007
2008
if (cnp)
2009
ttbr1 |= TTBR_CNP_BIT;
2010
2011
replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2012
2013
cpu_install_idmap();
2014
2015
/*
2016
* We really don't want to take *any* exceptions while TTBR1 is
2017
* in the process of being replaced so mask everything.
2018
*/
2019
daif = local_daif_save();
2020
replace_phys(ttbr1);
2021
local_daif_restore(daif);
2022
2023
cpu_uninstall_idmap();
2024
}
2025
2026
#ifdef CONFIG_ARCH_HAS_PKEYS
2027
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2028
{
2029
u64 new_por;
2030
u64 old_por;
2031
2032
if (!system_supports_poe())
2033
return -ENOSPC;
2034
2035
/*
2036
* This code should only be called with valid 'pkey'
2037
* values originating from in-kernel users. Complain
2038
* if a bad value is observed.
2039
*/
2040
if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2041
return -EINVAL;
2042
2043
/* Set the bits we need in POR: */
2044
new_por = POE_RWX;
2045
if (init_val & PKEY_DISABLE_WRITE)
2046
new_por &= ~POE_W;
2047
if (init_val & PKEY_DISABLE_ACCESS)
2048
new_por &= ~POE_RW;
2049
if (init_val & PKEY_DISABLE_READ)
2050
new_por &= ~POE_R;
2051
if (init_val & PKEY_DISABLE_EXECUTE)
2052
new_por &= ~POE_X;
2053
2054
/* Shift the bits in to the correct place in POR for pkey: */
2055
new_por = POR_ELx_PERM_PREP(pkey, new_por);
2056
2057
/* Get old POR and mask off any old bits in place: */
2058
old_por = read_sysreg_s(SYS_POR_EL0);
2059
old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2060
2061
/* Write old part along with new part: */
2062
write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2063
2064
return 0;
2065
}
2066
#endif
2067
2068