Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/boot/startup/sev-shared.c
29269 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* AMD Encrypted Register State Support
4
*
5
* Author: Joerg Roedel <[email protected]>
6
*
7
* This file is not compiled stand-alone. It contains code shared
8
* between the pre-decompression boot code and the running Linux kernel
9
* and is included directly into both code-bases.
10
*/
11
12
#include <asm/setup_data.h>
13
14
#ifndef __BOOT_COMPRESSED
15
#define has_cpuflag(f) boot_cpu_has(f)
16
#else
17
#undef WARN
18
#define WARN(condition, format...) (!!(condition))
19
#endif
20
21
/* Copy of the SNP firmware's CPUID page. */
22
static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
23
24
/*
25
* These will be initialized based on CPUID table so that non-present
26
* all-zero leaves (for sparse tables) can be differentiated from
27
* invalid/out-of-range leaves. This is needed since all-zero leaves
28
* still need to be post-processed.
29
*/
30
static u32 cpuid_std_range_max __ro_after_init;
31
static u32 cpuid_hyp_range_max __ro_after_init;
32
static u32 cpuid_ext_range_max __ro_after_init;
33
34
bool sev_snp_needs_sfw;
35
36
void __noreturn
37
sev_es_terminate(unsigned int set, unsigned int reason)
38
{
39
u64 val = GHCB_MSR_TERM_REQ;
40
41
/* Tell the hypervisor what went wrong. */
42
val |= GHCB_SEV_TERM_REASON(set, reason);
43
44
/* Request Guest Termination from Hypervisor */
45
sev_es_wr_ghcb_msr(val);
46
VMGEXIT();
47
48
while (true)
49
asm volatile("hlt\n" : : : "memory");
50
}
51
52
/*
53
* The hypervisor features are available from GHCB version 2 onward.
54
*/
55
u64 __init get_hv_features(void)
56
{
57
u64 val;
58
59
if (ghcb_version < 2)
60
return 0;
61
62
sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
63
VMGEXIT();
64
65
val = sev_es_rd_ghcb_msr();
66
if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
67
return 0;
68
69
return GHCB_MSR_HV_FT_RESP_VAL(val);
70
}
71
72
int svsm_process_result_codes(struct svsm_call *call)
73
{
74
switch (call->rax_out) {
75
case SVSM_SUCCESS:
76
return 0;
77
case SVSM_ERR_INCOMPLETE:
78
case SVSM_ERR_BUSY:
79
return -EAGAIN;
80
default:
81
return -EINVAL;
82
}
83
}
84
85
/*
86
* Issue a VMGEXIT to call the SVSM:
87
* - Load the SVSM register state (RAX, RCX, RDX, R8 and R9)
88
* - Set the CA call pending field to 1
89
* - Issue VMGEXIT
90
* - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9)
91
* - Perform atomic exchange of the CA call pending field
92
*
93
* - See the "Secure VM Service Module for SEV-SNP Guests" specification for
94
* details on the calling convention.
95
* - The calling convention loosely follows the Microsoft X64 calling
96
* convention by putting arguments in RCX, RDX, R8 and R9.
97
* - RAX specifies the SVSM protocol/callid as input and the return code
98
* as output.
99
*/
100
void svsm_issue_call(struct svsm_call *call, u8 *pending)
101
{
102
register unsigned long rax asm("rax") = call->rax;
103
register unsigned long rcx asm("rcx") = call->rcx;
104
register unsigned long rdx asm("rdx") = call->rdx;
105
register unsigned long r8 asm("r8") = call->r8;
106
register unsigned long r9 asm("r9") = call->r9;
107
108
call->caa->call_pending = 1;
109
110
asm volatile("rep; vmmcall\n\t"
111
: "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9)
112
: : "memory");
113
114
*pending = xchg(&call->caa->call_pending, *pending);
115
116
call->rax_out = rax;
117
call->rcx_out = rcx;
118
call->rdx_out = rdx;
119
call->r8_out = r8;
120
call->r9_out = r9;
121
}
122
123
int svsm_perform_msr_protocol(struct svsm_call *call)
124
{
125
u8 pending = 0;
126
u64 val, resp;
127
128
/*
129
* When using the MSR protocol, be sure to save and restore
130
* the current MSR value.
131
*/
132
val = sev_es_rd_ghcb_msr();
133
134
sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0));
135
136
svsm_issue_call(call, &pending);
137
138
resp = sev_es_rd_ghcb_msr();
139
140
sev_es_wr_ghcb_msr(val);
141
142
if (pending)
143
return -EINVAL;
144
145
if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP)
146
return -EINVAL;
147
148
if (GHCB_MSR_VMPL_RESP_VAL(resp))
149
return -EINVAL;
150
151
return svsm_process_result_codes(call);
152
}
153
154
static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
155
{
156
u64 val;
157
158
sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
159
VMGEXIT();
160
val = sev_es_rd_ghcb_msr();
161
if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
162
return -EIO;
163
164
*reg = (val >> 32);
165
166
return 0;
167
}
168
169
static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
170
{
171
int ret;
172
173
/*
174
* MSR protocol does not support fetching non-zero subfunctions, but is
175
* sufficient to handle current early-boot cases. Should that change,
176
* make sure to report an error rather than ignoring the index and
177
* grabbing random values. If this issue arises in the future, handling
178
* can be added here to use GHCB-page protocol for cases that occur late
179
* enough in boot that GHCB page is available.
180
*/
181
if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
182
return -EINVAL;
183
184
ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
185
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
186
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
187
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);
188
189
return ret;
190
}
191
192
193
194
/*
195
* This may be called early while still running on the initial identity
196
* mapping. Use RIP-relative addressing to obtain the correct address
197
* while running with the initial identity mapping as well as the
198
* switch-over to kernel virtual addresses later.
199
*/
200
const struct snp_cpuid_table *snp_cpuid_get_table(void)
201
{
202
return rip_rel_ptr(&cpuid_table_copy);
203
}
204
205
/*
206
* The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
207
* XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
208
* and 1 based on the corresponding features enabled by a particular
209
* combination of XCR0 and XSS registers so that a guest can look up the
210
* version corresponding to the features currently enabled in its XCR0/XSS
211
* registers. The only values that differ between these versions/table
212
* entries is the enabled XSAVE area size advertised via EBX.
213
*
214
* While hypervisors may choose to make use of this support, it is more
215
* robust/secure for a guest to simply find the entry corresponding to the
216
* base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
217
* XSAVE area size using subfunctions 2 through 64, as documented in APM
218
* Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
219
*
220
* Since base/legacy XSAVE area size is documented as 0x240, use that value
221
* directly rather than relying on the base size in the CPUID table.
222
*
223
* Return: XSAVE area size on success, 0 otherwise.
224
*/
225
static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
226
{
227
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
228
u64 xfeatures_found = 0;
229
u32 xsave_size = 0x240;
230
int i;
231
232
for (i = 0; i < cpuid_table->count; i++) {
233
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
234
235
if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
236
continue;
237
if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
238
continue;
239
if (xfeatures_found & (BIT_ULL(e->ecx_in)))
240
continue;
241
242
xfeatures_found |= (BIT_ULL(e->ecx_in));
243
244
if (compacted)
245
xsave_size += e->eax;
246
else
247
xsave_size = max(xsave_size, e->eax + e->ebx);
248
}
249
250
/*
251
* Either the guest set unsupported XCR0/XSS bits, or the corresponding
252
* entries in the CPUID table were not present. This is not a valid
253
* state to be in.
254
*/
255
if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
256
return 0;
257
258
return xsave_size;
259
}
260
261
static bool
262
snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
263
{
264
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
265
int i;
266
267
for (i = 0; i < cpuid_table->count; i++) {
268
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
269
270
if (e->eax_in != leaf->fn)
271
continue;
272
273
if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
274
continue;
275
276
/*
277
* For 0xD subfunctions 0 and 1, only use the entry corresponding
278
* to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
279
* See the comments above snp_cpuid_calc_xsave_size() for more
280
* details.
281
*/
282
if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
283
if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
284
continue;
285
286
leaf->eax = e->eax;
287
leaf->ebx = e->ebx;
288
leaf->ecx = e->ecx;
289
leaf->edx = e->edx;
290
291
return true;
292
}
293
294
return false;
295
}
296
297
static void snp_cpuid_hv_msr(void *ctx, struct cpuid_leaf *leaf)
298
{
299
if (__sev_cpuid_hv_msr(leaf))
300
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
301
}
302
303
static int
304
snp_cpuid_postprocess(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf),
305
void *ctx, struct cpuid_leaf *leaf)
306
{
307
struct cpuid_leaf leaf_hv = *leaf;
308
309
switch (leaf->fn) {
310
case 0x1:
311
cpuid_fn(ctx, &leaf_hv);
312
313
/* initial APIC ID */
314
leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
315
/* APIC enabled bit */
316
leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
317
318
/* OSXSAVE enabled bit */
319
if (native_read_cr4() & X86_CR4_OSXSAVE)
320
leaf->ecx |= BIT(27);
321
break;
322
case 0x7:
323
/* OSPKE enabled bit */
324
leaf->ecx &= ~BIT(4);
325
if (native_read_cr4() & X86_CR4_PKE)
326
leaf->ecx |= BIT(4);
327
break;
328
case 0xB:
329
leaf_hv.subfn = 0;
330
cpuid_fn(ctx, &leaf_hv);
331
332
/* extended APIC ID */
333
leaf->edx = leaf_hv.edx;
334
break;
335
case 0xD: {
336
bool compacted = false;
337
u64 xcr0 = 1, xss = 0;
338
u32 xsave_size;
339
340
if (leaf->subfn != 0 && leaf->subfn != 1)
341
return 0;
342
343
if (native_read_cr4() & X86_CR4_OSXSAVE)
344
xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
345
if (leaf->subfn == 1) {
346
/* Get XSS value if XSAVES is enabled. */
347
if (leaf->eax & BIT(3)) {
348
unsigned long lo, hi;
349
350
asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
351
: "c" (MSR_IA32_XSS));
352
xss = (hi << 32) | lo;
353
}
354
355
/*
356
* The PPR and APM aren't clear on what size should be
357
* encoded in 0xD:0x1:EBX when compaction is not enabled
358
* by either XSAVEC (feature bit 1) or XSAVES (feature
359
* bit 3) since SNP-capable hardware has these feature
360
* bits fixed as 1. KVM sets it to 0 in this case, but
361
* to avoid this becoming an issue it's safer to simply
362
* treat this as unsupported for SNP guests.
363
*/
364
if (!(leaf->eax & (BIT(1) | BIT(3))))
365
return -EINVAL;
366
367
compacted = true;
368
}
369
370
xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
371
if (!xsave_size)
372
return -EINVAL;
373
374
leaf->ebx = xsave_size;
375
}
376
break;
377
case 0x8000001E:
378
cpuid_fn(ctx, &leaf_hv);
379
380
/* extended APIC ID */
381
leaf->eax = leaf_hv.eax;
382
/* compute ID */
383
leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
384
/* node ID */
385
leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
386
break;
387
default:
388
/* No fix-ups needed, use values as-is. */
389
break;
390
}
391
392
return 0;
393
}
394
395
/*
396
* Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
397
* should be treated as fatal by caller.
398
*/
399
int snp_cpuid(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf),
400
void *ctx, struct cpuid_leaf *leaf)
401
{
402
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
403
404
if (!cpuid_table->count)
405
return -EOPNOTSUPP;
406
407
if (!snp_cpuid_get_validated_func(leaf)) {
408
/*
409
* Some hypervisors will avoid keeping track of CPUID entries
410
* where all values are zero, since they can be handled the
411
* same as out-of-range values (all-zero). This is useful here
412
* as well as it allows virtually all guest configurations to
413
* work using a single SNP CPUID table.
414
*
415
* To allow for this, there is a need to distinguish between
416
* out-of-range entries and in-range zero entries, since the
417
* CPUID table entries are only a template that may need to be
418
* augmented with additional values for things like
419
* CPU-specific information during post-processing. So if it's
420
* not in the table, set the values to zero. Then, if they are
421
* within a valid CPUID range, proceed with post-processing
422
* using zeros as the initial values. Otherwise, skip
423
* post-processing and just return zeros immediately.
424
*/
425
leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
426
427
/* Skip post-processing for out-of-range zero leafs. */
428
if (!(leaf->fn <= cpuid_std_range_max ||
429
(leaf->fn >= 0x40000000 && leaf->fn <= cpuid_hyp_range_max) ||
430
(leaf->fn >= 0x80000000 && leaf->fn <= cpuid_ext_range_max)))
431
return 0;
432
}
433
434
return snp_cpuid_postprocess(cpuid_fn, ctx, leaf);
435
}
436
437
/*
438
* Boot VC Handler - This is the first VC handler during boot, there is no GHCB
439
* page yet, so it only supports the MSR based communication with the
440
* hypervisor and only the CPUID exit-code.
441
*/
442
void do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
443
{
444
unsigned int subfn = lower_bits(regs->cx, 32);
445
unsigned int fn = lower_bits(regs->ax, 32);
446
u16 opcode = *(unsigned short *)regs->ip;
447
struct cpuid_leaf leaf;
448
int ret;
449
450
/* Only CPUID is supported via MSR protocol */
451
if (exit_code != SVM_EXIT_CPUID)
452
goto fail;
453
454
/* Is it really a CPUID insn? */
455
if (opcode != 0xa20f)
456
goto fail;
457
458
leaf.fn = fn;
459
leaf.subfn = subfn;
460
461
/*
462
* If SNP is active, then snp_cpuid() uses the CPUID table to obtain the
463
* CPUID values (with possible HV interaction during post-processing of
464
* the values). But if SNP is not active (no CPUID table present), then
465
* snp_cpuid() returns -EOPNOTSUPP so that an SEV-ES guest can call the
466
* HV to obtain the CPUID information.
467
*/
468
ret = snp_cpuid(snp_cpuid_hv_msr, NULL, &leaf);
469
if (!ret)
470
goto cpuid_done;
471
472
if (ret != -EOPNOTSUPP)
473
goto fail;
474
475
/*
476
* This is reached by a SEV-ES guest and needs to invoke the HV for
477
* the CPUID data.
478
*/
479
if (__sev_cpuid_hv_msr(&leaf))
480
goto fail;
481
482
cpuid_done:
483
regs->ax = leaf.eax;
484
regs->bx = leaf.ebx;
485
regs->cx = leaf.ecx;
486
regs->dx = leaf.edx;
487
488
/*
489
* This is a VC handler and the #VC is only raised when SEV-ES is
490
* active, which means SEV must be active too. Do sanity checks on the
491
* CPUID results to make sure the hypervisor does not trick the kernel
492
* into the no-sev path. This could map sensitive data unencrypted and
493
* make it accessible to the hypervisor.
494
*
495
* In particular, check for:
496
* - Availability of CPUID leaf 0x8000001f
497
* - SEV CPUID bit.
498
*
499
* The hypervisor might still report the wrong C-bit position, but this
500
* can't be checked here.
501
*/
502
503
if (fn == 0x80000000 && (regs->ax < 0x8000001f))
504
/* SEV leaf check */
505
goto fail;
506
else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
507
/* SEV bit */
508
goto fail;
509
510
/* Skip over the CPUID two-byte opcode */
511
regs->ip += 2;
512
513
return;
514
515
fail:
516
/* Terminate the guest */
517
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
518
}
519
520
struct cc_setup_data {
521
struct setup_data header;
522
u32 cc_blob_address;
523
};
524
525
/*
526
* Search for a Confidential Computing blob passed in as a setup_data entry
527
* via the Linux Boot Protocol.
528
*/
529
static __init
530
struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
531
{
532
struct cc_setup_data *sd = NULL;
533
struct setup_data *hdr;
534
535
hdr = (struct setup_data *)bp->hdr.setup_data;
536
537
while (hdr) {
538
if (hdr->type == SETUP_CC_BLOB) {
539
sd = (struct cc_setup_data *)hdr;
540
return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
541
}
542
hdr = (struct setup_data *)hdr->next;
543
}
544
545
return NULL;
546
}
547
548
/*
549
* Initialize the kernel's copy of the SNP CPUID table, and set up the
550
* pointer that will be used to access it.
551
*
552
* Maintaining a direct mapping of the SNP CPUID table used by firmware would
553
* be possible as an alternative, but the approach is brittle since the
554
* mapping needs to be updated in sync with all the changes to virtual memory
555
* layout and related mapping facilities throughout the boot process.
556
*/
557
static void __init setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
558
{
559
const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
560
int i;
561
562
if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
563
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
564
565
cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
566
if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
567
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
568
569
cpuid_table = snp_cpuid_get_table();
570
memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));
571
572
/* Initialize CPUID ranges for range-checking. */
573
for (i = 0; i < cpuid_table->count; i++) {
574
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
575
576
if (fn->eax_in == 0x0)
577
cpuid_std_range_max = fn->eax;
578
else if (fn->eax_in == 0x40000000)
579
cpuid_hyp_range_max = fn->eax;
580
else if (fn->eax_in == 0x80000000)
581
cpuid_ext_range_max = fn->eax;
582
}
583
}
584
585
static int svsm_call_msr_protocol(struct svsm_call *call)
586
{
587
int ret;
588
589
do {
590
ret = svsm_perform_msr_protocol(call);
591
} while (ret == -EAGAIN);
592
593
return ret;
594
}
595
596
static void svsm_pval_4k_page(unsigned long paddr, bool validate,
597
struct svsm_ca *caa, u64 caa_pa)
598
{
599
struct svsm_pvalidate_call *pc;
600
struct svsm_call call = {};
601
unsigned long flags;
602
u64 pc_pa;
603
604
/*
605
* This can be called very early in the boot, use native functions in
606
* order to avoid paravirt issues.
607
*/
608
flags = native_local_irq_save();
609
610
call.caa = caa;
611
612
pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
613
pc_pa = caa_pa + offsetof(struct svsm_ca, svsm_buffer);
614
615
pc->num_entries = 1;
616
pc->cur_index = 0;
617
pc->entry[0].page_size = RMP_PG_SIZE_4K;
618
pc->entry[0].action = validate;
619
pc->entry[0].ignore_cf = 0;
620
pc->entry[0].rsvd = 0;
621
pc->entry[0].pfn = paddr >> PAGE_SHIFT;
622
623
/* Protocol 0, Call ID 1 */
624
call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
625
call.rcx = pc_pa;
626
627
/*
628
* Use the MSR protocol exclusively, so that this code is usable in
629
* startup code where VA/PA translations of the GHCB page's address may
630
* be problematic.
631
*/
632
if (svsm_call_msr_protocol(&call))
633
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
634
635
native_local_irq_restore(flags);
636
}
637
638
static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr,
639
bool validate, struct svsm_ca *caa, u64 caa_pa)
640
{
641
int ret;
642
643
if (snp_vmpl) {
644
svsm_pval_4k_page(paddr, validate, caa, caa_pa);
645
} else {
646
ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
647
if (ret)
648
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
649
}
650
651
/*
652
* If validating memory (making it private) and affected by the
653
* cache-coherency vulnerability, perform the cache eviction mitigation.
654
*/
655
if (validate && sev_snp_needs_sfw)
656
sev_evict_cache((void *)vaddr, 1);
657
}
658
659
static void __page_state_change(unsigned long vaddr, unsigned long paddr,
660
const struct psc_desc *desc)
661
{
662
u64 val, msr;
663
664
/*
665
* If private -> shared then invalidate the page before requesting the
666
* state change in the RMP table.
667
*/
668
if (desc->op == SNP_PAGE_STATE_SHARED)
669
pvalidate_4k_page(vaddr, paddr, false, desc->ca, desc->caa_pa);
670
671
/* Save the current GHCB MSR value */
672
msr = sev_es_rd_ghcb_msr();
673
674
/* Issue VMGEXIT to change the page state in RMP table. */
675
sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, desc->op));
676
VMGEXIT();
677
678
/* Read the response of the VMGEXIT. */
679
val = sev_es_rd_ghcb_msr();
680
if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
681
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
682
683
/* Restore the GHCB MSR value */
684
sev_es_wr_ghcb_msr(msr);
685
686
/*
687
* Now that page state is changed in the RMP table, validate it so that it is
688
* consistent with the RMP entry.
689
*/
690
if (desc->op == SNP_PAGE_STATE_PRIVATE)
691
pvalidate_4k_page(vaddr, paddr, true, desc->ca, desc->caa_pa);
692
}
693
694
/*
695
* Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM
696
* services needed when not running in VMPL0.
697
*/
698
static bool __init svsm_setup_ca(const struct cc_blob_sev_info *cc_info,
699
void *page)
700
{
701
struct snp_secrets_page *secrets_page;
702
struct snp_cpuid_table *cpuid_table;
703
unsigned int i;
704
u64 caa;
705
706
BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE);
707
708
/*
709
* Check if running at VMPL0.
710
*
711
* Use RMPADJUST (see the rmpadjust() function for a description of what
712
* the instruction does) to update the VMPL1 permissions of a page. If
713
* the guest is running at VMPL0, this will succeed and implies there is
714
* no SVSM. If the guest is running at any other VMPL, this will fail.
715
* Linux SNP guests only ever run at a single VMPL level so permission mask
716
* changes of a lesser-privileged VMPL are a don't-care.
717
*
718
* Use a rip-relative reference to obtain the proper address, since this
719
* routine is running identity mapped when called, both by the decompressor
720
* code and the early kernel code.
721
*/
722
if (!rmpadjust((unsigned long)page, RMP_PG_SIZE_4K, 1))
723
return false;
724
725
/*
726
* Not running at VMPL0, ensure everything has been properly supplied
727
* for running under an SVSM.
728
*/
729
if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE)
730
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE);
731
732
secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys;
733
if (!secrets_page->svsm_size)
734
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM);
735
736
if (!secrets_page->svsm_guest_vmpl)
737
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0);
738
739
snp_vmpl = secrets_page->svsm_guest_vmpl;
740
741
caa = secrets_page->svsm_caa;
742
743
/*
744
* An open-coded PAGE_ALIGNED() in order to avoid including
745
* kernel-proper headers into the decompressor.
746
*/
747
if (caa & (PAGE_SIZE - 1))
748
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA);
749
750
boot_svsm_caa_pa = caa;
751
752
/* Advertise the SVSM presence via CPUID. */
753
cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table();
754
for (i = 0; i < cpuid_table->count; i++) {
755
struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
756
757
if (fn->eax_in == 0x8000001f)
758
fn->eax |= BIT(28);
759
}
760
761
return true;
762
}
763
764