Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/net/bpf_jit_comp64.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* BPF JIT compiler for RV64G
3
*
4
* Copyright(c) 2019 Björn Töpel <[email protected]>
5
*
6
*/
7
8
#include <linux/bitfield.h>
9
#include <linux/bpf.h>
10
#include <linux/filter.h>
11
#include <linux/memory.h>
12
#include <linux/stop_machine.h>
13
#include <asm/text-patching.h>
14
#include <asm/cfi.h>
15
#include <asm/percpu.h>
16
#include "bpf_jit.h"
17
18
#define RV_MAX_REG_ARGS 8
19
#define RV_FENTRY_NINSNS 2
20
#define RV_FENTRY_NBYTES (RV_FENTRY_NINSNS * 4)
21
#define RV_KCFI_NINSNS (IS_ENABLED(CONFIG_CFI) ? 1 : 0)
22
/* imm that allows emit_imm to emit max count insns */
23
#define RV_MAX_COUNT_IMM 0x7FFF7FF7FF7FF7FF
24
25
#define RV_REG_TCC RV_REG_A6
26
#define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
27
#define RV_REG_ARENA RV_REG_S7 /* For storing arena_vm_start */
28
29
static const int regmap[] = {
30
[BPF_REG_0] = RV_REG_A5,
31
[BPF_REG_1] = RV_REG_A0,
32
[BPF_REG_2] = RV_REG_A1,
33
[BPF_REG_3] = RV_REG_A2,
34
[BPF_REG_4] = RV_REG_A3,
35
[BPF_REG_5] = RV_REG_A4,
36
[BPF_REG_6] = RV_REG_S1,
37
[BPF_REG_7] = RV_REG_S2,
38
[BPF_REG_8] = RV_REG_S3,
39
[BPF_REG_9] = RV_REG_S4,
40
[BPF_REG_FP] = RV_REG_S5,
41
[BPF_REG_AX] = RV_REG_T0,
42
};
43
44
static const int pt_regmap[] = {
45
[RV_REG_A0] = offsetof(struct pt_regs, a0),
46
[RV_REG_A1] = offsetof(struct pt_regs, a1),
47
[RV_REG_A2] = offsetof(struct pt_regs, a2),
48
[RV_REG_A3] = offsetof(struct pt_regs, a3),
49
[RV_REG_A4] = offsetof(struct pt_regs, a4),
50
[RV_REG_A5] = offsetof(struct pt_regs, a5),
51
[RV_REG_S1] = offsetof(struct pt_regs, s1),
52
[RV_REG_S2] = offsetof(struct pt_regs, s2),
53
[RV_REG_S3] = offsetof(struct pt_regs, s3),
54
[RV_REG_S4] = offsetof(struct pt_regs, s4),
55
[RV_REG_S5] = offsetof(struct pt_regs, s5),
56
[RV_REG_T0] = offsetof(struct pt_regs, t0),
57
};
58
59
enum {
60
RV_CTX_F_SEEN_TAIL_CALL = 0,
61
RV_CTX_F_SEEN_CALL = RV_REG_RA,
62
RV_CTX_F_SEEN_S1 = RV_REG_S1,
63
RV_CTX_F_SEEN_S2 = RV_REG_S2,
64
RV_CTX_F_SEEN_S3 = RV_REG_S3,
65
RV_CTX_F_SEEN_S4 = RV_REG_S4,
66
RV_CTX_F_SEEN_S5 = RV_REG_S5,
67
RV_CTX_F_SEEN_S6 = RV_REG_S6,
68
};
69
70
static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
71
{
72
u8 reg = regmap[bpf_reg];
73
74
switch (reg) {
75
case RV_CTX_F_SEEN_S1:
76
case RV_CTX_F_SEEN_S2:
77
case RV_CTX_F_SEEN_S3:
78
case RV_CTX_F_SEEN_S4:
79
case RV_CTX_F_SEEN_S5:
80
case RV_CTX_F_SEEN_S6:
81
__set_bit(reg, &ctx->flags);
82
}
83
return reg;
84
};
85
86
static bool seen_reg(int reg, struct rv_jit_context *ctx)
87
{
88
switch (reg) {
89
case RV_CTX_F_SEEN_CALL:
90
case RV_CTX_F_SEEN_S1:
91
case RV_CTX_F_SEEN_S2:
92
case RV_CTX_F_SEEN_S3:
93
case RV_CTX_F_SEEN_S4:
94
case RV_CTX_F_SEEN_S5:
95
case RV_CTX_F_SEEN_S6:
96
return test_bit(reg, &ctx->flags);
97
}
98
return false;
99
}
100
101
static void mark_fp(struct rv_jit_context *ctx)
102
{
103
__set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
104
}
105
106
static void mark_call(struct rv_jit_context *ctx)
107
{
108
__set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
109
}
110
111
static bool seen_call(struct rv_jit_context *ctx)
112
{
113
return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
114
}
115
116
static void mark_tail_call(struct rv_jit_context *ctx)
117
{
118
__set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
119
}
120
121
static bool seen_tail_call(struct rv_jit_context *ctx)
122
{
123
return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
124
}
125
126
static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
127
{
128
mark_tail_call(ctx);
129
130
if (seen_call(ctx)) {
131
__set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
132
return RV_REG_S6;
133
}
134
return RV_REG_A6;
135
}
136
137
static bool is_32b_int(s64 val)
138
{
139
return -(1L << 31) <= val && val < (1L << 31);
140
}
141
142
static bool in_auipc_jalr_range(s64 val)
143
{
144
/*
145
* auipc+jalr can reach any signed PC-relative offset in the range
146
* [-2^31 - 2^11, 2^31 - 2^11).
147
*/
148
return (-(1L << 31) - (1L << 11)) <= val &&
149
val < ((1L << 31) - (1L << 11));
150
}
151
152
/* Modify rd pointer to alternate reg to avoid corrupting original reg */
153
static void emit_sextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
154
{
155
emit_sextw(ra, *rd, ctx);
156
*rd = ra;
157
}
158
159
static void emit_zextw_alt(u8 *rd, u8 ra, struct rv_jit_context *ctx)
160
{
161
emit_zextw(ra, *rd, ctx);
162
*rd = ra;
163
}
164
165
/* Emit fixed-length instructions for address */
166
static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
167
{
168
/*
169
* Use the ro_insns(RX) to calculate the offset as the BPF program will
170
* finally run from this memory region.
171
*/
172
u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
173
s64 off = addr - ip;
174
s64 upper = (off + (1 << 11)) >> 12;
175
s64 lower = off & 0xfff;
176
177
if (extra_pass && !in_auipc_jalr_range(off)) {
178
pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
179
return -ERANGE;
180
}
181
182
emit(rv_auipc(rd, upper), ctx);
183
emit(rv_addi(rd, rd, lower), ctx);
184
return 0;
185
}
186
187
/* Emit variable-length instructions for 32-bit and 64-bit imm */
188
static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
189
{
190
/* Note that the immediate from the add is sign-extended,
191
* which means that we need to compensate this by adding 2^12,
192
* when the 12th bit is set. A simpler way of doing this, and
193
* getting rid of the check, is to just add 2**11 before the
194
* shift. The "Loading a 32-Bit constant" example from the
195
* "Computer Organization and Design, RISC-V edition" book by
196
* Patterson/Hennessy highlights this fact.
197
*
198
* This also means that we need to process LSB to MSB.
199
*/
200
s64 upper = (val + (1 << 11)) >> 12;
201
/* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
202
* and addi are signed and RVC checks will perform signed comparisons.
203
*/
204
s64 lower = ((val & 0xfff) << 52) >> 52;
205
int shift;
206
207
if (is_32b_int(val)) {
208
if (upper)
209
emit_lui(rd, upper, ctx);
210
211
if (!upper) {
212
emit_li(rd, lower, ctx);
213
return;
214
}
215
216
emit_addiw(rd, rd, lower, ctx);
217
return;
218
}
219
220
shift = __ffs(upper);
221
upper >>= shift;
222
shift += 12;
223
224
emit_imm(rd, upper, ctx);
225
226
emit_slli(rd, rd, shift, ctx);
227
if (lower)
228
emit_addi(rd, rd, lower, ctx);
229
}
230
231
static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
232
{
233
int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
234
235
if (seen_reg(RV_REG_RA, ctx)) {
236
emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
237
store_offset -= 8;
238
}
239
emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
240
store_offset -= 8;
241
if (seen_reg(RV_REG_S1, ctx)) {
242
emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
243
store_offset -= 8;
244
}
245
if (seen_reg(RV_REG_S2, ctx)) {
246
emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
247
store_offset -= 8;
248
}
249
if (seen_reg(RV_REG_S3, ctx)) {
250
emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
251
store_offset -= 8;
252
}
253
if (seen_reg(RV_REG_S4, ctx)) {
254
emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
255
store_offset -= 8;
256
}
257
if (seen_reg(RV_REG_S5, ctx)) {
258
emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
259
store_offset -= 8;
260
}
261
if (seen_reg(RV_REG_S6, ctx)) {
262
emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
263
store_offset -= 8;
264
}
265
if (ctx->arena_vm_start) {
266
emit_ld(RV_REG_ARENA, store_offset, RV_REG_SP, ctx);
267
store_offset -= 8;
268
}
269
270
emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
271
/* Set return value. */
272
if (!is_tail_call)
273
emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx);
274
emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
275
/* kcfi, fentry and TCC init insns will be skipped on tailcall */
276
is_tail_call ? (RV_KCFI_NINSNS + RV_FENTRY_NINSNS + 1) * 4 : 0,
277
ctx);
278
}
279
280
static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
281
struct rv_jit_context *ctx)
282
{
283
switch (cond) {
284
case BPF_JEQ:
285
emit(rv_beq(rd, rs, rvoff >> 1), ctx);
286
return;
287
case BPF_JGT:
288
emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
289
return;
290
case BPF_JLT:
291
emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
292
return;
293
case BPF_JGE:
294
emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
295
return;
296
case BPF_JLE:
297
emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
298
return;
299
case BPF_JNE:
300
emit(rv_bne(rd, rs, rvoff >> 1), ctx);
301
return;
302
case BPF_JSGT:
303
emit(rv_blt(rs, rd, rvoff >> 1), ctx);
304
return;
305
case BPF_JSLT:
306
emit(rv_blt(rd, rs, rvoff >> 1), ctx);
307
return;
308
case BPF_JSGE:
309
emit(rv_bge(rd, rs, rvoff >> 1), ctx);
310
return;
311
case BPF_JSLE:
312
emit(rv_bge(rs, rd, rvoff >> 1), ctx);
313
}
314
}
315
316
static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
317
struct rv_jit_context *ctx)
318
{
319
s64 upper, lower;
320
321
if (is_13b_int(rvoff)) {
322
emit_bcc(cond, rd, rs, rvoff, ctx);
323
return;
324
}
325
326
/* Adjust for jal */
327
rvoff -= 4;
328
329
/* Transform, e.g.:
330
* bne rd,rs,foo
331
* to
332
* beq rd,rs,<.L1>
333
* (auipc foo)
334
* jal(r) foo
335
* .L1
336
*/
337
cond = invert_bpf_cond(cond);
338
if (is_21b_int(rvoff)) {
339
emit_bcc(cond, rd, rs, 8, ctx);
340
emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
341
return;
342
}
343
344
/* 32b No need for an additional rvoff adjustment, since we
345
* get that from the auipc at PC', where PC = PC' + 4.
346
*/
347
upper = (rvoff + (1 << 11)) >> 12;
348
lower = rvoff & 0xfff;
349
350
emit_bcc(cond, rd, rs, 12, ctx);
351
emit(rv_auipc(RV_REG_T1, upper), ctx);
352
emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
353
}
354
355
static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
356
{
357
int tc_ninsn, off, start_insn = ctx->ninsns;
358
u8 tcc = rv_tail_call_reg(ctx);
359
360
/* a0: &ctx
361
* a1: &array
362
* a2: index
363
*
364
* if (index >= array->map.max_entries)
365
* goto out;
366
*/
367
tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
368
ctx->offset[0];
369
emit_zextw(RV_REG_A2, RV_REG_A2, ctx);
370
371
off = offsetof(struct bpf_array, map.max_entries);
372
if (is_12b_check(off, insn))
373
return -1;
374
emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
375
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376
emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
377
378
/* if (--TCC < 0)
379
* goto out;
380
*/
381
emit_addi(RV_REG_TCC, tcc, -1, ctx);
382
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
383
emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
384
385
/* prog = array->ptrs[index];
386
* if (!prog)
387
* goto out;
388
*/
389
emit_sh3add(RV_REG_T2, RV_REG_A2, RV_REG_A1, ctx);
390
off = offsetof(struct bpf_array, ptrs);
391
if (is_12b_check(off, insn))
392
return -1;
393
emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
394
off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
395
emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
396
397
/* goto *(prog->bpf_func + 4); */
398
off = offsetof(struct bpf_prog, bpf_func);
399
if (is_12b_check(off, insn))
400
return -1;
401
emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
402
__build_epilogue(true, ctx);
403
return 0;
404
}
405
406
static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
407
struct rv_jit_context *ctx)
408
{
409
u8 code = insn->code;
410
411
switch (code) {
412
case BPF_JMP | BPF_JA:
413
case BPF_JMP | BPF_CALL:
414
case BPF_JMP | BPF_EXIT:
415
case BPF_JMP | BPF_TAIL_CALL:
416
break;
417
default:
418
*rd = bpf_to_rv_reg(insn->dst_reg, ctx);
419
}
420
421
if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
422
code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
423
code & BPF_LDX || code & BPF_STX)
424
*rs = bpf_to_rv_reg(insn->src_reg, ctx);
425
}
426
427
static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
428
struct rv_jit_context *ctx)
429
{
430
s64 upper, lower;
431
432
if (rvoff && fixed_addr && is_21b_int(rvoff)) {
433
emit(rv_jal(rd, rvoff >> 1), ctx);
434
return 0;
435
} else if (in_auipc_jalr_range(rvoff)) {
436
upper = (rvoff + (1 << 11)) >> 12;
437
lower = rvoff & 0xfff;
438
emit(rv_auipc(RV_REG_T1, upper), ctx);
439
emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
440
return 0;
441
}
442
443
pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
444
return -ERANGE;
445
}
446
447
static bool is_signed_bpf_cond(u8 cond)
448
{
449
return cond == BPF_JSGT || cond == BPF_JSLT ||
450
cond == BPF_JSGE || cond == BPF_JSLE;
451
}
452
453
static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
454
{
455
s64 off = 0;
456
u64 ip;
457
458
if (addr && ctx->insns && ctx->ro_insns) {
459
/*
460
* Use the ro_insns(RX) to calculate the offset as the BPF
461
* program will finally run from this memory region.
462
*/
463
ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
464
off = addr - ip;
465
}
466
467
return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
468
}
469
470
static inline void emit_kcfi(u32 hash, struct rv_jit_context *ctx)
471
{
472
if (IS_ENABLED(CONFIG_CFI))
473
emit(hash, ctx);
474
}
475
476
static void emit_ldx_insn(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
477
struct rv_jit_context *ctx)
478
{
479
switch (size) {
480
case BPF_B:
481
emit(sign_ext ? rv_lb(rd, off, rs) : rv_lbu(rd, off, rs), ctx);
482
break;
483
case BPF_H:
484
emit(sign_ext ? rv_lh(rd, off, rs) : rv_lhu(rd, off, rs), ctx);
485
break;
486
case BPF_W:
487
emit(sign_ext ? rv_lw(rd, off, rs) : rv_lwu(rd, off, rs), ctx);
488
break;
489
case BPF_DW:
490
emit_ld(rd, off, rs, ctx);
491
break;
492
}
493
494
}
495
496
static void emit_stx_insn(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
497
{
498
switch (size) {
499
case BPF_B:
500
emit(rv_sb(rd, off, rs), ctx);
501
break;
502
case BPF_H:
503
emit(rv_sh(rd, off, rs), ctx);
504
break;
505
case BPF_W:
506
emit_sw(rd, off, rs, ctx);
507
break;
508
case BPF_DW:
509
emit_sd(rd, off, rs, ctx);
510
break;
511
}
512
}
513
514
static void emit_ldx(u8 rd, s16 off, u8 rs, u8 size, bool sign_ext,
515
struct rv_jit_context *ctx)
516
{
517
if (is_12b_int(off)) {
518
ctx->ex_insn_off = ctx->ninsns;
519
emit_ldx_insn(rd, off, rs, size, sign_ext, ctx);
520
ctx->ex_jmp_off = ctx->ninsns;
521
return;
522
}
523
524
emit_imm(RV_REG_T1, off, ctx);
525
emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
526
ctx->ex_insn_off = ctx->ninsns;
527
emit_ldx_insn(rd, 0, RV_REG_T1, size, sign_ext, ctx);
528
ctx->ex_jmp_off = ctx->ninsns;
529
}
530
531
static void emit_st(u8 rd, s16 off, s32 imm, u8 size, struct rv_jit_context *ctx)
532
{
533
emit_imm(RV_REG_T1, imm, ctx);
534
if (is_12b_int(off)) {
535
ctx->ex_insn_off = ctx->ninsns;
536
emit_stx_insn(rd, off, RV_REG_T1, size, ctx);
537
ctx->ex_jmp_off = ctx->ninsns;
538
return;
539
}
540
541
emit_imm(RV_REG_T2, off, ctx);
542
emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
543
ctx->ex_insn_off = ctx->ninsns;
544
emit_stx_insn(RV_REG_T2, 0, RV_REG_T1, size, ctx);
545
ctx->ex_jmp_off = ctx->ninsns;
546
}
547
548
static void emit_stx(u8 rd, s16 off, u8 rs, u8 size, struct rv_jit_context *ctx)
549
{
550
if (is_12b_int(off)) {
551
ctx->ex_insn_off = ctx->ninsns;
552
emit_stx_insn(rd, off, rs, size, ctx);
553
ctx->ex_jmp_off = ctx->ninsns;
554
return;
555
}
556
557
emit_imm(RV_REG_T1, off, ctx);
558
emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
559
ctx->ex_insn_off = ctx->ninsns;
560
emit_stx_insn(RV_REG_T1, 0, rs, size, ctx);
561
ctx->ex_jmp_off = ctx->ninsns;
562
}
563
564
static int emit_atomic_ld_st(u8 rd, u8 rs, const struct bpf_insn *insn,
565
struct rv_jit_context *ctx)
566
{
567
u8 code = insn->code;
568
s32 imm = insn->imm;
569
s16 off = insn->off;
570
571
switch (imm) {
572
/* dst_reg = load_acquire(src_reg + off16) */
573
case BPF_LOAD_ACQ:
574
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
575
emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
576
rs = RV_REG_T2;
577
}
578
579
emit_ldx(rd, off, rs, BPF_SIZE(code), false, ctx);
580
emit_fence_r_rw(ctx);
581
582
/* If our next insn is a redundant zext, return 1 to tell
583
* build_body() to skip it.
584
*/
585
if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
586
return 1;
587
break;
588
/* store_release(dst_reg + off16, src_reg) */
589
case BPF_STORE_REL:
590
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
591
emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
592
rd = RV_REG_T2;
593
}
594
595
emit_fence_rw_w(ctx);
596
emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
597
break;
598
default:
599
pr_err_once("bpf-jit: invalid atomic load/store opcode %02x\n", imm);
600
return -EINVAL;
601
}
602
603
return 0;
604
}
605
606
static int emit_atomic_rmw(u8 rd, u8 rs, const struct bpf_insn *insn,
607
struct rv_jit_context *ctx)
608
{
609
u8 code = insn->code;
610
s16 off = insn->off;
611
s32 imm = insn->imm;
612
bool is64 = BPF_SIZE(code) == BPF_DW;
613
614
if (BPF_SIZE(code) != BPF_W && BPF_SIZE(code) != BPF_DW) {
615
pr_err_once("bpf-jit: 1- and 2-byte RMW atomics are not supported\n");
616
return -EINVAL;
617
}
618
619
if (off) {
620
if (is_12b_int(off)) {
621
emit_addi(RV_REG_T1, rd, off, ctx);
622
} else {
623
emit_imm(RV_REG_T1, off, ctx);
624
emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
625
}
626
rd = RV_REG_T1;
627
}
628
629
if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
630
emit_add(RV_REG_T1, rd, RV_REG_ARENA, ctx);
631
rd = RV_REG_T1;
632
}
633
634
switch (imm) {
635
/* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
636
case BPF_ADD:
637
ctx->ex_insn_off = ctx->ninsns;
638
emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
639
rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
640
ctx->ex_jmp_off = ctx->ninsns;
641
break;
642
case BPF_AND:
643
ctx->ex_insn_off = ctx->ninsns;
644
emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
645
rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
646
ctx->ex_jmp_off = ctx->ninsns;
647
break;
648
case BPF_OR:
649
ctx->ex_insn_off = ctx->ninsns;
650
emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
651
rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
652
ctx->ex_jmp_off = ctx->ninsns;
653
break;
654
case BPF_XOR:
655
ctx->ex_insn_off = ctx->ninsns;
656
emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
657
rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
658
ctx->ex_jmp_off = ctx->ninsns;
659
break;
660
/* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
661
case BPF_ADD | BPF_FETCH:
662
ctx->ex_insn_off = ctx->ninsns;
663
emit(is64 ? rv_amoadd_d(rs, rs, rd, 1, 1) :
664
rv_amoadd_w(rs, rs, rd, 1, 1), ctx);
665
ctx->ex_jmp_off = ctx->ninsns;
666
if (!is64)
667
emit_zextw(rs, rs, ctx);
668
break;
669
case BPF_AND | BPF_FETCH:
670
ctx->ex_insn_off = ctx->ninsns;
671
emit(is64 ? rv_amoand_d(rs, rs, rd, 1, 1) :
672
rv_amoand_w(rs, rs, rd, 1, 1), ctx);
673
ctx->ex_jmp_off = ctx->ninsns;
674
if (!is64)
675
emit_zextw(rs, rs, ctx);
676
break;
677
case BPF_OR | BPF_FETCH:
678
ctx->ex_insn_off = ctx->ninsns;
679
emit(is64 ? rv_amoor_d(rs, rs, rd, 1, 1) :
680
rv_amoor_w(rs, rs, rd, 1, 1), ctx);
681
ctx->ex_jmp_off = ctx->ninsns;
682
if (!is64)
683
emit_zextw(rs, rs, ctx);
684
break;
685
case BPF_XOR | BPF_FETCH:
686
ctx->ex_insn_off = ctx->ninsns;
687
emit(is64 ? rv_amoxor_d(rs, rs, rd, 1, 1) :
688
rv_amoxor_w(rs, rs, rd, 1, 1), ctx);
689
ctx->ex_jmp_off = ctx->ninsns;
690
if (!is64)
691
emit_zextw(rs, rs, ctx);
692
break;
693
/* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
694
case BPF_XCHG:
695
ctx->ex_insn_off = ctx->ninsns;
696
emit(is64 ? rv_amoswap_d(rs, rs, rd, 1, 1) :
697
rv_amoswap_w(rs, rs, rd, 1, 1), ctx);
698
ctx->ex_jmp_off = ctx->ninsns;
699
if (!is64)
700
emit_zextw(rs, rs, ctx);
701
break;
702
/* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
703
case BPF_CMPXCHG:
704
emit_cmpxchg(rd, rs, regmap[BPF_REG_0], is64, ctx);
705
break;
706
default:
707
pr_err_once("bpf-jit: invalid atomic RMW opcode %02x\n", imm);
708
return -EINVAL;
709
}
710
711
return 0;
712
}
713
714
/*
715
* Sign-extend the register if necessary
716
*/
717
static int sign_extend(u8 rd, u8 rs, u8 sz, bool sign, struct rv_jit_context *ctx)
718
{
719
if (!sign && (sz == 1 || sz == 2)) {
720
if (rd != rs)
721
emit_mv(rd, rs, ctx);
722
return 0;
723
}
724
725
switch (sz) {
726
case 1:
727
emit_sextb(rd, rs, ctx);
728
break;
729
case 2:
730
emit_sexth(rd, rs, ctx);
731
break;
732
case 4:
733
emit_sextw(rd, rs, ctx);
734
break;
735
case 8:
736
if (rd != rs)
737
emit_mv(rd, rs, ctx);
738
break;
739
default:
740
pr_err("bpf-jit: invalid size %d for sign_extend\n", sz);
741
return -EINVAL;
742
}
743
744
return 0;
745
}
746
747
#define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
748
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
749
#define REG_DONT_CLEAR_MARKER 0 /* RV_REG_ZERO unused in pt_regmap */
750
751
bool ex_handler_bpf(const struct exception_table_entry *ex,
752
struct pt_regs *regs)
753
{
754
off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
755
int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
756
757
if (regs_offset != REG_DONT_CLEAR_MARKER)
758
*(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
759
regs->epc = (unsigned long)&ex->fixup - offset;
760
761
return true;
762
}
763
764
/* For accesses to BTF pointers, add an entry to the exception table */
765
static int add_exception_handler(const struct bpf_insn *insn, int dst_reg,
766
struct rv_jit_context *ctx)
767
{
768
struct exception_table_entry *ex;
769
unsigned long pc;
770
off_t ins_offset;
771
off_t fixup_offset;
772
773
if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
774
ctx->ex_insn_off <= 0 || ctx->ex_jmp_off <= 0)
775
return 0;
776
777
if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
778
BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
779
BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
780
BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
781
return 0;
782
783
if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
784
return -EINVAL;
785
786
if (WARN_ON_ONCE(ctx->ex_insn_off > ctx->ninsns || ctx->ex_jmp_off > ctx->ninsns))
787
return -EINVAL;
788
789
ex = &ctx->prog->aux->extable[ctx->nexentries];
790
pc = (unsigned long)&ctx->ro_insns[ctx->ex_insn_off];
791
792
/*
793
* This is the relative offset of the instruction that may fault from
794
* the exception table itself. This will be written to the exception
795
* table and if this instruction faults, the destination register will
796
* be set to '0' and the execution will jump to the next instruction.
797
*/
798
ins_offset = pc - (long)&ex->insn;
799
if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
800
return -ERANGE;
801
802
/*
803
* Since the extable follows the program, the fixup offset is always
804
* negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
805
* to keep things simple, and put the destination register in the upper
806
* bits. We don't need to worry about buildtime or runtime sort
807
* modifying the upper bits because the table is already sorted, and
808
* isn't part of the main exception table.
809
*
810
* The fixup_offset is set to the next instruction from the instruction
811
* that may fault. The execution will jump to this after handling the
812
* fault.
813
*/
814
fixup_offset = (long)&ex->fixup - (long)&ctx->ro_insns[ctx->ex_jmp_off];
815
if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
816
return -ERANGE;
817
818
/*
819
* The offsets above have been calculated using the RO buffer but we
820
* need to use the R/W buffer for writes.
821
* switch ex to rw buffer for writing.
822
*/
823
ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
824
825
ex->insn = ins_offset;
826
827
ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
828
FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
829
ex->type = EX_TYPE_BPF;
830
831
ctx->ex_insn_off = 0;
832
ctx->ex_jmp_off = 0;
833
ctx->nexentries++;
834
return 0;
835
}
836
837
static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
838
{
839
s64 rvoff;
840
struct rv_jit_context ctx;
841
842
ctx.ninsns = 0;
843
ctx.insns = (u16 *)insns;
844
845
if (!target) {
846
emit(rv_nop(), &ctx);
847
emit(rv_nop(), &ctx);
848
return 0;
849
}
850
851
rvoff = (s64)(target - ip);
852
return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
853
}
854
855
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
856
void *old_addr, void *new_addr)
857
{
858
u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
859
bool is_call = poke_type == BPF_MOD_CALL;
860
int ret;
861
862
if (!is_kernel_text((unsigned long)ip) &&
863
!is_bpf_text_address((unsigned long)ip))
864
return -ENOTSUPP;
865
866
ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
867
if (ret)
868
return ret;
869
870
if (memcmp(ip, old_insns, RV_FENTRY_NBYTES))
871
return -EFAULT;
872
873
ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
874
if (ret)
875
return ret;
876
877
cpus_read_lock();
878
mutex_lock(&text_mutex);
879
if (memcmp(ip, new_insns, RV_FENTRY_NBYTES))
880
ret = patch_text(ip, new_insns, RV_FENTRY_NBYTES);
881
mutex_unlock(&text_mutex);
882
cpus_read_unlock();
883
884
return ret;
885
}
886
887
static void store_args(int nr_arg_slots, int args_off, struct rv_jit_context *ctx)
888
{
889
int i;
890
891
for (i = 0; i < nr_arg_slots; i++) {
892
if (i < RV_MAX_REG_ARGS) {
893
emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
894
} else {
895
/* skip slots for T0 and FP of traced function */
896
emit_ld(RV_REG_T1, 16 + (i - RV_MAX_REG_ARGS) * 8, RV_REG_FP, ctx);
897
emit_sd(RV_REG_FP, -args_off, RV_REG_T1, ctx);
898
}
899
args_off -= 8;
900
}
901
}
902
903
static void restore_args(int nr_reg_args, int args_off, struct rv_jit_context *ctx)
904
{
905
int i;
906
907
for (i = 0; i < nr_reg_args; i++) {
908
emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
909
args_off -= 8;
910
}
911
}
912
913
static void restore_stack_args(int nr_stack_args, int args_off, int stk_arg_off,
914
struct rv_jit_context *ctx)
915
{
916
int i;
917
918
for (i = 0; i < nr_stack_args; i++) {
919
emit_ld(RV_REG_T1, -(args_off - RV_MAX_REG_ARGS * 8), RV_REG_FP, ctx);
920
emit_sd(RV_REG_FP, -stk_arg_off, RV_REG_T1, ctx);
921
args_off -= 8;
922
stk_arg_off -= 8;
923
}
924
}
925
926
static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
927
int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
928
{
929
int ret, branch_off;
930
struct bpf_prog *p = l->link.prog;
931
int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
932
933
if (l->cookie) {
934
emit_imm(RV_REG_T1, l->cookie, ctx);
935
emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
936
} else {
937
emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
938
}
939
940
/* arg1: prog */
941
emit_imm(RV_REG_A0, (const s64)p, ctx);
942
/* arg2: &run_ctx */
943
emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
944
ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
945
if (ret)
946
return ret;
947
948
/* store prog start time */
949
emit_mv(RV_REG_S1, RV_REG_A0, ctx);
950
951
/* if (__bpf_prog_enter(prog) == 0)
952
* goto skip_exec_of_prog;
953
*/
954
branch_off = ctx->ninsns;
955
/* nop reserved for conditional jump */
956
emit(rv_nop(), ctx);
957
958
/* arg1: &args_off */
959
emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
960
if (!p->jited)
961
/* arg2: progs[i]->insnsi for interpreter */
962
emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
963
ret = emit_call((const u64)p->bpf_func, true, ctx);
964
if (ret)
965
return ret;
966
967
if (save_ret) {
968
emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
969
emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
970
}
971
972
/* update branch with beqz */
973
if (ctx->insns) {
974
int offset = ninsns_rvoff(ctx->ninsns - branch_off);
975
u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
976
*(u32 *)(ctx->insns + branch_off) = insn;
977
}
978
979
/* arg1: prog */
980
emit_imm(RV_REG_A0, (const s64)p, ctx);
981
/* arg2: prog start time */
982
emit_mv(RV_REG_A1, RV_REG_S1, ctx);
983
/* arg3: &run_ctx */
984
emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
985
ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
986
987
return ret;
988
}
989
990
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
991
const struct btf_func_model *m,
992
struct bpf_tramp_links *tlinks,
993
void *func_addr, u32 flags,
994
struct rv_jit_context *ctx)
995
{
996
int i, ret, offset;
997
int *branches_off = NULL;
998
int stack_size = 0, nr_arg_slots = 0;
999
int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off, stk_arg_off;
1000
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
1001
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
1002
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
1003
bool is_struct_ops = flags & BPF_TRAMP_F_INDIRECT;
1004
void *orig_call = func_addr;
1005
bool save_ret;
1006
u32 insn;
1007
1008
/* Two types of generated trampoline stack layout:
1009
*
1010
* 1. trampoline called from function entry
1011
* --------------------------------------
1012
* FP + 8 [ RA to parent func ] return address to parent
1013
* function
1014
* FP + 0 [ FP of parent func ] frame pointer of parent
1015
* function
1016
* FP - 8 [ T0 to traced func ] return address of traced
1017
* function
1018
* FP - 16 [ FP of traced func ] frame pointer of traced
1019
* function
1020
* --------------------------------------
1021
*
1022
* 2. trampoline called directly
1023
* --------------------------------------
1024
* FP - 8 [ RA to caller func ] return address to caller
1025
* function
1026
* FP - 16 [ FP of caller func ] frame pointer of caller
1027
* function
1028
* --------------------------------------
1029
*
1030
* FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
1031
* BPF_TRAMP_F_RET_FENTRY_RET
1032
* [ argN ]
1033
* [ ... ]
1034
* FP - args_off [ arg1 ]
1035
*
1036
* FP - nregs_off [ regs count ]
1037
*
1038
* FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG
1039
*
1040
* FP - run_ctx_off [ bpf_tramp_run_ctx ]
1041
*
1042
* FP - sreg_off [ callee saved reg ]
1043
*
1044
* [ pads ] pads for 16 bytes alignment
1045
*
1046
* [ stack_argN ]
1047
* [ ... ]
1048
* FP - stk_arg_off [ stack_arg1 ] BPF_TRAMP_F_CALL_ORIG
1049
*/
1050
1051
if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
1052
return -ENOTSUPP;
1053
1054
if (m->nr_args > MAX_BPF_FUNC_ARGS)
1055
return -ENOTSUPP;
1056
1057
for (i = 0; i < m->nr_args; i++)
1058
nr_arg_slots += round_up(m->arg_size[i], 8) / 8;
1059
1060
/* room of trampoline frame to store return address and frame pointer */
1061
stack_size += 16;
1062
1063
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
1064
if (save_ret)
1065
stack_size += 16; /* Save both A5 (BPF R0) and A0 */
1066
retval_off = stack_size;
1067
1068
stack_size += nr_arg_slots * 8;
1069
args_off = stack_size;
1070
1071
stack_size += 8;
1072
nregs_off = stack_size;
1073
1074
if (flags & BPF_TRAMP_F_IP_ARG) {
1075
stack_size += 8;
1076
ip_off = stack_size;
1077
}
1078
1079
stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
1080
run_ctx_off = stack_size;
1081
1082
stack_size += 8;
1083
sreg_off = stack_size;
1084
1085
if ((flags & BPF_TRAMP_F_CALL_ORIG) && (nr_arg_slots - RV_MAX_REG_ARGS > 0))
1086
stack_size += (nr_arg_slots - RV_MAX_REG_ARGS) * 8;
1087
1088
stack_size = round_up(stack_size, STACK_ALIGN);
1089
1090
/* room for args on stack must be at the top of stack */
1091
stk_arg_off = stack_size;
1092
1093
if (!is_struct_ops) {
1094
/* For the trampoline called from function entry,
1095
* the frame of traced function and the frame of
1096
* trampoline need to be considered.
1097
*/
1098
emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
1099
emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
1100
emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
1101
emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
1102
1103
emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1104
emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
1105
emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1106
emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1107
} else {
1108
/* emit kcfi hash */
1109
emit_kcfi(cfi_get_func_hash(func_addr), ctx);
1110
/* For the trampoline called directly, just handle
1111
* the frame of trampoline.
1112
*/
1113
emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
1114
emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
1115
emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
1116
emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
1117
}
1118
1119
/* callee saved register S1 to pass start time */
1120
emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
1121
1122
/* store ip address of the traced function */
1123
if (flags & BPF_TRAMP_F_IP_ARG) {
1124
emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
1125
emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
1126
}
1127
1128
emit_li(RV_REG_T1, nr_arg_slots, ctx);
1129
emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
1130
1131
store_args(nr_arg_slots, args_off, ctx);
1132
1133
/* skip to actual body of traced function */
1134
if (flags & BPF_TRAMP_F_SKIP_FRAME)
1135
orig_call += RV_FENTRY_NINSNS * 4;
1136
1137
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1138
emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1139
ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
1140
if (ret)
1141
return ret;
1142
}
1143
1144
for (i = 0; i < fentry->nr_links; i++) {
1145
ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
1146
flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
1147
if (ret)
1148
return ret;
1149
}
1150
1151
if (fmod_ret->nr_links) {
1152
branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
1153
if (!branches_off)
1154
return -ENOMEM;
1155
1156
/* cleanup to avoid garbage return value confusion */
1157
emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
1158
for (i = 0; i < fmod_ret->nr_links; i++) {
1159
ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
1160
run_ctx_off, true, ctx);
1161
if (ret)
1162
goto out;
1163
emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
1164
branches_off[i] = ctx->ninsns;
1165
/* nop reserved for conditional jump */
1166
emit(rv_nop(), ctx);
1167
}
1168
}
1169
1170
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1171
restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1172
restore_stack_args(nr_arg_slots - RV_MAX_REG_ARGS, args_off, stk_arg_off, ctx);
1173
ret = emit_call((const u64)orig_call, true, ctx);
1174
if (ret)
1175
goto out;
1176
emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
1177
emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx);
1178
im->ip_after_call = ctx->ro_insns + ctx->ninsns;
1179
/* 2 nops reserved for auipc+jalr pair */
1180
emit(rv_nop(), ctx);
1181
emit(rv_nop(), ctx);
1182
}
1183
1184
/* update branches saved in invoke_bpf_mod_ret with bnez */
1185
for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
1186
offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
1187
insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
1188
*(u32 *)(ctx->insns + branches_off[i]) = insn;
1189
}
1190
1191
for (i = 0; i < fexit->nr_links; i++) {
1192
ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
1193
run_ctx_off, false, ctx);
1194
if (ret)
1195
goto out;
1196
}
1197
1198
if (flags & BPF_TRAMP_F_CALL_ORIG) {
1199
im->ip_epilogue = ctx->ro_insns + ctx->ninsns;
1200
emit_imm(RV_REG_A0, ctx->insns ? (const s64)im : RV_MAX_COUNT_IMM, ctx);
1201
ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
1202
if (ret)
1203
goto out;
1204
}
1205
1206
if (flags & BPF_TRAMP_F_RESTORE_REGS)
1207
restore_args(min_t(int, nr_arg_slots, RV_MAX_REG_ARGS), args_off, ctx);
1208
1209
if (save_ret) {
1210
emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx);
1211
if (is_struct_ops) {
1212
ret = sign_extend(RV_REG_A0, regmap[BPF_REG_0], m->ret_size,
1213
m->ret_flags & BTF_FMODEL_SIGNED_ARG, ctx);
1214
if (ret)
1215
goto out;
1216
} else {
1217
emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
1218
}
1219
}
1220
1221
emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
1222
1223
if (!is_struct_ops) {
1224
/* trampoline called from function entry */
1225
emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
1226
emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1227
emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1228
1229
emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1230
emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1231
emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1232
1233
if (flags & BPF_TRAMP_F_SKIP_FRAME)
1234
/* return to parent function */
1235
emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1236
else
1237
/* return to traced function */
1238
emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1239
} else {
1240
/* trampoline called directly */
1241
emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1242
emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1243
emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1244
1245
emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1246
}
1247
1248
ret = ctx->ninsns;
1249
out:
1250
kfree(branches_off);
1251
return ret;
1252
}
1253
1254
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1255
struct bpf_tramp_links *tlinks, void *func_addr)
1256
{
1257
struct bpf_tramp_image im;
1258
struct rv_jit_context ctx;
1259
int ret;
1260
1261
ctx.ninsns = 0;
1262
ctx.insns = NULL;
1263
ctx.ro_insns = NULL;
1264
ret = __arch_prepare_bpf_trampoline(&im, m, tlinks, func_addr, flags, &ctx);
1265
1266
return ret < 0 ? ret : ninsns_rvoff(ctx.ninsns);
1267
}
1268
1269
void *arch_alloc_bpf_trampoline(unsigned int size)
1270
{
1271
return bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1272
}
1273
1274
void arch_free_bpf_trampoline(void *image, unsigned int size)
1275
{
1276
bpf_prog_pack_free(image, size);
1277
}
1278
1279
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
1280
void *ro_image_end, const struct btf_func_model *m,
1281
u32 flags, struct bpf_tramp_links *tlinks,
1282
void *func_addr)
1283
{
1284
int ret;
1285
void *image, *res;
1286
struct rv_jit_context ctx;
1287
u32 size = ro_image_end - ro_image;
1288
1289
image = kvmalloc(size, GFP_KERNEL);
1290
if (!image)
1291
return -ENOMEM;
1292
1293
ctx.ninsns = 0;
1294
ctx.insns = image;
1295
ctx.ro_insns = ro_image;
1296
ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1297
if (ret < 0)
1298
goto out;
1299
1300
if (WARN_ON(size < ninsns_rvoff(ctx.ninsns))) {
1301
ret = -E2BIG;
1302
goto out;
1303
}
1304
1305
res = bpf_arch_text_copy(ro_image, image, size);
1306
if (IS_ERR(res)) {
1307
ret = PTR_ERR(res);
1308
goto out;
1309
}
1310
1311
out:
1312
kvfree(image);
1313
return ret < 0 ? ret : size;
1314
}
1315
1316
int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1317
bool extra_pass)
1318
{
1319
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1320
BPF_CLASS(insn->code) == BPF_JMP;
1321
int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1322
struct bpf_prog_aux *aux = ctx->prog->aux;
1323
u8 rd = -1, rs = -1, code = insn->code;
1324
s16 off = insn->off;
1325
s32 imm = insn->imm;
1326
1327
init_regs(&rd, &rs, insn, ctx);
1328
1329
switch (code) {
1330
/* dst = src */
1331
case BPF_ALU | BPF_MOV | BPF_X:
1332
case BPF_ALU64 | BPF_MOV | BPF_X:
1333
if (insn_is_cast_user(insn)) {
1334
emit_mv(RV_REG_T1, rs, ctx);
1335
emit_zextw(RV_REG_T1, RV_REG_T1, ctx);
1336
emit_imm(rd, (ctx->user_vm_start >> 32) << 32, ctx);
1337
emit(rv_beq(RV_REG_T1, RV_REG_ZERO, 4), ctx);
1338
emit_or(RV_REG_T1, rd, RV_REG_T1, ctx);
1339
emit_mv(rd, RV_REG_T1, ctx);
1340
break;
1341
} else if (insn_is_mov_percpu_addr(insn)) {
1342
if (rd != rs)
1343
emit_mv(rd, rs, ctx);
1344
#ifdef CONFIG_SMP
1345
/* Load current CPU number in T1 */
1346
emit_lw(RV_REG_T1, offsetof(struct thread_info, cpu),
1347
RV_REG_TP, ctx);
1348
/* Load address of __per_cpu_offset array in T2 */
1349
emit_addr(RV_REG_T2, (u64)&__per_cpu_offset, extra_pass, ctx);
1350
/* Get address of __per_cpu_offset[cpu] in T1 */
1351
emit_sh3add(RV_REG_T1, RV_REG_T1, RV_REG_T2, ctx);
1352
/* Load __per_cpu_offset[cpu] in T1 */
1353
emit_ld(RV_REG_T1, 0, RV_REG_T1, ctx);
1354
/* Add the offset to Rd */
1355
emit_add(rd, rd, RV_REG_T1, ctx);
1356
#endif
1357
}
1358
if (imm == 1) {
1359
/* Special mov32 for zext */
1360
emit_zextw(rd, rd, ctx);
1361
break;
1362
}
1363
switch (insn->off) {
1364
case 0:
1365
emit_mv(rd, rs, ctx);
1366
break;
1367
case 8:
1368
emit_sextb(rd, rs, ctx);
1369
break;
1370
case 16:
1371
emit_sexth(rd, rs, ctx);
1372
break;
1373
case 32:
1374
emit_sextw(rd, rs, ctx);
1375
break;
1376
}
1377
if (!is64 && !aux->verifier_zext)
1378
emit_zextw(rd, rd, ctx);
1379
break;
1380
1381
/* dst = dst OP src */
1382
case BPF_ALU | BPF_ADD | BPF_X:
1383
case BPF_ALU64 | BPF_ADD | BPF_X:
1384
emit_add(rd, rd, rs, ctx);
1385
if (!is64 && !aux->verifier_zext)
1386
emit_zextw(rd, rd, ctx);
1387
break;
1388
case BPF_ALU | BPF_SUB | BPF_X:
1389
case BPF_ALU64 | BPF_SUB | BPF_X:
1390
if (is64)
1391
emit_sub(rd, rd, rs, ctx);
1392
else
1393
emit_subw(rd, rd, rs, ctx);
1394
1395
if (!is64 && !aux->verifier_zext)
1396
emit_zextw(rd, rd, ctx);
1397
break;
1398
case BPF_ALU | BPF_AND | BPF_X:
1399
case BPF_ALU64 | BPF_AND | BPF_X:
1400
emit_and(rd, rd, rs, ctx);
1401
if (!is64 && !aux->verifier_zext)
1402
emit_zextw(rd, rd, ctx);
1403
break;
1404
case BPF_ALU | BPF_OR | BPF_X:
1405
case BPF_ALU64 | BPF_OR | BPF_X:
1406
emit_or(rd, rd, rs, ctx);
1407
if (!is64 && !aux->verifier_zext)
1408
emit_zextw(rd, rd, ctx);
1409
break;
1410
case BPF_ALU | BPF_XOR | BPF_X:
1411
case BPF_ALU64 | BPF_XOR | BPF_X:
1412
emit_xor(rd, rd, rs, ctx);
1413
if (!is64 && !aux->verifier_zext)
1414
emit_zextw(rd, rd, ctx);
1415
break;
1416
case BPF_ALU | BPF_MUL | BPF_X:
1417
case BPF_ALU64 | BPF_MUL | BPF_X:
1418
emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1419
if (!is64 && !aux->verifier_zext)
1420
emit_zextw(rd, rd, ctx);
1421
break;
1422
case BPF_ALU | BPF_DIV | BPF_X:
1423
case BPF_ALU64 | BPF_DIV | BPF_X:
1424
if (off)
1425
emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1426
else
1427
emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1428
if (!is64 && !aux->verifier_zext)
1429
emit_zextw(rd, rd, ctx);
1430
break;
1431
case BPF_ALU | BPF_MOD | BPF_X:
1432
case BPF_ALU64 | BPF_MOD | BPF_X:
1433
if (off)
1434
emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1435
else
1436
emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1437
if (!is64 && !aux->verifier_zext)
1438
emit_zextw(rd, rd, ctx);
1439
break;
1440
case BPF_ALU | BPF_LSH | BPF_X:
1441
case BPF_ALU64 | BPF_LSH | BPF_X:
1442
emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1443
if (!is64 && !aux->verifier_zext)
1444
emit_zextw(rd, rd, ctx);
1445
break;
1446
case BPF_ALU | BPF_RSH | BPF_X:
1447
case BPF_ALU64 | BPF_RSH | BPF_X:
1448
emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1449
if (!is64 && !aux->verifier_zext)
1450
emit_zextw(rd, rd, ctx);
1451
break;
1452
case BPF_ALU | BPF_ARSH | BPF_X:
1453
case BPF_ALU64 | BPF_ARSH | BPF_X:
1454
emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1455
if (!is64 && !aux->verifier_zext)
1456
emit_zextw(rd, rd, ctx);
1457
break;
1458
1459
/* dst = -dst */
1460
case BPF_ALU | BPF_NEG:
1461
case BPF_ALU64 | BPF_NEG:
1462
emit_sub(rd, RV_REG_ZERO, rd, ctx);
1463
if (!is64 && !aux->verifier_zext)
1464
emit_zextw(rd, rd, ctx);
1465
break;
1466
1467
/* dst = BSWAP##imm(dst) */
1468
case BPF_ALU | BPF_END | BPF_FROM_LE:
1469
switch (imm) {
1470
case 16:
1471
emit_zexth(rd, rd, ctx);
1472
break;
1473
case 32:
1474
if (!aux->verifier_zext)
1475
emit_zextw(rd, rd, ctx);
1476
break;
1477
case 64:
1478
/* Do nothing */
1479
break;
1480
}
1481
break;
1482
case BPF_ALU | BPF_END | BPF_FROM_BE:
1483
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1484
emit_bswap(rd, imm, ctx);
1485
break;
1486
1487
/* dst = imm */
1488
case BPF_ALU | BPF_MOV | BPF_K:
1489
case BPF_ALU64 | BPF_MOV | BPF_K:
1490
emit_imm(rd, imm, ctx);
1491
if (!is64 && !aux->verifier_zext)
1492
emit_zextw(rd, rd, ctx);
1493
break;
1494
1495
/* dst = dst OP imm */
1496
case BPF_ALU | BPF_ADD | BPF_K:
1497
case BPF_ALU64 | BPF_ADD | BPF_K:
1498
if (is_12b_int(imm)) {
1499
emit_addi(rd, rd, imm, ctx);
1500
} else {
1501
emit_imm(RV_REG_T1, imm, ctx);
1502
emit_add(rd, rd, RV_REG_T1, ctx);
1503
}
1504
if (!is64 && !aux->verifier_zext)
1505
emit_zextw(rd, rd, ctx);
1506
break;
1507
case BPF_ALU | BPF_SUB | BPF_K:
1508
case BPF_ALU64 | BPF_SUB | BPF_K:
1509
if (is_12b_int(-imm)) {
1510
emit_addi(rd, rd, -imm, ctx);
1511
} else {
1512
emit_imm(RV_REG_T1, imm, ctx);
1513
emit_sub(rd, rd, RV_REG_T1, ctx);
1514
}
1515
if (!is64 && !aux->verifier_zext)
1516
emit_zextw(rd, rd, ctx);
1517
break;
1518
case BPF_ALU | BPF_AND | BPF_K:
1519
case BPF_ALU64 | BPF_AND | BPF_K:
1520
if (is_12b_int(imm)) {
1521
emit_andi(rd, rd, imm, ctx);
1522
} else {
1523
emit_imm(RV_REG_T1, imm, ctx);
1524
emit_and(rd, rd, RV_REG_T1, ctx);
1525
}
1526
if (!is64 && !aux->verifier_zext)
1527
emit_zextw(rd, rd, ctx);
1528
break;
1529
case BPF_ALU | BPF_OR | BPF_K:
1530
case BPF_ALU64 | BPF_OR | BPF_K:
1531
if (is_12b_int(imm)) {
1532
emit(rv_ori(rd, rd, imm), ctx);
1533
} else {
1534
emit_imm(RV_REG_T1, imm, ctx);
1535
emit_or(rd, rd, RV_REG_T1, ctx);
1536
}
1537
if (!is64 && !aux->verifier_zext)
1538
emit_zextw(rd, rd, ctx);
1539
break;
1540
case BPF_ALU | BPF_XOR | BPF_K:
1541
case BPF_ALU64 | BPF_XOR | BPF_K:
1542
if (is_12b_int(imm)) {
1543
emit(rv_xori(rd, rd, imm), ctx);
1544
} else {
1545
emit_imm(RV_REG_T1, imm, ctx);
1546
emit_xor(rd, rd, RV_REG_T1, ctx);
1547
}
1548
if (!is64 && !aux->verifier_zext)
1549
emit_zextw(rd, rd, ctx);
1550
break;
1551
case BPF_ALU | BPF_MUL | BPF_K:
1552
case BPF_ALU64 | BPF_MUL | BPF_K:
1553
emit_imm(RV_REG_T1, imm, ctx);
1554
emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1555
rv_mulw(rd, rd, RV_REG_T1), ctx);
1556
if (!is64 && !aux->verifier_zext)
1557
emit_zextw(rd, rd, ctx);
1558
break;
1559
case BPF_ALU | BPF_DIV | BPF_K:
1560
case BPF_ALU64 | BPF_DIV | BPF_K:
1561
emit_imm(RV_REG_T1, imm, ctx);
1562
if (off)
1563
emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1564
rv_divw(rd, rd, RV_REG_T1), ctx);
1565
else
1566
emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1567
rv_divuw(rd, rd, RV_REG_T1), ctx);
1568
if (!is64 && !aux->verifier_zext)
1569
emit_zextw(rd, rd, ctx);
1570
break;
1571
case BPF_ALU | BPF_MOD | BPF_K:
1572
case BPF_ALU64 | BPF_MOD | BPF_K:
1573
emit_imm(RV_REG_T1, imm, ctx);
1574
if (off)
1575
emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1576
rv_remw(rd, rd, RV_REG_T1), ctx);
1577
else
1578
emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1579
rv_remuw(rd, rd, RV_REG_T1), ctx);
1580
if (!is64 && !aux->verifier_zext)
1581
emit_zextw(rd, rd, ctx);
1582
break;
1583
case BPF_ALU | BPF_LSH | BPF_K:
1584
case BPF_ALU64 | BPF_LSH | BPF_K:
1585
emit_slli(rd, rd, imm, ctx);
1586
1587
if (!is64 && !aux->verifier_zext)
1588
emit_zextw(rd, rd, ctx);
1589
break;
1590
case BPF_ALU | BPF_RSH | BPF_K:
1591
case BPF_ALU64 | BPF_RSH | BPF_K:
1592
if (is64)
1593
emit_srli(rd, rd, imm, ctx);
1594
else
1595
emit(rv_srliw(rd, rd, imm), ctx);
1596
1597
if (!is64 && !aux->verifier_zext)
1598
emit_zextw(rd, rd, ctx);
1599
break;
1600
case BPF_ALU | BPF_ARSH | BPF_K:
1601
case BPF_ALU64 | BPF_ARSH | BPF_K:
1602
if (is64)
1603
emit_srai(rd, rd, imm, ctx);
1604
else
1605
emit(rv_sraiw(rd, rd, imm), ctx);
1606
1607
if (!is64 && !aux->verifier_zext)
1608
emit_zextw(rd, rd, ctx);
1609
break;
1610
1611
/* JUMP off */
1612
case BPF_JMP | BPF_JA:
1613
case BPF_JMP32 | BPF_JA:
1614
if (BPF_CLASS(code) == BPF_JMP)
1615
rvoff = rv_offset(i, off, ctx);
1616
else
1617
rvoff = rv_offset(i, imm, ctx);
1618
ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1619
if (ret)
1620
return ret;
1621
break;
1622
1623
/* IF (dst COND src) JUMP off */
1624
case BPF_JMP | BPF_JEQ | BPF_X:
1625
case BPF_JMP32 | BPF_JEQ | BPF_X:
1626
case BPF_JMP | BPF_JGT | BPF_X:
1627
case BPF_JMP32 | BPF_JGT | BPF_X:
1628
case BPF_JMP | BPF_JLT | BPF_X:
1629
case BPF_JMP32 | BPF_JLT | BPF_X:
1630
case BPF_JMP | BPF_JGE | BPF_X:
1631
case BPF_JMP32 | BPF_JGE | BPF_X:
1632
case BPF_JMP | BPF_JLE | BPF_X:
1633
case BPF_JMP32 | BPF_JLE | BPF_X:
1634
case BPF_JMP | BPF_JNE | BPF_X:
1635
case BPF_JMP32 | BPF_JNE | BPF_X:
1636
case BPF_JMP | BPF_JSGT | BPF_X:
1637
case BPF_JMP32 | BPF_JSGT | BPF_X:
1638
case BPF_JMP | BPF_JSLT | BPF_X:
1639
case BPF_JMP32 | BPF_JSLT | BPF_X:
1640
case BPF_JMP | BPF_JSGE | BPF_X:
1641
case BPF_JMP32 | BPF_JSGE | BPF_X:
1642
case BPF_JMP | BPF_JSLE | BPF_X:
1643
case BPF_JMP32 | BPF_JSLE | BPF_X:
1644
case BPF_JMP | BPF_JSET | BPF_X:
1645
case BPF_JMP32 | BPF_JSET | BPF_X:
1646
rvoff = rv_offset(i, off, ctx);
1647
if (!is64) {
1648
s = ctx->ninsns;
1649
if (is_signed_bpf_cond(BPF_OP(code))) {
1650
emit_sextw_alt(&rs, RV_REG_T1, ctx);
1651
emit_sextw_alt(&rd, RV_REG_T2, ctx);
1652
} else {
1653
emit_zextw_alt(&rs, RV_REG_T1, ctx);
1654
emit_zextw_alt(&rd, RV_REG_T2, ctx);
1655
}
1656
e = ctx->ninsns;
1657
1658
/* Adjust for extra insns */
1659
rvoff -= ninsns_rvoff(e - s);
1660
}
1661
1662
if (BPF_OP(code) == BPF_JSET) {
1663
/* Adjust for and */
1664
rvoff -= 4;
1665
emit_and(RV_REG_T1, rd, rs, ctx);
1666
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1667
} else {
1668
emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1669
}
1670
break;
1671
1672
/* IF (dst COND imm) JUMP off */
1673
case BPF_JMP | BPF_JEQ | BPF_K:
1674
case BPF_JMP32 | BPF_JEQ | BPF_K:
1675
case BPF_JMP | BPF_JGT | BPF_K:
1676
case BPF_JMP32 | BPF_JGT | BPF_K:
1677
case BPF_JMP | BPF_JLT | BPF_K:
1678
case BPF_JMP32 | BPF_JLT | BPF_K:
1679
case BPF_JMP | BPF_JGE | BPF_K:
1680
case BPF_JMP32 | BPF_JGE | BPF_K:
1681
case BPF_JMP | BPF_JLE | BPF_K:
1682
case BPF_JMP32 | BPF_JLE | BPF_K:
1683
case BPF_JMP | BPF_JNE | BPF_K:
1684
case BPF_JMP32 | BPF_JNE | BPF_K:
1685
case BPF_JMP | BPF_JSGT | BPF_K:
1686
case BPF_JMP32 | BPF_JSGT | BPF_K:
1687
case BPF_JMP | BPF_JSLT | BPF_K:
1688
case BPF_JMP32 | BPF_JSLT | BPF_K:
1689
case BPF_JMP | BPF_JSGE | BPF_K:
1690
case BPF_JMP32 | BPF_JSGE | BPF_K:
1691
case BPF_JMP | BPF_JSLE | BPF_K:
1692
case BPF_JMP32 | BPF_JSLE | BPF_K:
1693
rvoff = rv_offset(i, off, ctx);
1694
s = ctx->ninsns;
1695
if (imm)
1696
emit_imm(RV_REG_T1, imm, ctx);
1697
rs = imm ? RV_REG_T1 : RV_REG_ZERO;
1698
if (!is64) {
1699
if (is_signed_bpf_cond(BPF_OP(code))) {
1700
emit_sextw_alt(&rd, RV_REG_T2, ctx);
1701
/* rs has been sign extended */
1702
} else {
1703
emit_zextw_alt(&rd, RV_REG_T2, ctx);
1704
if (imm)
1705
emit_zextw(rs, rs, ctx);
1706
}
1707
}
1708
e = ctx->ninsns;
1709
1710
/* Adjust for extra insns */
1711
rvoff -= ninsns_rvoff(e - s);
1712
emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1713
break;
1714
1715
case BPF_JMP | BPF_JSET | BPF_K:
1716
case BPF_JMP32 | BPF_JSET | BPF_K:
1717
rvoff = rv_offset(i, off, ctx);
1718
s = ctx->ninsns;
1719
if (is_12b_int(imm)) {
1720
emit_andi(RV_REG_T1, rd, imm, ctx);
1721
} else {
1722
emit_imm(RV_REG_T1, imm, ctx);
1723
emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1724
}
1725
/* For jset32, we should clear the upper 32 bits of t1, but
1726
* sign-extension is sufficient here and saves one instruction,
1727
* as t1 is used only in comparison against zero.
1728
*/
1729
if (!is64 && imm < 0)
1730
emit_sextw(RV_REG_T1, RV_REG_T1, ctx);
1731
e = ctx->ninsns;
1732
rvoff -= ninsns_rvoff(e - s);
1733
emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1734
break;
1735
1736
/* function call */
1737
case BPF_JMP | BPF_CALL:
1738
{
1739
bool fixed_addr;
1740
u64 addr;
1741
1742
/* Inline calls to bpf_get_smp_processor_id()
1743
*
1744
* RV_REG_TP holds the address of the current CPU's task_struct and thread_info is
1745
* at offset 0 in task_struct.
1746
* Load cpu from thread_info:
1747
* Set R0 to ((struct thread_info *)(RV_REG_TP))->cpu
1748
*
1749
* This replicates the implementation of raw_smp_processor_id() on RISCV
1750
*/
1751
if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1752
/* Load current CPU number in R0 */
1753
emit_lw(bpf_to_rv_reg(BPF_REG_0, ctx), offsetof(struct thread_info, cpu),
1754
RV_REG_TP, ctx);
1755
break;
1756
}
1757
1758
mark_call(ctx);
1759
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1760
&addr, &fixed_addr);
1761
if (ret < 0)
1762
return ret;
1763
1764
if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1765
const struct btf_func_model *fm;
1766
int idx;
1767
1768
fm = bpf_jit_find_kfunc_model(ctx->prog, insn);
1769
if (!fm)
1770
return -EINVAL;
1771
1772
for (idx = 0; idx < fm->nr_args; idx++) {
1773
u8 reg = bpf_to_rv_reg(BPF_REG_1 + idx, ctx);
1774
1775
if (fm->arg_size[idx] == sizeof(int))
1776
emit_sextw(reg, reg, ctx);
1777
}
1778
}
1779
1780
ret = emit_call(addr, fixed_addr, ctx);
1781
if (ret)
1782
return ret;
1783
1784
if (insn->src_reg != BPF_PSEUDO_CALL)
1785
emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1786
break;
1787
}
1788
/* tail call */
1789
case BPF_JMP | BPF_TAIL_CALL:
1790
if (emit_bpf_tail_call(i, ctx))
1791
return -1;
1792
break;
1793
1794
/* function return */
1795
case BPF_JMP | BPF_EXIT:
1796
if (i == ctx->prog->len - 1)
1797
break;
1798
1799
rvoff = epilogue_offset(ctx);
1800
ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1801
if (ret)
1802
return ret;
1803
break;
1804
1805
/* dst = imm64 */
1806
case BPF_LD | BPF_IMM | BPF_DW:
1807
{
1808
struct bpf_insn insn1 = insn[1];
1809
u64 imm64;
1810
1811
imm64 = (u64)insn1.imm << 32 | (u32)imm;
1812
if (bpf_pseudo_func(insn)) {
1813
/* fixed-length insns for extra jit pass */
1814
ret = emit_addr(rd, imm64, extra_pass, ctx);
1815
if (ret)
1816
return ret;
1817
} else {
1818
emit_imm(rd, imm64, ctx);
1819
}
1820
1821
return 1;
1822
}
1823
1824
/* LDX: dst = *(unsigned size *)(src + off) */
1825
case BPF_LDX | BPF_MEM | BPF_B:
1826
case BPF_LDX | BPF_MEM | BPF_H:
1827
case BPF_LDX | BPF_MEM | BPF_W:
1828
case BPF_LDX | BPF_MEM | BPF_DW:
1829
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1830
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1831
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1832
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1833
/* LDSX: dst = *(signed size *)(src + off) */
1834
case BPF_LDX | BPF_MEMSX | BPF_B:
1835
case BPF_LDX | BPF_MEMSX | BPF_H:
1836
case BPF_LDX | BPF_MEMSX | BPF_W:
1837
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1838
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1839
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1840
/* LDX | PROBE_MEM32: dst = *(unsigned size *)(src + RV_REG_ARENA + off) */
1841
case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1842
case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1843
case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1844
case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1845
{
1846
bool sign_ext;
1847
1848
sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1849
BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1850
1851
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1852
emit_add(RV_REG_T2, rs, RV_REG_ARENA, ctx);
1853
rs = RV_REG_T2;
1854
}
1855
1856
emit_ldx(rd, off, rs, BPF_SIZE(code), sign_ext, ctx);
1857
1858
ret = add_exception_handler(insn, rd, ctx);
1859
if (ret)
1860
return ret;
1861
1862
if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1863
return 1;
1864
break;
1865
}
1866
1867
/* speculation barrier */
1868
case BPF_ST | BPF_NOSPEC:
1869
break;
1870
1871
/* ST: *(size *)(dst + off) = imm */
1872
case BPF_ST | BPF_MEM | BPF_B:
1873
case BPF_ST | BPF_MEM | BPF_H:
1874
case BPF_ST | BPF_MEM | BPF_W:
1875
case BPF_ST | BPF_MEM | BPF_DW:
1876
/* ST | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = imm */
1877
case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1878
case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1879
case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1880
case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1881
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1882
emit_add(RV_REG_T3, rd, RV_REG_ARENA, ctx);
1883
rd = RV_REG_T3;
1884
}
1885
1886
emit_st(rd, off, imm, BPF_SIZE(code), ctx);
1887
1888
ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1889
if (ret)
1890
return ret;
1891
break;
1892
1893
/* STX: *(size *)(dst + off) = src */
1894
case BPF_STX | BPF_MEM | BPF_B:
1895
case BPF_STX | BPF_MEM | BPF_H:
1896
case BPF_STX | BPF_MEM | BPF_W:
1897
case BPF_STX | BPF_MEM | BPF_DW:
1898
/* STX | PROBE_MEM32: *(size *)(dst + RV_REG_ARENA + off) = src */
1899
case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1900
case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1901
case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1902
case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1903
if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1904
emit_add(RV_REG_T2, rd, RV_REG_ARENA, ctx);
1905
rd = RV_REG_T2;
1906
}
1907
1908
emit_stx(rd, off, rs, BPF_SIZE(code), ctx);
1909
1910
ret = add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1911
if (ret)
1912
return ret;
1913
break;
1914
1915
/* Atomics */
1916
case BPF_STX | BPF_ATOMIC | BPF_B:
1917
case BPF_STX | BPF_ATOMIC | BPF_H:
1918
case BPF_STX | BPF_ATOMIC | BPF_W:
1919
case BPF_STX | BPF_ATOMIC | BPF_DW:
1920
case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
1921
case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
1922
case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1923
case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1924
if (bpf_atomic_is_load_store(insn))
1925
ret = emit_atomic_ld_st(rd, rs, insn, ctx);
1926
else
1927
ret = emit_atomic_rmw(rd, rs, insn, ctx);
1928
1929
ret = ret ?: add_exception_handler(insn, REG_DONT_CLEAR_MARKER, ctx);
1930
if (ret)
1931
return ret;
1932
break;
1933
1934
default:
1935
pr_err("bpf-jit: unknown opcode %02x\n", code);
1936
return -EINVAL;
1937
}
1938
1939
return 0;
1940
}
1941
1942
void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog)
1943
{
1944
int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1945
1946
bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
1947
if (bpf_stack_adjust)
1948
mark_fp(ctx);
1949
1950
if (seen_reg(RV_REG_RA, ctx))
1951
stack_adjust += 8;
1952
stack_adjust += 8; /* RV_REG_FP */
1953
if (seen_reg(RV_REG_S1, ctx))
1954
stack_adjust += 8;
1955
if (seen_reg(RV_REG_S2, ctx))
1956
stack_adjust += 8;
1957
if (seen_reg(RV_REG_S3, ctx))
1958
stack_adjust += 8;
1959
if (seen_reg(RV_REG_S4, ctx))
1960
stack_adjust += 8;
1961
if (seen_reg(RV_REG_S5, ctx))
1962
stack_adjust += 8;
1963
if (seen_reg(RV_REG_S6, ctx))
1964
stack_adjust += 8;
1965
if (ctx->arena_vm_start)
1966
stack_adjust += 8;
1967
1968
stack_adjust = round_up(stack_adjust, STACK_ALIGN);
1969
stack_adjust += bpf_stack_adjust;
1970
1971
store_offset = stack_adjust - 8;
1972
1973
/* emit kcfi type preamble immediately before the first insn */
1974
emit_kcfi(is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash, ctx);
1975
1976
/* nops reserved for auipc+jalr pair */
1977
for (i = 0; i < RV_FENTRY_NINSNS; i++)
1978
emit(rv_nop(), ctx);
1979
1980
/* First instruction is always setting the tail-call-counter
1981
* (TCC) register. This instruction is skipped for tail calls.
1982
* Force using a 4-byte (non-compressed) instruction.
1983
*/
1984
emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1985
1986
emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1987
1988
if (seen_reg(RV_REG_RA, ctx)) {
1989
emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1990
store_offset -= 8;
1991
}
1992
emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1993
store_offset -= 8;
1994
if (seen_reg(RV_REG_S1, ctx)) {
1995
emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1996
store_offset -= 8;
1997
}
1998
if (seen_reg(RV_REG_S2, ctx)) {
1999
emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
2000
store_offset -= 8;
2001
}
2002
if (seen_reg(RV_REG_S3, ctx)) {
2003
emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
2004
store_offset -= 8;
2005
}
2006
if (seen_reg(RV_REG_S4, ctx)) {
2007
emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
2008
store_offset -= 8;
2009
}
2010
if (seen_reg(RV_REG_S5, ctx)) {
2011
emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
2012
store_offset -= 8;
2013
}
2014
if (seen_reg(RV_REG_S6, ctx)) {
2015
emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
2016
store_offset -= 8;
2017
}
2018
if (ctx->arena_vm_start) {
2019
emit_sd(RV_REG_SP, store_offset, RV_REG_ARENA, ctx);
2020
store_offset -= 8;
2021
}
2022
2023
emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
2024
2025
if (bpf_stack_adjust)
2026
emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
2027
2028
/* Program contains calls and tail calls, so RV_REG_TCC need
2029
* to be saved across calls.
2030
*/
2031
if (seen_tail_call(ctx) && seen_call(ctx))
2032
emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
2033
2034
ctx->stack_size = stack_adjust;
2035
2036
if (ctx->arena_vm_start)
2037
emit_imm(RV_REG_ARENA, ctx->arena_vm_start, ctx);
2038
}
2039
2040
void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
2041
{
2042
__build_epilogue(false, ctx);
2043
}
2044
2045
bool bpf_jit_supports_kfunc_call(void)
2046
{
2047
return true;
2048
}
2049
2050
bool bpf_jit_supports_ptr_xchg(void)
2051
{
2052
return true;
2053
}
2054
2055
bool bpf_jit_supports_arena(void)
2056
{
2057
return true;
2058
}
2059
2060
bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2061
{
2062
if (in_arena) {
2063
switch (insn->code) {
2064
case BPF_STX | BPF_ATOMIC | BPF_W:
2065
case BPF_STX | BPF_ATOMIC | BPF_DW:
2066
if (insn->imm == BPF_CMPXCHG)
2067
return rv_ext_enabled(ZACAS);
2068
break;
2069
case BPF_LDX | BPF_MEMSX | BPF_B:
2070
case BPF_LDX | BPF_MEMSX | BPF_H:
2071
case BPF_LDX | BPF_MEMSX | BPF_W:
2072
return false;
2073
}
2074
}
2075
2076
return true;
2077
}
2078
2079
bool bpf_jit_supports_percpu_insn(void)
2080
{
2081
return true;
2082
}
2083
2084
bool bpf_jit_inlines_helper_call(s32 imm)
2085
{
2086
switch (imm) {
2087
case BPF_FUNC_get_smp_processor_id:
2088
return true;
2089
default:
2090
return false;
2091
}
2092
}
2093
2094