Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/openrisc/include/asm/pgtable.h
29268 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* OpenRISC Linux
4
*
5
* Linux architectural port borrowing liberally from similar works of
6
* others. All original copyrights apply as per the original source
7
* declaration.
8
*
9
* OpenRISC implementation:
10
* Copyright (C) 2003 Matjaz Breskvar <[email protected]>
11
* Copyright (C) 2010-2011 Jonas Bonn <[email protected]>
12
* et al.
13
*/
14
15
/* or1k pgtable.h - macros and functions to manipulate page tables
16
*
17
* Based on:
18
* include/asm-cris/pgtable.h
19
*/
20
21
#ifndef __ASM_OPENRISC_PGTABLE_H
22
#define __ASM_OPENRISC_PGTABLE_H
23
24
#include <asm-generic/pgtable-nopmd.h>
25
26
#ifndef __ASSEMBLER__
27
#include <asm/mmu.h>
28
#include <asm/fixmap.h>
29
30
/*
31
* The Linux memory management assumes a three-level page table setup. On
32
* or1k, we use that, but "fold" the mid level into the top-level page
33
* table. Since the MMU TLB is software loaded through an interrupt, it
34
* supports any page table structure, so we could have used a three-level
35
* setup, but for the amounts of memory we normally use, a two-level is
36
* probably more efficient.
37
*
38
* This file contains the functions and defines necessary to modify and use
39
* the or1k page table tree.
40
*/
41
42
extern void paging_init(void);
43
44
/* Certain architectures need to do special things when pte's
45
* within a page table are directly modified. Thus, the following
46
* hook is made available.
47
*/
48
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49
50
/*
51
* (pmds are folded into pgds so this doesn't get actually called,
52
* but the define is needed for a generic inline function.)
53
*/
54
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55
56
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
57
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58
#define PGDIR_MASK (~(PGDIR_SIZE-1))
59
60
/*
61
* entries per page directory level: we use a two-level, so
62
* we don't really have any PMD directory physically.
63
* pointers are 4 bytes so we can use the page size and
64
* divide it by 4 (shift by 2).
65
*/
66
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
67
68
#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
69
70
/* calculate how many PGD entries a user-level program can use
71
* the first mappable virtual address is 0
72
* (TASK_SIZE is the maximum virtual address space)
73
*/
74
75
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
76
77
/*
78
* Kernels own virtual memory area.
79
*/
80
81
/*
82
* The size and location of the vmalloc area are chosen so that modules
83
* placed in this area aren't more than a 28-bit signed offset from any
84
* kernel functions that they may need. This greatly simplifies handling
85
* of the relocations for l.j and l.jal instructions as we don't need to
86
* introduce any trampolines for reaching "distant" code.
87
*
88
* 64 MB of vmalloc area is comparable to what's available on other arches.
89
*/
90
91
#define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
92
#define VMALLOC_END (PAGE_OFFSET)
93
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
94
95
/* Define some higher level generic page attributes.
96
*
97
* If you change _PAGE_CI definition be sure to change it in
98
* io.h for ioremap() too.
99
*/
100
101
/*
102
* An OR32 PTE looks like this:
103
*
104
* | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
105
* Phys pg.num L PP Index D A WOM WBC CI CC
106
*
107
* L : link
108
* PPI: Page protection index
109
* D : Dirty
110
* A : Accessed
111
* WOM: Weakly ordered memory
112
* WBC: Write-back cache
113
* CI : Cache inhibit
114
* CC : Cache coherent
115
*
116
* The protection bits below should correspond to the layout of the actual
117
* PTE as per above
118
*/
119
120
#define _PAGE_CC 0x001 /* software: pte contains a translation */
121
#define _PAGE_CI 0x002 /* cache inhibit */
122
#define _PAGE_WBC 0x004 /* write back cache */
123
#define _PAGE_WOM 0x008 /* weakly ordered memory */
124
125
#define _PAGE_A 0x010 /* accessed */
126
#define _PAGE_D 0x020 /* dirty */
127
#define _PAGE_URE 0x040 /* user read enable */
128
#define _PAGE_UWE 0x080 /* user write enable */
129
130
#define _PAGE_SRE 0x100 /* superuser read enable */
131
#define _PAGE_SWE 0x200 /* superuser write enable */
132
#define _PAGE_EXEC 0x400 /* software: page is executable */
133
#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
134
135
/* 0x001 is cache coherency bit, which should always be set to
136
* 1 - for SMP (when we support it)
137
* 0 - otherwise
138
*
139
* we just reuse this bit in software for _PAGE_PRESENT and
140
* force it to 0 when loading it into TLB.
141
*/
142
#define _PAGE_PRESENT _PAGE_CC
143
#define _PAGE_USER _PAGE_URE
144
#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
145
#define _PAGE_DIRTY _PAGE_D
146
#define _PAGE_ACCESSED _PAGE_A
147
#define _PAGE_NO_CACHE _PAGE_CI
148
#define _PAGE_SHARED _PAGE_U_SHARED
149
#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
150
151
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
152
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
153
#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
154
#define _KERNPG_TABLE \
155
(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
156
157
/* We borrow bit 11 to store the exclusive marker in swap PTEs. */
158
#define _PAGE_SWP_EXCLUSIVE _PAGE_U_SHARED
159
160
#define PAGE_NONE __pgprot(_PAGE_ALL)
161
#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
162
#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
163
#define PAGE_SHARED \
164
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
165
| _PAGE_SHARED)
166
#define PAGE_SHARED_X \
167
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168
| _PAGE_SHARED | _PAGE_EXEC)
169
#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
170
#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
171
172
#define PAGE_KERNEL \
173
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
174
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
175
#define PAGE_KERNEL_RO \
176
__pgprot(_PAGE_ALL | _PAGE_SRE \
177
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178
#define PAGE_KERNEL_NOCACHE \
179
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
180
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
181
182
/* zero page used for uninitialized stuff */
183
extern unsigned long empty_zero_page[2048];
184
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
185
186
#define pte_none(x) (!pte_val(x))
187
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
188
#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
189
190
#define pmd_none(x) (!pmd_val(x))
191
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
192
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
193
#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
194
195
/*
196
* The following only work if pte_present() is true.
197
* Undefined behaviour if not..
198
*/
199
200
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
201
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
202
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
203
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
204
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
205
206
static inline pte_t pte_wrprotect(pte_t pte)
207
{
208
pte_val(pte) &= ~(_PAGE_WRITE);
209
return pte;
210
}
211
212
static inline pte_t pte_rdprotect(pte_t pte)
213
{
214
pte_val(pte) &= ~(_PAGE_READ);
215
return pte;
216
}
217
218
static inline pte_t pte_exprotect(pte_t pte)
219
{
220
pte_val(pte) &= ~(_PAGE_EXEC);
221
return pte;
222
}
223
224
static inline pte_t pte_mkclean(pte_t pte)
225
{
226
pte_val(pte) &= ~(_PAGE_DIRTY);
227
return pte;
228
}
229
230
static inline pte_t pte_mkold(pte_t pte)
231
{
232
pte_val(pte) &= ~(_PAGE_ACCESSED);
233
return pte;
234
}
235
236
static inline pte_t pte_mkwrite_novma(pte_t pte)
237
{
238
pte_val(pte) |= _PAGE_WRITE;
239
return pte;
240
}
241
242
static inline pte_t pte_mkread(pte_t pte)
243
{
244
pte_val(pte) |= _PAGE_READ;
245
return pte;
246
}
247
248
static inline pte_t pte_mkexec(pte_t pte)
249
{
250
pte_val(pte) |= _PAGE_EXEC;
251
return pte;
252
}
253
254
static inline pte_t pte_mkdirty(pte_t pte)
255
{
256
pte_val(pte) |= _PAGE_DIRTY;
257
return pte;
258
}
259
260
static inline pte_t pte_mkyoung(pte_t pte)
261
{
262
pte_val(pte) |= _PAGE_ACCESSED;
263
return pte;
264
}
265
266
/*
267
* Conversion functions: convert a page and protection to a page entry,
268
* and a page entry and page directory to the page they refer to.
269
*/
270
271
/* What actually goes as arguments to the various functions is less than
272
* obvious, but a rule of thumb is that struct page's goes as struct page *,
273
* really physical DRAM addresses are unsigned long's, and DRAM "virtual"
274
* addresses (the 0xc0xxxxxx's) goes as void *'s.
275
*/
276
277
static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
278
{
279
pte_t pte;
280
/* the PTE needs a physical address */
281
pte_val(pte) = __pa(page) | pgprot_val(pgprot);
282
return pte;
283
}
284
285
#define mk_pte_phys(physpage, pgprot) \
286
({ \
287
pte_t __pte; \
288
\
289
pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
290
__pte; \
291
})
292
293
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
294
{
295
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
296
return pte;
297
}
298
299
300
/*
301
* pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
302
* __pte_page(pte_val) refers to the "virtual" DRAM interval
303
* pte_pagenr refers to the page-number counted starting from the virtual
304
* DRAM start
305
*/
306
307
static inline unsigned long __pte_page(pte_t pte)
308
{
309
/* the PTE contains a physical address */
310
return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
311
}
312
313
#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
314
315
/* permanent address of a page */
316
317
#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
318
#define pte_page(pte) (mem_map+pte_pagenr(pte))
319
320
/*
321
* only the pte's themselves need to point to physical DRAM (see above)
322
* the pagetable links are purely handled within the kernel SW and thus
323
* don't need the __pa and __va transformations.
324
*/
325
static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
326
{
327
pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
328
}
329
330
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
331
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
332
333
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
334
{
335
return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
336
}
337
338
#define __pmd_offset(address) \
339
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
340
341
#define PFN_PTE_SHIFT PAGE_SHIFT
342
#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
343
#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
344
345
#define pte_ERROR(e) \
346
printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
347
__FILE__, __LINE__, &(e), pte_val(e))
348
#define pgd_ERROR(e) \
349
printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
350
__FILE__, __LINE__, &(e), pgd_val(e))
351
352
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
353
354
struct vm_area_struct;
355
356
static inline void update_tlb(struct vm_area_struct *vma,
357
unsigned long address, pte_t *pte)
358
{
359
}
360
361
extern void update_cache(struct vm_area_struct *vma,
362
unsigned long address, pte_t *pte);
363
364
static inline void update_mmu_cache_range(struct vm_fault *vmf,
365
struct vm_area_struct *vma, unsigned long address,
366
pte_t *ptep, unsigned int nr)
367
{
368
update_tlb(vma, address, ptep);
369
update_cache(vma, address, ptep);
370
}
371
372
#define update_mmu_cache(vma, addr, ptep) \
373
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
374
375
/* __PHX__ FIXME, SWAP, this probably doesn't work */
376
377
/*
378
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
379
* are !pte_none() && !pte_present().
380
*
381
* Format of swap PTEs:
382
*
383
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
384
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
385
* <-------------- offset ---------------> E <- type --> 0 0 0 0 0
386
*
387
* E is the exclusive marker that is not stored in swap entries.
388
* The zero'ed bits include _PAGE_PRESENT.
389
*/
390
#define __swp_type(x) (((x).val >> 5) & 0x3f)
391
#define __swp_offset(x) ((x).val >> 12)
392
#define __swp_entry(type, offset) \
393
((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) })
394
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
395
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
396
397
static inline bool pte_swp_exclusive(pte_t pte)
398
{
399
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
400
}
401
402
static inline pte_t pte_swp_mkexclusive(pte_t pte)
403
{
404
pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
405
return pte;
406
}
407
408
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
409
{
410
pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
411
return pte;
412
}
413
414
typedef pte_t *pte_addr_t;
415
416
#endif /* __ASSEMBLER__ */
417
#endif /* __ASM_OPENRISC_PGTABLE_H */
418
419