Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/net/bpf_jit_comp64.c
54339 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* BPF JIT compiler for RV64G
3
*
4
* Copyright(c) 2019 Björn Töpel <[email protected]>
5
*
6
*/
7
8
#include <linux/bitfield.h>
9
#include <linux/bpf.h>
10
#include <linux/filter.h>
11
#include <linux/memory.h>
12
#include <linux/stop_machine.h>
13
#include <asm/text-patching.h>
14
#include <asm/cfi.h>
15
#include <asm/percpu.h>
16
#include "bpf_jit.h"
17
18
#define RV_MAX_REG_ARGS 8
19
#define RV_FENTRY_NINSNS 2
20
#define RV_FENTRY_NBYTES (RV_FENTRY_NINSNS * 4)
21
#define RV_KCFI_NINSNS (IS_ENABLED(CONFIG_CFI) ? 1 : 0)
22
/* imm that allows emit_imm to emit max count insns */
23
#define RV_MAX_COUNT_IMM 0x7FFF7FF7FF7FF7FF
24
25
#define RV_REG_TCC RV_REG_A6
26
#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
27
#define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
28
29
static const int regmap[] = {
30
[BPF_REG_0] = RV_REG_A5,
31
[BPF_REG_1] = RV_REG_A0,
32
[BPF_REG_2] = RV_REG_A1,
33
[BPF_REG_3] = RV_REG_A2,
34
[BPF_REG_4] = RV_REG_A3,
35
[BPF_REG_5] = RV_REG_A4,
36
[BPF_REG_6] = RV_REG_S1,
37
[BPF_REG_7] = RV_REG_S2,
38
[BPF_REG_8] = RV_REG_S3,
39
[BPF_REG_9] = RV_REG_S4,
40
[BPF_REG_FP] = RV_REG_S5,
41
[BPF_REG_AX] = RV_REG_T0,
42
};
43
44
static const int pt_regmap[] = {
45
[RV_REG_A0] = offsetof(struct pt_regs, a0),
46
[RV_REG_A1] = offsetof(struct pt_regs, a1),
47
[RV_REG_A2] = offsetof(struct pt_regs, a2),
48
[RV_REG_A3] = offsetof(struct pt_regs, a3),
49
[RV_REG_A4] = offsetof(struct pt_regs, a4),
50
[RV_REG_A5] = offsetof(struct pt_regs, a5),
51
[RV_REG_S1] = offsetof(struct pt_regs, s1),
52
[RV_REG_S2] = offsetof(struct pt_regs, s2),
53
[RV_REG_S3] = offsetof(struct pt_regs, s3),
54
[RV_REG_S4] = offsetof(struct pt_regs, s4),
55
[RV_REG_S5] = offsetof(struct pt_regs, s5),
56
[RV_REG_T0] = offsetof(struct pt_regs, t0),
57
};
58
59
enum {
60
RV_CTX_F_SEEN_TAIL_CALL = 0,
61
RV_CTX_F_SEEN_CALL = RV_REG_RA,
62
RV_CTX_F_SEEN_S1 = RV_REG_S1,
63
RV_CTX_F_SEEN_S2 = RV_REG_S2,
64
RV_CTX_F_SEEN_S3 = RV_REG_S3,
65
RV_CTX_F_SEEN_S4 = RV_REG_S4,
66
RV_CTX_F_SEEN_S5 = RV_REG_S5,
67
RV_CTX_F_SEEN_S6 = RV_REG_S6,
68
};
69
70
static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
71
{
72
u8 reg = regmap[bpf_reg];
73
74
switch (reg) {
75
case RV_CTX_F_SEEN_S1:
76
case RV_CTX_F_SEEN_S2:
77
case RV_CTX_F_SEEN_S3:
78
case RV_CTX_F_SEEN_S4:
79
case RV_CTX_F_SEEN_S5:
80
case RV_CTX_F_SEEN_S6:
81
__set_bit(reg, &ctx->flags);
82
}
83
return reg;
84
};
85
86
static bool seen_reg(int reg, struct rv_jit_context *ctx)
87
{
88
switch (reg) {
89
case RV_CTX_F_SEEN_CALL:
90
case RV_CTX_F_SEEN_S1:
91
case RV_CTX_F_SEEN_S2:
92
case RV_CTX_F_SEEN_S3:
93
case RV_CTX_F_SEEN_S4:
94
case RV_CTX_F_SEEN_S5:
95
case RV_CTX_F_SEEN_S6:
96
return test_bit(reg, &ctx->flags);
97
}
98
return false;
99
}
100
101
static void mark_fp(struct rv_jit_context *ctx)
102
{
103
__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
104
}
105
106
static void mark_call(struct rv_jit_context *ctx)
107
{
108
__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109
}
110
111
static bool seen_call(struct rv_jit_context *ctx)
112
{
113
return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
114
}
115
116
static void mark_tail_call(struct rv_jit_context *ctx)
117
{
118
__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119
}
120
121
static bool seen_tail_call(struct rv_jit_context *ctx)
122
{
123
return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
124
}
125
126
static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
127
{
128
mark_tail_call(ctx);
129
130
if (seen_call(ctx)) {
131
__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
132
return RV_REG_S6;
133
}
134
return RV_REG_A6;
135
}
136
137
static bool is_32b_int(s64 val)
138
{
139
return -(1L << 31) <= val && val < (1L << 31);
140
}
141
142
static bool in_auipc_jalr_range(s64 val)
143
{
144
/*
145
* auipc+jalr can reach any signed PC-relative offset in the range
146
* [-2^31 - 2^11, 2^31 - 2^11).
147
*/
148
return (-(1L << 31) - (1L << 11)) <= val &&
149
val < ((1L << 31) - (1L << 11));
150
}
151
152
/* Modify rd pointer to alternate reg to avoid corrupting original reg */
153
static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
154
{
155
emit_sextw(ra, *rd, ctx);
156
*rd = ra;
157
}
158
159
static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
160
{
161
emit_zextw(ra, *rd, ctx);
162
*rd = ra;
163
}
164
165
/* Emit fixed-length instructions for address */
166
static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
167
{
168
/*
169
* Use the ro_insns(RX) to calculate the offset as the BPF program will
170
* finally run from this memory region.
171
*/
172
u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
173
s64 off = addr - ip;
174
s64 upper = (off + (1 << 11)) >> 12;
175
s64 lower = off & 0xfff;
176
177
if (extra_pass && !in_auipc_jalr_range(off)) {
178
pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
179
return -ERANGE;
180
}
181
182
emit(rv_auipc(rd, upper), ctx);
183
emit(rv_addi(rd, rd, lower), ctx);
184
return 0;
185
}
186
187
/* Emit variable-length instructions for 32-bit and 64-bit imm */
188
static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
189
{
190
/* Note that the immediate from the add is sign-extended,
191
* which means that we need to compensate this by adding 2^12,
192
* when the 12th bit is set. A simpler way of doing this, and
193
* getting rid of the check, is to just add 2**11 before the
194
* shift. The "Loading a 32-Bit constant" example from the
195
* "Computer Organization and Design, RISC-V edition" book by
196
* Patterson/Hennessy highlights this fact.
197
*
198
* This also means that we need to process LSB to MSB.
199
*/
200
s64 upper = (val + (1 << 11)) >> 12;
201
/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
202
* and addi are signed and RVC checks will perform signed comparisons.
203
*/
204
s64 lower = ((val & 0xfff) << 52) >> 52;
205
int shift;
206
207
if (is_32b_int(val)) {
208
if (upper)
209
emit_lui(rd, upper, ctx);
210
211
if (!upper) {
212
emit_li(rd, lower, ctx);
213
return;
214
}
215
216
emit_addiw(rd, rd, lower, ctx);
217
return;
218
}
219
220
shift = __ffs(upper);
221
upper >>= shift;
222
shift += 12;
223
224
emit_imm(rd, upper, ctx);
225
226
emit_slli(rd, rd, shift, ctx);
227
if (lower)
228
emit_addi(rd, rd, lower, ctx);
229
}
230
231
static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
232
{
233
int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
234
235
if (seen_reg(RV_REG_RA, ctx)) {
236
emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
237
store_offset -= 8;
238
}
239
emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
240
store_offset -= 8;
241
if (seen_reg(RV_REG_S1, ctx)) {
242
emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
243
store_offset -= 8;
244
}
245
if (seen_reg(RV_REG_S2, ctx)) {
246
emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
247
store_offset -= 8;
248
}
249
if (seen_reg(RV_REG_S3, ctx)) {
250
emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
251
store_offset -= 8;
252
}
253
if (seen_reg(RV_REG_S4, ctx)) {
254
emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
255
store_offset -= 8;
256
}
257
if (seen_reg(RV_REG_S5, ctx)) {
258
emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
259
store_offset -= 8;
260
}
261
if (seen_reg(RV_REG_S6, ctx)) {
262
emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
263
store_offset -= 8;
264
}
265
if (ctx->arena_vm_start) {
266
emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
267
store_offset -= 8;
268
}
269
270
emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
271
/* Set return value. */
272
if (!is_tail_call)
273
emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
274
emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
275
/* kcfi, fentry and TCC init insns will be skipped on tailcall */
276
is_tail_call ? (RV_KCFI_NINSNS + RV_FENTRY_NINSNS + 1) * 4 : 0,
277
ctx);
278
}
279
280
static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
281
struct rv_jit_context *ctx)
282
{
283
switch (cond) {
284
case BPF_JEQ:
285
emit(rv_beq(rd, rs, rvoff >> 1), ctx);
286
return;
287
case BPF_JGT:
288
emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
289
return;
290
case BPF_JLT:
291
emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
292
return;
293
case BPF_JGE:
294
emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
295
return;
296
case BPF_JLE:
297
emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
298
return;
299
case BPF_JNE:
300
emit(rv_bne(rd, rs, rvoff >> 1), ctx);
301
return;
302
case BPF_JSGT:
303
emit(rv_blt(rs, rd, rvoff >> 1), ctx);
304
return;
305
case BPF_JSLT:
306
emit(rv_blt(rd, rs, rvoff >> 1), ctx);
307
return;
308
case BPF_JSGE:
309
emit(rv_bge(rd, rs, rvoff >> 1), ctx);
310
return;
311
case BPF_JSLE:
312
emit(rv_bge(rs, rd, rvoff >> 1), ctx);
313
}
314
}
315
316
static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
317
struct rv_jit_context *ctx)
318
{
319
s64 upper, lower;
320
321
if (is_13b_int(rvoff)) {
322
emit_bcc(cond, rd, rs, rvoff, ctx);
323
return;
324
}
325
326
/* Adjust for jal */
327
rvoff -= 4;
328
329
/* Transform, e.g.:
330
* bne rd,rs,foo
331
* to
332
* beq rd,rs,<.L1>
333
* (auipc foo)
334
* jal(r) foo
335
* .L1
336
*/
337
cond = invert_bpf_cond(cond);
338
if (is_21b_int(rvoff)) {
339
emit_bcc(cond, rd, rs, 8, ctx);
340
emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
341
return;
342
}
343
344
/* 32b No need for an additional rvoff adjustment, since we
345
* get that from the auipc at PC', where PC = PC' + 4.
346
*/
347
upper = (rvoff + (1 << 11)) >> 12;
348
lower = rvoff & 0xfff;
349
350
emit_bcc(cond, rd, rs, 12, ctx);
351
emit(rv_auipc(RV_REG_T1, upper), ctx);
352
emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
353
}
354
355
static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
356
{
357
int tc_ninsn, off, start_insn = ctx->ninsns;
358
u8 tcc = rv_tail_call_reg(ctx);
359
360
/* a0: &ctx
361
* a1: &array
362
* a2: index
363
*
364
* if (index >= array->map.max_entries)
365
* goto out;
366
*/
367
tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
368
ctx->offset[0];
369
emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
370
371
off = offsetof(struct bpf_array, map.max_entries);
372
if (is_12b_check(off, insn))
373
return -1;
374
emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
375
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376
emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
377
378
/* if (--TCC < 0)
379
* goto out;
380
*/
381
emit_addi(RV_REG_TCC, tcc, -1, ctx);
382
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
383
emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
384
385
/* prog = array->ptrs[index];
386
* if (!prog)
387
* goto out;
388
*/
389
emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
390
off = offsetof(struct bpf_array, ptrs);
391
if (is_12b_check(off, insn))
392
return -1;
393
emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
394
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
395
emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
396
397
/* goto *(prog->bpf_func + 4); */
398
off = offsetof(struct bpf_prog, bpf_func);
399
if (is_12b_check(off, insn))
400
return -1;
401
emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
402
__build_epilogue(true, ctx);
403
return 0;
404
}
405
406
static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
407
struct rv_jit_context *ctx)
408
{
409
u8 code = insn->code;
410
411
switch (code) {
412
case BPF_JMP | BPF_JA:
413
case BPF_JMP | BPF_CALL:
414
case BPF_JMP | BPF_EXIT:
415
case BPF_JMP | BPF_TAIL_CALL:
416
break;
417
default:
418
*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
419
}
420
421
if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
422
code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
423
code & BPF_LDX || code & BPF_STX)
424
*rs = bpf_to_rv_reg(insn->src_reg, ctx);
425
}
426
427
static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
428
struct rv_jit_context *ctx)
429
{
430
s64 upper, lower;
431
432
if (rvoff && fixed_addr && is_21b_int(rvoff)) {
433
emit(rv_jal(rd, rvoff >> 1), ctx);
434
return 0;
435
} else if (in_auipc_jalr_range(rvoff)) {
436
upper = (rvoff + (1 << 11)) >> 12;
437
lower = rvoff & 0xfff;
438
emit(rv_auipc(RV_REG_T1, upper), ctx);
439
emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
440
return 0;
441
}
442
443
pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
444
return -ERANGE;
445
}
446
447
static bool is_signed_bpf_cond(u8 cond)
448
{
449
return cond == BPF_JSGT || cond == BPF_JSLT ||
450
cond == BPF_JSGE || cond == BPF_JSLE;
451
}
452
453
static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
454
{
455
s64 off = 0;
456
u64 ip;
457
458
if (addr && ctx->insns && ctx->ro_insns) {
459
/*
460
* Use the ro_insns(RX) to calculate the offset as the BPF
461
* program will finally run from this memory region.
462
*/
463
ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
464
off = addr - ip;
465
}
466
467
return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
468
}
469
470
static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
471
{
472
if (IS_ENABLED(CONFIG_CFI))
473
emit(hash, ctx);
474
}
475
476
static void emit_ldx_insn(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
477
struct rv_jit_context *ctx)
478
{
479
switch (size) {
480
case BPF_B:
481
emit(sign_ext ? rv_lb(rd, off, rs) : rv_lbu(rd, off, rs), ctx);
482
break;
483
case BPF_H:
484
emit(sign_ext ? rv_lh(rd, off, rs) : rv_lhu(rd, off, rs), ctx);
485
break;
486
case BPF_W:
487
emit(sign_ext ? rv_lw(rd, off, rs) : rv_lwu(rd, off, rs), ctx);
488
break;
489
case BPF_DW:
490
emit_ld(rd, off, rs, ctx);
491
break;
492
}
493
494
}
495
496
static void emit_stx_insn(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
497
{
498
switch (size) {
499
case BPF_B:
500
emit(rv_sb(rd, off, rs), ctx);
501
break;
502
case BPF_H:
503
emit(rv_sh(rd, off, rs), ctx);
504
break;
505
case BPF_W:
506
emit_sw(rd, off, rs, ctx);
507
break;
508
case BPF_DW:
509
emit_sd(rd, off, rs, ctx);
510
break;
511
}
512
}
513
514
static void emit_ldx(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
515
struct rv_jit_context *ctx)
516
{
517
if (is_12b_int(off)) {
518
ctx->ex_insn_off = ctx->ninsns;
519
emit_ldx_insn(rd, off, rs, size, sign_ext, ctx);
520
ctx->ex_jmp_off = ctx->ninsns;
521
return;
522
}
523
524
emit_imm(RV_REG_T1, off, ctx);
525
emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
526
ctx->ex_insn_off = ctx->ninsns;
527
emit_ldx_insn(rd, 0, RV_REG_T1, size, sign_ext, ctx);
528
ctx->ex_jmp_off = ctx->ninsns;
529
}
530
531
static void emit_st(u8 rd, s16 off, s32 imm, u8 size, struct rv_jit_context *ctx)
532
{
533
emit_imm(RV_REG_T1, imm, ctx);
534
if (is_12b_int(off)) {
535
ctx->ex_insn_off = ctx->ninsns;
536
emit_stx_insn(rd, off, RV_REG_T1, size, ctx);
537
ctx->ex_jmp_off = ctx->ninsns;
538
return;
539
}
540
541
emit_imm(RV_REG_T2, off, ctx);
542
emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
543
ctx->ex_insn_off = ctx->ninsns;
544
emit_stx_insn(RV_REG_T2, 0, RV_REG_T1, size, ctx);
545
ctx->ex_jmp_off = ctx->ninsns;
546
}
547
548
static void emit_stx(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
549
{
550
if (is_12b_int(off)) {
551
ctx->ex_insn_off = ctx->ninsns;
552
emit_stx_insn(rd, off, rs, size, ctx);
553
ctx->ex_jmp_off = ctx->ninsns;
554
return;
555
}
556
557
emit_imm(RV_REG_T1, off, ctx);
558
emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
559
ctx->ex_insn_off = ctx->ninsns;
560
emit_stx_insn(RV_REG_T1, 0, rs, size, ctx);
561
ctx->ex_jmp_off = ctx->ninsns;
562
}
563
564
static int emit_atomic_ld_st(u8 rd, u8 rs, const struct bpf_insn *insn,
565
struct rv_jit_context *ctx)
566
{
567
u8 code = insn->code;
568
s32 imm = insn->imm;
569
s16 off = insn->off;
570
571
switch (imm) {
572
/* dst_reg = load_acquire(src_reg + off16) */
573
case BPF_LOAD_ACQ:
574
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
575
emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
576
rs = RV_REG_T2;
577
}
578
579
emit_ldx(rd, off, rs, BPF_SIZE(code), false, ctx);
580
emit_fence_r_rw(ctx);
581
582
/* If our next insn is a redundant zext, return 1 to tell
583
* build_body() to skip it.
584
*/
585
if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
586
return 1;
587
break;
588
/* store_release(dst_reg + off16, src_reg) */
589
case BPF_STORE_REL:
590
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
591
emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
592
rd = RV_REG_T2;
593
}
594
595
emit_fence_rw_w(ctx);
596
emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
597
break;
598
default:
599
pr_err_once("bpf-jit: invalid atomic load/store opcode %02x\n", imm);
600
return -EINVAL;
601
}
602
603
return 0;
604
}
605
606
static int emit_atomic_rmw(u8 rd, u8 rs, const struct bpf_insn *insn,
607
struct rv_jit_context *ctx)
608
{
609
u8 code = insn->code;
610
s16 off = insn->off;
611
s32 imm = insn->imm;
612
bool is64 = BPF_SIZE(code) == BPF_DW;
613
614
if (BPF_SIZE(code) != BPF_W && BPF_SIZE(code) != BPF_DW) {
615
pr_err_once("bpf-jit: 1- and 2-byte RMW atomics are not supported\n");
616
return -EINVAL;
617
}
618
619
if (off) {
620
if (is_12b_int(off)) {
621
emit_addi(RV_REG_T1, rd, off, ctx);
622
} else {
623
emit_imm(RV_REG_T1, off, ctx);
624
emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
625
}
626
rd = RV_REG_T1;
627
}
628
629
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
630
emit_add(RV_REG_T1, rd, RV_REG_ARENA, ctx);
631
rd = RV_REG_T1;
632
}
633
634
switch (imm) {
635
/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
636
case BPF_ADD:
637
ctx->ex_insn_off = ctx->ninsns;
638
emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
639
rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
640
ctx->ex_jmp_off = ctx->ninsns;
641
break;
642
case BPF_AND:
643
ctx->ex_insn_off = ctx->ninsns;
644
emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
645
rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
646
ctx->ex_jmp_off = ctx->ninsns;
647
break;
648
case BPF_OR:
649
ctx->ex_insn_off = ctx->ninsns;
650
emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
651
rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
652
ctx->ex_jmp_off = ctx->ninsns;
653
break;
654
case BPF_XOR:
655
ctx->ex_insn_off = ctx->ninsns;
656
emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
657
rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
658
ctx->ex_jmp_off = ctx->ninsns;
659
break;
660
/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
661
case BPF_ADD | BPF_FETCH:
662
ctx->ex_insn_off = ctx->ninsns;
663
emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
664
rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
665
ctx->ex_jmp_off = ctx->ninsns;
666
if (!is64)
667
emit_zextw(rs, rs, ctx);
668
break;
669
case BPF_AND | BPF_FETCH:
670
ctx->ex_insn_off = ctx->ninsns;
671
emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
672
rv_amoand_w(rs, rs, rd, 1, 1), ctx);
673
ctx->ex_jmp_off = ctx->ninsns;
674
if (!is64)
675
emit_zextw(rs, rs, ctx);
676
break;
677
case BPF_OR | BPF_FETCH:
678
ctx->ex_insn_off = ctx->ninsns;
679
emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
680
rv_amoor_w(rs, rs, rd, 1, 1), ctx);
681
ctx->ex_jmp_off = ctx->ninsns;
682
if (!is64)
683
emit_zextw(rs, rs, ctx);
684
break;
685
case BPF_XOR | BPF_FETCH:
686
ctx->ex_insn_off = ctx->ninsns;
687
emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
688
rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
689
ctx->ex_jmp_off = ctx->ninsns;
690
if (!is64)
691
emit_zextw(rs, rs, ctx);
692
break;
693
/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
694
case BPF_XCHG:
695
ctx->ex_insn_off = ctx->ninsns;
696
emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
697
rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
698
ctx->ex_jmp_off = ctx->ninsns;
699
if (!is64)
700
emit_zextw(rs, rs, ctx);
701
break;
702
/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
703
case BPF_CMPXCHG:
704
emit_cmpxchg(rd, rs, regmap[BPF_REG_0], is64, ctx);
705
break;
706
default:
707
pr_err_once("bpf-jit: invalid atomic RMW opcode %02x\n", imm);
708
return -EINVAL;
709
}
710
711
return 0;
712
}
713
714
/*
715
* Sign-extend the register if necessary
716
*/
717
static int sign_extend(u8 rd, u8 rs, u8 sz, bool sign, struct rv_jit_context *ctx)
718
{
719
if (!sign && (sz == 1 || sz == 2)) {
720
if (rd != rs)
721
emit_mv(rd, rs, ctx);
722
return 0;
723
}
724
725
switch (sz) {
726
case 1:
727
emit_sextb(rd, rs, ctx);
728
break;
729
case 2:
730
emit_sexth(rd, rs, ctx);
731
break;
732
case 4:
733
emit_sextw(rd, rs, ctx);
734
break;
735
case 8:
736
if (rd != rs)
737
emit_mv(rd, rs, ctx);
738
break;
739
default:
740
pr_err("bpf-jit: invalid size %d for sign_extend\n", sz);
741
return -EINVAL;
742
}
743
744
return 0;
745
}
746
747
#define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
748
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
749
#define REG_DONT_CLEAR_MARKER 0 /* RV_REG_ZERO unused in pt_regmap */
750
751
bool ex_handler_bpf(const struct exception_table_entry *ex,
752
struct pt_regs *regs)
753
{
754
off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
755
int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
756
757
if (regs_offset != REG_DONT_CLEAR_MARKER)
758
*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
759
regs->epc = (unsigned long)&ex->fixup - offset;
760
761
return true;
762
}
763
764
/* For accesses to BTF pointers, add an entry to the exception table */
765
static int add_exception_handler(const struct bpf_insn *insn, int dst_reg,
766
struct rv_jit_context *ctx)
767
{
768
struct exception_table_entry *ex;
769
unsigned long pc;
770
off_t ins_offset;
771
off_t fixup_offset;
772
773
if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
774
ctx->ex_insn_off <= 0 || ctx->ex_jmp_off <= 0)
775
return 0;
776
777
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
778
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
779
BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
780
BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
781
return 0;
782
783
if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
784
return -EINVAL;
785
786
if (WARN_ON_ONCE(ctx->ex_insn_off > ctx->ninsns || ctx->ex_jmp_off > ctx->ninsns))
787
return -EINVAL;
788
789
ex = &ctx->prog->aux->extable[ctx->nexentries];
790
pc = (unsigned long)&ctx->ro_insns[ctx->ex_insn_off];
791
792
/*
793
* This is the relative offset of the instruction that may fault from
794
* the exception table itself. This will be written to the exception
795
* table and if this instruction faults, the destination register will
796
* be set to '0' and the execution will jump to the next instruction.
797
*/
798
ins_offset = pc - (long)&ex->insn;
799
if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
800
return -ERANGE;
801
802
/*
803
* Since the extable follows the program, the fixup offset is always
804
* negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
805
* to keep things simple, and put the destination register in the upper
806
* bits. We don't need to worry about buildtime or runtime sort
807
* modifying the upper bits because the table is already sorted, and
808
* isn't part of the main exception table.
809
*
810
* The fixup_offset is set to the next instruction from the instruction
811
* that may fault. The execution will jump to this after handling the
812
* fault.
813
*/
814
fixup_offset = (long)&ex->fixup - (long)&ctx->ro_insns[ctx->ex_jmp_off];
815
if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
816
return -ERANGE;
817
818
/*
819
* The offsets above have been calculated using the RO buffer but we
820
* need to use the R/W buffer for writes.
821
* switch ex to rw buffer for writing.
822
*/
823
ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
824
825
ex->insn = ins_offset;
826
827
ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
828
FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
829
ex->type = EX_TYPE_BPF;
830
831
ctx->ex_insn_off = 0;
832
ctx->ex_jmp_off = 0;
833
ctx->nexentries++;
834
return 0;
835
}
836
837
static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
838
{
839
s64 rvoff;
840
struct rv_jit_context ctx;
841
842
ctx.ninsns = 0;
843
ctx.insns = (u16 *)insns;
844
845
if (!target) {
846
emit(rv_nop(), &ctx);
847
emit(rv_nop(), &ctx);
848
return 0;
849
}
850
851
rvoff = (s64)(target - ip);
852
return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
853
}
854
855
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
856
enum bpf_text_poke_type new_t, void *old_addr,
857
void *new_addr)
858
{
859
u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
860
bool is_call;
861
int ret;
862
863
if (!is_kernel_text((unsigned long)ip) &&
864
!is_bpf_text_address((unsigned long)ip))
865
return -ENOTSUPP;
866
867
is_call = old_t == BPF_MOD_CALL;
868
ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
869
if (ret)
870
return ret;
871
872
if (memcmp(ip, old_insns, RV_FENTRY_NBYTES))
873
return -EFAULT;
874
875
is_call = new_t == BPF_MOD_CALL;
876
ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
877
if (ret)
878
return ret;
879
880
cpus_read_lock();
881
mutex_lock(&text_mutex);
882
if (memcmp(ip, new_insns, RV_FENTRY_NBYTES))
883
ret = patch_text(ip, new_insns, RV_FENTRY_NBYTES);
884
mutex_unlock(&text_mutex);
885
cpus_read_unlock();
886
887
return ret;
888
}
889
890
static void store_args(int nr_arg_slots, int args_off, struct rv_jit_context *ctx)
891
{
892
int i;
893
894
for (i = 0; i < nr_arg_slots; i++) {
895
if (i < RV_MAX_REG_ARGS) {
896
emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
897
} else {
898
/* skip slots for T0 and FP of traced function */
899
emit_ld(RV_REG_T1, 16 + (i - RV_MAX_REG_ARGS) * 8, RV_REG_FP, ctx);
900
emit_sd(RV_REG_FP, -args_off, RV_REG_T1, ctx);
901
}
902
args_off -= 8;
903
}
904
}
905
906
static void restore_args(int nr_reg_args, int args_off, struct rv_jit_context *ctx)
907
{
908
int i;
909
910
for (i = 0; i < nr_reg_args; i++) {
911
emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
912
args_off -= 8;
913
}
914
}
915
916
static void restore_stack_args(int nr_stack_args, int args_off, int stk_arg_off,
917
struct rv_jit_context *ctx)
918
{
919
int i;
920
921
for (i = 0; i < nr_stack_args; i++) {
922
emit_ld(RV_REG_T1, -(args_off - RV_MAX_REG_ARGS * 8), RV_REG_FP, ctx);
923
emit_sd(RV_REG_FP, -stk_arg_off, RV_REG_T1, ctx);
924
args_off -= 8;
925
stk_arg_off -= 8;
926
}
927
}
928
929
static void emit_store_stack_imm64(u8 reg, int stack_off, u64 imm64,
930
struct rv_jit_context *ctx)
931
{
932
/* Load imm64 into reg and store it at [FP + stack_off]. */
933
emit_imm(reg, (s64)imm64, ctx);
934
emit_sd(RV_REG_FP, stack_off, reg, ctx);
935
}
936
937
static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
938
int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
939
{
940
int ret, branch_off;
941
struct bpf_prog *p = l->link.prog;
942
int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
943
944
if (l->cookie)
945
emit_store_stack_imm64(RV_REG_T1, -run_ctx_off + cookie_off, l->cookie, ctx);
946
else
947
emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
948
949
/* arg1: prog */
950
emit_imm(RV_REG_A0, (const s64)p, ctx);
951
/* arg2: &run_ctx */
952
emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
953
ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
954
if (ret)
955
return ret;
956
957
/* store prog start time */
958
emit_mv(RV_REG_S1, RV_REG_A0, ctx);
959
960
/* if (__bpf_prog_enter(prog) == 0)
961
* goto skip_exec_of_prog;
962
*/
963
branch_off = ctx->ninsns;
964
/* nop reserved for conditional jump */
965
emit(rv_nop(), ctx);
966
967
/* arg1: &args_off */
968
emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
969
if (!p->jited)
970
/* arg2: progs[i]->insnsi for interpreter */
971
emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
972
ret = emit_call((const u64)p->bpf_func, true, ctx);
973
if (ret)
974
return ret;
975
976
if (save_ret) {
977
emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
978
emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
979
}
980
981
/* update branch with beqz */
982
if (ctx->insns) {
983
int offset = ninsns_rvoff(ctx->ninsns - branch_off);
984
u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
985
*(u32 *)(ctx->insns + branch_off) = insn;
986
}
987
988
/* arg1: prog */
989
emit_imm(RV_REG_A0, (const s64)p, ctx);
990
/* arg2: prog start time */
991
emit_mv(RV_REG_A1, RV_REG_S1, ctx);
992
/* arg3: &run_ctx */
993
emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
994
ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
995
996
return ret;
997
}
998
999
static int invoke_bpf(struct bpf_tramp_links *tl, int args_off, int retval_off,
1000
int run_ctx_off, int func_meta_off, bool save_ret, u64 func_meta,
1001
int cookie_off, struct rv_jit_context *ctx)
1002
{
1003
int i, cur_cookie = (cookie_off - args_off) / 8;
1004
1005
for (i = 0; i < tl->nr_links; i++) {
1006
int err;
1007
1008
if (bpf_prog_calls_session_cookie(tl->links[i])) {
1009
u64 meta = func_meta | ((u64)cur_cookie << BPF_TRAMP_COOKIE_INDEX_SHIFT);
1010
1011
emit_store_stack_imm64(RV_REG_T1, -func_meta_off, meta, ctx);
1012
cur_cookie--;
1013
}
1014
err = invoke_bpf_prog(tl->links[i], args_off, retval_off, run_ctx_off,
1015
save_ret, ctx);
1016
if (err)
1017
return err;
1018
}
1019
return 0;
1020
}
1021
1022
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
1023
const struct btf_func_model *m,
1024
struct bpf_tramp_links *tlinks,
1025
void *func_addr, u32 flags,
1026
struct rv_jit_context *ctx)
1027
{
1028
int i, ret, offset;
1029
int *branches_off = NULL;
1030
int stack_size = 0, nr_arg_slots = 0;
1031
int retval_off, args_off, func_meta_off, ip_off, run_ctx_off, sreg_off, stk_arg_off;
1032
int cookie_off, cookie_cnt;
1033
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
1034
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
1035
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
1036
bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
1037
void *orig_call = func_addr;
1038
bool save_ret;
1039
u64 func_meta;
1040
u32 insn;
1041
1042
/* Two types of generated trampoline stack layout:
1043
*
1044
* 1. trampoline called from function entry
1045
* --------------------------------------
1046
* FP + 8 [ RA to parent func ] return address to parent
1047
* function
1048
* FP + 0 [ FP of parent func ] frame pointer of parent
1049
* function
1050
* FP - 8 [ T0 to traced func ] return address of traced
1051
* function
1052
* FP - 16 [ FP of traced func ] frame pointer of traced
1053
* function
1054
* --------------------------------------
1055
*
1056
* 2. trampoline called directly
1057
* --------------------------------------
1058
* FP - 8 [ RA to caller func ] return address to caller
1059
* function
1060
* FP - 16 [ FP of caller func ] frame pointer of caller
1061
* function
1062
* --------------------------------------
1063
*
1064
* FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
1065
* BPF_TRAMP_F_RET_FENTRY_RET
1066
* [ argN ]
1067
* [ ... ]
1068
* FP - args_off [ arg1 ]
1069
*
1070
* FP - func_meta_off [ regs count, etc ]
1071
*
1072
* FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG
1073
*
1074
* [ stack cookie N ]
1075
* [ ... ]
1076
* FP - cookie_off [ stack cookie 1 ]
1077
*
1078
* FP - run_ctx_off [ bpf_tramp_run_ctx ]
1079
*
1080
* FP - sreg_off [ callee saved reg ]
1081
*
1082
* [ pads ] pads for 16 bytes alignment
1083
*
1084
* [ stack_argN ]
1085
* [ ... ]
1086
* FP - stk_arg_off [ stack_arg1 ] BPF_TRAMP_F_CALL_ORIG
1087
*/
1088
1089
if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
1090
return -ENOTSUPP;
1091
1092
if (m->nr_args > MAX_BPF_FUNC_ARGS)
1093
return -ENOTSUPP;
1094
1095
for (i = 0; i < m->nr_args; i++)
1096
nr_arg_slots += round_up(m->arg_size[i], 8) / 8;
1097
1098
/* room of trampoline frame to store return address and frame pointer */
1099
stack_size += 16;
1100
1101
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1102
if (save_ret)
1103
stack_size += 16; /* Save both A5 (BPF R0) and A0 */
1104
retval_off = stack_size;
1105
1106
stack_size += nr_arg_slots * 8;
1107
args_off = stack_size;
1108
1109
/* function metadata, such as regs count */
1110
stack_size += 8;
1111
func_meta_off = stack_size;
1112
1113
if (flags & BPF_TRAMP_F_IP_ARG) {
1114
stack_size += 8;
1115
ip_off = stack_size;
1116
}
1117
1118
cookie_cnt = bpf_fsession_cookie_cnt(tlinks);
1119
/* room for session cookies */
1120
stack_size += cookie_cnt * 8;
1121
cookie_off = stack_size;
1122
1123
stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
1124
run_ctx_off = stack_size;
1125
1126
stack_size += 8;
1127
sreg_off = stack_size;
1128
1129
if ((flags & BPF_TRAMP_F_CALL_ORIG) && (nr_arg_slots - RV_MAX_REG_ARGS > 0))
1130
stack_size += (nr_arg_slots - RV_MAX_REG_ARGS) * 8;
1131
1132
stack_size = round_up(stack_size, STACK_ALIGN);
1133
1134
/* room for args on stack must be at the top of stack */
1135
stk_arg_off = stack_size;
1136
1137
if (!is_struct_ops) {
1138
/* For the trampoline called from function entry,
1139
* the frame of traced function and the frame of
1140
* trampoline need to be considered.
1141
*/
1142
emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
1143
emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
1144
emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
1145
emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
1146
1147
emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1148
emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
1149
emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1150
emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1151
} else {
1152
/* emit kcfi hash */
1153
emit_kcfi(cfi_get_func_hash(func_addr), ctx);
1154
/* For the trampoline called directly, just handle
1155
* the frame of trampoline.
1156
*/
1157
emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1158
emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
1159
emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1160
emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1161
}
1162
1163
/* callee saved register S1 to pass start time */
1164
emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
1165
1166
/* store ip address of the traced function */
1167
if (flags & BPF_TRAMP_F_IP_ARG)
1168
emit_store_stack_imm64(RV_REG_T1, -ip_off, (u64)func_addr, ctx);
1169
1170
func_meta = nr_arg_slots;
1171
emit_store_stack_imm64(RV_REG_T1, -func_meta_off, func_meta, ctx);
1172
1173
store_args(nr_arg_slots, args_off, ctx);
1174
1175
if (bpf_fsession_cnt(tlinks)) {
1176
/* clear all session cookies' value */
1177
for (i = 0; i < cookie_cnt; i++)
1178
emit_sd(RV_REG_FP, -cookie_off + 8 * i, RV_REG_ZERO, ctx);
1179
/* clear return value to make sure fentry always get 0 */
1180
emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
1181
}
1182
1183
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1184
emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1185
ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
1186
if (ret)
1187
return ret;
1188
}
1189
1190
if (fentry->nr_links) {
1191
ret = invoke_bpf(fentry, args_off, retval_off, run_ctx_off, func_meta_off,
1192
flags & BPF_TRAMP_F_RET_FENTRY_RET, func_meta, cookie_off, ctx);
1193
if (ret)
1194
return ret;
1195
}
1196
1197
if (fmod_ret->nr_links) {
1198
branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
1199
if (!branches_off)
1200
return -ENOMEM;
1201
1202
/* cleanup to avoid garbage return value confusion */
1203
emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
1204
for (i = 0; i < fmod_ret->nr_links; i++) {
1205
ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
1206
run_ctx_off, true, ctx);
1207
if (ret)
1208
goto out;
1209
emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
1210
branches_off[i] = ctx->ninsns;
1211
/* nop reserved for conditional jump */
1212
emit(rv_nop(), ctx);
1213
}
1214
}
1215
1216
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1217
/* skip to actual body of traced function */
1218
orig_call += RV_FENTRY_NINSNS * 4;
1219
restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1220
restore_stack_args(nr_arg_slots - RV_MAX_REG_ARGS, args_off, stk_arg_off, ctx);
1221
ret = emit_call((const u64)orig_call, true, ctx);
1222
if (ret)
1223
goto out;
1224
emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
1225
emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
1226
im->ip_after_call = ctx->ro_insns + ctx->ninsns;
1227
/* 2 nops reserved for auipc+jalr pair */
1228
emit(rv_nop(), ctx);
1229
emit(rv_nop(), ctx);
1230
}
1231
1232
/* update branches saved in invoke_bpf_mod_ret with bnez */
1233
for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
1234
offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
1235
insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
1236
*(u32 *)(ctx->insns + branches_off[i]) = insn;
1237
}
1238
1239
/* set "is_return" flag for fsession */
1240
func_meta |= (1ULL << BPF_TRAMP_IS_RETURN_SHIFT);
1241
if (bpf_fsession_cnt(tlinks))
1242
emit_store_stack_imm64(RV_REG_T1, -func_meta_off, func_meta, ctx);
1243
1244
if (fexit->nr_links) {
1245
ret = invoke_bpf(fexit, args_off, retval_off, run_ctx_off, func_meta_off,
1246
false, func_meta, cookie_off, ctx);
1247
if (ret)
1248
goto out;
1249
}
1250
1251
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1252
im->ip_epilogue = ctx->ro_insns + ctx->ninsns;
1253
emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1254
ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
1255
if (ret)
1256
goto out;
1257
}
1258
1259
if (flags & BPF_TRAMP_F_RESTORE_REGS)
1260
restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1261
1262
if (save_ret) {
1263
emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
1264
if (is_struct_ops) {
1265
ret = sign_extend(RV_REG_A0, regmap[BPF_REG_0], m->ret_size,
1266
m->ret_flags & BTF_FMODEL_SIGNED_ARG, ctx);
1267
if (ret)
1268
goto out;
1269
} else {
1270
emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
1271
}
1272
}
1273
1274
emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1275
1276
if (!is_struct_ops) {
1277
/* trampoline called from function entry */
1278
emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1279
emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1280
emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1281
1282
emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1283
emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1284
emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1285
1286
if (flags & BPF_TRAMP_F_SKIP_FRAME)
1287
/* return to parent function */
1288
emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1289
else
1290
/* return to traced function */
1291
emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1292
} else {
1293
/* trampoline called directly */
1294
emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1295
emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1296
emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1297
1298
emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1299
}
1300
1301
ret = ctx->ninsns;
1302
out:
1303
kfree(branches_off);
1304
return ret;
1305
}
1306
1307
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1308
struct bpf_tramp_links *tlinks, void *func_addr)
1309
{
1310
struct bpf_tramp_image im;
1311
struct rv_jit_context ctx;
1312
int ret;
1313
1314
ctx.ninsns = 0;
1315
ctx.insns = NULL;
1316
ctx.ro_insns = NULL;
1317
ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1318
1319
return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1320
}
1321
1322
void *arch_alloc_bpf_trampoline(unsigned int size)
1323
{
1324
return bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1325
}
1326
1327
void arch_free_bpf_trampoline(void *image, unsigned int size)
1328
{
1329
bpf_prog_pack_free(image, size);
1330
}
1331
1332
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
1333
void *ro_image_end, const struct btf_func_model *m,
1334
u32 flags, struct bpf_tramp_links *tlinks,
1335
void *func_addr)
1336
{
1337
int ret;
1338
void *image, *res;
1339
struct rv_jit_context ctx;
1340
u32 size = ro_image_end - ro_image;
1341
1342
image = kvmalloc(size, GFP_KERNEL);
1343
if (!image)
1344
return -ENOMEM;
1345
1346
ctx.ninsns = 0;
1347
ctx.insns = image;
1348
ctx.ro_insns = ro_image;
1349
ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1350
if (ret < 0)
1351
goto out;
1352
1353
if (WARN_ON(size < ninsns_rvoff(ctx.ninsns))) {
1354
ret = -E2BIG;
1355
goto out;
1356
}
1357
1358
res = bpf_arch_text_copy(ro_image, image, size);
1359
if (IS_ERR(res)) {
1360
ret = PTR_ERR(res);
1361
goto out;
1362
}
1363
1364
out:
1365
kvfree(image);
1366
return ret < 0 ? ret : size;
1367
}
1368
1369
int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1370
bool extra_pass)
1371
{
1372
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1373
BPF_CLASS(insn->code) == BPF_JMP;
1374
int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1375
struct bpf_prog_aux *aux = ctx->prog->aux;
1376
u8 rd = -1, rs = -1, code = insn->code;
1377
s16 off = insn->off;
1378
s32 imm = insn->imm;
1379
1380
init_regs(&rd, &rs, insn, ctx);
1381
1382
switch (code) {
1383
/* dst = src */
1384
case BPF_ALU | BPF_MOV | BPF_X:
1385
case BPF_ALU64 | BPF_MOV | BPF_X:
1386
if (insn_is_cast_user(insn)) {
1387
emit_mv(RV_REG_T1, rs, ctx);
1388
emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1389
emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1390
emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1391
emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1392
emit_mv(rd, RV_REG_T1, ctx);
1393
break;
1394
} else if (insn_is_mov_percpu_addr(insn)) {
1395
if (rd != rs)
1396
emit_mv(rd, rs, ctx);
1397
#ifdef CONFIG_SMP
1398
/* Load current CPU number in T1 */
1399
emit_lw(RV_REG_T1, offsetof(struct thread_info, cpu),
1400
RV_REG_TP, ctx);
1401
/* Load address of __per_cpu_offset array in T2 */
1402
emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1403
/* Get address of __per_cpu_offset[cpu] in T1 */
1404
emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1405
/* Load __per_cpu_offset[cpu] in T1 */
1406
emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1407
/* Add the offset to Rd */
1408
emit_add(rd, rd, RV_REG_T1, ctx);
1409
#endif
1410
}
1411
if (imm == 1) {
1412
/* Special mov32 for zext */
1413
emit_zextw(rd, rd, ctx);
1414
break;
1415
}
1416
switch (insn->off) {
1417
case 0:
1418
emit_mv(rd, rs, ctx);
1419
break;
1420
case 8:
1421
emit_sextb(rd, rs, ctx);
1422
break;
1423
case 16:
1424
emit_sexth(rd, rs, ctx);
1425
break;
1426
case 32:
1427
emit_sextw(rd, rs, ctx);
1428
break;
1429
}
1430
if (!is64 && !aux->verifier_zext)
1431
emit_zextw(rd, rd, ctx);
1432
break;
1433
1434
/* dst = dst OP src */
1435
case BPF_ALU | BPF_ADD | BPF_X:
1436
case BPF_ALU64 | BPF_ADD | BPF_X:
1437
emit_add(rd, rd, rs, ctx);
1438
if (!is64 && !aux->verifier_zext)
1439
emit_zextw(rd, rd, ctx);
1440
break;
1441
case BPF_ALU | BPF_SUB | BPF_X:
1442
case BPF_ALU64 | BPF_SUB | BPF_X:
1443
if (is64)
1444
emit_sub(rd, rd, rs, ctx);
1445
else
1446
emit_subw(rd, rd, rs, ctx);
1447
1448
if (!is64 && !aux->verifier_zext)
1449
emit_zextw(rd, rd, ctx);
1450
break;
1451
case BPF_ALU | BPF_AND | BPF_X:
1452
case BPF_ALU64 | BPF_AND | BPF_X:
1453
emit_and(rd, rd, rs, ctx);
1454
if (!is64 && !aux->verifier_zext)
1455
emit_zextw(rd, rd, ctx);
1456
break;
1457
case BPF_ALU | BPF_OR | BPF_X:
1458
case BPF_ALU64 | BPF_OR | BPF_X:
1459
emit_or(rd, rd, rs, ctx);
1460
if (!is64 && !aux->verifier_zext)
1461
emit_zextw(rd, rd, ctx);
1462
break;
1463
case BPF_ALU | BPF_XOR | BPF_X:
1464
case BPF_ALU64 | BPF_XOR | BPF_X:
1465
emit_xor(rd, rd, rs, ctx);
1466
if (!is64 && !aux->verifier_zext)
1467
emit_zextw(rd, rd, ctx);
1468
break;
1469
case BPF_ALU | BPF_MUL | BPF_X:
1470
case BPF_ALU64 | BPF_MUL | BPF_X:
1471
emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1472
if (!is64 && !aux->verifier_zext)
1473
emit_zextw(rd, rd, ctx);
1474
break;
1475
case BPF_ALU | BPF_DIV | BPF_X:
1476
case BPF_ALU64 | BPF_DIV | BPF_X:
1477
if (off)
1478
emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1479
else
1480
emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1481
if (!is64 && !aux->verifier_zext)
1482
emit_zextw(rd, rd, ctx);
1483
break;
1484
case BPF_ALU | BPF_MOD | BPF_X:
1485
case BPF_ALU64 | BPF_MOD | BPF_X:
1486
if (off)
1487
emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1488
else
1489
emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1490
if (!is64 && !aux->verifier_zext)
1491
emit_zextw(rd, rd, ctx);
1492
break;
1493
case BPF_ALU | BPF_LSH | BPF_X:
1494
case BPF_ALU64 | BPF_LSH | BPF_X:
1495
emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1496
if (!is64 && !aux->verifier_zext)
1497
emit_zextw(rd, rd, ctx);
1498
break;
1499
case BPF_ALU | BPF_RSH | BPF_X:
1500
case BPF_ALU64 | BPF_RSH | BPF_X:
1501
emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1502
if (!is64 && !aux->verifier_zext)
1503
emit_zextw(rd, rd, ctx);
1504
break;
1505
case BPF_ALU | BPF_ARSH | BPF_X:
1506
case BPF_ALU64 | BPF_ARSH | BPF_X:
1507
emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1508
if (!is64 && !aux->verifier_zext)
1509
emit_zextw(rd, rd, ctx);
1510
break;
1511
1512
/* dst = -dst */
1513
case BPF_ALU | BPF_NEG:
1514
case BPF_ALU64 | BPF_NEG:
1515
emit_sub(rd, RV_REG_ZERO, rd, ctx);
1516
if (!is64 && !aux->verifier_zext)
1517
emit_zextw(rd, rd, ctx);
1518
break;
1519
1520
/* dst = BSWAP##imm(dst) */
1521
case BPF_ALU | BPF_END | BPF_FROM_LE:
1522
switch (imm) {
1523
case 16:
1524
emit_zexth(rd, rd, ctx);
1525
break;
1526
case 32:
1527
if (!aux->verifier_zext)
1528
emit_zextw(rd, rd, ctx);
1529
break;
1530
case 64:
1531
/* Do nothing */
1532
break;
1533
}
1534
break;
1535
case BPF_ALU | BPF_END | BPF_FROM_BE:
1536
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1537
emit_bswap(rd, imm, ctx);
1538
break;
1539
1540
/* dst = imm */
1541
case BPF_ALU | BPF_MOV | BPF_K:
1542
case BPF_ALU64 | BPF_MOV | BPF_K:
1543
emit_imm(rd, imm, ctx);
1544
if (!is64 && !aux->verifier_zext)
1545
emit_zextw(rd, rd, ctx);
1546
break;
1547
1548
/* dst = dst OP imm */
1549
case BPF_ALU | BPF_ADD | BPF_K:
1550
case BPF_ALU64 | BPF_ADD | BPF_K:
1551
if (is_12b_int(imm)) {
1552
emit_addi(rd, rd, imm, ctx);
1553
} else {
1554
emit_imm(RV_REG_T1, imm, ctx);
1555
emit_add(rd, rd, RV_REG_T1, ctx);
1556
}
1557
if (!is64 && !aux->verifier_zext)
1558
emit_zextw(rd, rd, ctx);
1559
break;
1560
case BPF_ALU | BPF_SUB | BPF_K:
1561
case BPF_ALU64 | BPF_SUB | BPF_K:
1562
if (is_12b_int(-imm)) {
1563
emit_addi(rd, rd, -imm, ctx);
1564
} else {
1565
emit_imm(RV_REG_T1, imm, ctx);
1566
emit_sub(rd, rd, RV_REG_T1, ctx);
1567
}
1568
if (!is64 && !aux->verifier_zext)
1569
emit_zextw(rd, rd, ctx);
1570
break;
1571
case BPF_ALU | BPF_AND | BPF_K:
1572
case BPF_ALU64 | BPF_AND | BPF_K:
1573
if (is_12b_int(imm)) {
1574
emit_andi(rd, rd, imm, ctx);
1575
} else {
1576
emit_imm(RV_REG_T1, imm, ctx);
1577
emit_and(rd, rd, RV_REG_T1, ctx);
1578
}
1579
if (!is64 && !aux->verifier_zext)
1580
emit_zextw(rd, rd, ctx);
1581
break;
1582
case BPF_ALU | BPF_OR | BPF_K:
1583
case BPF_ALU64 | BPF_OR | BPF_K:
1584
if (is_12b_int(imm)) {
1585
emit(rv_ori(rd, rd, imm), ctx);
1586
} else {
1587
emit_imm(RV_REG_T1, imm, ctx);
1588
emit_or(rd, rd, RV_REG_T1, ctx);
1589
}
1590
if (!is64 && !aux->verifier_zext)
1591
emit_zextw(rd, rd, ctx);
1592
break;
1593
case BPF_ALU | BPF_XOR | BPF_K:
1594
case BPF_ALU64 | BPF_XOR | BPF_K:
1595
if (is_12b_int(imm)) {
1596
emit(rv_xori(rd, rd, imm), ctx);
1597
} else {
1598
emit_imm(RV_REG_T1, imm, ctx);
1599
emit_xor(rd, rd, RV_REG_T1, ctx);
1600
}
1601
if (!is64 && !aux->verifier_zext)
1602
emit_zextw(rd, rd, ctx);
1603
break;
1604
case BPF_ALU | BPF_MUL | BPF_K:
1605
case BPF_ALU64 | BPF_MUL | BPF_K:
1606
emit_imm(RV_REG_T1, imm, ctx);
1607
emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1608
rv_mulw(rd, rd, RV_REG_T1), ctx);
1609
if (!is64 && !aux->verifier_zext)
1610
emit_zextw(rd, rd, ctx);
1611
break;
1612
case BPF_ALU | BPF_DIV | BPF_K:
1613
case BPF_ALU64 | BPF_DIV | BPF_K:
1614
emit_imm(RV_REG_T1, imm, ctx);
1615
if (off)
1616
emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1617
rv_divw(rd, rd, RV_REG_T1), ctx);
1618
else
1619
emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1620
rv_divuw(rd, rd, RV_REG_T1), ctx);
1621
if (!is64 && !aux->verifier_zext)
1622
emit_zextw(rd, rd, ctx);
1623
break;
1624
case BPF_ALU | BPF_MOD | BPF_K:
1625
case BPF_ALU64 | BPF_MOD | BPF_K:
1626
emit_imm(RV_REG_T1, imm, ctx);
1627
if (off)
1628
emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1629
rv_remw(rd, rd, RV_REG_T1), ctx);
1630
else
1631
emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1632
rv_remuw(rd, rd, RV_REG_T1), ctx);
1633
if (!is64 && !aux->verifier_zext)
1634
emit_zextw(rd, rd, ctx);
1635
break;
1636
case BPF_ALU | BPF_LSH | BPF_K:
1637
case BPF_ALU64 | BPF_LSH | BPF_K:
1638
emit_slli(rd, rd, imm, ctx);
1639
1640
if (!is64 && !aux->verifier_zext)
1641
emit_zextw(rd, rd, ctx);
1642
break;
1643
case BPF_ALU | BPF_RSH | BPF_K:
1644
case BPF_ALU64 | BPF_RSH | BPF_K:
1645
if (is64)
1646
emit_srli(rd, rd, imm, ctx);
1647
else
1648
emit(rv_srliw(rd, rd, imm), ctx);
1649
1650
if (!is64 && !aux->verifier_zext)
1651
emit_zextw(rd, rd, ctx);
1652
break;
1653
case BPF_ALU | BPF_ARSH | BPF_K:
1654
case BPF_ALU64 | BPF_ARSH | BPF_K:
1655
if (is64)
1656
emit_srai(rd, rd, imm, ctx);
1657
else
1658
emit(rv_sraiw(rd, rd, imm), ctx);
1659
1660
if (!is64 && !aux->verifier_zext)
1661
emit_zextw(rd, rd, ctx);
1662
break;
1663
1664
/* JUMP off */
1665
case BPF_JMP | BPF_JA:
1666
case BPF_JMP32 | BPF_JA:
1667
if (BPF_CLASS(code) == BPF_JMP)
1668
rvoff = rv_offset(i, off, ctx);
1669
else
1670
rvoff = rv_offset(i, imm, ctx);
1671
ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1672
if (ret)
1673
return ret;
1674
break;
1675
1676
/* IF (dst COND src) JUMP off */
1677
case BPF_JMP | BPF_JEQ | BPF_X:
1678
case BPF_JMP32 | BPF_JEQ | BPF_X:
1679
case BPF_JMP | BPF_JGT | BPF_X:
1680
case BPF_JMP32 | BPF_JGT | BPF_X:
1681
case BPF_JMP | BPF_JLT | BPF_X:
1682
case BPF_JMP32 | BPF_JLT | BPF_X:
1683
case BPF_JMP | BPF_JGE | BPF_X:
1684
case BPF_JMP32 | BPF_JGE | BPF_X:
1685
case BPF_JMP | BPF_JLE | BPF_X:
1686
case BPF_JMP32 | BPF_JLE | BPF_X:
1687
case BPF_JMP | BPF_JNE | BPF_X:
1688
case BPF_JMP32 | BPF_JNE | BPF_X:
1689
case BPF_JMP | BPF_JSGT | BPF_X:
1690
case BPF_JMP32 | BPF_JSGT | BPF_X:
1691
case BPF_JMP | BPF_JSLT | BPF_X:
1692
case BPF_JMP32 | BPF_JSLT | BPF_X:
1693
case BPF_JMP | BPF_JSGE | BPF_X:
1694
case BPF_JMP32 | BPF_JSGE | BPF_X:
1695
case BPF_JMP | BPF_JSLE | BPF_X:
1696
case BPF_JMP32 | BPF_JSLE | BPF_X:
1697
case BPF_JMP | BPF_JSET | BPF_X:
1698
case BPF_JMP32 | BPF_JSET | BPF_X:
1699
rvoff = rv_offset(i, off, ctx);
1700
if (!is64) {
1701
s = ctx->ninsns;
1702
if (is_signed_bpf_cond(BPF_OP(code))) {
1703
emit_sextw_alt(&rs, RV_REG_T1, ctx);
1704
emit_sextw_alt(&rd, RV_REG_T2, ctx);
1705
} else {
1706
emit_zextw_alt(&rs, RV_REG_T1, ctx);
1707
emit_zextw_alt(&rd, RV_REG_T2, ctx);
1708
}
1709
e = ctx->ninsns;
1710
1711
/* Adjust for extra insns */
1712
rvoff -= ninsns_rvoff(e - s);
1713
}
1714
1715
if (BPF_OP(code) == BPF_JSET) {
1716
/* Adjust for and */
1717
rvoff -= 4;
1718
emit_and(RV_REG_T1, rd, rs, ctx);
1719
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1720
} else {
1721
emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1722
}
1723
break;
1724
1725
/* IF (dst COND imm) JUMP off */
1726
case BPF_JMP | BPF_JEQ | BPF_K:
1727
case BPF_JMP32 | BPF_JEQ | BPF_K:
1728
case BPF_JMP | BPF_JGT | BPF_K:
1729
case BPF_JMP32 | BPF_JGT | BPF_K:
1730
case BPF_JMP | BPF_JLT | BPF_K:
1731
case BPF_JMP32 | BPF_JLT | BPF_K:
1732
case BPF_JMP | BPF_JGE | BPF_K:
1733
case BPF_JMP32 | BPF_JGE | BPF_K:
1734
case BPF_JMP | BPF_JLE | BPF_K:
1735
case BPF_JMP32 | BPF_JLE | BPF_K:
1736
case BPF_JMP | BPF_JNE | BPF_K:
1737
case BPF_JMP32 | BPF_JNE | BPF_K:
1738
case BPF_JMP | BPF_JSGT | BPF_K:
1739
case BPF_JMP32 | BPF_JSGT | BPF_K:
1740
case BPF_JMP | BPF_JSLT | BPF_K:
1741
case BPF_JMP32 | BPF_JSLT | BPF_K:
1742
case BPF_JMP | BPF_JSGE | BPF_K:
1743
case BPF_JMP32 | BPF_JSGE | BPF_K:
1744
case BPF_JMP | BPF_JSLE | BPF_K:
1745
case BPF_JMP32 | BPF_JSLE | BPF_K:
1746
rvoff = rv_offset(i, off, ctx);
1747
s = ctx->ninsns;
1748
if (imm)
1749
emit_imm(RV_REG_T1, imm, ctx);
1750
rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1751
if (!is64) {
1752
if (is_signed_bpf_cond(BPF_OP(code))) {
1753
emit_sextw_alt(&rd, RV_REG_T2, ctx);
1754
/* rs has been sign extended */
1755
} else {
1756
emit_zextw_alt(&rd, RV_REG_T2, ctx);
1757
if (imm)
1758
emit_zextw(rs, rs, ctx);
1759
}
1760
}
1761
e = ctx->ninsns;
1762
1763
/* Adjust for extra insns */
1764
rvoff -= ninsns_rvoff(e - s);
1765
emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1766
break;
1767
1768
case BPF_JMP | BPF_JSET | BPF_K:
1769
case BPF_JMP32 | BPF_JSET | BPF_K:
1770
rvoff = rv_offset(i, off, ctx);
1771
s = ctx->ninsns;
1772
if (is_12b_int(imm)) {
1773
emit_andi(RV_REG_T1, rd, imm, ctx);
1774
} else {
1775
emit_imm(RV_REG_T1, imm, ctx);
1776
emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1777
}
1778
/* For jset32, we should clear the upper 32 bits of t1, but
1779
* sign-extension is sufficient here and saves one instruction,
1780
* as t1 is used only in comparison against zero.
1781
*/
1782
if (!is64 && imm < 0)
1783
emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1784
e = ctx->ninsns;
1785
rvoff -= ninsns_rvoff(e - s);
1786
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1787
break;
1788
1789
/* function call */
1790
case BPF_JMP | BPF_CALL:
1791
{
1792
bool fixed_addr;
1793
u64 addr;
1794
1795
/* Inline calls to bpf_get_smp_processor_id()
1796
*
1797
* RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1798
* at offset 0 in task_struct.
1799
* Load cpu from thread_info:
1800
* Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1801
*
1802
* This replicates the implementation of raw_smp_processor_id() on RISCV
1803
*/
1804
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1805
/* Load current CPU number in R0 */
1806
emit_lw(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1807
RV_REG_TP, ctx);
1808
break;
1809
}
1810
1811
mark_call(ctx);
1812
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1813
&addr, &fixed_addr);
1814
if (ret < 0)
1815
return ret;
1816
1817
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1818
const struct btf_func_model *fm;
1819
int idx;
1820
1821
fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1822
if (!fm)
1823
return -EINVAL;
1824
1825
for (idx = 0; idx < fm->nr_args; idx++) {
1826
u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1827
1828
if (fm->arg_size[idx] == sizeof(int))
1829
emit_sextw(reg, reg, ctx);
1830
}
1831
}
1832
1833
ret = emit_call(addr, fixed_addr, ctx);
1834
if (ret)
1835
return ret;
1836
1837
if (insn->src_reg != BPF_PSEUDO_CALL)
1838
emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1839
break;
1840
}
1841
/* tail call */
1842
case BPF_JMP | BPF_TAIL_CALL:
1843
if (emit_bpf_tail_call(i, ctx))
1844
return -1;
1845
break;
1846
1847
/* function return */
1848
case BPF_JMP | BPF_EXIT:
1849
if (i == ctx->prog->len - 1)
1850
break;
1851
1852
rvoff = epilogue_offset(ctx);
1853
ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1854
if (ret)
1855
return ret;
1856
break;
1857
1858
/* dst = imm64 */
1859
case BPF_LD | BPF_IMM | BPF_DW:
1860
{
1861
struct bpf_insn insn1 = insn[1];
1862
u64 imm64;
1863
1864
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1865
if (bpf_pseudo_func(insn)) {
1866
/* fixed-length insns for extra jit pass */
1867
ret = emit_addr(rd, imm64, extra_pass, ctx);
1868
if (ret)
1869
return ret;
1870
} else {
1871
emit_imm(rd, imm64, ctx);
1872
}
1873
1874
return 1;
1875
}
1876
1877
/* LDX: dst = *(unsigned size *)(src + off) */
1878
case BPF_LDX | BPF_MEM | BPF_B:
1879
case BPF_LDX | BPF_MEM | BPF_H:
1880
case BPF_LDX | BPF_MEM | BPF_W:
1881
case BPF_LDX | BPF_MEM | BPF_DW:
1882
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1883
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1884
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1885
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1886
/* LDSX: dst = *(signed size *)(src + off) */
1887
case BPF_LDX | BPF_MEMSX | BPF_B:
1888
case BPF_LDX | BPF_MEMSX | BPF_H:
1889
case BPF_LDX | BPF_MEMSX | BPF_W:
1890
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1891
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1892
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1893
/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1894
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1895
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1896
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1897
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1898
{
1899
bool sign_ext;
1900
1901
sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1902
BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1903
1904
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1905
emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1906
rs = RV_REG_T2;
1907
}
1908
1909
emit_ldx(rd, off, rs, BPF_SIZE(code), sign_ext, ctx);
1910
1911
ret = add_exception_handler(insn, rd, ctx);
1912
if (ret)
1913
return ret;
1914
1915
if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1916
return 1;
1917
break;
1918
}
1919
1920
/* speculation barrier */
1921
case BPF_ST | BPF_NOSPEC:
1922
break;
1923
1924
/* ST: *(size *)(dst + off) = imm */
1925
case BPF_ST | BPF_MEM | BPF_B:
1926
case BPF_ST | BPF_MEM | BPF_H:
1927
case BPF_ST | BPF_MEM | BPF_W:
1928
case BPF_ST | BPF_MEM | BPF_DW:
1929
/* ST | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = imm */
1930
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1931
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1932
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1933
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1934
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1935
emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1936
rd = RV_REG_T3;
1937
}
1938
1939
emit_st(rd, off, imm, BPF_SIZE(code), ctx);
1940
1941
ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1942
if (ret)
1943
return ret;
1944
break;
1945
1946
/* STX: *(size *)(dst + off) = src */
1947
case BPF_STX | BPF_MEM | BPF_B:
1948
case BPF_STX | BPF_MEM | BPF_H:
1949
case BPF_STX | BPF_MEM | BPF_W:
1950
case BPF_STX | BPF_MEM | BPF_DW:
1951
/* STX | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = src */
1952
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1953
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1954
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1955
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1956
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1957
emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1958
rd = RV_REG_T2;
1959
}
1960
1961
emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
1962
1963
ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1964
if (ret)
1965
return ret;
1966
break;
1967
1968
/* Atomics */
1969
case BPF_STX | BPF_ATOMIC | BPF_B:
1970
case BPF_STX | BPF_ATOMIC | BPF_H:
1971
case BPF_STX | BPF_ATOMIC | BPF_W:
1972
case BPF_STX | BPF_ATOMIC | BPF_DW:
1973
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1974
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1975
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1976
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1977
if (bpf_atomic_is_load_store(insn))
1978
ret = emit_atomic_ld_st(rd, rs, insn, ctx);
1979
else
1980
ret = emit_atomic_rmw(rd, rs, insn, ctx);
1981
1982
ret = ret ?: add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1983
if (ret)
1984
return ret;
1985
break;
1986
1987
default:
1988
pr_err("bpf-jit: unknown opcode %02x\n", code);
1989
return -EINVAL;
1990
}
1991
1992
return 0;
1993
}
1994
1995
void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
1996
{
1997
int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1998
1999
bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
2000
if (bpf_stack_adjust)
2001
mark_fp(ctx);
2002
2003
if (seen_reg(RV_REG_RA, ctx))
2004
stack_adjust += 8;
2005
stack_adjust += 8; /* RV_REG_FP */
2006
if (seen_reg(RV_REG_S1, ctx))
2007
stack_adjust += 8;
2008
if (seen_reg(RV_REG_S2, ctx))
2009
stack_adjust += 8;
2010
if (seen_reg(RV_REG_S3, ctx))
2011
stack_adjust += 8;
2012
if (seen_reg(RV_REG_S4, ctx))
2013
stack_adjust += 8;
2014
if (seen_reg(RV_REG_S5, ctx))
2015
stack_adjust += 8;
2016
if (seen_reg(RV_REG_S6, ctx))
2017
stack_adjust += 8;
2018
if (ctx->arena_vm_start)
2019
stack_adjust += 8;
2020
2021
stack_adjust = round_up(stack_adjust, STACK_ALIGN);
2022
stack_adjust += bpf_stack_adjust;
2023
2024
store_offset = stack_adjust - 8;
2025
2026
/* emit kcfi type preamble immediately before the first insn */
2027
emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
2028
2029
/* nops reserved for auipc+jalr pair */
2030
for (i = 0; i < RV_FENTRY_NINSNS; i++)
2031
emit(rv_nop(), ctx);
2032
2033
/* First instruction is always setting the tail-call-counter
2034
* (TCC) register. This instruction is skipped for tail calls.
2035
* Force using a 4-byte (non-compressed) instruction.
2036
*/
2037
emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
2038
2039
emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
2040
2041
if (seen_reg(RV_REG_RA, ctx)) {
2042
emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
2043
store_offset -= 8;
2044
}
2045
emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
2046
store_offset -= 8;
2047
if (seen_reg(RV_REG_S1, ctx)) {
2048
emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
2049
store_offset -= 8;
2050
}
2051
if (seen_reg(RV_REG_S2, ctx)) {
2052
emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2053
store_offset -= 8;
2054
}
2055
if (seen_reg(RV_REG_S3, ctx)) {
2056
emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2057
store_offset -= 8;
2058
}
2059
if (seen_reg(RV_REG_S4, ctx)) {
2060
emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2061
store_offset -= 8;
2062
}
2063
if (seen_reg(RV_REG_S5, ctx)) {
2064
emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2065
store_offset -= 8;
2066
}
2067
if (seen_reg(RV_REG_S6, ctx)) {
2068
emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2069
store_offset -= 8;
2070
}
2071
if (ctx->arena_vm_start) {
2072
emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2073
store_offset -= 8;
2074
}
2075
2076
emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2077
2078
if (bpf_stack_adjust)
2079
emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2080
2081
/* Program contains calls and tail calls, so RV_REG_TCC need
2082
* to be saved across calls.
2083
*/
2084
if (seen_tail_call(ctx) && seen_call(ctx))
2085
emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2086
2087
ctx->stack_size = stack_adjust;
2088
2089
if (ctx->arena_vm_start)
2090
emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2091
}
2092
2093
void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2094
{
2095
__build_epilogue(false, ctx);
2096
}
2097
2098
bool bpf_jit_supports_kfunc_call(void)
2099
{
2100
return true;
2101
}
2102
2103
bool bpf_jit_supports_ptr_xchg(void)
2104
{
2105
return true;
2106
}
2107
2108
bool bpf_jit_supports_arena(void)
2109
{
2110
return true;
2111
}
2112
2113
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2114
{
2115
if (in_arena) {
2116
switch (insn->code) {
2117
case BPF_STX | BPF_ATOMIC | BPF_W:
2118
case BPF_STX | BPF_ATOMIC | BPF_DW:
2119
if (insn->imm == BPF_CMPXCHG)
2120
return rv_ext_enabled(ZACAS);
2121
break;
2122
case BPF_LDX | BPF_MEMSX | BPF_B:
2123
case BPF_LDX | BPF_MEMSX | BPF_H:
2124
case BPF_LDX | BPF_MEMSX | BPF_W:
2125
return false;
2126
}
2127
}
2128
2129
return true;
2130
}
2131
2132
bool bpf_jit_supports_percpu_insn(void)
2133
{
2134
return true;
2135
}
2136
2137
bool bpf_jit_inlines_helper_call(s32 imm)
2138
{
2139
switch (imm) {
2140
case BPF_FUNC_get_smp_processor_id:
2141
return true;
2142
default:
2143
return false;
2144
}
2145
}
2146
2147
bool bpf_jit_supports_fsession(void)
2148
{
2149
return true;
2150
}
2151
2152