#include <linux/bitops.h>
#include <linux/kvm_host.h>
#include <asm/cpufeature.h>
#include <asm/insn.h>
struct insn_func {
unsigned long mask;
unsigned long match;
int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
};
static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
struct kvm_cpu_trap utrap = { 0 };
utrap.sepc = vcpu->arch.guest_context.sepc;
utrap.scause = EXC_INST_ILLEGAL;
utrap.stval = insn;
utrap.htval = 0;
utrap.htinst = 0;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
struct kvm_cpu_trap utrap = { 0 };
utrap.sepc = vcpu->arch.guest_context.sepc;
utrap.scause = EXC_VIRTUAL_INST_FAULT;
utrap.stval = insn;
utrap.htval = 0;
utrap.htinst = 0;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
{
if (!kvm_arch_vcpu_runnable(vcpu)) {
kvm_vcpu_srcu_read_unlock(vcpu);
kvm_vcpu_halt(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
}
}
static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
vcpu->stat.wfi_exit_stat++;
kvm_riscv_vcpu_wfi(vcpu);
return KVM_INSN_CONTINUE_NEXT_SEPC;
}
static int wrs_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
vcpu->stat.wrs_exit_stat++;
kvm_vcpu_on_spin(vcpu, vcpu->arch.guest_context.sstatus & SR_SPP);
return KVM_INSN_CONTINUE_NEXT_SEPC;
}
struct csr_func {
unsigned int base;
unsigned int count;
int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
unsigned long *val, unsigned long new_val,
unsigned long wr_mask);
};
static int seed_csr_rmw(struct kvm_vcpu *vcpu, unsigned int csr_num,
unsigned long *val, unsigned long new_val,
unsigned long wr_mask)
{
if (!riscv_isa_extension_available(vcpu->arch.isa, ZKR))
return KVM_INSN_ILLEGAL_TRAP;
return KVM_INSN_EXIT_TO_USER_SPACE;
}
static const struct csr_func csr_funcs[] = {
KVM_RISCV_VCPU_AIA_CSR_FUNCS
KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
{ .base = CSR_SEED, .count = 1, .func = seed_csr_rmw },
};
int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
ulong insn;
if (vcpu->arch.csr_decode.return_handled)
return 0;
vcpu->arch.csr_decode.return_handled = 1;
insn = vcpu->arch.csr_decode.insn;
if ((insn >> SH_RD) & MASK_RX)
SET_RD(insn, &vcpu->arch.guest_context,
run->riscv_csr.ret_value);
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
return 0;
}
static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
int i, rc = KVM_INSN_ILLEGAL_TRAP;
unsigned int csr_num = insn >> SH_RS2;
unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
const struct csr_func *tcfn, *cfn = NULL;
ulong val = 0, wr_mask = 0, new_val = 0;
switch (GET_FUNCT3(insn)) {
case GET_FUNCT3(INSN_MATCH_CSRRW):
wr_mask = -1UL;
new_val = rs1_val;
break;
case GET_FUNCT3(INSN_MATCH_CSRRS):
wr_mask = rs1_val;
new_val = -1UL;
break;
case GET_FUNCT3(INSN_MATCH_CSRRC):
wr_mask = rs1_val;
new_val = 0;
break;
case GET_FUNCT3(INSN_MATCH_CSRRWI):
wr_mask = -1UL;
new_val = rs1_num;
break;
case GET_FUNCT3(INSN_MATCH_CSRRSI):
wr_mask = rs1_num;
new_val = -1UL;
break;
case GET_FUNCT3(INSN_MATCH_CSRRCI):
wr_mask = rs1_num;
new_val = 0;
break;
default:
return rc;
}
vcpu->arch.csr_decode.insn = insn;
vcpu->arch.csr_decode.return_handled = 0;
run->riscv_csr.csr_num = csr_num;
run->riscv_csr.new_value = new_val;
run->riscv_csr.write_mask = wr_mask;
run->riscv_csr.ret_value = 0;
for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
tcfn = &csr_funcs[i];
if ((tcfn->base <= csr_num) &&
(csr_num < (tcfn->base + tcfn->count))) {
cfn = tcfn;
break;
}
}
if (cfn && cfn->func) {
rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
run->riscv_csr.ret_value = val;
vcpu->stat.csr_exit_kernel++;
kvm_riscv_vcpu_csr_return(vcpu, run);
rc = KVM_INSN_CONTINUE_SAME_SEPC;
}
return rc;
}
}
if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
vcpu->stat.csr_exit_user++;
run->exit_reason = KVM_EXIT_RISCV_CSR;
}
return rc;
}
static const struct insn_func system_opcode_funcs[] = {
{
.mask = INSN_MASK_CSRRW,
.match = INSN_MATCH_CSRRW,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRS,
.match = INSN_MATCH_CSRRS,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRC,
.match = INSN_MATCH_CSRRC,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRWI,
.match = INSN_MATCH_CSRRWI,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRSI,
.match = INSN_MATCH_CSRRSI,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRCI,
.match = INSN_MATCH_CSRRCI,
.func = csr_insn,
},
{
.mask = INSN_MASK_WFI,
.match = INSN_MATCH_WFI,
.func = wfi_insn,
},
{
.mask = INSN_MASK_WRS,
.match = INSN_MATCH_WRS,
.func = wrs_insn,
},
};
static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
int i, rc = KVM_INSN_ILLEGAL_TRAP;
const struct insn_func *ifn;
for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
ifn = &system_opcode_funcs[i];
if ((insn & ifn->mask) == ifn->match) {
rc = ifn->func(vcpu, run, insn);
break;
}
}
switch (rc) {
case KVM_INSN_ILLEGAL_TRAP:
return truly_illegal_insn(vcpu, run, insn);
case KVM_INSN_VIRTUAL_TRAP:
return truly_virtual_insn(vcpu, run, insn);
case KVM_INSN_CONTINUE_NEXT_SEPC:
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
break;
default:
break;
}
return (rc <= 0) ? rc : 1;
}
int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap)
{
unsigned long insn = trap->stval;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct;
if (unlikely(INSN_IS_16BIT(insn))) {
if (insn == 0) {
ct = &vcpu->arch.guest_context;
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
ct->sepc,
&utrap);
if (utrap.scause) {
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
}
if (INSN_IS_16BIT(insn))
return truly_illegal_insn(vcpu, run, insn);
}
switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
case INSN_OPCODE_SYSTEM:
return system_opcode_insn(vcpu, run, insn);
default:
return truly_illegal_insn(vcpu, run, insn);
}
}
int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr,
unsigned long htinst)
{
u8 data_buf[8];
unsigned long insn;
int shift = 0, len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
if (htinst & 0x1) {
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else {
return -EOPNOTSUPP;
}
if (fault_addr & (len - 1))
return -EIO;
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = shift;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
run->mmio.is_write = false;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
memcpy(run->mmio.data, data_buf, len);
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr,
unsigned long htinst)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong data;
unsigned long insn;
int len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
if (htinst & 0x1) {
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
data = GET_RS2(insn, &vcpu->arch.guest_context);
data8 = data16 = data32 = data64 = data;
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
len = 1;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
} else {
return -EOPNOTSUPP;
}
if (fault_addr & (len - 1))
return -EIO;
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = 0;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
switch (len) {
case 1:
*((u8 *)run->mmio.data) = data8;
break;
case 2:
*((u16 *)run->mmio.data) = data16;
break;
case 4:
*((u32 *)run->mmio.data) = data32;
break;
case 8:
*((u64 *)run->mmio.data) = data64;
break;
default:
return -EOPNOTSUPP;
}
run->mmio.is_write = true;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
fault_addr, len, run->mmio.data)) {
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong insn;
int len, shift;
if (vcpu->arch.mmio_decode.return_handled)
return 0;
vcpu->arch.mmio_decode.return_handled = 1;
insn = vcpu->arch.mmio_decode.insn;
if (run->mmio.is_write)
goto done;
len = vcpu->arch.mmio_decode.len;
shift = vcpu->arch.mmio_decode.shift;
switch (len) {
case 1:
data8 = *((u8 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data8 << shift >> shift);
break;
case 2:
data16 = *((u16 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data16 << shift >> shift);
break;
case 4:
data32 = *((u32 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data32 << shift >> shift);
break;
case 8:
data64 = *((u64 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data64 << shift >> shift);
break;
default:
return -EOPNOTSUPP;
}
done:
vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
return 0;
}