Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/arm64/net/bpf_jit_comp.c
29284 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* BPF JIT compiler for ARM64
4
*
5
* Copyright (C) 2014-2016 Zi Shen Lim <[email protected]>
6
*/
7
8
#define pr_fmt(fmt) "bpf_jit: " fmt
9
10
#include <linux/arm-smccc.h>
11
#include <linux/bitfield.h>
12
#include <linux/bpf.h>
13
#include <linux/cfi.h>
14
#include <linux/filter.h>
15
#include <linux/memory.h>
16
#include <linux/printk.h>
17
#include <linux/slab.h>
18
19
#include <asm/asm-extable.h>
20
#include <asm/byteorder.h>
21
#include <asm/cacheflush.h>
22
#include <asm/cpufeature.h>
23
#include <asm/debug-monitors.h>
24
#include <asm/insn.h>
25
#include <asm/text-patching.h>
26
#include <asm/set_memory.h>
27
28
#include "bpf_jit.h"
29
30
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
31
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
32
#define TCCNT_PTR (MAX_BPF_JIT_REG + 2)
33
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
34
#define PRIVATE_SP (MAX_BPF_JIT_REG + 4)
35
#define ARENA_VM_START (MAX_BPF_JIT_REG + 5)
36
37
#define check_imm(bits, imm) do { \
38
if ((((imm) > 0) && ((imm) >> (bits))) || \
39
(((imm) < 0) && (~(imm) >> (bits)))) { \
40
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
41
i, imm, imm); \
42
return -EINVAL; \
43
} \
44
} while (0)
45
#define check_imm19(imm) check_imm(19, imm)
46
#define check_imm26(imm) check_imm(26, imm)
47
48
/* Map BPF registers to A64 registers */
49
static const int bpf2a64[] = {
50
/* return value from in-kernel function, and exit value from eBPF */
51
[BPF_REG_0] = A64_R(7),
52
/* arguments from eBPF program to in-kernel function */
53
[BPF_REG_1] = A64_R(0),
54
[BPF_REG_2] = A64_R(1),
55
[BPF_REG_3] = A64_R(2),
56
[BPF_REG_4] = A64_R(3),
57
[BPF_REG_5] = A64_R(4),
58
/* callee saved registers that in-kernel function will preserve */
59
[BPF_REG_6] = A64_R(19),
60
[BPF_REG_7] = A64_R(20),
61
[BPF_REG_8] = A64_R(21),
62
[BPF_REG_9] = A64_R(22),
63
/* read-only frame pointer to access stack */
64
[BPF_REG_FP] = A64_R(25),
65
/* temporary registers for BPF JIT */
66
[TMP_REG_1] = A64_R(10),
67
[TMP_REG_2] = A64_R(11),
68
[TMP_REG_3] = A64_R(12),
69
/* tail_call_cnt_ptr */
70
[TCCNT_PTR] = A64_R(26),
71
/* temporary register for blinding constants */
72
[BPF_REG_AX] = A64_R(9),
73
/* callee saved register for private stack pointer */
74
[PRIVATE_SP] = A64_R(27),
75
/* callee saved register for kern_vm_start address */
76
[ARENA_VM_START] = A64_R(28),
77
};
78
79
struct jit_ctx {
80
const struct bpf_prog *prog;
81
int idx;
82
int epilogue_offset;
83
int *offset;
84
int exentry_idx;
85
int nr_used_callee_reg;
86
u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */
87
__le32 *image;
88
__le32 *ro_image;
89
u32 stack_size;
90
u64 user_vm_start;
91
u64 arena_vm_start;
92
bool fp_used;
93
bool priv_sp_used;
94
bool write;
95
};
96
97
struct bpf_plt {
98
u32 insn_ldr; /* load target */
99
u32 insn_br; /* branch to target */
100
u64 target; /* target value */
101
};
102
103
#define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target)
104
#define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
105
106
/* Memory size/value to protect private stack overflow/underflow */
107
#define PRIV_STACK_GUARD_SZ 16
108
#define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL
109
110
static inline void emit(const u32 insn, struct jit_ctx *ctx)
111
{
112
if (ctx->image != NULL && ctx->write)
113
ctx->image[ctx->idx] = cpu_to_le32(insn);
114
115
ctx->idx++;
116
}
117
118
static inline void emit_u32_data(const u32 data, struct jit_ctx *ctx)
119
{
120
if (ctx->image != NULL && ctx->write)
121
ctx->image[ctx->idx] = data;
122
123
ctx->idx++;
124
}
125
126
static inline void emit_a64_mov_i(const int is64, const int reg,
127
const s32 val, struct jit_ctx *ctx)
128
{
129
u16 hi = val >> 16;
130
u16 lo = val & 0xffff;
131
132
if (hi & 0x8000) {
133
if (hi == 0xffff) {
134
emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
135
} else {
136
emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
137
if (lo != 0xffff)
138
emit(A64_MOVK(is64, reg, lo, 0), ctx);
139
}
140
} else {
141
emit(A64_MOVZ(is64, reg, lo, 0), ctx);
142
if (hi)
143
emit(A64_MOVK(is64, reg, hi, 16), ctx);
144
}
145
}
146
147
static int i64_i16_blocks(const u64 val, bool inverse)
148
{
149
return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
150
(((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
151
(((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
152
(((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
153
}
154
155
static inline void emit_a64_mov_i64(const int reg, const u64 val,
156
struct jit_ctx *ctx)
157
{
158
u64 nrm_tmp = val, rev_tmp = ~val;
159
bool inverse;
160
int shift;
161
162
if (!(nrm_tmp >> 32))
163
return emit_a64_mov_i(0, reg, (u32)val, ctx);
164
165
inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
166
shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
167
(fls64(nrm_tmp) - 1)), 16), 0);
168
if (inverse)
169
emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
170
else
171
emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
172
shift -= 16;
173
while (shift >= 0) {
174
if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
175
emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
176
shift -= 16;
177
}
178
}
179
180
static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
181
{
182
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
183
emit(insn, ctx);
184
}
185
186
static inline void emit_kcfi(u32 hash, struct jit_ctx *ctx)
187
{
188
if (IS_ENABLED(CONFIG_CFI))
189
emit_u32_data(hash, ctx);
190
}
191
192
/*
193
* Kernel addresses in the vmalloc space use at most 48 bits, and the
194
* remaining bits are guaranteed to be 0x1. So we can compose the address
195
* with a fixed length movn/movk/movk sequence.
196
*/
197
static inline void emit_addr_mov_i64(const int reg, const u64 val,
198
struct jit_ctx *ctx)
199
{
200
u64 tmp = val;
201
int shift = 0;
202
203
emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
204
while (shift < 32) {
205
tmp >>= 16;
206
shift += 16;
207
emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
208
}
209
}
210
211
static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx)
212
{
213
long offset;
214
215
/* when ctx->ro_image is not allocated or the target is unknown,
216
* emit indirect call
217
*/
218
if (!ctx->ro_image || !target)
219
return true;
220
221
offset = target - (long)&ctx->ro_image[ctx->idx];
222
return offset < -SZ_128M || offset >= SZ_128M;
223
}
224
225
static void emit_direct_call(u64 target, struct jit_ctx *ctx)
226
{
227
u32 insn;
228
unsigned long pc;
229
230
pc = (unsigned long)&ctx->ro_image[ctx->idx];
231
insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK);
232
emit(insn, ctx);
233
}
234
235
static void emit_indirect_call(u64 target, struct jit_ctx *ctx)
236
{
237
u8 tmp;
238
239
tmp = bpf2a64[TMP_REG_1];
240
emit_addr_mov_i64(tmp, target, ctx);
241
emit(A64_BLR(tmp), ctx);
242
}
243
244
static void emit_call(u64 target, struct jit_ctx *ctx)
245
{
246
if (should_emit_indirect_call((long)target, ctx))
247
emit_indirect_call(target, ctx);
248
else
249
emit_direct_call(target, ctx);
250
}
251
252
static inline int bpf2a64_offset(int bpf_insn, int off,
253
const struct jit_ctx *ctx)
254
{
255
/* BPF JMP offset is relative to the next instruction */
256
bpf_insn++;
257
/*
258
* Whereas arm64 branch instructions encode the offset
259
* from the branch itself, so we must subtract 1 from the
260
* instruction offset.
261
*/
262
return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
263
}
264
265
static void jit_fill_hole(void *area, unsigned int size)
266
{
267
__le32 *ptr;
268
/* We are guaranteed to have aligned memory. */
269
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
270
*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
271
}
272
273
int bpf_arch_text_invalidate(void *dst, size_t len)
274
{
275
if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len))
276
return -EINVAL;
277
278
return 0;
279
}
280
281
static inline int epilogue_offset(const struct jit_ctx *ctx)
282
{
283
int to = ctx->epilogue_offset;
284
int from = ctx->idx;
285
286
return to - from;
287
}
288
289
static bool is_addsub_imm(u32 imm)
290
{
291
/* Either imm12 or shifted imm12. */
292
return !(imm & ~0xfff) || !(imm & ~0xfff000);
293
}
294
295
static inline void emit_a64_add_i(const bool is64, const int dst, const int src,
296
const int tmp, const s32 imm, struct jit_ctx *ctx)
297
{
298
if (is_addsub_imm(imm)) {
299
emit(A64_ADD_I(is64, dst, src, imm), ctx);
300
} else if (is_addsub_imm(-(u32)imm)) {
301
emit(A64_SUB_I(is64, dst, src, -imm), ctx);
302
} else {
303
emit_a64_mov_i(is64, tmp, imm, ctx);
304
emit(A64_ADD(is64, dst, src, tmp), ctx);
305
}
306
}
307
308
/*
309
* There are 3 types of AArch64 LDR/STR (immediate) instruction:
310
* Post-index, Pre-index, Unsigned offset.
311
*
312
* For BPF ldr/str, the "unsigned offset" type is sufficient.
313
*
314
* "Unsigned offset" type LDR(immediate) format:
315
*
316
* 3 2 1 0
317
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
318
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
319
* |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt |
320
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
321
* scale
322
*
323
* "Unsigned offset" type STR(immediate) format:
324
* 3 2 1 0
325
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
326
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
327
* |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt |
328
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
329
* scale
330
*
331
* The offset is calculated from imm12 and scale in the following way:
332
*
333
* offset = (u64)imm12 << scale
334
*/
335
static bool is_lsi_offset(int offset, int scale)
336
{
337
if (offset < 0)
338
return false;
339
340
if (offset > (0xFFF << scale))
341
return false;
342
343
if (offset & ((1 << scale) - 1))
344
return false;
345
346
return true;
347
}
348
349
/* generated main prog prologue:
350
* bti c // if CONFIG_ARM64_BTI_KERNEL
351
* mov x9, lr
352
* nop // POKE_OFFSET
353
* paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
354
* stp x29, lr, [sp, #-16]!
355
* mov x29, sp
356
* stp xzr, x26, [sp, #-16]!
357
* mov x26, sp
358
* // PROLOGUE_OFFSET
359
* // save callee-saved registers
360
*/
361
static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx)
362
{
363
const bool is_main_prog = !bpf_is_subprog(ctx->prog);
364
const u8 ptr = bpf2a64[TCCNT_PTR];
365
366
if (is_main_prog) {
367
/* Initialize tail_call_cnt. */
368
emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx);
369
emit(A64_MOV(1, ptr, A64_SP), ctx);
370
} else
371
emit(A64_PUSH(ptr, ptr, A64_SP), ctx);
372
}
373
374
static void find_used_callee_regs(struct jit_ctx *ctx)
375
{
376
int i;
377
const struct bpf_prog *prog = ctx->prog;
378
const struct bpf_insn *insn = &prog->insnsi[0];
379
int reg_used = 0;
380
381
for (i = 0; i < prog->len; i++, insn++) {
382
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
383
reg_used |= 1;
384
385
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
386
reg_used |= 2;
387
388
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
389
reg_used |= 4;
390
391
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
392
reg_used |= 8;
393
394
if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) {
395
ctx->fp_used = true;
396
reg_used |= 16;
397
}
398
}
399
400
i = 0;
401
if (reg_used & 1)
402
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6];
403
404
if (reg_used & 2)
405
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7];
406
407
if (reg_used & 4)
408
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8];
409
410
if (reg_used & 8)
411
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9];
412
413
if (reg_used & 16) {
414
ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP];
415
if (ctx->priv_sp_used)
416
ctx->used_callee_reg[i++] = bpf2a64[PRIVATE_SP];
417
}
418
419
if (ctx->arena_vm_start)
420
ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START];
421
422
ctx->nr_used_callee_reg = i;
423
}
424
425
/* Save callee-saved registers */
426
static void push_callee_regs(struct jit_ctx *ctx)
427
{
428
int reg1, reg2, i;
429
430
/*
431
* Program acting as exception boundary should save all ARM64
432
* Callee-saved registers as the exception callback needs to recover
433
* all ARM64 Callee-saved registers in its epilogue.
434
*/
435
if (ctx->prog->aux->exception_boundary) {
436
emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx);
437
emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx);
438
emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx);
439
emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx);
440
emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx);
441
ctx->fp_used = true;
442
} else {
443
find_used_callee_regs(ctx);
444
for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) {
445
reg1 = ctx->used_callee_reg[i];
446
reg2 = ctx->used_callee_reg[i + 1];
447
emit(A64_PUSH(reg1, reg2, A64_SP), ctx);
448
}
449
if (i < ctx->nr_used_callee_reg) {
450
reg1 = ctx->used_callee_reg[i];
451
/* keep SP 16-byte aligned */
452
emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx);
453
}
454
}
455
}
456
457
/* Restore callee-saved registers */
458
static void pop_callee_regs(struct jit_ctx *ctx)
459
{
460
struct bpf_prog_aux *aux = ctx->prog->aux;
461
int reg1, reg2, i;
462
463
/*
464
* Program acting as exception boundary pushes R23 and R24 in addition
465
* to BPF callee-saved registers. Exception callback uses the boundary
466
* program's stack frame, so recover these extra registers in the above
467
* two cases.
468
*/
469
if (aux->exception_boundary || aux->exception_cb) {
470
emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx);
471
emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx);
472
emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx);
473
emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx);
474
emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx);
475
} else {
476
i = ctx->nr_used_callee_reg - 1;
477
if (ctx->nr_used_callee_reg % 2 != 0) {
478
reg1 = ctx->used_callee_reg[i];
479
emit(A64_POP(reg1, A64_ZR, A64_SP), ctx);
480
i--;
481
}
482
while (i > 0) {
483
reg1 = ctx->used_callee_reg[i - 1];
484
reg2 = ctx->used_callee_reg[i];
485
emit(A64_POP(reg1, reg2, A64_SP), ctx);
486
i -= 2;
487
}
488
}
489
}
490
491
static void emit_percpu_ptr(const u8 dst_reg, void __percpu *ptr,
492
struct jit_ctx *ctx)
493
{
494
const u8 tmp = bpf2a64[TMP_REG_1];
495
496
emit_a64_mov_i64(dst_reg, (__force const u64)ptr, ctx);
497
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
498
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
499
else
500
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
501
emit(A64_ADD(1, dst_reg, dst_reg, tmp), ctx);
502
}
503
504
#define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
505
#define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
506
507
/* Offset of nop instruction in bpf prog entry to be poked */
508
#define POKE_OFFSET (BTI_INSNS + 1)
509
510
/* Tail call offset to jump into */
511
#define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4)
512
513
static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
514
{
515
const struct bpf_prog *prog = ctx->prog;
516
const bool is_main_prog = !bpf_is_subprog(prog);
517
const u8 fp = bpf2a64[BPF_REG_FP];
518
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
519
const u8 priv_sp = bpf2a64[PRIVATE_SP];
520
void __percpu *priv_stack_ptr;
521
int cur_offset;
522
523
/*
524
* BPF prog stack layout
525
*
526
* high
527
* original A64_SP => 0:+-----+ BPF prologue
528
* |FP/LR|
529
* current A64_FP => -16:+-----+
530
* | ... | callee saved registers
531
* BPF fp register => -64:+-----+ <= (BPF_FP)
532
* | |
533
* | ... | BPF prog stack
534
* | |
535
* +-----+ <= (BPF_FP - prog->aux->stack_depth)
536
* |RSVD | padding
537
* current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
538
* | |
539
* | ... | Function call stack
540
* | |
541
* +-----+
542
* low
543
*
544
*/
545
546
emit_kcfi(is_main_prog ? cfi_bpf_hash : cfi_bpf_subprog_hash, ctx);
547
const int idx0 = ctx->idx;
548
549
/* bpf function may be invoked by 3 instruction types:
550
* 1. bl, attached via freplace to bpf prog via short jump
551
* 2. br, attached via freplace to bpf prog via long jump
552
* 3. blr, working as a function pointer, used by emit_call.
553
* So BTI_JC should used here to support both br and blr.
554
*/
555
emit_bti(A64_BTI_JC, ctx);
556
557
emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
558
emit(A64_NOP, ctx);
559
560
if (!prog->aux->exception_cb) {
561
/* Sign lr */
562
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
563
emit(A64_PACIASP, ctx);
564
565
/* Save FP and LR registers to stay align with ARM64 AAPCS */
566
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
567
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
568
569
prepare_bpf_tail_call_cnt(ctx);
570
571
if (!ebpf_from_cbpf && is_main_prog) {
572
cur_offset = ctx->idx - idx0;
573
if (cur_offset != PROLOGUE_OFFSET) {
574
pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
575
cur_offset, PROLOGUE_OFFSET);
576
return -1;
577
}
578
/* BTI landing pad for the tail call, done with a BR */
579
emit_bti(A64_BTI_J, ctx);
580
}
581
push_callee_regs(ctx);
582
} else {
583
/*
584
* Exception callback receives FP of Main Program as third
585
* parameter
586
*/
587
emit(A64_MOV(1, A64_FP, A64_R(2)), ctx);
588
/*
589
* Main Program already pushed the frame record and the
590
* callee-saved registers. The exception callback will not push
591
* anything and re-use the main program's stack.
592
*
593
* 12 registers are on the stack
594
*/
595
emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx);
596
}
597
598
/* Stack must be multiples of 16B */
599
ctx->stack_size = round_up(prog->aux->stack_depth, 16);
600
601
if (ctx->fp_used) {
602
if (ctx->priv_sp_used) {
603
/* Set up private stack pointer */
604
priv_stack_ptr = prog->aux->priv_stack_ptr + PRIV_STACK_GUARD_SZ;
605
emit_percpu_ptr(priv_sp, priv_stack_ptr, ctx);
606
emit(A64_ADD_I(1, fp, priv_sp, ctx->stack_size), ctx);
607
} else {
608
/* Set up BPF prog stack base register */
609
emit(A64_MOV(1, fp, A64_SP), ctx);
610
}
611
}
612
613
/* Set up function call stack */
614
if (ctx->stack_size && !ctx->priv_sp_used)
615
emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
616
617
if (ctx->arena_vm_start)
618
emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx);
619
620
return 0;
621
}
622
623
static int emit_bpf_tail_call(struct jit_ctx *ctx)
624
{
625
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
626
const u8 r2 = bpf2a64[BPF_REG_2];
627
const u8 r3 = bpf2a64[BPF_REG_3];
628
629
const u8 tmp = bpf2a64[TMP_REG_1];
630
const u8 prg = bpf2a64[TMP_REG_2];
631
const u8 tcc = bpf2a64[TMP_REG_3];
632
const u8 ptr = bpf2a64[TCCNT_PTR];
633
size_t off;
634
__le32 *branch1 = NULL;
635
__le32 *branch2 = NULL;
636
__le32 *branch3 = NULL;
637
638
/* if (index >= array->map.max_entries)
639
* goto out;
640
*/
641
off = offsetof(struct bpf_array, map.max_entries);
642
emit_a64_mov_i64(tmp, off, ctx);
643
emit(A64_LDR32(tmp, r2, tmp), ctx);
644
emit(A64_MOV(0, r3, r3), ctx);
645
emit(A64_CMP(0, r3, tmp), ctx);
646
branch1 = ctx->image + ctx->idx;
647
emit(A64_NOP, ctx);
648
649
/*
650
* if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT)
651
* goto out;
652
*/
653
emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
654
emit(A64_LDR64I(tcc, ptr, 0), ctx);
655
emit(A64_CMP(1, tcc, tmp), ctx);
656
branch2 = ctx->image + ctx->idx;
657
emit(A64_NOP, ctx);
658
659
/* (*tail_call_cnt_ptr)++; */
660
emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
661
662
/* prog = array->ptrs[index];
663
* if (prog == NULL)
664
* goto out;
665
*/
666
off = offsetof(struct bpf_array, ptrs);
667
emit_a64_mov_i64(tmp, off, ctx);
668
emit(A64_ADD(1, tmp, r2, tmp), ctx);
669
emit(A64_LSL(1, prg, r3, 3), ctx);
670
emit(A64_LDR64(prg, tmp, prg), ctx);
671
branch3 = ctx->image + ctx->idx;
672
emit(A64_NOP, ctx);
673
674
/* Update tail_call_cnt if the slot is populated. */
675
emit(A64_STR64I(tcc, ptr, 0), ctx);
676
677
/* restore SP */
678
if (ctx->stack_size && !ctx->priv_sp_used)
679
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
680
681
pop_callee_regs(ctx);
682
683
/* goto *(prog->bpf_func + prologue_offset); */
684
off = offsetof(struct bpf_prog, bpf_func);
685
emit_a64_mov_i64(tmp, off, ctx);
686
emit(A64_LDR64(tmp, prg, tmp), ctx);
687
emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
688
emit(A64_BR(tmp), ctx);
689
690
if (ctx->image) {
691
off = &ctx->image[ctx->idx] - branch1;
692
*branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off));
693
694
off = &ctx->image[ctx->idx] - branch2;
695
*branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off));
696
697
off = &ctx->image[ctx->idx] - branch3;
698
*branch3 = cpu_to_le32(A64_CBZ(1, prg, off));
699
}
700
701
return 0;
702
}
703
704
static int emit_atomic_ld_st(const struct bpf_insn *insn, struct jit_ctx *ctx)
705
{
706
const s32 imm = insn->imm;
707
const s16 off = insn->off;
708
const u8 code = insn->code;
709
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
710
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
711
const u8 dst = bpf2a64[insn->dst_reg];
712
const u8 src = bpf2a64[insn->src_reg];
713
const u8 tmp = bpf2a64[TMP_REG_1];
714
u8 reg;
715
716
switch (imm) {
717
case BPF_LOAD_ACQ:
718
reg = src;
719
break;
720
case BPF_STORE_REL:
721
reg = dst;
722
break;
723
default:
724
pr_err_once("unknown atomic load/store op code %02x\n", imm);
725
return -EINVAL;
726
}
727
728
if (off) {
729
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
730
reg = tmp;
731
}
732
if (arena) {
733
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
734
reg = tmp;
735
}
736
737
switch (imm) {
738
case BPF_LOAD_ACQ:
739
switch (BPF_SIZE(code)) {
740
case BPF_B:
741
emit(A64_LDARB(dst, reg), ctx);
742
break;
743
case BPF_H:
744
emit(A64_LDARH(dst, reg), ctx);
745
break;
746
case BPF_W:
747
emit(A64_LDAR32(dst, reg), ctx);
748
break;
749
case BPF_DW:
750
emit(A64_LDAR64(dst, reg), ctx);
751
break;
752
}
753
break;
754
case BPF_STORE_REL:
755
switch (BPF_SIZE(code)) {
756
case BPF_B:
757
emit(A64_STLRB(src, reg), ctx);
758
break;
759
case BPF_H:
760
emit(A64_STLRH(src, reg), ctx);
761
break;
762
case BPF_W:
763
emit(A64_STLR32(src, reg), ctx);
764
break;
765
case BPF_DW:
766
emit(A64_STLR64(src, reg), ctx);
767
break;
768
}
769
break;
770
default:
771
pr_err_once("unexpected atomic load/store op code %02x\n",
772
imm);
773
return -EINVAL;
774
}
775
776
return 0;
777
}
778
779
#ifdef CONFIG_ARM64_LSE_ATOMICS
780
static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
781
{
782
const u8 code = insn->code;
783
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
784
const u8 dst = bpf2a64[insn->dst_reg];
785
const u8 src = bpf2a64[insn->src_reg];
786
const u8 tmp = bpf2a64[TMP_REG_1];
787
const u8 tmp2 = bpf2a64[TMP_REG_2];
788
const bool isdw = BPF_SIZE(code) == BPF_DW;
789
const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
790
const s16 off = insn->off;
791
u8 reg = dst;
792
793
if (off) {
794
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
795
reg = tmp;
796
}
797
if (arena) {
798
emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
799
reg = tmp;
800
}
801
802
switch (insn->imm) {
803
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
804
case BPF_ADD:
805
emit(A64_STADD(isdw, reg, src), ctx);
806
break;
807
case BPF_AND:
808
emit(A64_MVN(isdw, tmp2, src), ctx);
809
emit(A64_STCLR(isdw, reg, tmp2), ctx);
810
break;
811
case BPF_OR:
812
emit(A64_STSET(isdw, reg, src), ctx);
813
break;
814
case BPF_XOR:
815
emit(A64_STEOR(isdw, reg, src), ctx);
816
break;
817
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
818
case BPF_ADD | BPF_FETCH:
819
emit(A64_LDADDAL(isdw, src, reg, src), ctx);
820
break;
821
case BPF_AND | BPF_FETCH:
822
emit(A64_MVN(isdw, tmp2, src), ctx);
823
emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
824
break;
825
case BPF_OR | BPF_FETCH:
826
emit(A64_LDSETAL(isdw, src, reg, src), ctx);
827
break;
828
case BPF_XOR | BPF_FETCH:
829
emit(A64_LDEORAL(isdw, src, reg, src), ctx);
830
break;
831
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
832
case BPF_XCHG:
833
emit(A64_SWPAL(isdw, src, reg, src), ctx);
834
break;
835
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
836
case BPF_CMPXCHG:
837
emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
838
break;
839
default:
840
pr_err_once("unknown atomic op code %02x\n", insn->imm);
841
return -EINVAL;
842
}
843
844
return 0;
845
}
846
#else
847
static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
848
{
849
return -EINVAL;
850
}
851
#endif
852
853
static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
854
{
855
const u8 code = insn->code;
856
const u8 dst = bpf2a64[insn->dst_reg];
857
const u8 src = bpf2a64[insn->src_reg];
858
const u8 tmp = bpf2a64[TMP_REG_1];
859
const u8 tmp2 = bpf2a64[TMP_REG_2];
860
const u8 tmp3 = bpf2a64[TMP_REG_3];
861
const int i = insn - ctx->prog->insnsi;
862
const s32 imm = insn->imm;
863
const s16 off = insn->off;
864
const bool isdw = BPF_SIZE(code) == BPF_DW;
865
u8 reg = dst;
866
s32 jmp_offset;
867
868
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
869
/* ll_sc based atomics don't support unsafe pointers yet. */
870
pr_err_once("unknown atomic opcode %02x\n", code);
871
return -EINVAL;
872
}
873
874
if (off) {
875
emit_a64_add_i(1, tmp, reg, tmp, off, ctx);
876
reg = tmp;
877
}
878
879
if (imm == BPF_ADD || imm == BPF_AND ||
880
imm == BPF_OR || imm == BPF_XOR) {
881
/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
882
emit(A64_LDXR(isdw, tmp2, reg), ctx);
883
if (imm == BPF_ADD)
884
emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
885
else if (imm == BPF_AND)
886
emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
887
else if (imm == BPF_OR)
888
emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
889
else
890
emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
891
emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
892
jmp_offset = -3;
893
check_imm19(jmp_offset);
894
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
895
} else if (imm == (BPF_ADD | BPF_FETCH) ||
896
imm == (BPF_AND | BPF_FETCH) ||
897
imm == (BPF_OR | BPF_FETCH) ||
898
imm == (BPF_XOR | BPF_FETCH)) {
899
/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
900
const u8 ax = bpf2a64[BPF_REG_AX];
901
902
emit(A64_MOV(isdw, ax, src), ctx);
903
emit(A64_LDXR(isdw, src, reg), ctx);
904
if (imm == (BPF_ADD | BPF_FETCH))
905
emit(A64_ADD(isdw, tmp2, src, ax), ctx);
906
else if (imm == (BPF_AND | BPF_FETCH))
907
emit(A64_AND(isdw, tmp2, src, ax), ctx);
908
else if (imm == (BPF_OR | BPF_FETCH))
909
emit(A64_ORR(isdw, tmp2, src, ax), ctx);
910
else
911
emit(A64_EOR(isdw, tmp2, src, ax), ctx);
912
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
913
jmp_offset = -3;
914
check_imm19(jmp_offset);
915
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
916
emit(A64_DMB_ISH, ctx);
917
} else if (imm == BPF_XCHG) {
918
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
919
emit(A64_MOV(isdw, tmp2, src), ctx);
920
emit(A64_LDXR(isdw, src, reg), ctx);
921
emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
922
jmp_offset = -2;
923
check_imm19(jmp_offset);
924
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
925
emit(A64_DMB_ISH, ctx);
926
} else if (imm == BPF_CMPXCHG) {
927
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
928
const u8 r0 = bpf2a64[BPF_REG_0];
929
930
emit(A64_MOV(isdw, tmp2, r0), ctx);
931
emit(A64_LDXR(isdw, r0, reg), ctx);
932
emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
933
jmp_offset = 4;
934
check_imm19(jmp_offset);
935
emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
936
emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
937
jmp_offset = -4;
938
check_imm19(jmp_offset);
939
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
940
emit(A64_DMB_ISH, ctx);
941
} else {
942
pr_err_once("unknown atomic op code %02x\n", imm);
943
return -EINVAL;
944
}
945
946
return 0;
947
}
948
949
void dummy_tramp(void);
950
951
asm (
952
" .pushsection .text, \"ax\", @progbits\n"
953
" .global dummy_tramp\n"
954
" .type dummy_tramp, %function\n"
955
"dummy_tramp:"
956
#if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
957
" bti j\n" /* dummy_tramp is called via "br x10" */
958
#endif
959
" mov x10, x30\n"
960
" mov x30, x9\n"
961
" ret x10\n"
962
" .size dummy_tramp, .-dummy_tramp\n"
963
" .popsection\n"
964
);
965
966
/* build a plt initialized like this:
967
*
968
* plt:
969
* ldr tmp, target
970
* br tmp
971
* target:
972
* .quad dummy_tramp
973
*
974
* when a long jump trampoline is attached, target is filled with the
975
* trampoline address, and when the trampoline is removed, target is
976
* restored to dummy_tramp address.
977
*/
978
static void build_plt(struct jit_ctx *ctx)
979
{
980
const u8 tmp = bpf2a64[TMP_REG_1];
981
struct bpf_plt *plt = NULL;
982
983
/* make sure target is 64-bit aligned */
984
if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
985
emit(A64_NOP, ctx);
986
987
plt = (struct bpf_plt *)(ctx->image + ctx->idx);
988
/* plt is called via bl, no BTI needed here */
989
emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
990
emit(A64_BR(tmp), ctx);
991
992
if (ctx->image)
993
plt->target = (u64)&dummy_tramp;
994
}
995
996
/* Clobbers BPF registers 1-4, aka x0-x3 */
997
static void __maybe_unused build_bhb_mitigation(struct jit_ctx *ctx)
998
{
999
const u8 r1 = bpf2a64[BPF_REG_1]; /* aka x0 */
1000
u8 k = get_spectre_bhb_loop_value();
1001
1002
if (!IS_ENABLED(CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY) ||
1003
cpu_mitigations_off() || __nospectre_bhb ||
1004
arm64_get_spectre_v2_state() == SPECTRE_VULNERABLE)
1005
return;
1006
1007
if (capable(CAP_SYS_ADMIN))
1008
return;
1009
1010
if (supports_clearbhb(SCOPE_SYSTEM)) {
1011
emit(aarch64_insn_gen_hint(AARCH64_INSN_HINT_CLEARBHB), ctx);
1012
return;
1013
}
1014
1015
if (k) {
1016
emit_a64_mov_i64(r1, k, ctx);
1017
emit(A64_B(1), ctx);
1018
emit(A64_SUBS_I(true, r1, r1, 1), ctx);
1019
emit(A64_B_(A64_COND_NE, -2), ctx);
1020
emit(aarch64_insn_gen_dsb(AARCH64_INSN_MB_ISH), ctx);
1021
emit(aarch64_insn_get_isb_value(), ctx);
1022
}
1023
1024
if (is_spectre_bhb_fw_mitigated()) {
1025
emit(A64_ORR_I(false, r1, AARCH64_INSN_REG_ZR,
1026
ARM_SMCCC_ARCH_WORKAROUND_3), ctx);
1027
switch (arm_smccc_1_1_get_conduit()) {
1028
case SMCCC_CONDUIT_HVC:
1029
emit(aarch64_insn_get_hvc_value(), ctx);
1030
break;
1031
case SMCCC_CONDUIT_SMC:
1032
emit(aarch64_insn_get_smc_value(), ctx);
1033
break;
1034
default:
1035
pr_err_once("Firmware mitigation enabled with unknown conduit\n");
1036
}
1037
}
1038
}
1039
1040
static void build_epilogue(struct jit_ctx *ctx, bool was_classic)
1041
{
1042
const u8 r0 = bpf2a64[BPF_REG_0];
1043
const u8 ptr = bpf2a64[TCCNT_PTR];
1044
1045
/* We're done with BPF stack */
1046
if (ctx->stack_size && !ctx->priv_sp_used)
1047
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
1048
1049
pop_callee_regs(ctx);
1050
1051
emit(A64_POP(A64_ZR, ptr, A64_SP), ctx);
1052
1053
if (was_classic)
1054
build_bhb_mitigation(ctx);
1055
1056
/* Restore FP/LR registers */
1057
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
1058
1059
/* Move the return value from bpf:r0 (aka x7) to x0 */
1060
emit(A64_MOV(1, A64_R(0), r0), ctx);
1061
1062
/* Authenticate lr */
1063
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
1064
emit(A64_AUTIASP, ctx);
1065
1066
emit(A64_RET(A64_LR), ctx);
1067
}
1068
1069
/*
1070
* Metadata encoding for exception handling in JITed code.
1071
*
1072
* Format of `fixup` field in `struct exception_table_entry`:
1073
*
1074
* Bit layout of `fixup` (32-bit):
1075
*
1076
* +-----------+--------+-----------+-----------+----------+
1077
* | 31-27 | 26-22 | 21 | 20-16 | 15-0 |
1078
* | | | | | |
1079
* | FIXUP_REG | Unused | ARENA_ACC | ARENA_REG | OFFSET |
1080
* +-----------+--------+-----------+-----------+----------+
1081
*
1082
* - OFFSET (16 bits): Offset used to compute address for Load/Store instruction.
1083
* - ARENA_REG (5 bits): Register that is used to calculate the address for load/store when
1084
* accessing the arena region.
1085
* - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region.
1086
* - FIXUP_REG (5 bits): Destination register for the load instruction (cleared on fault) or set to
1087
* DONT_CLEAR if it is a store instruction.
1088
*/
1089
1090
#define BPF_FIXUP_OFFSET_MASK GENMASK(15, 0)
1091
#define BPF_FIXUP_ARENA_REG_MASK GENMASK(20, 16)
1092
#define BPF_ARENA_ACCESS BIT(21)
1093
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
1094
#define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */
1095
1096
bool ex_handler_bpf(const struct exception_table_entry *ex,
1097
struct pt_regs *regs)
1098
{
1099
int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
1100
s16 off = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
1101
int arena_reg = FIELD_GET(BPF_FIXUP_ARENA_REG_MASK, ex->fixup);
1102
bool is_arena = !!(ex->fixup & BPF_ARENA_ACCESS);
1103
bool is_write = (dst_reg == DONT_CLEAR);
1104
unsigned long addr;
1105
1106
if (is_arena) {
1107
addr = regs->regs[arena_reg] + off;
1108
bpf_prog_report_arena_violation(is_write, addr, regs->pc);
1109
}
1110
1111
if (dst_reg != DONT_CLEAR)
1112
regs->regs[dst_reg] = 0;
1113
/* Skip the faulting instruction */
1114
regs->pc += AARCH64_INSN_SIZE;
1115
1116
return true;
1117
}
1118
1119
/* For accesses to BTF pointers, add an entry to the exception table */
1120
static int add_exception_handler(const struct bpf_insn *insn,
1121
struct jit_ctx *ctx,
1122
int dst_reg)
1123
{
1124
off_t ins_offset;
1125
s16 off = insn->off;
1126
bool is_arena;
1127
int arena_reg;
1128
unsigned long pc;
1129
struct exception_table_entry *ex;
1130
1131
if (!ctx->image)
1132
/* First pass */
1133
return 0;
1134
1135
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
1136
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
1137
BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
1138
BPF_MODE(insn->code) != BPF_PROBE_MEM32SX &&
1139
BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
1140
return 0;
1141
1142
is_arena = (BPF_MODE(insn->code) == BPF_PROBE_MEM32) ||
1143
(BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) ||
1144
(BPF_MODE(insn->code) == BPF_PROBE_ATOMIC);
1145
1146
if (!ctx->prog->aux->extable ||
1147
WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
1148
return -EINVAL;
1149
1150
ex = &ctx->prog->aux->extable[ctx->exentry_idx];
1151
pc = (unsigned long)&ctx->ro_image[ctx->idx - 1];
1152
1153
/*
1154
* This is the relative offset of the instruction that may fault from
1155
* the exception table itself. This will be written to the exception
1156
* table and if this instruction faults, the destination register will
1157
* be set to '0' and the execution will jump to the next instruction.
1158
*/
1159
ins_offset = pc - (long)&ex->insn;
1160
if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
1161
return -ERANGE;
1162
1163
/*
1164
* The offsets above have been calculated using the RO buffer but we
1165
* need to use the R/W buffer for writes.
1166
* switch ex to rw buffer for writing.
1167
*/
1168
ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image);
1169
1170
ex->insn = ins_offset;
1171
1172
if (BPF_CLASS(insn->code) != BPF_LDX)
1173
dst_reg = DONT_CLEAR;
1174
1175
ex->fixup = FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
1176
1177
if (is_arena) {
1178
ex->fixup |= BPF_ARENA_ACCESS;
1179
/*
1180
* insn->src_reg/dst_reg holds the address in the arena region with upper 32-bits
1181
* being zero because of a preceding addr_space_cast(r<n>, 0x0, 0x1) instruction.
1182
* This address is adjusted with the addition of arena_vm_start (see the
1183
* implementation of BPF_PROBE_MEM32 and BPF_PROBE_ATOMIC) before being used for the
1184
* memory access. Pass the reg holding the unmodified 32-bit address to
1185
* ex_handler_bpf.
1186
*/
1187
if (BPF_CLASS(insn->code) == BPF_LDX)
1188
arena_reg = bpf2a64[insn->src_reg];
1189
else
1190
arena_reg = bpf2a64[insn->dst_reg];
1191
1192
ex->fixup |= FIELD_PREP(BPF_FIXUP_OFFSET_MASK, off) |
1193
FIELD_PREP(BPF_FIXUP_ARENA_REG_MASK, arena_reg);
1194
}
1195
1196
ex->type = EX_TYPE_BPF;
1197
1198
ctx->exentry_idx++;
1199
return 0;
1200
}
1201
1202
/* JITs an eBPF instruction.
1203
* Returns:
1204
* 0 - successfully JITed an 8-byte eBPF instruction.
1205
* >0 - successfully JITed a 16-byte eBPF instruction.
1206
* <0 - failed to JIT.
1207
*/
1208
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
1209
bool extra_pass)
1210
{
1211
const u8 code = insn->code;
1212
u8 dst = bpf2a64[insn->dst_reg];
1213
u8 src = bpf2a64[insn->src_reg];
1214
const u8 tmp = bpf2a64[TMP_REG_1];
1215
const u8 tmp2 = bpf2a64[TMP_REG_2];
1216
const u8 fp = bpf2a64[BPF_REG_FP];
1217
const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
1218
const u8 priv_sp = bpf2a64[PRIVATE_SP];
1219
const s16 off = insn->off;
1220
const s32 imm = insn->imm;
1221
const int i = insn - ctx->prog->insnsi;
1222
const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
1223
BPF_CLASS(code) == BPF_JMP;
1224
u8 jmp_cond;
1225
s32 jmp_offset;
1226
u32 a64_insn;
1227
u8 src_adj;
1228
u8 dst_adj;
1229
int off_adj;
1230
int ret;
1231
bool sign_extend;
1232
1233
switch (code) {
1234
/* dst = src */
1235
case BPF_ALU | BPF_MOV | BPF_X:
1236
case BPF_ALU64 | BPF_MOV | BPF_X:
1237
if (insn_is_cast_user(insn)) {
1238
emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits
1239
emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx);
1240
emit(A64_LSL(1, dst, dst, 32), ctx);
1241
emit(A64_CBZ(1, tmp, 2), ctx);
1242
emit(A64_ORR(1, tmp, dst, tmp), ctx);
1243
emit(A64_MOV(1, dst, tmp), ctx);
1244
break;
1245
} else if (insn_is_mov_percpu_addr(insn)) {
1246
if (dst != src)
1247
emit(A64_MOV(1, dst, src), ctx);
1248
if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
1249
emit(A64_MRS_TPIDR_EL2(tmp), ctx);
1250
else
1251
emit(A64_MRS_TPIDR_EL1(tmp), ctx);
1252
emit(A64_ADD(1, dst, dst, tmp), ctx);
1253
break;
1254
}
1255
switch (insn->off) {
1256
case 0:
1257
emit(A64_MOV(is64, dst, src), ctx);
1258
break;
1259
case 8:
1260
emit(A64_SXTB(is64, dst, src), ctx);
1261
break;
1262
case 16:
1263
emit(A64_SXTH(is64, dst, src), ctx);
1264
break;
1265
case 32:
1266
emit(A64_SXTW(is64, dst, src), ctx);
1267
break;
1268
}
1269
break;
1270
/* dst = dst OP src */
1271
case BPF_ALU | BPF_ADD | BPF_X:
1272
case BPF_ALU64 | BPF_ADD | BPF_X:
1273
emit(A64_ADD(is64, dst, dst, src), ctx);
1274
break;
1275
case BPF_ALU | BPF_SUB | BPF_X:
1276
case BPF_ALU64 | BPF_SUB | BPF_X:
1277
emit(A64_SUB(is64, dst, dst, src), ctx);
1278
break;
1279
case BPF_ALU | BPF_AND | BPF_X:
1280
case BPF_ALU64 | BPF_AND | BPF_X:
1281
emit(A64_AND(is64, dst, dst, src), ctx);
1282
break;
1283
case BPF_ALU | BPF_OR | BPF_X:
1284
case BPF_ALU64 | BPF_OR | BPF_X:
1285
emit(A64_ORR(is64, dst, dst, src), ctx);
1286
break;
1287
case BPF_ALU | BPF_XOR | BPF_X:
1288
case BPF_ALU64 | BPF_XOR | BPF_X:
1289
emit(A64_EOR(is64, dst, dst, src), ctx);
1290
break;
1291
case BPF_ALU | BPF_MUL | BPF_X:
1292
case BPF_ALU64 | BPF_MUL | BPF_X:
1293
emit(A64_MUL(is64, dst, dst, src), ctx);
1294
break;
1295
case BPF_ALU | BPF_DIV | BPF_X:
1296
case BPF_ALU64 | BPF_DIV | BPF_X:
1297
if (!off)
1298
emit(A64_UDIV(is64, dst, dst, src), ctx);
1299
else
1300
emit(A64_SDIV(is64, dst, dst, src), ctx);
1301
break;
1302
case BPF_ALU | BPF_MOD | BPF_X:
1303
case BPF_ALU64 | BPF_MOD | BPF_X:
1304
if (!off)
1305
emit(A64_UDIV(is64, tmp, dst, src), ctx);
1306
else
1307
emit(A64_SDIV(is64, tmp, dst, src), ctx);
1308
emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
1309
break;
1310
case BPF_ALU | BPF_LSH | BPF_X:
1311
case BPF_ALU64 | BPF_LSH | BPF_X:
1312
emit(A64_LSLV(is64, dst, dst, src), ctx);
1313
break;
1314
case BPF_ALU | BPF_RSH | BPF_X:
1315
case BPF_ALU64 | BPF_RSH | BPF_X:
1316
emit(A64_LSRV(is64, dst, dst, src), ctx);
1317
break;
1318
case BPF_ALU | BPF_ARSH | BPF_X:
1319
case BPF_ALU64 | BPF_ARSH | BPF_X:
1320
emit(A64_ASRV(is64, dst, dst, src), ctx);
1321
break;
1322
/* dst = -dst */
1323
case BPF_ALU | BPF_NEG:
1324
case BPF_ALU64 | BPF_NEG:
1325
emit(A64_NEG(is64, dst, dst), ctx);
1326
break;
1327
/* dst = BSWAP##imm(dst) */
1328
case BPF_ALU | BPF_END | BPF_FROM_LE:
1329
case BPF_ALU | BPF_END | BPF_FROM_BE:
1330
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1331
#ifdef CONFIG_CPU_BIG_ENDIAN
1332
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE)
1333
goto emit_bswap_uxt;
1334
#else /* !CONFIG_CPU_BIG_ENDIAN */
1335
if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE)
1336
goto emit_bswap_uxt;
1337
#endif
1338
switch (imm) {
1339
case 16:
1340
emit(A64_REV16(is64, dst, dst), ctx);
1341
/* zero-extend 16 bits into 64 bits */
1342
emit(A64_UXTH(is64, dst, dst), ctx);
1343
break;
1344
case 32:
1345
emit(A64_REV32(0, dst, dst), ctx);
1346
/* upper 32 bits already cleared */
1347
break;
1348
case 64:
1349
emit(A64_REV64(dst, dst), ctx);
1350
break;
1351
}
1352
break;
1353
emit_bswap_uxt:
1354
switch (imm) {
1355
case 16:
1356
/* zero-extend 16 bits into 64 bits */
1357
emit(A64_UXTH(is64, dst, dst), ctx);
1358
break;
1359
case 32:
1360
/* zero-extend 32 bits into 64 bits */
1361
emit(A64_UXTW(is64, dst, dst), ctx);
1362
break;
1363
case 64:
1364
/* nop */
1365
break;
1366
}
1367
break;
1368
/* dst = imm */
1369
case BPF_ALU | BPF_MOV | BPF_K:
1370
case BPF_ALU64 | BPF_MOV | BPF_K:
1371
emit_a64_mov_i(is64, dst, imm, ctx);
1372
break;
1373
/* dst = dst OP imm */
1374
case BPF_ALU | BPF_ADD | BPF_K:
1375
case BPF_ALU64 | BPF_ADD | BPF_K:
1376
emit_a64_add_i(is64, dst, dst, tmp, imm, ctx);
1377
break;
1378
case BPF_ALU | BPF_SUB | BPF_K:
1379
case BPF_ALU64 | BPF_SUB | BPF_K:
1380
if (is_addsub_imm(imm)) {
1381
emit(A64_SUB_I(is64, dst, dst, imm), ctx);
1382
} else if (is_addsub_imm(-(u32)imm)) {
1383
emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
1384
} else {
1385
emit_a64_mov_i(is64, tmp, imm, ctx);
1386
emit(A64_SUB(is64, dst, dst, tmp), ctx);
1387
}
1388
break;
1389
case BPF_ALU | BPF_AND | BPF_K:
1390
case BPF_ALU64 | BPF_AND | BPF_K:
1391
a64_insn = A64_AND_I(is64, dst, dst, imm);
1392
if (a64_insn != AARCH64_BREAK_FAULT) {
1393
emit(a64_insn, ctx);
1394
} else {
1395
emit_a64_mov_i(is64, tmp, imm, ctx);
1396
emit(A64_AND(is64, dst, dst, tmp), ctx);
1397
}
1398
break;
1399
case BPF_ALU | BPF_OR | BPF_K:
1400
case BPF_ALU64 | BPF_OR | BPF_K:
1401
a64_insn = A64_ORR_I(is64, dst, dst, imm);
1402
if (a64_insn != AARCH64_BREAK_FAULT) {
1403
emit(a64_insn, ctx);
1404
} else {
1405
emit_a64_mov_i(is64, tmp, imm, ctx);
1406
emit(A64_ORR(is64, dst, dst, tmp), ctx);
1407
}
1408
break;
1409
case BPF_ALU | BPF_XOR | BPF_K:
1410
case BPF_ALU64 | BPF_XOR | BPF_K:
1411
a64_insn = A64_EOR_I(is64, dst, dst, imm);
1412
if (a64_insn != AARCH64_BREAK_FAULT) {
1413
emit(a64_insn, ctx);
1414
} else {
1415
emit_a64_mov_i(is64, tmp, imm, ctx);
1416
emit(A64_EOR(is64, dst, dst, tmp), ctx);
1417
}
1418
break;
1419
case BPF_ALU | BPF_MUL | BPF_K:
1420
case BPF_ALU64 | BPF_MUL | BPF_K:
1421
emit_a64_mov_i(is64, tmp, imm, ctx);
1422
emit(A64_MUL(is64, dst, dst, tmp), ctx);
1423
break;
1424
case BPF_ALU | BPF_DIV | BPF_K:
1425
case BPF_ALU64 | BPF_DIV | BPF_K:
1426
emit_a64_mov_i(is64, tmp, imm, ctx);
1427
if (!off)
1428
emit(A64_UDIV(is64, dst, dst, tmp), ctx);
1429
else
1430
emit(A64_SDIV(is64, dst, dst, tmp), ctx);
1431
break;
1432
case BPF_ALU | BPF_MOD | BPF_K:
1433
case BPF_ALU64 | BPF_MOD | BPF_K:
1434
emit_a64_mov_i(is64, tmp2, imm, ctx);
1435
if (!off)
1436
emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
1437
else
1438
emit(A64_SDIV(is64, tmp, dst, tmp2), ctx);
1439
emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
1440
break;
1441
case BPF_ALU | BPF_LSH | BPF_K:
1442
case BPF_ALU64 | BPF_LSH | BPF_K:
1443
emit(A64_LSL(is64, dst, dst, imm), ctx);
1444
break;
1445
case BPF_ALU | BPF_RSH | BPF_K:
1446
case BPF_ALU64 | BPF_RSH | BPF_K:
1447
emit(A64_LSR(is64, dst, dst, imm), ctx);
1448
break;
1449
case BPF_ALU | BPF_ARSH | BPF_K:
1450
case BPF_ALU64 | BPF_ARSH | BPF_K:
1451
emit(A64_ASR(is64, dst, dst, imm), ctx);
1452
break;
1453
1454
/* JUMP off */
1455
case BPF_JMP | BPF_JA:
1456
case BPF_JMP32 | BPF_JA:
1457
if (BPF_CLASS(code) == BPF_JMP)
1458
jmp_offset = bpf2a64_offset(i, off, ctx);
1459
else
1460
jmp_offset = bpf2a64_offset(i, imm, ctx);
1461
check_imm26(jmp_offset);
1462
emit(A64_B(jmp_offset), ctx);
1463
break;
1464
/* IF (dst COND src) JUMP off */
1465
case BPF_JMP | BPF_JEQ | BPF_X:
1466
case BPF_JMP | BPF_JGT | BPF_X:
1467
case BPF_JMP | BPF_JLT | BPF_X:
1468
case BPF_JMP | BPF_JGE | BPF_X:
1469
case BPF_JMP | BPF_JLE | BPF_X:
1470
case BPF_JMP | BPF_JNE | BPF_X:
1471
case BPF_JMP | BPF_JSGT | BPF_X:
1472
case BPF_JMP | BPF_JSLT | BPF_X:
1473
case BPF_JMP | BPF_JSGE | BPF_X:
1474
case BPF_JMP | BPF_JSLE | BPF_X:
1475
case BPF_JMP32 | BPF_JEQ | BPF_X:
1476
case BPF_JMP32 | BPF_JGT | BPF_X:
1477
case BPF_JMP32 | BPF_JLT | BPF_X:
1478
case BPF_JMP32 | BPF_JGE | BPF_X:
1479
case BPF_JMP32 | BPF_JLE | BPF_X:
1480
case BPF_JMP32 | BPF_JNE | BPF_X:
1481
case BPF_JMP32 | BPF_JSGT | BPF_X:
1482
case BPF_JMP32 | BPF_JSLT | BPF_X:
1483
case BPF_JMP32 | BPF_JSGE | BPF_X:
1484
case BPF_JMP32 | BPF_JSLE | BPF_X:
1485
emit(A64_CMP(is64, dst, src), ctx);
1486
emit_cond_jmp:
1487
jmp_offset = bpf2a64_offset(i, off, ctx);
1488
check_imm19(jmp_offset);
1489
switch (BPF_OP(code)) {
1490
case BPF_JEQ:
1491
jmp_cond = A64_COND_EQ;
1492
break;
1493
case BPF_JGT:
1494
jmp_cond = A64_COND_HI;
1495
break;
1496
case BPF_JLT:
1497
jmp_cond = A64_COND_CC;
1498
break;
1499
case BPF_JGE:
1500
jmp_cond = A64_COND_CS;
1501
break;
1502
case BPF_JLE:
1503
jmp_cond = A64_COND_LS;
1504
break;
1505
case BPF_JSET:
1506
case BPF_JNE:
1507
jmp_cond = A64_COND_NE;
1508
break;
1509
case BPF_JSGT:
1510
jmp_cond = A64_COND_GT;
1511
break;
1512
case BPF_JSLT:
1513
jmp_cond = A64_COND_LT;
1514
break;
1515
case BPF_JSGE:
1516
jmp_cond = A64_COND_GE;
1517
break;
1518
case BPF_JSLE:
1519
jmp_cond = A64_COND_LE;
1520
break;
1521
default:
1522
return -EFAULT;
1523
}
1524
emit(A64_B_(jmp_cond, jmp_offset), ctx);
1525
break;
1526
case BPF_JMP | BPF_JSET | BPF_X:
1527
case BPF_JMP32 | BPF_JSET | BPF_X:
1528
emit(A64_TST(is64, dst, src), ctx);
1529
goto emit_cond_jmp;
1530
/* IF (dst COND imm) JUMP off */
1531
case BPF_JMP | BPF_JEQ | BPF_K:
1532
case BPF_JMP | BPF_JGT | BPF_K:
1533
case BPF_JMP | BPF_JLT | BPF_K:
1534
case BPF_JMP | BPF_JGE | BPF_K:
1535
case BPF_JMP | BPF_JLE | BPF_K:
1536
case BPF_JMP | BPF_JNE | BPF_K:
1537
case BPF_JMP | BPF_JSGT | BPF_K:
1538
case BPF_JMP | BPF_JSLT | BPF_K:
1539
case BPF_JMP | BPF_JSGE | BPF_K:
1540
case BPF_JMP | BPF_JSLE | BPF_K:
1541
case BPF_JMP32 | BPF_JEQ | BPF_K:
1542
case BPF_JMP32 | BPF_JGT | BPF_K:
1543
case BPF_JMP32 | BPF_JLT | BPF_K:
1544
case BPF_JMP32 | BPF_JGE | BPF_K:
1545
case BPF_JMP32 | BPF_JLE | BPF_K:
1546
case BPF_JMP32 | BPF_JNE | BPF_K:
1547
case BPF_JMP32 | BPF_JSGT | BPF_K:
1548
case BPF_JMP32 | BPF_JSLT | BPF_K:
1549
case BPF_JMP32 | BPF_JSGE | BPF_K:
1550
case BPF_JMP32 | BPF_JSLE | BPF_K:
1551
if (is_addsub_imm(imm)) {
1552
emit(A64_CMP_I(is64, dst, imm), ctx);
1553
} else if (is_addsub_imm(-(u32)imm)) {
1554
emit(A64_CMN_I(is64, dst, -imm), ctx);
1555
} else {
1556
emit_a64_mov_i(is64, tmp, imm, ctx);
1557
emit(A64_CMP(is64, dst, tmp), ctx);
1558
}
1559
goto emit_cond_jmp;
1560
case BPF_JMP | BPF_JSET | BPF_K:
1561
case BPF_JMP32 | BPF_JSET | BPF_K:
1562
a64_insn = A64_TST_I(is64, dst, imm);
1563
if (a64_insn != AARCH64_BREAK_FAULT) {
1564
emit(a64_insn, ctx);
1565
} else {
1566
emit_a64_mov_i(is64, tmp, imm, ctx);
1567
emit(A64_TST(is64, dst, tmp), ctx);
1568
}
1569
goto emit_cond_jmp;
1570
/* function call */
1571
case BPF_JMP | BPF_CALL:
1572
{
1573
const u8 r0 = bpf2a64[BPF_REG_0];
1574
bool func_addr_fixed;
1575
u64 func_addr;
1576
u32 cpu_offset;
1577
1578
/* Implement helper call to bpf_get_smp_processor_id() inline */
1579
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1580
cpu_offset = offsetof(struct thread_info, cpu);
1581
1582
emit(A64_MRS_SP_EL0(tmp), ctx);
1583
if (is_lsi_offset(cpu_offset, 2)) {
1584
emit(A64_LDR32I(r0, tmp, cpu_offset), ctx);
1585
} else {
1586
emit_a64_mov_i(1, tmp2, cpu_offset, ctx);
1587
emit(A64_LDR32(r0, tmp, tmp2), ctx);
1588
}
1589
break;
1590
}
1591
1592
/* Implement helper call to bpf_get_current_task/_btf() inline */
1593
if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task ||
1594
insn->imm == BPF_FUNC_get_current_task_btf)) {
1595
emit(A64_MRS_SP_EL0(r0), ctx);
1596
break;
1597
}
1598
1599
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1600
&func_addr, &func_addr_fixed);
1601
if (ret < 0)
1602
return ret;
1603
emit_call(func_addr, ctx);
1604
/*
1605
* Call to arch_bpf_timed_may_goto() is emitted by the
1606
* verifier and called with custom calling convention with
1607
* first argument and return value in BPF_REG_AX (x9).
1608
*/
1609
if (func_addr != (u64)arch_bpf_timed_may_goto)
1610
emit(A64_MOV(1, r0, A64_R(0)), ctx);
1611
break;
1612
}
1613
/* tail call */
1614
case BPF_JMP | BPF_TAIL_CALL:
1615
if (emit_bpf_tail_call(ctx))
1616
return -EFAULT;
1617
break;
1618
/* function return */
1619
case BPF_JMP | BPF_EXIT:
1620
/* Optimization: when last instruction is EXIT,
1621
simply fallthrough to epilogue. */
1622
if (i == ctx->prog->len - 1)
1623
break;
1624
jmp_offset = epilogue_offset(ctx);
1625
check_imm26(jmp_offset);
1626
emit(A64_B(jmp_offset), ctx);
1627
break;
1628
1629
/* dst = imm64 */
1630
case BPF_LD | BPF_IMM | BPF_DW:
1631
{
1632
const struct bpf_insn insn1 = insn[1];
1633
u64 imm64;
1634
1635
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1636
if (bpf_pseudo_func(insn))
1637
emit_addr_mov_i64(dst, imm64, ctx);
1638
else
1639
emit_a64_mov_i64(dst, imm64, ctx);
1640
1641
return 1;
1642
}
1643
1644
/* LDX: dst = (u64)*(unsigned size *)(src + off) */
1645
case BPF_LDX | BPF_MEM | BPF_W:
1646
case BPF_LDX | BPF_MEM | BPF_H:
1647
case BPF_LDX | BPF_MEM | BPF_B:
1648
case BPF_LDX | BPF_MEM | BPF_DW:
1649
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1650
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1651
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1652
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1653
/* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */
1654
case BPF_LDX | BPF_MEMSX | BPF_B:
1655
case BPF_LDX | BPF_MEMSX | BPF_H:
1656
case BPF_LDX | BPF_MEMSX | BPF_W:
1657
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1658
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1659
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1660
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1661
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1662
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1663
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1664
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B:
1665
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H:
1666
case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W:
1667
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
1668
BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) {
1669
emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx);
1670
src = tmp2;
1671
}
1672
if (src == fp) {
1673
src_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1674
off_adj = off + ctx->stack_size;
1675
} else {
1676
src_adj = src;
1677
off_adj = off;
1678
}
1679
sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX ||
1680
BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1681
BPF_MODE(insn->code) == BPF_PROBE_MEM32SX);
1682
switch (BPF_SIZE(code)) {
1683
case BPF_W:
1684
if (is_lsi_offset(off_adj, 2)) {
1685
if (sign_extend)
1686
emit(A64_LDRSWI(dst, src_adj, off_adj), ctx);
1687
else
1688
emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1689
} else {
1690
emit_a64_mov_i(1, tmp, off, ctx);
1691
if (sign_extend)
1692
emit(A64_LDRSW(dst, src, tmp), ctx);
1693
else
1694
emit(A64_LDR32(dst, src, tmp), ctx);
1695
}
1696
break;
1697
case BPF_H:
1698
if (is_lsi_offset(off_adj, 1)) {
1699
if (sign_extend)
1700
emit(A64_LDRSHI(dst, src_adj, off_adj), ctx);
1701
else
1702
emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1703
} else {
1704
emit_a64_mov_i(1, tmp, off, ctx);
1705
if (sign_extend)
1706
emit(A64_LDRSH(dst, src, tmp), ctx);
1707
else
1708
emit(A64_LDRH(dst, src, tmp), ctx);
1709
}
1710
break;
1711
case BPF_B:
1712
if (is_lsi_offset(off_adj, 0)) {
1713
if (sign_extend)
1714
emit(A64_LDRSBI(dst, src_adj, off_adj), ctx);
1715
else
1716
emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1717
} else {
1718
emit_a64_mov_i(1, tmp, off, ctx);
1719
if (sign_extend)
1720
emit(A64_LDRSB(dst, src, tmp), ctx);
1721
else
1722
emit(A64_LDRB(dst, src, tmp), ctx);
1723
}
1724
break;
1725
case BPF_DW:
1726
if (is_lsi_offset(off_adj, 3)) {
1727
emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1728
} else {
1729
emit_a64_mov_i(1, tmp, off, ctx);
1730
emit(A64_LDR64(dst, src, tmp), ctx);
1731
}
1732
break;
1733
}
1734
1735
ret = add_exception_handler(insn, ctx, dst);
1736
if (ret)
1737
return ret;
1738
break;
1739
1740
/* speculation barrier against v1 and v4 */
1741
case BPF_ST | BPF_NOSPEC:
1742
if (alternative_has_cap_likely(ARM64_HAS_SB)) {
1743
emit(A64_SB, ctx);
1744
} else {
1745
emit(A64_DSB_NSH, ctx);
1746
emit(A64_ISB, ctx);
1747
}
1748
break;
1749
1750
/* ST: *(size *)(dst + off) = imm */
1751
case BPF_ST | BPF_MEM | BPF_W:
1752
case BPF_ST | BPF_MEM | BPF_H:
1753
case BPF_ST | BPF_MEM | BPF_B:
1754
case BPF_ST | BPF_MEM | BPF_DW:
1755
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1756
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1757
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1758
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1759
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1760
emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1761
dst = tmp2;
1762
}
1763
if (dst == fp) {
1764
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1765
off_adj = off + ctx->stack_size;
1766
} else {
1767
dst_adj = dst;
1768
off_adj = off;
1769
}
1770
/* Load imm to a register then store it */
1771
emit_a64_mov_i(1, tmp, imm, ctx);
1772
switch (BPF_SIZE(code)) {
1773
case BPF_W:
1774
if (is_lsi_offset(off_adj, 2)) {
1775
emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1776
} else {
1777
emit_a64_mov_i(1, tmp2, off, ctx);
1778
emit(A64_STR32(tmp, dst, tmp2), ctx);
1779
}
1780
break;
1781
case BPF_H:
1782
if (is_lsi_offset(off_adj, 1)) {
1783
emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1784
} else {
1785
emit_a64_mov_i(1, tmp2, off, ctx);
1786
emit(A64_STRH(tmp, dst, tmp2), ctx);
1787
}
1788
break;
1789
case BPF_B:
1790
if (is_lsi_offset(off_adj, 0)) {
1791
emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1792
} else {
1793
emit_a64_mov_i(1, tmp2, off, ctx);
1794
emit(A64_STRB(tmp, dst, tmp2), ctx);
1795
}
1796
break;
1797
case BPF_DW:
1798
if (is_lsi_offset(off_adj, 3)) {
1799
emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1800
} else {
1801
emit_a64_mov_i(1, tmp2, off, ctx);
1802
emit(A64_STR64(tmp, dst, tmp2), ctx);
1803
}
1804
break;
1805
}
1806
1807
ret = add_exception_handler(insn, ctx, dst);
1808
if (ret)
1809
return ret;
1810
break;
1811
1812
/* STX: *(size *)(dst + off) = src */
1813
case BPF_STX | BPF_MEM | BPF_W:
1814
case BPF_STX | BPF_MEM | BPF_H:
1815
case BPF_STX | BPF_MEM | BPF_B:
1816
case BPF_STX | BPF_MEM | BPF_DW:
1817
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1818
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1819
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1820
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1821
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1822
emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1823
dst = tmp2;
1824
}
1825
if (dst == fp) {
1826
dst_adj = ctx->priv_sp_used ? priv_sp : A64_SP;
1827
off_adj = off + ctx->stack_size;
1828
} else {
1829
dst_adj = dst;
1830
off_adj = off;
1831
}
1832
switch (BPF_SIZE(code)) {
1833
case BPF_W:
1834
if (is_lsi_offset(off_adj, 2)) {
1835
emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1836
} else {
1837
emit_a64_mov_i(1, tmp, off, ctx);
1838
emit(A64_STR32(src, dst, tmp), ctx);
1839
}
1840
break;
1841
case BPF_H:
1842
if (is_lsi_offset(off_adj, 1)) {
1843
emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1844
} else {
1845
emit_a64_mov_i(1, tmp, off, ctx);
1846
emit(A64_STRH(src, dst, tmp), ctx);
1847
}
1848
break;
1849
case BPF_B:
1850
if (is_lsi_offset(off_adj, 0)) {
1851
emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1852
} else {
1853
emit_a64_mov_i(1, tmp, off, ctx);
1854
emit(A64_STRB(src, dst, tmp), ctx);
1855
}
1856
break;
1857
case BPF_DW:
1858
if (is_lsi_offset(off_adj, 3)) {
1859
emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1860
} else {
1861
emit_a64_mov_i(1, tmp, off, ctx);
1862
emit(A64_STR64(src, dst, tmp), ctx);
1863
}
1864
break;
1865
}
1866
1867
ret = add_exception_handler(insn, ctx, dst);
1868
if (ret)
1869
return ret;
1870
break;
1871
1872
case BPF_STX | BPF_ATOMIC | BPF_B:
1873
case BPF_STX | BPF_ATOMIC | BPF_H:
1874
case BPF_STX | BPF_ATOMIC | BPF_W:
1875
case BPF_STX | BPF_ATOMIC | BPF_DW:
1876
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1877
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1878
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1879
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1880
if (bpf_atomic_is_load_store(insn))
1881
ret = emit_atomic_ld_st(insn, ctx);
1882
else if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1883
ret = emit_lse_atomic(insn, ctx);
1884
else
1885
ret = emit_ll_sc_atomic(insn, ctx);
1886
if (ret)
1887
return ret;
1888
1889
if (BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
1890
ret = add_exception_handler(insn, ctx, dst);
1891
if (ret)
1892
return ret;
1893
}
1894
break;
1895
1896
default:
1897
pr_err_once("unknown opcode %02x\n", code);
1898
return -EINVAL;
1899
}
1900
1901
return 0;
1902
}
1903
1904
static int build_body(struct jit_ctx *ctx, bool extra_pass)
1905
{
1906
const struct bpf_prog *prog = ctx->prog;
1907
int i;
1908
1909
/*
1910
* - offset[0] offset of the end of prologue,
1911
* start of the 1st instruction.
1912
* - offset[1] - offset of the end of 1st instruction,
1913
* start of the 2nd instruction
1914
* [....]
1915
* - offset[3] - offset of the end of 3rd instruction,
1916
* start of 4th instruction
1917
*/
1918
for (i = 0; i < prog->len; i++) {
1919
const struct bpf_insn *insn = &prog->insnsi[i];
1920
int ret;
1921
1922
ctx->offset[i] = ctx->idx;
1923
ret = build_insn(insn, ctx, extra_pass);
1924
if (ret > 0) {
1925
i++;
1926
ctx->offset[i] = ctx->idx;
1927
continue;
1928
}
1929
if (ret)
1930
return ret;
1931
}
1932
/*
1933
* offset is allocated with prog->len + 1 so fill in
1934
* the last element with the offset after the last
1935
* instruction (end of program)
1936
*/
1937
ctx->offset[i] = ctx->idx;
1938
1939
return 0;
1940
}
1941
1942
static int validate_code(struct jit_ctx *ctx)
1943
{
1944
int i;
1945
1946
for (i = 0; i < ctx->idx; i++) {
1947
u32 a64_insn = le32_to_cpu(ctx->image[i]);
1948
1949
if (a64_insn == AARCH64_BREAK_FAULT)
1950
return -1;
1951
}
1952
return 0;
1953
}
1954
1955
static int validate_ctx(struct jit_ctx *ctx)
1956
{
1957
if (validate_code(ctx))
1958
return -1;
1959
1960
if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1961
return -1;
1962
1963
return 0;
1964
}
1965
1966
static inline void bpf_flush_icache(void *start, void *end)
1967
{
1968
flush_icache_range((unsigned long)start, (unsigned long)end);
1969
}
1970
1971
static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
1972
{
1973
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1974
u64 *stack_ptr;
1975
1976
for_each_possible_cpu(cpu) {
1977
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1978
stack_ptr[0] = PRIV_STACK_GUARD_VAL;
1979
stack_ptr[1] = PRIV_STACK_GUARD_VAL;
1980
stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
1981
stack_ptr[underflow_idx + 1] = PRIV_STACK_GUARD_VAL;
1982
}
1983
}
1984
1985
static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
1986
struct bpf_prog *prog)
1987
{
1988
int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
1989
u64 *stack_ptr;
1990
1991
for_each_possible_cpu(cpu) {
1992
stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
1993
if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
1994
stack_ptr[1] != PRIV_STACK_GUARD_VAL ||
1995
stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL ||
1996
stack_ptr[underflow_idx + 1] != PRIV_STACK_GUARD_VAL) {
1997
pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
1998
bpf_jit_get_prog_name(prog));
1999
break;
2000
}
2001
}
2002
}
2003
2004
struct arm64_jit_data {
2005
struct bpf_binary_header *header;
2006
u8 *ro_image;
2007
struct bpf_binary_header *ro_header;
2008
struct jit_ctx ctx;
2009
};
2010
2011
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2012
{
2013
int image_size, prog_size, extable_size, extable_align, extable_offset;
2014
struct bpf_prog *tmp, *orig_prog = prog;
2015
struct bpf_binary_header *header;
2016
struct bpf_binary_header *ro_header = NULL;
2017
struct arm64_jit_data *jit_data;
2018
void __percpu *priv_stack_ptr = NULL;
2019
bool was_classic = bpf_prog_was_classic(prog);
2020
int priv_stack_alloc_sz;
2021
bool tmp_blinded = false;
2022
bool extra_pass = false;
2023
struct jit_ctx ctx;
2024
u8 *image_ptr;
2025
u8 *ro_image_ptr;
2026
int body_idx;
2027
int exentry_idx;
2028
2029
if (!prog->jit_requested)
2030
return orig_prog;
2031
2032
tmp = bpf_jit_blind_constants(prog);
2033
/* If blinding was requested and we failed during blinding,
2034
* we must fall back to the interpreter.
2035
*/
2036
if (IS_ERR(tmp))
2037
return orig_prog;
2038
if (tmp != prog) {
2039
tmp_blinded = true;
2040
prog = tmp;
2041
}
2042
2043
jit_data = prog->aux->jit_data;
2044
if (!jit_data) {
2045
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2046
if (!jit_data) {
2047
prog = orig_prog;
2048
goto out;
2049
}
2050
prog->aux->jit_data = jit_data;
2051
}
2052
priv_stack_ptr = prog->aux->priv_stack_ptr;
2053
if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
2054
/* Allocate actual private stack size with verifier-calculated
2055
* stack size plus two memory guards to protect overflow and
2056
* underflow.
2057
*/
2058
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
2059
2 * PRIV_STACK_GUARD_SZ;
2060
priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 16, GFP_KERNEL);
2061
if (!priv_stack_ptr) {
2062
prog = orig_prog;
2063
goto out_priv_stack;
2064
}
2065
2066
priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
2067
prog->aux->priv_stack_ptr = priv_stack_ptr;
2068
}
2069
if (jit_data->ctx.offset) {
2070
ctx = jit_data->ctx;
2071
ro_image_ptr = jit_data->ro_image;
2072
ro_header = jit_data->ro_header;
2073
header = jit_data->header;
2074
image_ptr = (void *)header + ((void *)ro_image_ptr
2075
- (void *)ro_header);
2076
extra_pass = true;
2077
prog_size = sizeof(u32) * ctx.idx;
2078
goto skip_init_ctx;
2079
}
2080
memset(&ctx, 0, sizeof(ctx));
2081
ctx.prog = prog;
2082
2083
ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
2084
if (ctx.offset == NULL) {
2085
prog = orig_prog;
2086
goto out_off;
2087
}
2088
2089
ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
2090
ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena);
2091
2092
if (priv_stack_ptr)
2093
ctx.priv_sp_used = true;
2094
2095
/* Pass 1: Estimate the maximum image size.
2096
*
2097
* BPF line info needs ctx->offset[i] to be the offset of
2098
* instruction[i] in jited image, so build prologue first.
2099
*/
2100
if (build_prologue(&ctx, was_classic)) {
2101
prog = orig_prog;
2102
goto out_off;
2103
}
2104
2105
if (build_body(&ctx, extra_pass)) {
2106
prog = orig_prog;
2107
goto out_off;
2108
}
2109
2110
ctx.epilogue_offset = ctx.idx;
2111
build_epilogue(&ctx, was_classic);
2112
build_plt(&ctx);
2113
2114
extable_align = __alignof__(struct exception_table_entry);
2115
extable_size = prog->aux->num_exentries *
2116
sizeof(struct exception_table_entry);
2117
2118
/* Now we know the maximum image size. */
2119
prog_size = sizeof(u32) * ctx.idx;
2120
/* also allocate space for plt target */
2121
extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
2122
image_size = extable_offset + extable_size;
2123
ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr,
2124
sizeof(u32), &header, &image_ptr,
2125
jit_fill_hole);
2126
if (!ro_header) {
2127
prog = orig_prog;
2128
goto out_off;
2129
}
2130
2131
/* Pass 2: Determine jited position and result for each instruction */
2132
2133
/*
2134
* Use the image(RW) for writing the JITed instructions. But also save
2135
* the ro_image(RX) for calculating the offsets in the image. The RW
2136
* image will be later copied to the RX image from where the program
2137
* will run. The bpf_jit_binary_pack_finalize() will do this copy in the
2138
* final step.
2139
*/
2140
ctx.image = (__le32 *)image_ptr;
2141
ctx.ro_image = (__le32 *)ro_image_ptr;
2142
if (extable_size)
2143
prog->aux->extable = (void *)ro_image_ptr + extable_offset;
2144
skip_init_ctx:
2145
ctx.idx = 0;
2146
ctx.exentry_idx = 0;
2147
ctx.write = true;
2148
2149
build_prologue(&ctx, was_classic);
2150
2151
/* Record exentry_idx and body_idx before first build_body */
2152
exentry_idx = ctx.exentry_idx;
2153
body_idx = ctx.idx;
2154
/* Dont write body instructions to memory for now */
2155
ctx.write = false;
2156
2157
if (build_body(&ctx, extra_pass)) {
2158
prog = orig_prog;
2159
goto out_free_hdr;
2160
}
2161
2162
ctx.epilogue_offset = ctx.idx;
2163
ctx.exentry_idx = exentry_idx;
2164
ctx.idx = body_idx;
2165
ctx.write = true;
2166
2167
/* Pass 3: Adjust jump offset and write final image */
2168
if (build_body(&ctx, extra_pass) ||
2169
WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) {
2170
prog = orig_prog;
2171
goto out_free_hdr;
2172
}
2173
2174
build_epilogue(&ctx, was_classic);
2175
build_plt(&ctx);
2176
2177
/* Extra pass to validate JITed code. */
2178
if (validate_ctx(&ctx)) {
2179
prog = orig_prog;
2180
goto out_free_hdr;
2181
}
2182
2183
/* update the real prog size */
2184
prog_size = sizeof(u32) * ctx.idx;
2185
2186
/* And we're done. */
2187
if (bpf_jit_enable > 1)
2188
bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
2189
2190
if (!prog->is_func || extra_pass) {
2191
/* The jited image may shrink since the jited result for
2192
* BPF_CALL to subprog may be changed from indirect call
2193
* to direct call.
2194
*/
2195
if (extra_pass && ctx.idx > jit_data->ctx.idx) {
2196
pr_err_once("multi-func JIT bug %d > %d\n",
2197
ctx.idx, jit_data->ctx.idx);
2198
prog->bpf_func = NULL;
2199
prog->jited = 0;
2200
prog->jited_len = 0;
2201
goto out_free_hdr;
2202
}
2203
if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) {
2204
/* ro_header has been freed */
2205
ro_header = NULL;
2206
prog = orig_prog;
2207
goto out_off;
2208
}
2209
/*
2210
* The instructions have now been copied to the ROX region from
2211
* where they will execute. Now the data cache has to be cleaned to
2212
* the PoU and the I-cache has to be invalidated for the VAs.
2213
*/
2214
bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx);
2215
} else {
2216
jit_data->ctx = ctx;
2217
jit_data->ro_image = ro_image_ptr;
2218
jit_data->header = header;
2219
jit_data->ro_header = ro_header;
2220
}
2221
2222
prog->bpf_func = (void *)ctx.ro_image + cfi_get_offset();
2223
prog->jited = 1;
2224
prog->jited_len = prog_size - cfi_get_offset();
2225
2226
if (!prog->is_func || extra_pass) {
2227
int i;
2228
2229
/* offset[prog->len] is the size of program */
2230
for (i = 0; i <= prog->len; i++)
2231
ctx.offset[i] *= AARCH64_INSN_SIZE;
2232
bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
2233
out_off:
2234
if (!ro_header && priv_stack_ptr) {
2235
free_percpu(priv_stack_ptr);
2236
prog->aux->priv_stack_ptr = NULL;
2237
}
2238
kvfree(ctx.offset);
2239
out_priv_stack:
2240
kfree(jit_data);
2241
prog->aux->jit_data = NULL;
2242
}
2243
out:
2244
if (tmp_blinded)
2245
bpf_jit_prog_release_other(prog, prog == orig_prog ?
2246
tmp : orig_prog);
2247
return prog;
2248
2249
out_free_hdr:
2250
if (header) {
2251
bpf_arch_text_copy(&ro_header->size, &header->size,
2252
sizeof(header->size));
2253
bpf_jit_binary_pack_free(ro_header, header);
2254
}
2255
goto out_off;
2256
}
2257
2258
bool bpf_jit_supports_private_stack(void)
2259
{
2260
return true;
2261
}
2262
2263
bool bpf_jit_supports_kfunc_call(void)
2264
{
2265
return true;
2266
}
2267
2268
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2269
{
2270
if (!aarch64_insn_copy(dst, src, len))
2271
return ERR_PTR(-EINVAL);
2272
return dst;
2273
}
2274
2275
u64 bpf_jit_alloc_exec_limit(void)
2276
{
2277
return VMALLOC_END - VMALLOC_START;
2278
}
2279
2280
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2281
bool bpf_jit_supports_subprog_tailcalls(void)
2282
{
2283
return true;
2284
}
2285
2286
static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
2287
int bargs_off, int retval_off, int run_ctx_off,
2288
bool save_ret)
2289
{
2290
__le32 *branch;
2291
u64 enter_prog;
2292
u64 exit_prog;
2293
struct bpf_prog *p = l->link.prog;
2294
int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2295
2296
enter_prog = (u64)bpf_trampoline_enter(p);
2297
exit_prog = (u64)bpf_trampoline_exit(p);
2298
2299
if (l->cookie == 0) {
2300
/* if cookie is zero, one instruction is enough to store it */
2301
emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
2302
} else {
2303
emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
2304
emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
2305
ctx);
2306
}
2307
2308
/* save p to callee saved register x19 to avoid loading p with mov_i64
2309
* each time.
2310
*/
2311
emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
2312
2313
/* arg1: prog */
2314
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2315
/* arg2: &run_ctx */
2316
emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
2317
2318
emit_call(enter_prog, ctx);
2319
2320
/* save return value to callee saved register x20 */
2321
emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
2322
2323
/* if (__bpf_prog_enter(prog) == 0)
2324
* goto skip_exec_of_prog;
2325
*/
2326
branch = ctx->image + ctx->idx;
2327
emit(A64_NOP, ctx);
2328
2329
emit(A64_ADD_I(1, A64_R(0), A64_SP, bargs_off), ctx);
2330
if (!p->jited)
2331
emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
2332
2333
emit_call((const u64)p->bpf_func, ctx);
2334
2335
if (save_ret)
2336
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2337
2338
if (ctx->image) {
2339
int offset = &ctx->image[ctx->idx] - branch;
2340
*branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
2341
}
2342
2343
/* arg1: prog */
2344
emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
2345
/* arg2: start time */
2346
emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
2347
/* arg3: &run_ctx */
2348
emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
2349
2350
emit_call(exit_prog, ctx);
2351
}
2352
2353
static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
2354
int bargs_off, int retval_off, int run_ctx_off,
2355
__le32 **branches)
2356
{
2357
int i;
2358
2359
/* The first fmod_ret program will receive a garbage return value.
2360
* Set this to 0 to avoid confusing the program.
2361
*/
2362
emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
2363
for (i = 0; i < tl->nr_links; i++) {
2364
invoke_bpf_prog(ctx, tl->links[i], bargs_off, retval_off,
2365
run_ctx_off, true);
2366
/* if (*(u64 *)(sp + retval_off) != 0)
2367
* goto do_fexit;
2368
*/
2369
emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
2370
/* Save the location of branch, and generate a nop.
2371
* This nop will be replaced with a cbnz later.
2372
*/
2373
branches[i] = ctx->image + ctx->idx;
2374
emit(A64_NOP, ctx);
2375
}
2376
}
2377
2378
struct arg_aux {
2379
/* how many args are passed through registers, the rest of the args are
2380
* passed through stack
2381
*/
2382
int args_in_regs;
2383
/* how many registers are used to pass arguments */
2384
int regs_for_args;
2385
/* how much stack is used for additional args passed to bpf program
2386
* that did not fit in original function registers
2387
*/
2388
int bstack_for_args;
2389
/* home much stack is used for additional args passed to the
2390
* original function when called from trampoline (this one needs
2391
* arguments to be properly aligned)
2392
*/
2393
int ostack_for_args;
2394
};
2395
2396
static int calc_arg_aux(const struct btf_func_model *m,
2397
struct arg_aux *a)
2398
{
2399
int stack_slots, nregs, slots, i;
2400
2401
/* verifier ensures m->nr_args <= MAX_BPF_FUNC_ARGS */
2402
for (i = 0, nregs = 0; i < m->nr_args; i++) {
2403
slots = (m->arg_size[i] + 7) / 8;
2404
if (nregs + slots <= 8) /* passed through register ? */
2405
nregs += slots;
2406
else
2407
break;
2408
}
2409
2410
a->args_in_regs = i;
2411
a->regs_for_args = nregs;
2412
a->ostack_for_args = 0;
2413
a->bstack_for_args = 0;
2414
2415
/* the rest arguments are passed through stack */
2416
for (; i < m->nr_args; i++) {
2417
stack_slots = (m->arg_size[i] + 7) / 8;
2418
a->bstack_for_args += stack_slots * 8;
2419
a->ostack_for_args = a->ostack_for_args + stack_slots * 8;
2420
}
2421
2422
return 0;
2423
}
2424
2425
static void clear_garbage(struct jit_ctx *ctx, int reg, int effective_bytes)
2426
{
2427
if (effective_bytes) {
2428
int garbage_bits = 64 - 8 * effective_bytes;
2429
#ifdef CONFIG_CPU_BIG_ENDIAN
2430
/* garbage bits are at the right end */
2431
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2432
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2433
#else
2434
/* garbage bits are at the left end */
2435
emit(A64_LSL(1, reg, reg, garbage_bits), ctx);
2436
emit(A64_LSR(1, reg, reg, garbage_bits), ctx);
2437
#endif
2438
}
2439
}
2440
2441
static void save_args(struct jit_ctx *ctx, int bargs_off, int oargs_off,
2442
const struct btf_func_model *m,
2443
const struct arg_aux *a,
2444
bool for_call_origin)
2445
{
2446
int i;
2447
int reg;
2448
int doff;
2449
int soff;
2450
int slots;
2451
u8 tmp = bpf2a64[TMP_REG_1];
2452
2453
/* store arguments to the stack for the bpf program, or restore
2454
* arguments from stack for the original function
2455
*/
2456
for (reg = 0; reg < a->regs_for_args; reg++) {
2457
emit(for_call_origin ?
2458
A64_LDR64I(reg, A64_SP, bargs_off) :
2459
A64_STR64I(reg, A64_SP, bargs_off),
2460
ctx);
2461
bargs_off += 8;
2462
}
2463
2464
soff = 32; /* on stack arguments start from FP + 32 */
2465
doff = (for_call_origin ? oargs_off : bargs_off);
2466
2467
/* save on stack arguments */
2468
for (i = a->args_in_regs; i < m->nr_args; i++) {
2469
slots = (m->arg_size[i] + 7) / 8;
2470
/* verifier ensures arg_size <= 16, so slots equals 1 or 2 */
2471
while (slots-- > 0) {
2472
emit(A64_LDR64I(tmp, A64_FP, soff), ctx);
2473
/* if there is unused space in the last slot, clear
2474
* the garbage contained in the space.
2475
*/
2476
if (slots == 0 && !for_call_origin)
2477
clear_garbage(ctx, tmp, m->arg_size[i] % 8);
2478
emit(A64_STR64I(tmp, A64_SP, doff), ctx);
2479
soff += 8;
2480
doff += 8;
2481
}
2482
}
2483
}
2484
2485
static void restore_args(struct jit_ctx *ctx, int bargs_off, int nregs)
2486
{
2487
int reg;
2488
2489
for (reg = 0; reg < nregs; reg++) {
2490
emit(A64_LDR64I(reg, A64_SP, bargs_off), ctx);
2491
bargs_off += 8;
2492
}
2493
}
2494
2495
static bool is_struct_ops_tramp(const struct bpf_tramp_links *fentry_links)
2496
{
2497
return fentry_links->nr_links == 1 &&
2498
fentry_links->links[0]->link.type == BPF_LINK_TYPE_STRUCT_OPS;
2499
}
2500
2501
/* Based on the x86's implementation of arch_prepare_bpf_trampoline().
2502
*
2503
* bpf prog and function entry before bpf trampoline hooked:
2504
* mov x9, lr
2505
* nop
2506
*
2507
* bpf prog and function entry after bpf trampoline hooked:
2508
* mov x9, lr
2509
* bl <bpf_trampoline or plt>
2510
*
2511
*/
2512
static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
2513
struct bpf_tramp_links *tlinks, void *func_addr,
2514
const struct btf_func_model *m,
2515
const struct arg_aux *a,
2516
u32 flags)
2517
{
2518
int i;
2519
int stack_size;
2520
int retaddr_off;
2521
int regs_off;
2522
int retval_off;
2523
int bargs_off;
2524
int nfuncargs_off;
2525
int ip_off;
2526
int run_ctx_off;
2527
int oargs_off;
2528
int nfuncargs;
2529
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2530
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2531
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2532
bool save_ret;
2533
__le32 **branches = NULL;
2534
bool is_struct_ops = is_struct_ops_tramp(fentry);
2535
2536
/* trampoline stack layout:
2537
* [ parent ip ]
2538
* [ FP ]
2539
* SP + retaddr_off [ self ip ]
2540
* [ FP ]
2541
*
2542
* [ padding ] align SP to multiples of 16
2543
*
2544
* [ x20 ] callee saved reg x20
2545
* SP + regs_off [ x19 ] callee saved reg x19
2546
*
2547
* SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
2548
* BPF_TRAMP_F_RET_FENTRY_RET
2549
* [ arg reg N ]
2550
* [ ... ]
2551
* SP + bargs_off [ arg reg 1 ] for bpf
2552
*
2553
* SP + nfuncargs_off [ arg regs count ]
2554
*
2555
* SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2556
*
2557
* SP + run_ctx_off [ bpf_tramp_run_ctx ]
2558
*
2559
* [ stack arg N ]
2560
* [ ... ]
2561
* SP + oargs_off [ stack arg 1 ] for original func
2562
*/
2563
2564
stack_size = 0;
2565
oargs_off = stack_size;
2566
if (flags & BPF_TRAMP_F_CALL_ORIG)
2567
stack_size += a->ostack_for_args;
2568
2569
run_ctx_off = stack_size;
2570
/* room for bpf_tramp_run_ctx */
2571
stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
2572
2573
ip_off = stack_size;
2574
/* room for IP address argument */
2575
if (flags & BPF_TRAMP_F_IP_ARG)
2576
stack_size += 8;
2577
2578
nfuncargs_off = stack_size;
2579
/* room for args count */
2580
stack_size += 8;
2581
2582
bargs_off = stack_size;
2583
/* room for args */
2584
nfuncargs = a->regs_for_args + a->bstack_for_args / 8;
2585
stack_size += 8 * nfuncargs;
2586
2587
/* room for return value */
2588
retval_off = stack_size;
2589
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2590
if (save_ret)
2591
stack_size += 8;
2592
2593
/* room for callee saved registers, currently x19 and x20 are used */
2594
regs_off = stack_size;
2595
stack_size += 16;
2596
2597
/* round up to multiples of 16 to avoid SPAlignmentFault */
2598
stack_size = round_up(stack_size, 16);
2599
2600
/* return address locates above FP */
2601
retaddr_off = stack_size + 8;
2602
2603
if (flags & BPF_TRAMP_F_INDIRECT) {
2604
/*
2605
* Indirect call for bpf_struct_ops
2606
*/
2607
emit_kcfi(cfi_get_func_hash(func_addr), ctx);
2608
}
2609
/* bpf trampoline may be invoked by 3 instruction types:
2610
* 1. bl, attached to bpf prog or kernel function via short jump
2611
* 2. br, attached to bpf prog or kernel function via long jump
2612
* 3. blr, working as a function pointer, used by struct_ops.
2613
* So BTI_JC should used here to support both br and blr.
2614
*/
2615
emit_bti(A64_BTI_JC, ctx);
2616
2617
/* x9 is not set for struct_ops */
2618
if (!is_struct_ops) {
2619
/* frame for parent function */
2620
emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
2621
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2622
}
2623
2624
/* frame for patched function for tracing, or caller for struct_ops */
2625
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
2626
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2627
2628
/* allocate stack space */
2629
emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
2630
2631
if (flags & BPF_TRAMP_F_IP_ARG) {
2632
/* save ip address of the traced function */
2633
emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx);
2634
emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
2635
}
2636
2637
/* save arg regs count*/
2638
emit(A64_MOVZ(1, A64_R(10), nfuncargs, 0), ctx);
2639
emit(A64_STR64I(A64_R(10), A64_SP, nfuncargs_off), ctx);
2640
2641
/* save args for bpf */
2642
save_args(ctx, bargs_off, oargs_off, m, a, false);
2643
2644
/* save callee saved registers */
2645
emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
2646
emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2647
2648
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2649
/* for the first pass, assume the worst case */
2650
if (!ctx->image)
2651
ctx->idx += 4;
2652
else
2653
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2654
emit_call((const u64)__bpf_tramp_enter, ctx);
2655
}
2656
2657
for (i = 0; i < fentry->nr_links; i++)
2658
invoke_bpf_prog(ctx, fentry->links[i], bargs_off,
2659
retval_off, run_ctx_off,
2660
flags & BPF_TRAMP_F_RET_FENTRY_RET);
2661
2662
if (fmod_ret->nr_links) {
2663
branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
2664
GFP_KERNEL);
2665
if (!branches)
2666
return -ENOMEM;
2667
2668
invoke_bpf_mod_ret(ctx, fmod_ret, bargs_off, retval_off,
2669
run_ctx_off, branches);
2670
}
2671
2672
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2673
/* save args for original func */
2674
save_args(ctx, bargs_off, oargs_off, m, a, true);
2675
/* call original func */
2676
emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
2677
emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx);
2678
emit(A64_RET(A64_R(10)), ctx);
2679
/* store return value */
2680
emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2681
/* reserve a nop for bpf_tramp_image_put */
2682
im->ip_after_call = ctx->ro_image + ctx->idx;
2683
emit(A64_NOP, ctx);
2684
}
2685
2686
/* update the branches saved in invoke_bpf_mod_ret with cbnz */
2687
for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
2688
int offset = &ctx->image[ctx->idx] - branches[i];
2689
*branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
2690
}
2691
2692
for (i = 0; i < fexit->nr_links; i++)
2693
invoke_bpf_prog(ctx, fexit->links[i], bargs_off, retval_off,
2694
run_ctx_off, false);
2695
2696
if (flags & BPF_TRAMP_F_CALL_ORIG) {
2697
im->ip_epilogue = ctx->ro_image + ctx->idx;
2698
/* for the first pass, assume the worst case */
2699
if (!ctx->image)
2700
ctx->idx += 4;
2701
else
2702
emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2703
emit_call((const u64)__bpf_tramp_exit, ctx);
2704
}
2705
2706
if (flags & BPF_TRAMP_F_RESTORE_REGS)
2707
restore_args(ctx, bargs_off, a->regs_for_args);
2708
2709
/* restore callee saved register x19 and x20 */
2710
emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
2711
emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2712
2713
if (save_ret)
2714
emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
2715
2716
/* reset SP */
2717
emit(A64_MOV(1, A64_SP, A64_FP), ctx);
2718
2719
if (is_struct_ops) {
2720
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2721
emit(A64_RET(A64_LR), ctx);
2722
} else {
2723
/* pop frames */
2724
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2725
emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
2726
2727
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2728
/* skip patched function, return to parent */
2729
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2730
emit(A64_RET(A64_R(9)), ctx);
2731
} else {
2732
/* return to patched function */
2733
emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
2734
emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2735
emit(A64_RET(A64_R(10)), ctx);
2736
}
2737
}
2738
2739
kfree(branches);
2740
2741
return ctx->idx;
2742
}
2743
2744
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2745
struct bpf_tramp_links *tlinks, void *func_addr)
2746
{
2747
struct jit_ctx ctx = {
2748
.image = NULL,
2749
.idx = 0,
2750
};
2751
struct bpf_tramp_image im;
2752
struct arg_aux aaux;
2753
int ret;
2754
2755
ret = calc_arg_aux(m, &aaux);
2756
if (ret < 0)
2757
return ret;
2758
2759
ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, m, &aaux, flags);
2760
if (ret < 0)
2761
return ret;
2762
2763
return ret < 0 ? ret : ret * AARCH64_INSN_SIZE;
2764
}
2765
2766
void *arch_alloc_bpf_trampoline(unsigned int size)
2767
{
2768
return bpf_prog_pack_alloc(size, jit_fill_hole);
2769
}
2770
2771
void arch_free_bpf_trampoline(void *image, unsigned int size)
2772
{
2773
bpf_prog_pack_free(image, size);
2774
}
2775
2776
int arch_protect_bpf_trampoline(void *image, unsigned int size)
2777
{
2778
return 0;
2779
}
2780
2781
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
2782
void *ro_image_end, const struct btf_func_model *m,
2783
u32 flags, struct bpf_tramp_links *tlinks,
2784
void *func_addr)
2785
{
2786
u32 size = ro_image_end - ro_image;
2787
struct arg_aux aaux;
2788
void *image, *tmp;
2789
int ret;
2790
2791
/* image doesn't need to be in module memory range, so we can
2792
* use kvmalloc.
2793
*/
2794
image = kvmalloc(size, GFP_KERNEL);
2795
if (!image)
2796
return -ENOMEM;
2797
2798
struct jit_ctx ctx = {
2799
.image = image,
2800
.ro_image = ro_image,
2801
.idx = 0,
2802
.write = true,
2803
};
2804
2805
2806
jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image));
2807
ret = calc_arg_aux(m, &aaux);
2808
if (ret)
2809
goto out;
2810
ret = prepare_trampoline(&ctx, im, tlinks, func_addr, m, &aaux, flags);
2811
2812
if (ret > 0 && validate_code(&ctx) < 0) {
2813
ret = -EINVAL;
2814
goto out;
2815
}
2816
2817
if (ret > 0)
2818
ret *= AARCH64_INSN_SIZE;
2819
2820
tmp = bpf_arch_text_copy(ro_image, image, size);
2821
if (IS_ERR(tmp)) {
2822
ret = PTR_ERR(tmp);
2823
goto out;
2824
}
2825
2826
out:
2827
kvfree(image);
2828
return ret;
2829
}
2830
2831
static bool is_long_jump(void *ip, void *target)
2832
{
2833
long offset;
2834
2835
/* NULL target means this is a NOP */
2836
if (!target)
2837
return false;
2838
2839
offset = (long)target - (long)ip;
2840
return offset < -SZ_128M || offset >= SZ_128M;
2841
}
2842
2843
static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2844
void *addr, void *plt, u32 *insn)
2845
{
2846
void *target;
2847
2848
if (!addr) {
2849
*insn = aarch64_insn_gen_nop();
2850
return 0;
2851
}
2852
2853
if (is_long_jump(ip, addr))
2854
target = plt;
2855
else
2856
target = addr;
2857
2858
*insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2859
(unsigned long)target,
2860
type);
2861
2862
return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2863
}
2864
2865
/* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2866
* trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2867
* or @new_addr is NULL, the old or new instruction is NOP.
2868
*
2869
* When @ip is the bpf prog entry, a bpf trampoline is being attached or
2870
* detached. Since bpf trampoline and bpf prog are allocated separately with
2871
* vmalloc, the address distance may exceed 128MB, the maximum branch range.
2872
* So long jump should be handled.
2873
*
2874
* When a bpf prog is constructed, a plt pointing to empty trampoline
2875
* dummy_tramp is placed at the end:
2876
*
2877
* bpf_prog:
2878
* mov x9, lr
2879
* nop // patchsite
2880
* ...
2881
* ret
2882
*
2883
* plt:
2884
* ldr x10, target
2885
* br x10
2886
* target:
2887
* .quad dummy_tramp // plt target
2888
*
2889
* This is also the state when no trampoline is attached.
2890
*
2891
* When a short-jump bpf trampoline is attached, the patchsite is patched
2892
* to a bl instruction to the trampoline directly:
2893
*
2894
* bpf_prog:
2895
* mov x9, lr
2896
* bl <short-jump bpf trampoline address> // patchsite
2897
* ...
2898
* ret
2899
*
2900
* plt:
2901
* ldr x10, target
2902
* br x10
2903
* target:
2904
* .quad dummy_tramp // plt target
2905
*
2906
* When a long-jump bpf trampoline is attached, the plt target is filled with
2907
* the trampoline address and the patchsite is patched to a bl instruction to
2908
* the plt:
2909
*
2910
* bpf_prog:
2911
* mov x9, lr
2912
* bl plt // patchsite
2913
* ...
2914
* ret
2915
*
2916
* plt:
2917
* ldr x10, target
2918
* br x10
2919
* target:
2920
* .quad <long-jump bpf trampoline address> // plt target
2921
*
2922
* The dummy_tramp is used to prevent another CPU from jumping to unknown
2923
* locations during the patching process, making the patching process easier.
2924
*/
2925
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
2926
void *old_addr, void *new_addr)
2927
{
2928
int ret;
2929
u32 old_insn;
2930
u32 new_insn;
2931
u32 replaced;
2932
struct bpf_plt *plt = NULL;
2933
unsigned long size = 0UL;
2934
unsigned long offset = ~0UL;
2935
enum aarch64_insn_branch_type branch_type;
2936
char namebuf[KSYM_NAME_LEN];
2937
void *image = NULL;
2938
u64 plt_target = 0ULL;
2939
bool poking_bpf_entry;
2940
2941
if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
2942
/* Only poking bpf text is supported. Since kernel function
2943
* entry is set up by ftrace, we reply on ftrace to poke kernel
2944
* functions.
2945
*/
2946
return -ENOTSUPP;
2947
2948
image = ip - offset;
2949
/* zero offset means we're poking bpf prog entry */
2950
poking_bpf_entry = (offset == 0UL);
2951
2952
/* bpf prog entry, find plt and the real patchsite */
2953
if (poking_bpf_entry) {
2954
/* plt locates at the end of bpf prog */
2955
plt = image + size - PLT_TARGET_OFFSET;
2956
2957
/* skip to the nop instruction in bpf prog entry:
2958
* bti c // if BTI enabled
2959
* mov x9, x30
2960
* nop
2961
*/
2962
ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
2963
}
2964
2965
/* long jump is only possible at bpf prog entry */
2966
if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
2967
!poking_bpf_entry))
2968
return -EINVAL;
2969
2970
if (poke_type == BPF_MOD_CALL)
2971
branch_type = AARCH64_INSN_BRANCH_LINK;
2972
else
2973
branch_type = AARCH64_INSN_BRANCH_NOLINK;
2974
2975
if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
2976
return -EFAULT;
2977
2978
if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
2979
return -EFAULT;
2980
2981
if (is_long_jump(ip, new_addr))
2982
plt_target = (u64)new_addr;
2983
else if (is_long_jump(ip, old_addr))
2984
/* if the old target is a long jump and the new target is not,
2985
* restore the plt target to dummy_tramp, so there is always a
2986
* legal and harmless address stored in plt target, and we'll
2987
* never jump from plt to an unknown place.
2988
*/
2989
plt_target = (u64)&dummy_tramp;
2990
2991
if (plt_target) {
2992
/* non-zero plt_target indicates we're patching a bpf prog,
2993
* which is read only.
2994
*/
2995
if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
2996
return -EFAULT;
2997
WRITE_ONCE(plt->target, plt_target);
2998
set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
2999
/* since plt target points to either the new trampoline
3000
* or dummy_tramp, even if another CPU reads the old plt
3001
* target value before fetching the bl instruction to plt,
3002
* it will be brought back by dummy_tramp, so no barrier is
3003
* required here.
3004
*/
3005
}
3006
3007
/* if the old target and the new target are both long jumps, no
3008
* patching is required
3009
*/
3010
if (old_insn == new_insn)
3011
return 0;
3012
3013
mutex_lock(&text_mutex);
3014
if (aarch64_insn_read(ip, &replaced)) {
3015
ret = -EFAULT;
3016
goto out;
3017
}
3018
3019
if (replaced != old_insn) {
3020
ret = -EFAULT;
3021
goto out;
3022
}
3023
3024
/* We call aarch64_insn_patch_text_nosync() to replace instruction
3025
* atomically, so no other CPUs will fetch a half-new and half-old
3026
* instruction. But there is chance that another CPU executes the
3027
* old instruction after the patching operation finishes (e.g.,
3028
* pipeline not flushed, or icache not synchronized yet).
3029
*
3030
* 1. when a new trampoline is attached, it is not a problem for
3031
* different CPUs to jump to different trampolines temporarily.
3032
*
3033
* 2. when an old trampoline is freed, we should wait for all other
3034
* CPUs to exit the trampoline and make sure the trampoline is no
3035
* longer reachable, since bpf_tramp_image_put() function already
3036
* uses percpu_ref and task-based rcu to do the sync, no need to call
3037
* the sync version here, see bpf_tramp_image_put() for details.
3038
*/
3039
ret = aarch64_insn_patch_text_nosync(ip, new_insn);
3040
out:
3041
mutex_unlock(&text_mutex);
3042
3043
return ret;
3044
}
3045
3046
bool bpf_jit_supports_ptr_xchg(void)
3047
{
3048
return true;
3049
}
3050
3051
bool bpf_jit_supports_exceptions(void)
3052
{
3053
/* We unwind through both kernel frames starting from within bpf_throw
3054
* call and BPF frames. Therefore we require FP unwinder to be enabled
3055
* to walk kernel frames and reach BPF frames in the stack trace.
3056
* ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y
3057
*/
3058
return true;
3059
}
3060
3061
bool bpf_jit_supports_arena(void)
3062
{
3063
return true;
3064
}
3065
3066
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3067
{
3068
if (!in_arena)
3069
return true;
3070
switch (insn->code) {
3071
case BPF_STX | BPF_ATOMIC | BPF_W:
3072
case BPF_STX | BPF_ATOMIC | BPF_DW:
3073
if (!bpf_atomic_is_load_store(insn) &&
3074
!cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
3075
return false;
3076
}
3077
return true;
3078
}
3079
3080
bool bpf_jit_supports_percpu_insn(void)
3081
{
3082
return true;
3083
}
3084
3085
bool bpf_jit_bypass_spec_v4(void)
3086
{
3087
/* In case of arm64, we rely on the firmware mitigation of Speculative
3088
* Store Bypass as controlled via the ssbd kernel parameter. Whenever
3089
* the mitigation is enabled, it works for all of the kernel code with
3090
* no need to provide any additional instructions. Therefore, skip
3091
* inserting nospec insns against Spectre v4.
3092
*/
3093
return true;
3094
}
3095
3096
bool bpf_jit_supports_timed_may_goto(void)
3097
{
3098
return true;
3099
}
3100
3101
bool bpf_jit_inlines_helper_call(s32 imm)
3102
{
3103
switch (imm) {
3104
case BPF_FUNC_get_smp_processor_id:
3105
case BPF_FUNC_get_current_task:
3106
case BPF_FUNC_get_current_task_btf:
3107
return true;
3108
default:
3109
return false;
3110
}
3111
}
3112
3113
void bpf_jit_free(struct bpf_prog *prog)
3114
{
3115
if (prog->jited) {
3116
struct arm64_jit_data *jit_data = prog->aux->jit_data;
3117
struct bpf_binary_header *hdr;
3118
void __percpu *priv_stack_ptr;
3119
int priv_stack_alloc_sz;
3120
3121
/*
3122
* If we fail the final pass of JIT (from jit_subprogs),
3123
* the program may not be finalized yet. Call finalize here
3124
* before freeing it.
3125
*/
3126
if (jit_data) {
3127
bpf_jit_binary_pack_finalize(jit_data->ro_header, jit_data->header);
3128
kfree(jit_data);
3129
}
3130
prog->bpf_func -= cfi_get_offset();
3131
hdr = bpf_jit_binary_pack_hdr(prog);
3132
bpf_jit_binary_pack_free(hdr, NULL);
3133
priv_stack_ptr = prog->aux->priv_stack_ptr;
3134
if (priv_stack_ptr) {
3135
priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 16) +
3136
2 * PRIV_STACK_GUARD_SZ;
3137
priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3138
free_percpu(prog->aux->priv_stack_ptr);
3139
}
3140
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3141
}
3142
3143
bpf_prog_unlock_free(prog);
3144
}
3145
3146