Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/mm/init.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2012 Regents of the University of California
4
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
5
* Copyright (C) 2020 FORTH-ICS/CARV
6
* Nick Kossifidis <[email protected]>
7
*/
8
9
#include <linux/init.h>
10
#include <linux/mm.h>
11
#include <linux/memblock.h>
12
#include <linux/initrd.h>
13
#include <linux/swap.h>
14
#include <linux/swiotlb.h>
15
#include <linux/sizes.h>
16
#include <linux/of_fdt.h>
17
#include <linux/of_reserved_mem.h>
18
#include <linux/libfdt.h>
19
#include <linux/set_memory.h>
20
#include <linux/dma-map-ops.h>
21
#include <linux/crash_dump.h>
22
#include <linux/hugetlb.h>
23
#include <linux/kfence.h>
24
#include <linux/execmem.h>
25
26
#include <asm/alternative.h>
27
#include <asm/fixmap.h>
28
#include <asm/io.h>
29
#include <asm/kasan.h>
30
#include <asm/module.h>
31
#include <asm/numa.h>
32
#include <asm/pgtable.h>
33
#include <asm/sections.h>
34
#include <asm/soc.h>
35
#include <asm/sparsemem.h>
36
#include <asm/tlbflush.h>
37
38
#include "../kernel/head.h"
39
40
u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1];
41
42
struct kernel_mapping kernel_map __ro_after_init;
43
EXPORT_SYMBOL(kernel_map);
44
#ifdef CONFIG_XIP_KERNEL
45
#define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
46
#endif
47
48
#ifdef CONFIG_64BIT
49
u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
50
#else
51
u64 satp_mode __ro_after_init = SATP_MODE_32;
52
#endif
53
EXPORT_SYMBOL(satp_mode);
54
55
#ifdef CONFIG_64BIT
56
bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
57
bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
58
EXPORT_SYMBOL(pgtable_l4_enabled);
59
EXPORT_SYMBOL(pgtable_l5_enabled);
60
#endif
61
62
phys_addr_t phys_ram_base __ro_after_init;
63
EXPORT_SYMBOL(phys_ram_base);
64
65
#ifdef CONFIG_SPARSEMEM_VMEMMAP
66
#define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS)
67
68
unsigned long vmemmap_start_pfn __ro_after_init;
69
EXPORT_SYMBOL(vmemmap_start_pfn);
70
#endif
71
72
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
73
__page_aligned_bss;
74
EXPORT_SYMBOL(empty_zero_page);
75
76
extern char _start[];
77
void *_dtb_early_va __initdata;
78
uintptr_t _dtb_early_pa __initdata;
79
80
phys_addr_t dma32_phys_limit __initdata;
81
82
static void __init zone_sizes_init(void)
83
{
84
unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
85
86
#ifdef CONFIG_ZONE_DMA32
87
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
88
#endif
89
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
90
91
free_area_init(max_zone_pfns);
92
}
93
94
#if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
95
96
#define LOG2_SZ_1K ilog2(SZ_1K)
97
#define LOG2_SZ_1M ilog2(SZ_1M)
98
#define LOG2_SZ_1G ilog2(SZ_1G)
99
#define LOG2_SZ_1T ilog2(SZ_1T)
100
101
static inline void print_mlk(char *name, unsigned long b, unsigned long t)
102
{
103
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
104
(((t) - (b)) >> LOG2_SZ_1K));
105
}
106
107
static inline void print_mlm(char *name, unsigned long b, unsigned long t)
108
{
109
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
110
(((t) - (b)) >> LOG2_SZ_1M));
111
}
112
113
static inline void print_mlg(char *name, unsigned long b, unsigned long t)
114
{
115
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t,
116
(((t) - (b)) >> LOG2_SZ_1G));
117
}
118
119
#ifdef CONFIG_64BIT
120
static inline void print_mlt(char *name, unsigned long b, unsigned long t)
121
{
122
pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t,
123
(((t) - (b)) >> LOG2_SZ_1T));
124
}
125
#else
126
#define print_mlt(n, b, t) do {} while (0)
127
#endif
128
129
static inline void print_ml(char *name, unsigned long b, unsigned long t)
130
{
131
unsigned long diff = t - b;
132
133
if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
134
print_mlt(name, b, t);
135
else if ((diff >> LOG2_SZ_1G) >= 10)
136
print_mlg(name, b, t);
137
else if ((diff >> LOG2_SZ_1M) >= 10)
138
print_mlm(name, b, t);
139
else
140
print_mlk(name, b, t);
141
}
142
143
static void __init print_vm_layout(void)
144
{
145
pr_notice("Virtual kernel memory layout:\n");
146
print_ml("fixmap", (unsigned long)FIXADDR_START,
147
(unsigned long)FIXADDR_TOP);
148
print_ml("pci io", (unsigned long)PCI_IO_START,
149
(unsigned long)PCI_IO_END);
150
print_ml("vmemmap", (unsigned long)VMEMMAP_START,
151
(unsigned long)VMEMMAP_END);
152
print_ml("vmalloc", (unsigned long)VMALLOC_START,
153
(unsigned long)VMALLOC_END);
154
#ifdef CONFIG_64BIT
155
print_ml("modules", (unsigned long)MODULES_VADDR,
156
(unsigned long)MODULES_END);
157
#endif
158
print_ml("lowmem", (unsigned long)PAGE_OFFSET,
159
(unsigned long)high_memory);
160
if (IS_ENABLED(CONFIG_64BIT)) {
161
#ifdef CONFIG_KASAN
162
print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
163
#endif
164
165
print_ml("kernel", (unsigned long)kernel_map.virt_addr,
166
(unsigned long)ADDRESS_SPACE_END);
167
}
168
}
169
#else
170
static void print_vm_layout(void) { }
171
#endif /* CONFIG_DEBUG_VM */
172
173
void __init arch_mm_preinit(void)
174
{
175
bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
176
#ifdef CONFIG_FLATMEM
177
BUG_ON(!mem_map);
178
#endif /* CONFIG_FLATMEM */
179
180
if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
181
dma_cache_alignment != 1) {
182
/*
183
* If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
184
* buffer per 1GB of RAM for kmalloc() bouncing on
185
* non-coherent platforms.
186
*/
187
unsigned long size =
188
DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
189
swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
190
swiotlb = true;
191
}
192
193
swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
194
195
print_vm_layout();
196
}
197
198
/* Limit the memory size via mem. */
199
static phys_addr_t memory_limit;
200
#ifdef CONFIG_XIP_KERNEL
201
#define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
202
#endif /* CONFIG_XIP_KERNEL */
203
204
static int __init early_mem(char *p)
205
{
206
u64 size;
207
208
if (!p)
209
return 1;
210
211
size = memparse(p, &p) & PAGE_MASK;
212
memory_limit = min_t(u64, size, memory_limit);
213
214
pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
215
216
return 0;
217
}
218
early_param("mem", early_mem);
219
220
static void __init setup_bootmem(void)
221
{
222
phys_addr_t vmlinux_end = __pa_symbol(&_end);
223
phys_addr_t max_mapped_addr;
224
phys_addr_t phys_ram_end, vmlinux_start;
225
226
if (IS_ENABLED(CONFIG_XIP_KERNEL))
227
vmlinux_start = __pa_symbol(&_sdata);
228
else
229
vmlinux_start = __pa_symbol(&_start);
230
231
memblock_enforce_memory_limit(memory_limit);
232
233
/*
234
* Make sure we align the reservation on PMD_SIZE since we will
235
* map the kernel in the linear mapping as read-only: we do not want
236
* any allocation to happen between _end and the next pmd aligned page.
237
*/
238
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
239
vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
240
/*
241
* Reserve from the start of the kernel to the end of the kernel
242
*/
243
memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
244
245
/*
246
* Make sure we align the start of the memory on a PMD boundary so that
247
* at worst, we map the linear mapping with PMD mappings.
248
*/
249
if (!IS_ENABLED(CONFIG_XIP_KERNEL)) {
250
phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
251
#ifdef CONFIG_SPARSEMEM_VMEMMAP
252
vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
253
#endif
254
}
255
256
/*
257
* In 64-bit, any use of __va/__pa before this point is wrong as we
258
* did not know the start of DRAM before.
259
*/
260
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
261
kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
262
263
/*
264
* The size of the linear page mapping may restrict the amount of
265
* usable RAM.
266
*/
267
if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
268
max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
269
if (memblock_end_of_DRAM() > max_mapped_addr) {
270
memblock_cap_memory_range(phys_ram_base,
271
max_mapped_addr - phys_ram_base);
272
pr_warn("Physical memory overflows the linear mapping size: region above %pa removed",
273
&max_mapped_addr);
274
}
275
}
276
277
/*
278
* Reserve physical address space that would be mapped to virtual
279
* addresses greater than (void *)(-PAGE_SIZE) because:
280
* - This memory would overlap with ERR_PTR
281
* - This memory belongs to high memory, which is not supported
282
*
283
* This is not applicable to 64-bit kernel, because virtual addresses
284
* after (void *)(-PAGE_SIZE) are not linearly mapped: they are
285
* occupied by kernel mapping. Also it is unrealistic for high memory
286
* to exist on 64-bit platforms.
287
*/
288
if (!IS_ENABLED(CONFIG_64BIT)) {
289
max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
290
memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
291
}
292
293
phys_ram_end = memblock_end_of_DRAM();
294
min_low_pfn = PFN_UP(phys_ram_base);
295
max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
296
297
dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
298
299
reserve_initrd_mem();
300
301
/*
302
* No allocation should be done before reserving the memory as defined
303
* in the device tree, otherwise the allocation could end up in a
304
* reserved region.
305
*/
306
early_init_fdt_scan_reserved_mem();
307
308
/*
309
* If DTB is built in, no need to reserve its memblock.
310
* Otherwise, do reserve it but avoid using
311
* early_init_fdt_reserve_self() since __pa() does
312
* not work for DTB pointers that are fixmap addresses
313
*/
314
if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
315
memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
316
317
dma_contiguous_reserve(dma32_phys_limit);
318
if (IS_ENABLED(CONFIG_64BIT))
319
hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
320
}
321
322
#ifdef CONFIG_RELOCATABLE
323
extern unsigned long __rela_dyn_start, __rela_dyn_end;
324
325
static void __init relocate_kernel(void)
326
{
327
Elf_Rela *rela = (Elf_Rela *)&__rela_dyn_start;
328
/*
329
* This holds the offset between the linked virtual address and the
330
* relocated virtual address.
331
*/
332
uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
333
/*
334
* This holds the offset between kernel linked virtual address and
335
* physical address.
336
*/
337
uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
338
339
for ( ; rela < (Elf_Rela *)&__rela_dyn_end; rela++) {
340
Elf_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
341
Elf_Addr relocated_addr = rela->r_addend;
342
343
if (rela->r_info != R_RISCV_RELATIVE)
344
continue;
345
346
/*
347
* Make sure to not relocate vdso symbols like rt_sigreturn
348
* which are linked from the address 0 in vmlinux since
349
* vdso symbol addresses are actually used as an offset from
350
* mm->context.vdso in VDSO_OFFSET macro.
351
*/
352
if (relocated_addr >= KERNEL_LINK_ADDR)
353
relocated_addr += reloc_offset;
354
355
*(Elf_Addr *)addr = relocated_addr;
356
}
357
}
358
#endif /* CONFIG_RELOCATABLE */
359
360
#ifdef CONFIG_MMU
361
struct pt_alloc_ops pt_ops __meminitdata;
362
363
pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
364
pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
365
static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
366
367
pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
368
369
#ifdef CONFIG_XIP_KERNEL
370
#define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
371
#define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
372
#define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte))
373
#define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir))
374
#endif /* CONFIG_XIP_KERNEL */
375
376
static const pgprot_t protection_map[16] = {
377
[VM_NONE] = PAGE_NONE,
378
[VM_READ] = PAGE_READ,
379
[VM_WRITE] = PAGE_COPY,
380
[VM_WRITE | VM_READ] = PAGE_COPY,
381
[VM_EXEC] = PAGE_EXEC,
382
[VM_EXEC | VM_READ] = PAGE_READ_EXEC,
383
[VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
384
[VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
385
[VM_SHARED] = PAGE_NONE,
386
[VM_SHARED | VM_READ] = PAGE_READ,
387
[VM_SHARED | VM_WRITE] = PAGE_SHARED,
388
[VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
389
[VM_SHARED | VM_EXEC] = PAGE_EXEC,
390
[VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC,
391
[VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
392
[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
393
};
394
DECLARE_VM_GET_PAGE_PROT
395
396
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
397
{
398
unsigned long addr = __fix_to_virt(idx);
399
pte_t *ptep;
400
401
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
402
403
ptep = &fixmap_pte[pte_index(addr)];
404
405
if (pgprot_val(prot))
406
set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
407
else
408
pte_clear(&init_mm, addr, ptep);
409
local_flush_tlb_page(addr);
410
}
411
412
static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
413
{
414
return (pte_t *)((uintptr_t)pa);
415
}
416
417
static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
418
{
419
clear_fixmap(FIX_PTE);
420
return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
421
}
422
423
static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
424
{
425
return (pte_t *) __va(pa);
426
}
427
428
static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
429
{
430
/*
431
* We only create PMD or PGD early mappings so we
432
* should never reach here with MMU disabled.
433
*/
434
BUG();
435
}
436
437
static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
438
{
439
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
440
}
441
442
static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
443
{
444
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
445
446
/*
447
* We do not know which mm the PTE page is associated to at this point.
448
* Passing NULL to the ctor is the safe option, though it may result
449
* in unnecessary work (e.g. initialising the ptlock for init_mm).
450
*/
451
BUG_ON(!ptdesc || !pagetable_pte_ctor(NULL, ptdesc));
452
return __pa((pte_t *)ptdesc_address(ptdesc));
453
}
454
455
static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
456
pgprot_t prot)
457
{
458
uintptr_t pte_idx = pte_index(va);
459
460
BUG_ON(sz != PAGE_SIZE);
461
462
if (pte_none(ptep[pte_idx]))
463
ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
464
}
465
466
#ifndef __PAGETABLE_PMD_FOLDED
467
468
static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
469
static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
470
static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
471
472
#ifdef CONFIG_XIP_KERNEL
473
#define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
474
#define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd))
475
#define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd))
476
#endif /* CONFIG_XIP_KERNEL */
477
478
static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
479
static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
480
static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
481
482
#ifdef CONFIG_XIP_KERNEL
483
#define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
484
#define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d))
485
#define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d))
486
#endif /* CONFIG_XIP_KERNEL */
487
488
static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
489
static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
490
static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
491
492
#ifdef CONFIG_XIP_KERNEL
493
#define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
494
#define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud))
495
#define early_pud ((pud_t *)XIP_FIXUP(early_pud))
496
#endif /* CONFIG_XIP_KERNEL */
497
498
static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
499
{
500
/* Before MMU is enabled */
501
return (pmd_t *)((uintptr_t)pa);
502
}
503
504
static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
505
{
506
clear_fixmap(FIX_PMD);
507
return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
508
}
509
510
static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
511
{
512
return (pmd_t *) __va(pa);
513
}
514
515
static phys_addr_t __init alloc_pmd_early(uintptr_t va)
516
{
517
BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
518
519
return (uintptr_t)early_pmd;
520
}
521
522
static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
523
{
524
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
525
}
526
527
static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
528
{
529
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
530
531
/* See comment in alloc_pte_late() regarding NULL passed the ctor */
532
BUG_ON(!ptdesc || !pagetable_pmd_ctor(NULL, ptdesc));
533
return __pa((pmd_t *)ptdesc_address(ptdesc));
534
}
535
536
static void __meminit create_pmd_mapping(pmd_t *pmdp,
537
uintptr_t va, phys_addr_t pa,
538
phys_addr_t sz, pgprot_t prot)
539
{
540
pte_t *ptep;
541
phys_addr_t pte_phys;
542
uintptr_t pmd_idx = pmd_index(va);
543
544
if (sz == PMD_SIZE) {
545
if (pmd_none(pmdp[pmd_idx]))
546
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
547
return;
548
}
549
550
if (pmd_none(pmdp[pmd_idx])) {
551
pte_phys = pt_ops.alloc_pte(va);
552
pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
553
ptep = pt_ops.get_pte_virt(pte_phys);
554
memset(ptep, 0, PAGE_SIZE);
555
} else {
556
pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
557
ptep = pt_ops.get_pte_virt(pte_phys);
558
}
559
560
create_pte_mapping(ptep, va, pa, sz, prot);
561
}
562
563
static pud_t *__init get_pud_virt_early(phys_addr_t pa)
564
{
565
return (pud_t *)((uintptr_t)pa);
566
}
567
568
static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
569
{
570
clear_fixmap(FIX_PUD);
571
return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
572
}
573
574
static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
575
{
576
return (pud_t *)__va(pa);
577
}
578
579
static phys_addr_t __init alloc_pud_early(uintptr_t va)
580
{
581
/* Only one PUD is available for early mapping */
582
BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
583
584
return (uintptr_t)early_pud;
585
}
586
587
static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
588
{
589
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
590
}
591
592
static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
593
{
594
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0);
595
596
BUG_ON(!ptdesc);
597
pagetable_pud_ctor(ptdesc);
598
return __pa((pud_t *)ptdesc_address(ptdesc));
599
}
600
601
static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
602
{
603
return (p4d_t *)((uintptr_t)pa);
604
}
605
606
static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
607
{
608
clear_fixmap(FIX_P4D);
609
return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
610
}
611
612
static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
613
{
614
return (p4d_t *)__va(pa);
615
}
616
617
static phys_addr_t __init alloc_p4d_early(uintptr_t va)
618
{
619
/* Only one P4D is available for early mapping */
620
BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
621
622
return (uintptr_t)early_p4d;
623
}
624
625
static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
626
{
627
return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
628
}
629
630
static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
631
{
632
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, 0);
633
634
BUG_ON(!ptdesc);
635
pagetable_p4d_ctor(ptdesc);
636
return __pa((p4d_t *)ptdesc_address(ptdesc));
637
}
638
639
static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
640
pgprot_t prot)
641
{
642
pmd_t *nextp;
643
phys_addr_t next_phys;
644
uintptr_t pud_index = pud_index(va);
645
646
if (sz == PUD_SIZE) {
647
if (pud_val(pudp[pud_index]) == 0)
648
pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
649
return;
650
}
651
652
if (pud_val(pudp[pud_index]) == 0) {
653
next_phys = pt_ops.alloc_pmd(va);
654
pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
655
nextp = pt_ops.get_pmd_virt(next_phys);
656
memset(nextp, 0, PAGE_SIZE);
657
} else {
658
next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
659
nextp = pt_ops.get_pmd_virt(next_phys);
660
}
661
662
create_pmd_mapping(nextp, va, pa, sz, prot);
663
}
664
665
static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
666
pgprot_t prot)
667
{
668
pud_t *nextp;
669
phys_addr_t next_phys;
670
uintptr_t p4d_index = p4d_index(va);
671
672
if (sz == P4D_SIZE) {
673
if (p4d_val(p4dp[p4d_index]) == 0)
674
p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
675
return;
676
}
677
678
if (p4d_val(p4dp[p4d_index]) == 0) {
679
next_phys = pt_ops.alloc_pud(va);
680
p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
681
nextp = pt_ops.get_pud_virt(next_phys);
682
memset(nextp, 0, PAGE_SIZE);
683
} else {
684
next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
685
nextp = pt_ops.get_pud_virt(next_phys);
686
}
687
688
create_pud_mapping(nextp, va, pa, sz, prot);
689
}
690
691
#define pgd_next_t p4d_t
692
#define alloc_pgd_next(__va) (pgtable_l5_enabled ? \
693
pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \
694
pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
695
#define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \
696
pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
697
pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
698
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
699
(pgtable_l5_enabled ? \
700
create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
701
(pgtable_l4_enabled ? \
702
create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \
703
create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
704
#define fixmap_pgd_next (pgtable_l5_enabled ? \
705
(uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \
706
(uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
707
#define trampoline_pgd_next (pgtable_l5_enabled ? \
708
(uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \
709
(uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
710
#else
711
#define pgd_next_t pte_t
712
#define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
713
#define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
714
#define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
715
create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
716
#define fixmap_pgd_next ((uintptr_t)fixmap_pte)
717
#define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
718
#define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
719
#define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
720
#endif /* __PAGETABLE_PMD_FOLDED */
721
722
void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
723
pgprot_t prot)
724
{
725
pgd_next_t *nextp;
726
phys_addr_t next_phys;
727
uintptr_t pgd_idx = pgd_index(va);
728
729
if (sz == PGDIR_SIZE) {
730
if (pgd_val(pgdp[pgd_idx]) == 0)
731
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
732
return;
733
}
734
735
if (pgd_val(pgdp[pgd_idx]) == 0) {
736
next_phys = alloc_pgd_next(va);
737
pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
738
nextp = get_pgd_next_virt(next_phys);
739
memset(nextp, 0, PAGE_SIZE);
740
} else {
741
next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
742
nextp = get_pgd_next_virt(next_phys);
743
}
744
745
create_pgd_next_mapping(nextp, va, pa, sz, prot);
746
}
747
748
static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
749
{
750
if (debug_pagealloc_enabled())
751
return PAGE_SIZE;
752
753
if (pgtable_l5_enabled &&
754
!(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
755
return P4D_SIZE;
756
757
if (pgtable_l4_enabled &&
758
!(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
759
return PUD_SIZE;
760
761
if (IS_ENABLED(CONFIG_64BIT) &&
762
!(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
763
return PMD_SIZE;
764
765
return PAGE_SIZE;
766
}
767
768
#ifdef CONFIG_XIP_KERNEL
769
#define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
770
extern char _xiprom[], _exiprom[], __data_loc;
771
772
/* called from head.S with MMU off */
773
asmlinkage void __init __copy_data(void)
774
{
775
void *from = (void *)(&__data_loc);
776
void *to = (void *)CONFIG_PHYS_RAM_BASE;
777
size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
778
779
memcpy(to, from, sz);
780
}
781
#endif
782
783
#ifdef CONFIG_STRICT_KERNEL_RWX
784
static __meminit pgprot_t pgprot_from_va(uintptr_t va)
785
{
786
if (is_va_kernel_text(va))
787
return PAGE_KERNEL_READ_EXEC;
788
789
/*
790
* In 64-bit kernel, the kernel mapping is outside the linear mapping so
791
* we must protect its linear mapping alias from being executed and
792
* written.
793
* And rodata section is marked readonly in mark_rodata_ro.
794
*/
795
if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
796
return PAGE_KERNEL_READ;
797
798
return PAGE_KERNEL;
799
}
800
801
void mark_rodata_ro(void)
802
{
803
set_kernel_memory(__start_rodata, _data, set_memory_ro);
804
if (IS_ENABLED(CONFIG_64BIT))
805
set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
806
set_memory_ro);
807
}
808
#else
809
static __meminit pgprot_t pgprot_from_va(uintptr_t va)
810
{
811
if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
812
return PAGE_KERNEL;
813
814
return PAGE_KERNEL_EXEC;
815
}
816
#endif /* CONFIG_STRICT_KERNEL_RWX */
817
818
#if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
819
u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
820
u64 __pi_set_satp_mode_from_fdt(uintptr_t dtb_pa);
821
822
static void __init disable_pgtable_l5(void)
823
{
824
pgtable_l5_enabled = false;
825
kernel_map.page_offset = PAGE_OFFSET_L4;
826
satp_mode = SATP_MODE_48;
827
}
828
829
static void __init disable_pgtable_l4(void)
830
{
831
pgtable_l4_enabled = false;
832
kernel_map.page_offset = PAGE_OFFSET_L3;
833
satp_mode = SATP_MODE_39;
834
}
835
836
static int __init print_no4lvl(char *p)
837
{
838
pr_info("Disabled 4-level and 5-level paging");
839
return 0;
840
}
841
early_param("no4lvl", print_no4lvl);
842
843
static int __init print_no5lvl(char *p)
844
{
845
pr_info("Disabled 5-level paging");
846
return 0;
847
}
848
early_param("no5lvl", print_no5lvl);
849
850
static void __init set_mmap_rnd_bits_max(void)
851
{
852
mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
853
}
854
855
/*
856
* There is a simple way to determine if 4-level is supported by the
857
* underlying hardware: establish 1:1 mapping in 4-level page table mode
858
* then read SATP to see if the configuration was taken into account
859
* meaning sv48 is supported.
860
* The maximum SATP mode is limited by both the command line and the "mmu-type"
861
* property in the device tree, since some platforms may hang if an unsupported
862
* SATP mode is attempted.
863
*/
864
static __init void set_satp_mode(uintptr_t dtb_pa)
865
{
866
u64 identity_satp, hw_satp;
867
uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
868
u64 satp_mode_limit = min_not_zero(__pi_set_satp_mode_from_cmdline(dtb_pa),
869
__pi_set_satp_mode_from_fdt(dtb_pa));
870
871
kernel_map.page_offset = PAGE_OFFSET_L5;
872
873
if (satp_mode_limit == SATP_MODE_48) {
874
disable_pgtable_l5();
875
} else if (satp_mode_limit == SATP_MODE_39) {
876
disable_pgtable_l5();
877
disable_pgtable_l4();
878
return;
879
}
880
881
create_p4d_mapping(early_p4d,
882
set_satp_mode_pmd, (uintptr_t)early_pud,
883
P4D_SIZE, PAGE_TABLE);
884
create_pud_mapping(early_pud,
885
set_satp_mode_pmd, (uintptr_t)early_pmd,
886
PUD_SIZE, PAGE_TABLE);
887
/* Handle the case where set_satp_mode straddles 2 PMDs */
888
create_pmd_mapping(early_pmd,
889
set_satp_mode_pmd, set_satp_mode_pmd,
890
PMD_SIZE, PAGE_KERNEL_EXEC);
891
create_pmd_mapping(early_pmd,
892
set_satp_mode_pmd + PMD_SIZE,
893
set_satp_mode_pmd + PMD_SIZE,
894
PMD_SIZE, PAGE_KERNEL_EXEC);
895
retry:
896
create_pgd_mapping(early_pg_dir,
897
set_satp_mode_pmd,
898
pgtable_l5_enabled ?
899
(uintptr_t)early_p4d : (uintptr_t)early_pud,
900
PGDIR_SIZE, PAGE_TABLE);
901
902
identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
903
904
local_flush_tlb_all();
905
csr_write(CSR_SATP, identity_satp);
906
hw_satp = csr_swap(CSR_SATP, 0ULL);
907
local_flush_tlb_all();
908
909
if (hw_satp != identity_satp) {
910
if (pgtable_l5_enabled) {
911
disable_pgtable_l5();
912
memset(early_pg_dir, 0, PAGE_SIZE);
913
goto retry;
914
}
915
disable_pgtable_l4();
916
}
917
918
memset(early_pg_dir, 0, PAGE_SIZE);
919
memset(early_p4d, 0, PAGE_SIZE);
920
memset(early_pud, 0, PAGE_SIZE);
921
memset(early_pmd, 0, PAGE_SIZE);
922
}
923
#endif
924
925
/*
926
* setup_vm() is called from head.S with MMU-off.
927
*
928
* Following requirements should be honoured for setup_vm() to work
929
* correctly:
930
* 1) It should use PC-relative addressing for accessing kernel symbols.
931
* To achieve this we always use GCC cmodel=medany.
932
* 2) The compiler instrumentation for FTRACE will not work for setup_vm()
933
* so disable compiler instrumentation when FTRACE is enabled.
934
*
935
* Currently, the above requirements are honoured by using custom CFLAGS
936
* for init.o in mm/Makefile.
937
*/
938
939
#ifndef __riscv_cmodel_medany
940
#error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
941
#endif
942
943
#ifdef CONFIG_XIP_KERNEL
944
static void __init create_kernel_page_table(pgd_t *pgdir,
945
__always_unused bool early)
946
{
947
uintptr_t va, start_va, end_va;
948
949
/* Map the flash resident part */
950
end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
951
for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
952
create_pgd_mapping(pgdir, va,
953
kernel_map.xiprom + (va - kernel_map.virt_addr),
954
PMD_SIZE, PAGE_KERNEL_EXEC);
955
956
/* Map the data in RAM */
957
start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start;
958
end_va = kernel_map.virt_addr + kernel_map.size;
959
for (va = start_va; va < end_va; va += PMD_SIZE)
960
create_pgd_mapping(pgdir, va,
961
kernel_map.phys_addr + (va - start_va),
962
PMD_SIZE, PAGE_KERNEL);
963
}
964
#else
965
static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
966
{
967
uintptr_t va, end_va;
968
969
end_va = kernel_map.virt_addr + kernel_map.size;
970
for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
971
create_pgd_mapping(pgdir, va,
972
kernel_map.phys_addr + (va - kernel_map.virt_addr),
973
PMD_SIZE,
974
early ?
975
PAGE_KERNEL_EXEC : pgprot_from_va(va));
976
}
977
#endif
978
979
/*
980
* Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
981
* this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
982
* entry.
983
*/
984
static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
985
uintptr_t dtb_pa)
986
{
987
#ifndef CONFIG_BUILTIN_DTB
988
uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
989
990
/* Make sure the fdt fixmap address is always aligned on PMD size */
991
BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
992
993
/* In 32-bit only, the fdt lies in its own PGD */
994
if (!IS_ENABLED(CONFIG_64BIT)) {
995
create_pgd_mapping(early_pg_dir, fix_fdt_va,
996
pa, MAX_FDT_SIZE, PAGE_KERNEL);
997
} else {
998
create_pmd_mapping(fixmap_pmd, fix_fdt_va,
999
pa, PMD_SIZE, PAGE_KERNEL);
1000
create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
1001
pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
1002
}
1003
1004
dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
1005
#else
1006
/*
1007
* For 64-bit kernel, __va can't be used since it would return a linear
1008
* mapping address whereas dtb_early_va will be used before
1009
* setup_vm_final installs the linear mapping. For 32-bit kernel, as the
1010
* kernel is mapped in the linear mapping, that makes no difference.
1011
*/
1012
dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
1013
#endif
1014
1015
dtb_early_pa = dtb_pa;
1016
}
1017
1018
/*
1019
* MMU is not enabled, the page tables are allocated directly using
1020
* early_pmd/pud/p4d and the address returned is the physical one.
1021
*/
1022
static void __init pt_ops_set_early(void)
1023
{
1024
pt_ops.alloc_pte = alloc_pte_early;
1025
pt_ops.get_pte_virt = get_pte_virt_early;
1026
#ifndef __PAGETABLE_PMD_FOLDED
1027
pt_ops.alloc_pmd = alloc_pmd_early;
1028
pt_ops.get_pmd_virt = get_pmd_virt_early;
1029
pt_ops.alloc_pud = alloc_pud_early;
1030
pt_ops.get_pud_virt = get_pud_virt_early;
1031
pt_ops.alloc_p4d = alloc_p4d_early;
1032
pt_ops.get_p4d_virt = get_p4d_virt_early;
1033
#endif
1034
}
1035
1036
/*
1037
* MMU is enabled but page table setup is not complete yet.
1038
* fixmap page table alloc functions must be used as a means to temporarily
1039
* map the allocated physical pages since the linear mapping does not exist yet.
1040
*
1041
* Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1042
* but it will be used as described above.
1043
*/
1044
static void __init pt_ops_set_fixmap(void)
1045
{
1046
pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1047
pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1048
#ifndef __PAGETABLE_PMD_FOLDED
1049
pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1050
pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1051
pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1052
pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1053
pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1054
pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1055
#endif
1056
}
1057
1058
/*
1059
* MMU is enabled and page table setup is complete, so from now, we can use
1060
* generic page allocation functions to setup page table.
1061
*/
1062
static void __init pt_ops_set_late(void)
1063
{
1064
pt_ops.alloc_pte = alloc_pte_late;
1065
pt_ops.get_pte_virt = get_pte_virt_late;
1066
#ifndef __PAGETABLE_PMD_FOLDED
1067
pt_ops.alloc_pmd = alloc_pmd_late;
1068
pt_ops.get_pmd_virt = get_pmd_virt_late;
1069
pt_ops.alloc_pud = alloc_pud_late;
1070
pt_ops.get_pud_virt = get_pud_virt_late;
1071
pt_ops.alloc_p4d = alloc_p4d_late;
1072
pt_ops.get_p4d_virt = get_p4d_virt_late;
1073
#endif
1074
}
1075
1076
#ifdef CONFIG_RANDOMIZE_BASE
1077
extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1078
extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1079
extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa);
1080
1081
static int __init print_nokaslr(char *p)
1082
{
1083
pr_info("Disabled KASLR");
1084
return 0;
1085
}
1086
early_param("nokaslr", print_nokaslr);
1087
1088
unsigned long kaslr_offset(void)
1089
{
1090
return kernel_map.virt_offset;
1091
}
1092
#endif
1093
1094
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1095
{
1096
pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1097
1098
#ifdef CONFIG_RANDOMIZE_BASE
1099
if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1100
u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa);
1101
u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1102
u32 nr_pos;
1103
1104
if (kaslr_seed == 0)
1105
kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1106
/*
1107
* Compute the number of positions available: we are limited
1108
* by the early page table that only has one PUD and we must
1109
* be aligned on PMD_SIZE.
1110
*/
1111
nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1112
1113
kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1114
}
1115
#endif
1116
1117
kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1118
1119
#ifdef CONFIG_XIP_KERNEL
1120
kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1121
kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1122
1123
phys_ram_base = CONFIG_PHYS_RAM_BASE;
1124
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1125
vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
1126
#endif
1127
kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1128
kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1129
1130
kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1131
kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr
1132
+ (uintptr_t)&_sdata - (uintptr_t)&_start;
1133
#else
1134
kernel_map.phys_addr = (uintptr_t)(&_start);
1135
kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1136
kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1137
#endif
1138
1139
#if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1140
set_satp_mode(dtb_pa);
1141
set_mmap_rnd_bits_max();
1142
#endif
1143
1144
/*
1145
* In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1146
* where we have the system memory layout: this allows us to align
1147
* the physical and virtual mappings and then make use of PUD/P4D/PGD
1148
* for the linear mapping. This is only possible because the kernel
1149
* mapping lies outside the linear mapping.
1150
* In 32-bit however, as the kernel resides in the linear mapping,
1151
* setup_vm_final can not change the mapping established here,
1152
* otherwise the same kernel addresses would get mapped to different
1153
* physical addresses (if the start of dram is different from the
1154
* kernel physical address start).
1155
*/
1156
kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1157
0UL : PAGE_OFFSET - kernel_map.phys_addr;
1158
1159
memory_limit = KERN_VIRT_SIZE;
1160
1161
/* Sanity check alignment and size */
1162
BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1163
BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1164
1165
#ifdef CONFIG_64BIT
1166
/*
1167
* The last 4K bytes of the addressable memory can not be mapped because
1168
* of IS_ERR_VALUE macro.
1169
*/
1170
BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1171
#endif
1172
1173
#ifdef CONFIG_RELOCATABLE
1174
/*
1175
* Early page table uses only one PUD, which makes it possible
1176
* to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1177
* makes the kernel cross over a PUD_SIZE boundary, raise a bug
1178
* since a part of the kernel would not get mapped.
1179
*/
1180
if (IS_ENABLED(CONFIG_64BIT))
1181
BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1182
relocate_kernel();
1183
#endif
1184
1185
apply_early_boot_alternatives();
1186
pt_ops_set_early();
1187
1188
/* Setup early PGD for fixmap */
1189
create_pgd_mapping(early_pg_dir, FIXADDR_START,
1190
fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1191
1192
#ifndef __PAGETABLE_PMD_FOLDED
1193
/* Setup fixmap P4D and PUD */
1194
if (pgtable_l5_enabled)
1195
create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1196
(uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1197
/* Setup fixmap PUD and PMD */
1198
if (pgtable_l4_enabled)
1199
create_pud_mapping(fixmap_pud, FIXADDR_START,
1200
(uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1201
create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1202
(uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1203
/* Setup trampoline PGD and PMD */
1204
create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1205
trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1206
if (pgtable_l5_enabled)
1207
create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1208
(uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1209
if (pgtable_l4_enabled)
1210
create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1211
(uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1212
#ifdef CONFIG_XIP_KERNEL
1213
create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1214
kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1215
#else
1216
create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1217
kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1218
#endif
1219
#else
1220
/* Setup trampoline PGD */
1221
create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1222
kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1223
#endif
1224
1225
/*
1226
* Setup early PGD covering entire kernel which will allow
1227
* us to reach paging_init(). We map all memory banks later
1228
* in setup_vm_final() below.
1229
*/
1230
create_kernel_page_table(early_pg_dir, true);
1231
1232
/* Setup early mapping for FDT early scan */
1233
create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1234
1235
/*
1236
* Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1237
* range can not span multiple pmds.
1238
*/
1239
BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1240
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1241
1242
#ifndef __PAGETABLE_PMD_FOLDED
1243
/*
1244
* Early ioremap fixmap is already created as it lies within first 2MB
1245
* of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1246
* FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1247
* the user if not.
1248
*/
1249
fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1250
fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1251
if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1252
WARN_ON(1);
1253
pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1254
pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1255
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1256
fix_to_virt(FIX_BTMAP_BEGIN));
1257
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1258
fix_to_virt(FIX_BTMAP_END));
1259
1260
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1261
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1262
}
1263
#endif
1264
1265
pt_ops_set_fixmap();
1266
}
1267
1268
static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1269
uintptr_t fixed_map_size, const pgprot_t *pgprot)
1270
{
1271
phys_addr_t pa;
1272
uintptr_t va, map_size;
1273
1274
for (pa = start; pa < end; pa += map_size) {
1275
va = (uintptr_t)__va(pa);
1276
map_size = fixed_map_size ? fixed_map_size :
1277
best_map_size(pa, va, end - pa);
1278
1279
create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1280
pgprot ? *pgprot : pgprot_from_va(va));
1281
}
1282
}
1283
1284
static void __init create_linear_mapping_page_table(void)
1285
{
1286
phys_addr_t start, end;
1287
phys_addr_t kfence_pool __maybe_unused;
1288
u64 i;
1289
1290
#ifdef CONFIG_STRICT_KERNEL_RWX
1291
phys_addr_t ktext_start = __pa_symbol(_start);
1292
phys_addr_t ktext_size = __init_data_begin - _start;
1293
phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1294
phys_addr_t krodata_size = _data - __start_rodata;
1295
1296
/* Isolate kernel text and rodata so they don't get mapped with a PUD */
1297
memblock_mark_nomap(ktext_start, ktext_size);
1298
memblock_mark_nomap(krodata_start, krodata_size);
1299
#endif
1300
1301
#ifdef CONFIG_KFENCE
1302
/*
1303
* kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1304
* before we setup the linear mapping so that we avoid using hugepages
1305
* for this region.
1306
*/
1307
kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1308
BUG_ON(!kfence_pool);
1309
1310
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1311
__kfence_pool = __va(kfence_pool);
1312
#endif
1313
1314
/* Map all memory banks in the linear mapping */
1315
for_each_mem_range(i, &start, &end) {
1316
if (start >= end)
1317
break;
1318
if (start <= __pa(PAGE_OFFSET) &&
1319
__pa(PAGE_OFFSET) < end)
1320
start = __pa(PAGE_OFFSET);
1321
1322
create_linear_mapping_range(start, end, 0, NULL);
1323
}
1324
1325
#ifdef CONFIG_STRICT_KERNEL_RWX
1326
create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1327
create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1328
1329
memblock_clear_nomap(ktext_start, ktext_size);
1330
memblock_clear_nomap(krodata_start, krodata_size);
1331
#endif
1332
1333
#ifdef CONFIG_KFENCE
1334
create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1335
1336
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1337
#endif
1338
}
1339
1340
static void __init setup_vm_final(void)
1341
{
1342
/* Setup swapper PGD for fixmap */
1343
#if !defined(CONFIG_64BIT)
1344
/*
1345
* In 32-bit, the device tree lies in a pgd entry, so it must be copied
1346
* directly in swapper_pg_dir in addition to the pgd entry that points
1347
* to fixmap_pte.
1348
*/
1349
unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1350
1351
set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1352
#endif
1353
create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1354
__pa_symbol(fixmap_pgd_next),
1355
PGDIR_SIZE, PAGE_TABLE);
1356
1357
/* Map the linear mapping */
1358
create_linear_mapping_page_table();
1359
1360
/* Map the kernel */
1361
if (IS_ENABLED(CONFIG_64BIT))
1362
create_kernel_page_table(swapper_pg_dir, false);
1363
1364
#ifdef CONFIG_KASAN
1365
kasan_swapper_init();
1366
#endif
1367
1368
/* Clear fixmap PTE and PMD mappings */
1369
clear_fixmap(FIX_PTE);
1370
clear_fixmap(FIX_PMD);
1371
clear_fixmap(FIX_PUD);
1372
clear_fixmap(FIX_P4D);
1373
1374
/* Move to swapper page table */
1375
csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1376
local_flush_tlb_all();
1377
1378
pt_ops_set_late();
1379
}
1380
#else
1381
asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1382
{
1383
dtb_early_va = (void *)dtb_pa;
1384
dtb_early_pa = dtb_pa;
1385
1386
#ifdef CONFIG_RELOCATABLE
1387
kernel_map.virt_addr = (uintptr_t)_start;
1388
kernel_map.phys_addr = (uintptr_t)_start;
1389
relocate_kernel();
1390
#endif
1391
}
1392
1393
static inline void setup_vm_final(void)
1394
{
1395
}
1396
#endif /* CONFIG_MMU */
1397
1398
/*
1399
* reserve_crashkernel() - reserves memory for crash kernel
1400
*
1401
* This function reserves memory area given in "crashkernel=" kernel command
1402
* line parameter. The memory reserved is used by dump capture kernel when
1403
* primary kernel is crashing.
1404
*/
1405
static void __init arch_reserve_crashkernel(void)
1406
{
1407
unsigned long long low_size = 0;
1408
unsigned long long crash_base, crash_size;
1409
bool high = false;
1410
int ret;
1411
1412
if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1413
return;
1414
1415
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
1416
&crash_size, &crash_base,
1417
&low_size, NULL, &high);
1418
if (ret)
1419
return;
1420
1421
reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
1422
}
1423
1424
void __init paging_init(void)
1425
{
1426
setup_bootmem();
1427
setup_vm_final();
1428
1429
/* Depend on that Linear Mapping is ready */
1430
memblock_allow_resize();
1431
}
1432
1433
void __init misc_mem_init(void)
1434
{
1435
early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1436
arch_numa_init();
1437
sparse_init();
1438
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1439
/* The entire VMEMMAP region has been populated. Flush TLB for this region */
1440
local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1441
#endif
1442
zone_sizes_init();
1443
arch_reserve_crashkernel();
1444
memblock_dump_all();
1445
}
1446
1447
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1448
void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1449
unsigned long addr, unsigned long next)
1450
{
1451
pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1452
}
1453
1454
int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1455
unsigned long addr, unsigned long next)
1456
{
1457
vmemmap_verify((pte_t *)pmdp, node, addr, next);
1458
return 1;
1459
}
1460
1461
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1462
struct vmem_altmap *altmap)
1463
{
1464
/*
1465
* Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1466
* can't use hugepage mappings for 2-level page table because in case of
1467
* memory hotplug, we are not able to update all the page tables with
1468
* the new PMDs.
1469
*/
1470
return vmemmap_populate_hugepages(start, end, node, altmap);
1471
}
1472
#endif
1473
1474
#if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1475
/*
1476
* Pre-allocates page-table pages for a specific area in the kernel
1477
* page-table. Only the level which needs to be synchronized between
1478
* all page-tables is allocated because the synchronization can be
1479
* expensive.
1480
*/
1481
static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1482
const char *area)
1483
{
1484
unsigned long addr;
1485
const char *lvl;
1486
1487
for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1488
pgd_t *pgd = pgd_offset_k(addr);
1489
p4d_t *p4d;
1490
pud_t *pud;
1491
pmd_t *pmd;
1492
1493
lvl = "p4d";
1494
p4d = p4d_alloc(&init_mm, pgd, addr);
1495
if (!p4d)
1496
goto failed;
1497
1498
if (pgtable_l5_enabled)
1499
continue;
1500
1501
lvl = "pud";
1502
pud = pud_alloc(&init_mm, p4d, addr);
1503
if (!pud)
1504
goto failed;
1505
1506
if (pgtable_l4_enabled)
1507
continue;
1508
1509
lvl = "pmd";
1510
pmd = pmd_alloc(&init_mm, pud, addr);
1511
if (!pmd)
1512
goto failed;
1513
}
1514
return;
1515
1516
failed:
1517
/*
1518
* The pages have to be there now or they will be missing in
1519
* process page-tables later.
1520
*/
1521
panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1522
}
1523
1524
#define PAGE_END KASAN_SHADOW_START
1525
1526
void __init pgtable_cache_init(void)
1527
{
1528
preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1529
if (IS_ENABLED(CONFIG_MODULES))
1530
preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1531
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1532
preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1533
preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1534
if (IS_ENABLED(CONFIG_KASAN))
1535
preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1536
}
1537
}
1538
#endif
1539
1540
#ifdef CONFIG_EXECMEM
1541
#ifdef CONFIG_MMU
1542
static struct execmem_info execmem_info __ro_after_init;
1543
1544
struct execmem_info __init *execmem_arch_setup(void)
1545
{
1546
execmem_info = (struct execmem_info){
1547
.ranges = {
1548
[EXECMEM_DEFAULT] = {
1549
.start = MODULES_VADDR,
1550
.end = MODULES_END,
1551
.pgprot = PAGE_KERNEL,
1552
.alignment = 1,
1553
},
1554
[EXECMEM_KPROBES] = {
1555
.start = VMALLOC_START,
1556
.end = VMALLOC_END,
1557
.pgprot = PAGE_KERNEL_READ_EXEC,
1558
.alignment = 1,
1559
},
1560
[EXECMEM_BPF] = {
1561
.start = BPF_JIT_REGION_START,
1562
.end = BPF_JIT_REGION_END,
1563
.pgprot = PAGE_KERNEL,
1564
.alignment = PAGE_SIZE,
1565
},
1566
},
1567
};
1568
1569
return &execmem_info;
1570
}
1571
#endif /* CONFIG_MMU */
1572
#endif /* CONFIG_EXECMEM */
1573
1574
#ifdef CONFIG_MEMORY_HOTPLUG
1575
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1576
{
1577
struct page *page = pmd_page(*pmd);
1578
struct ptdesc *ptdesc = page_ptdesc(page);
1579
pte_t *pte;
1580
int i;
1581
1582
for (i = 0; i < PTRS_PER_PTE; i++) {
1583
pte = pte_start + i;
1584
if (!pte_none(*pte))
1585
return;
1586
}
1587
1588
pagetable_dtor(ptdesc);
1589
if (PageReserved(page))
1590
free_reserved_page(page);
1591
else
1592
pagetable_free(ptdesc);
1593
pmd_clear(pmd);
1594
}
1595
1596
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap)
1597
{
1598
struct page *page = pud_page(*pud);
1599
struct ptdesc *ptdesc = page_ptdesc(page);
1600
pmd_t *pmd;
1601
int i;
1602
1603
for (i = 0; i < PTRS_PER_PMD; i++) {
1604
pmd = pmd_start + i;
1605
if (!pmd_none(*pmd))
1606
return;
1607
}
1608
1609
if (!is_vmemmap)
1610
pagetable_dtor(ptdesc);
1611
if (PageReserved(page))
1612
free_reserved_page(page);
1613
else
1614
pagetable_free(ptdesc);
1615
pud_clear(pud);
1616
}
1617
1618
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1619
{
1620
struct page *page = p4d_page(*p4d);
1621
pud_t *pud;
1622
int i;
1623
1624
for (i = 0; i < PTRS_PER_PUD; i++) {
1625
pud = pud_start + i;
1626
if (!pud_none(*pud))
1627
return;
1628
}
1629
1630
if (PageReserved(page))
1631
free_reserved_page(page);
1632
else
1633
__free_pages(page, 0);
1634
p4d_clear(p4d);
1635
}
1636
1637
static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1638
struct vmem_altmap *altmap)
1639
{
1640
int order = get_order(size);
1641
1642
if (altmap) {
1643
vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1644
return;
1645
}
1646
1647
if (PageReserved(page)) {
1648
unsigned int nr_pages = 1 << order;
1649
1650
while (nr_pages--)
1651
free_reserved_page(page++);
1652
return;
1653
}
1654
1655
__free_pages(page, order);
1656
}
1657
1658
static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1659
bool is_vmemmap, struct vmem_altmap *altmap)
1660
{
1661
unsigned long next;
1662
pte_t *ptep, pte;
1663
1664
for (; addr < end; addr = next) {
1665
next = (addr + PAGE_SIZE) & PAGE_MASK;
1666
if (next > end)
1667
next = end;
1668
1669
ptep = pte_base + pte_index(addr);
1670
pte = ptep_get(ptep);
1671
if (!pte_present(*ptep))
1672
continue;
1673
1674
pte_clear(&init_mm, addr, ptep);
1675
if (is_vmemmap)
1676
free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1677
}
1678
}
1679
1680
static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1681
bool is_vmemmap, struct vmem_altmap *altmap)
1682
{
1683
unsigned long next;
1684
pte_t *pte_base;
1685
pmd_t *pmdp, pmd;
1686
1687
for (; addr < end; addr = next) {
1688
next = pmd_addr_end(addr, end);
1689
pmdp = pmd_base + pmd_index(addr);
1690
pmd = pmdp_get(pmdp);
1691
if (!pmd_present(pmd))
1692
continue;
1693
1694
if (pmd_leaf(pmd)) {
1695
pmd_clear(pmdp);
1696
if (is_vmemmap)
1697
free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1698
continue;
1699
}
1700
1701
pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1702
remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1703
free_pte_table(pte_base, pmdp);
1704
}
1705
}
1706
1707
static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1708
bool is_vmemmap, struct vmem_altmap *altmap)
1709
{
1710
unsigned long next;
1711
pud_t *pudp, pud;
1712
pmd_t *pmd_base;
1713
1714
for (; addr < end; addr = next) {
1715
next = pud_addr_end(addr, end);
1716
pudp = pud_base + pud_index(addr);
1717
pud = pudp_get(pudp);
1718
if (!pud_present(pud))
1719
continue;
1720
1721
if (pud_leaf(pud)) {
1722
if (pgtable_l4_enabled) {
1723
pud_clear(pudp);
1724
if (is_vmemmap)
1725
free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1726
}
1727
continue;
1728
}
1729
1730
pmd_base = pmd_offset(pudp, 0);
1731
remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1732
1733
if (pgtable_l4_enabled)
1734
free_pmd_table(pmd_base, pudp, is_vmemmap);
1735
}
1736
}
1737
1738
static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1739
bool is_vmemmap, struct vmem_altmap *altmap)
1740
{
1741
unsigned long next;
1742
p4d_t *p4dp, p4d;
1743
pud_t *pud_base;
1744
1745
for (; addr < end; addr = next) {
1746
next = p4d_addr_end(addr, end);
1747
p4dp = p4d_base + p4d_index(addr);
1748
p4d = p4dp_get(p4dp);
1749
if (!p4d_present(p4d))
1750
continue;
1751
1752
if (p4d_leaf(p4d)) {
1753
if (pgtable_l5_enabled) {
1754
p4d_clear(p4dp);
1755
if (is_vmemmap)
1756
free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1757
}
1758
continue;
1759
}
1760
1761
pud_base = pud_offset(p4dp, 0);
1762
remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1763
1764
if (pgtable_l5_enabled)
1765
free_pud_table(pud_base, p4dp);
1766
}
1767
}
1768
1769
static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1770
struct vmem_altmap *altmap)
1771
{
1772
unsigned long addr, next;
1773
p4d_t *p4d_base;
1774
pgd_t *pgd;
1775
1776
for (addr = va; addr < end; addr = next) {
1777
next = pgd_addr_end(addr, end);
1778
pgd = pgd_offset_k(addr);
1779
1780
if (!pgd_present(*pgd))
1781
continue;
1782
1783
if (pgd_leaf(*pgd))
1784
continue;
1785
1786
p4d_base = p4d_offset(pgd, 0);
1787
remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1788
}
1789
1790
flush_tlb_all();
1791
}
1792
1793
static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1794
{
1795
unsigned long va = (unsigned long)__va(start);
1796
unsigned long end = (unsigned long)__va(start + size);
1797
1798
remove_pgd_mapping(va, end, false, NULL);
1799
}
1800
1801
struct range arch_get_mappable_range(void)
1802
{
1803
struct range mhp_range;
1804
1805
mhp_range.start = __pa(PAGE_OFFSET);
1806
mhp_range.end = __pa(PAGE_END - 1);
1807
return mhp_range;
1808
}
1809
1810
int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1811
{
1812
int ret = 0;
1813
1814
create_linear_mapping_range(start, start + size, 0, &params->pgprot);
1815
ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1816
if (ret) {
1817
remove_linear_mapping(start, size);
1818
goto out;
1819
}
1820
1821
max_pfn = PFN_UP(start + size);
1822
max_low_pfn = max_pfn;
1823
1824
out:
1825
flush_tlb_all();
1826
return ret;
1827
}
1828
1829
void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1830
{
1831
__remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1832
remove_linear_mapping(start, size);
1833
flush_tlb_all();
1834
}
1835
1836
void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1837
{
1838
remove_pgd_mapping(start, end, true, altmap);
1839
}
1840
#endif /* CONFIG_MEMORY_HOTPLUG */
1841
1842