Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/nohash/mmu_context.c
29274 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* This file contains the routines for handling the MMU on those
4
* PowerPC implementations where the MMU is not using the hash
5
* table, such as 8xx, 4xx, BookE's etc...
6
*
7
* Copyright 2008 Ben Herrenschmidt <[email protected]>
8
* IBM Corp.
9
*
10
* Derived from previous arch/powerpc/mm/mmu_context.c
11
* and arch/powerpc/include/asm/mmu_context.h
12
*
13
* TODO:
14
*
15
* - The global context lock will not scale very well
16
* - The maps should be dynamically allocated to allow for processors
17
* that support more PID bits at runtime
18
* - Implement flush_tlb_mm() by making the context stale and picking
19
* a new one
20
* - More aggressively clear stale map bits and maybe find some way to
21
* also clear mm->cpu_vm_mask bits when processes are migrated
22
*/
23
24
#include <linux/kernel.h>
25
#include <linux/mm.h>
26
#include <linux/init.h>
27
#include <linux/spinlock.h>
28
#include <linux/memblock.h>
29
#include <linux/notifier.h>
30
#include <linux/cpu.h>
31
#include <linux/slab.h>
32
33
#include <asm/mmu_context.h>
34
#include <asm/tlbflush.h>
35
#include <asm/smp.h>
36
#include <asm/kup.h>
37
38
#include <mm/mmu_decl.h>
39
40
/*
41
* Room for two PTE table pointers, usually the kernel and current user
42
* pointer to their respective root page table (pgdir).
43
*/
44
void *abatron_pteptrs[2];
45
46
/*
47
* The MPC8xx has only 16 contexts. We rotate through them on each task switch.
48
* A better way would be to keep track of tasks that own contexts, and implement
49
* an LRU usage. That way very active tasks don't always have to pay the TLB
50
* reload overhead. The kernel pages are mapped shared, so the kernel can run on
51
* behalf of any task that makes a kernel entry. Shared does not mean they are
52
* not protected, just that the ASID comparison is not performed. -- Dan
53
*
54
* The IBM4xx has 256 contexts, so we can just rotate through these as a way of
55
* "switching" contexts. If the TID of the TLB is zero, the PID/TID comparison
56
* is disabled, so we can use a TID of zero to represent all kernel pages as
57
* shared among all contexts. -- Dan
58
*
59
* The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We should
60
* normally never have to steal though the facility is present if needed.
61
* -- BenH
62
*/
63
#define FIRST_CONTEXT 1
64
#if defined(CONFIG_PPC_8xx)
65
#define LAST_CONTEXT 16
66
#elif defined(CONFIG_PPC_47x)
67
#define LAST_CONTEXT 65535
68
#else
69
#define LAST_CONTEXT 255
70
#endif
71
72
static unsigned int next_context, nr_free_contexts;
73
static unsigned long *context_map;
74
static unsigned long *stale_map[NR_CPUS];
75
static struct mm_struct **context_mm;
76
static DEFINE_RAW_SPINLOCK(context_lock);
77
78
#define CTX_MAP_SIZE \
79
(sizeof(unsigned long) * (LAST_CONTEXT / BITS_PER_LONG + 1))
80
81
82
/* Steal a context from a task that has one at the moment.
83
*
84
* This is used when we are running out of available PID numbers
85
* on the processors.
86
*
87
* This isn't an LRU system, it just frees up each context in
88
* turn (sort-of pseudo-random replacement :). This would be the
89
* place to implement an LRU scheme if anyone was motivated to do it.
90
* -- paulus
91
*
92
* For context stealing, we use a slightly different approach for
93
* SMP and UP. Basically, the UP one is simpler and doesn't use
94
* the stale map as we can just flush the local CPU
95
* -- benh
96
*/
97
static unsigned int steal_context_smp(unsigned int id)
98
{
99
struct mm_struct *mm;
100
unsigned int cpu, max, i;
101
102
max = LAST_CONTEXT - FIRST_CONTEXT;
103
104
/* Attempt to free next_context first and then loop until we manage */
105
while (max--) {
106
/* Pick up the victim mm */
107
mm = context_mm[id];
108
109
/* We have a candidate victim, check if it's active, on SMP
110
* we cannot steal active contexts
111
*/
112
if (mm->context.active) {
113
id++;
114
if (id > LAST_CONTEXT)
115
id = FIRST_CONTEXT;
116
continue;
117
}
118
119
/* Mark this mm has having no context anymore */
120
mm->context.id = MMU_NO_CONTEXT;
121
122
/* Mark it stale on all CPUs that used this mm. For threaded
123
* implementations, we set it on all threads on each core
124
* represented in the mask. A future implementation will use
125
* a core map instead but this will do for now.
126
*/
127
for_each_cpu(cpu, mm_cpumask(mm)) {
128
for (i = cpu_first_thread_sibling(cpu);
129
i <= cpu_last_thread_sibling(cpu); i++) {
130
if (stale_map[i])
131
__set_bit(id, stale_map[i]);
132
}
133
cpu = i - 1;
134
}
135
return id;
136
}
137
138
/* This will happen if you have more CPUs than available contexts,
139
* all we can do here is wait a bit and try again
140
*/
141
raw_spin_unlock(&context_lock);
142
cpu_relax();
143
raw_spin_lock(&context_lock);
144
145
/* This will cause the caller to try again */
146
return MMU_NO_CONTEXT;
147
}
148
149
static unsigned int steal_all_contexts(void)
150
{
151
struct mm_struct *mm;
152
int cpu = smp_processor_id();
153
unsigned int id;
154
155
for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
156
/* Pick up the victim mm */
157
mm = context_mm[id];
158
159
/* Mark this mm as having no context anymore */
160
mm->context.id = MMU_NO_CONTEXT;
161
if (id != FIRST_CONTEXT) {
162
context_mm[id] = NULL;
163
__clear_bit(id, context_map);
164
}
165
if (IS_ENABLED(CONFIG_SMP))
166
__clear_bit(id, stale_map[cpu]);
167
}
168
169
/* Flush the TLB for all contexts (not to be used on SMP) */
170
_tlbil_all();
171
172
nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT;
173
174
return FIRST_CONTEXT;
175
}
176
177
/* Note that this will also be called on SMP if all other CPUs are
178
* offlined, which means that it may be called for cpu != 0. For
179
* this to work, we somewhat assume that CPUs that are onlined
180
* come up with a fully clean TLB (or are cleaned when offlined)
181
*/
182
static unsigned int steal_context_up(unsigned int id)
183
{
184
struct mm_struct *mm;
185
int cpu = smp_processor_id();
186
187
/* Pick up the victim mm */
188
mm = context_mm[id];
189
190
/* Flush the TLB for that context */
191
local_flush_tlb_mm(mm);
192
193
/* Mark this mm has having no context anymore */
194
mm->context.id = MMU_NO_CONTEXT;
195
196
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
197
if (IS_ENABLED(CONFIG_SMP))
198
__clear_bit(id, stale_map[cpu]);
199
200
return id;
201
}
202
203
static void set_context(unsigned long id, pgd_t *pgd)
204
{
205
if (IS_ENABLED(CONFIG_PPC_8xx)) {
206
mtspr(SPRN_M_TWB, __pa(pgd));
207
208
/* Update context */
209
mtspr(SPRN_M_CASID, id - 1);
210
211
/* sync */
212
mb();
213
} else if (kuap_is_disabled()) {
214
mtspr(SPRN_PID, id);
215
isync();
216
}
217
}
218
219
void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
220
struct task_struct *tsk)
221
{
222
unsigned int id;
223
unsigned int i, cpu = smp_processor_id();
224
unsigned long *map;
225
226
/* No lockless fast path .. yet */
227
raw_spin_lock(&context_lock);
228
229
if (IS_ENABLED(CONFIG_SMP)) {
230
/* Mark us active and the previous one not anymore */
231
next->context.active++;
232
if (prev) {
233
WARN_ON(prev->context.active < 1);
234
prev->context.active--;
235
}
236
}
237
238
again:
239
240
/* If we already have a valid assigned context, skip all that */
241
id = next->context.id;
242
if (likely(id != MMU_NO_CONTEXT))
243
goto ctxt_ok;
244
245
/* We really don't have a context, let's try to acquire one */
246
id = next_context;
247
if (id > LAST_CONTEXT)
248
id = FIRST_CONTEXT;
249
map = context_map;
250
251
/* No more free contexts, let's try to steal one */
252
if (nr_free_contexts == 0) {
253
if (num_online_cpus() > 1) {
254
id = steal_context_smp(id);
255
if (id == MMU_NO_CONTEXT)
256
goto again;
257
goto stolen;
258
}
259
if (IS_ENABLED(CONFIG_PPC_8xx))
260
id = steal_all_contexts();
261
else
262
id = steal_context_up(id);
263
goto stolen;
264
}
265
nr_free_contexts--;
266
267
/* We know there's at least one free context, try to find it */
268
while (__test_and_set_bit(id, map)) {
269
id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
270
if (id > LAST_CONTEXT)
271
id = FIRST_CONTEXT;
272
}
273
stolen:
274
next_context = id + 1;
275
context_mm[id] = next;
276
next->context.id = id;
277
278
ctxt_ok:
279
280
/* If that context got marked stale on this CPU, then flush the
281
* local TLB for it and unmark it before we use it
282
*/
283
if (IS_ENABLED(CONFIG_SMP) && test_bit(id, stale_map[cpu])) {
284
local_flush_tlb_mm(next);
285
286
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
287
for (i = cpu_first_thread_sibling(cpu);
288
i <= cpu_last_thread_sibling(cpu); i++) {
289
if (stale_map[i])
290
__clear_bit(id, stale_map[i]);
291
}
292
}
293
294
/* Flick the MMU and release lock */
295
if (IS_ENABLED(CONFIG_BDI_SWITCH))
296
abatron_pteptrs[1] = next->pgd;
297
set_context(id, next->pgd);
298
#if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
299
tsk->thread.pid = id;
300
#endif
301
raw_spin_unlock(&context_lock);
302
}
303
304
/*
305
* Set up the context for a new address space.
306
*/
307
int init_new_context(struct task_struct *t, struct mm_struct *mm)
308
{
309
mm->context.id = MMU_NO_CONTEXT;
310
mm->context.active = 0;
311
pte_frag_set(&mm->context, NULL);
312
return 0;
313
}
314
315
/*
316
* We're finished using the context for an address space.
317
*/
318
void destroy_context(struct mm_struct *mm)
319
{
320
unsigned long flags;
321
unsigned int id;
322
323
if (mm->context.id == MMU_NO_CONTEXT)
324
return;
325
326
WARN_ON(mm->context.active != 0);
327
328
raw_spin_lock_irqsave(&context_lock, flags);
329
id = mm->context.id;
330
if (id != MMU_NO_CONTEXT) {
331
__clear_bit(id, context_map);
332
mm->context.id = MMU_NO_CONTEXT;
333
context_mm[id] = NULL;
334
nr_free_contexts++;
335
}
336
raw_spin_unlock_irqrestore(&context_lock, flags);
337
}
338
339
static int mmu_ctx_cpu_prepare(unsigned int cpu)
340
{
341
/* We don't touch CPU 0 map, it's allocated at aboot and kept
342
* around forever
343
*/
344
if (cpu == boot_cpuid)
345
return 0;
346
347
stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
348
return 0;
349
}
350
351
static int mmu_ctx_cpu_dead(unsigned int cpu)
352
{
353
#ifdef CONFIG_HOTPLUG_CPU
354
if (cpu == boot_cpuid)
355
return 0;
356
357
kfree(stale_map[cpu]);
358
stale_map[cpu] = NULL;
359
360
/* We also clear the cpu_vm_mask bits of CPUs going away */
361
clear_tasks_mm_cpumask(cpu);
362
#endif
363
return 0;
364
}
365
366
/*
367
* Initialize the context management stuff.
368
*/
369
void __init mmu_context_init(void)
370
{
371
/* Mark init_mm as being active on all possible CPUs since
372
* we'll get called with prev == init_mm the first time
373
* we schedule on a given CPU
374
*/
375
init_mm.context.active = NR_CPUS;
376
377
/*
378
* Allocate the maps used by context management
379
*/
380
context_map = memblock_alloc_or_panic(CTX_MAP_SIZE, SMP_CACHE_BYTES);
381
context_mm = memblock_alloc_or_panic(sizeof(void *) * (LAST_CONTEXT + 1),
382
SMP_CACHE_BYTES);
383
if (IS_ENABLED(CONFIG_SMP)) {
384
stale_map[boot_cpuid] = memblock_alloc_or_panic(CTX_MAP_SIZE, SMP_CACHE_BYTES);
385
cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
386
"powerpc/mmu/ctx:prepare",
387
mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
388
}
389
390
printk(KERN_INFO
391
"MMU: Allocated %zu bytes of context maps for %d contexts\n",
392
2 * CTX_MAP_SIZE + (sizeof(void *) * (LAST_CONTEXT + 1)),
393
LAST_CONTEXT - FIRST_CONTEXT + 1);
394
395
/*
396
* Some processors have too few contexts to reserve one for
397
* init_mm, and require using context 0 for a normal task.
398
* Other processors reserve the use of context zero for the kernel.
399
* This code assumes FIRST_CONTEXT < 32.
400
*/
401
context_map[0] = (1 << FIRST_CONTEXT) - 1;
402
next_context = FIRST_CONTEXT;
403
nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
404
}
405
406