Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/coco/sev/vc-handle.c
29271 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Memory Encryption Support
4
*
5
* Copyright (C) 2019 SUSE
6
*
7
* Author: Joerg Roedel <[email protected]>
8
*/
9
10
#define pr_fmt(fmt) "SEV: " fmt
11
12
#include <linux/sched/debug.h> /* For show_regs() */
13
#include <linux/cc_platform.h>
14
#include <linux/printk.h>
15
#include <linux/mm_types.h>
16
#include <linux/kernel.h>
17
#include <linux/mm.h>
18
#include <linux/io.h>
19
#include <linux/psp-sev.h>
20
#include <linux/efi.h>
21
#include <uapi/linux/sev-guest.h>
22
23
#include <asm/init.h>
24
#include <asm/stacktrace.h>
25
#include <asm/sev.h>
26
#include <asm/sev-internal.h>
27
#include <asm/insn-eval.h>
28
#include <asm/fpu/xcr.h>
29
#include <asm/processor.h>
30
#include <asm/setup.h>
31
#include <asm/traps.h>
32
#include <asm/svm.h>
33
#include <asm/smp.h>
34
#include <asm/cpu.h>
35
#include <asm/apic.h>
36
#include <asm/cpuid/api.h>
37
38
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
39
unsigned long vaddr, phys_addr_t *paddr)
40
{
41
unsigned long va = (unsigned long)vaddr;
42
unsigned int level;
43
phys_addr_t pa;
44
pgd_t *pgd;
45
pte_t *pte;
46
47
pgd = __va(read_cr3_pa());
48
pgd = &pgd[pgd_index(va)];
49
pte = lookup_address_in_pgd(pgd, va, &level);
50
if (!pte) {
51
ctxt->fi.vector = X86_TRAP_PF;
52
ctxt->fi.cr2 = vaddr;
53
ctxt->fi.error_code = 0;
54
55
if (user_mode(ctxt->regs))
56
ctxt->fi.error_code |= X86_PF_USER;
57
58
return ES_EXCEPTION;
59
}
60
61
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
62
/* Emulated MMIO to/from encrypted memory not supported */
63
return ES_UNSUPPORTED;
64
65
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
66
pa |= va & ~page_level_mask(level);
67
68
*paddr = pa;
69
70
return ES_OK;
71
}
72
73
static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
74
{
75
BUG_ON(size > 4);
76
77
if (user_mode(ctxt->regs)) {
78
struct thread_struct *t = &current->thread;
79
struct io_bitmap *iobm = t->io_bitmap;
80
size_t idx;
81
82
if (!iobm)
83
goto fault;
84
85
for (idx = port; idx < port + size; ++idx) {
86
if (test_bit(idx, iobm->bitmap))
87
goto fault;
88
}
89
}
90
91
return ES_OK;
92
93
fault:
94
ctxt->fi.vector = X86_TRAP_GP;
95
ctxt->fi.error_code = 0;
96
97
return ES_EXCEPTION;
98
}
99
100
void vc_forward_exception(struct es_em_ctxt *ctxt)
101
{
102
long error_code = ctxt->fi.error_code;
103
int trapnr = ctxt->fi.vector;
104
105
ctxt->regs->orig_ax = ctxt->fi.error_code;
106
107
switch (trapnr) {
108
case X86_TRAP_GP:
109
exc_general_protection(ctxt->regs, error_code);
110
break;
111
case X86_TRAP_UD:
112
exc_invalid_op(ctxt->regs);
113
break;
114
case X86_TRAP_PF:
115
write_cr2(ctxt->fi.cr2);
116
exc_page_fault(ctxt->regs, error_code);
117
break;
118
case X86_TRAP_AC:
119
exc_alignment_check(ctxt->regs, error_code);
120
break;
121
default:
122
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
123
BUG();
124
}
125
}
126
127
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
128
unsigned char *buffer)
129
{
130
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
131
}
132
133
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
134
{
135
char buffer[MAX_INSN_SIZE];
136
int insn_bytes;
137
138
insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
139
if (insn_bytes == 0) {
140
/* Nothing could be copied */
141
ctxt->fi.vector = X86_TRAP_PF;
142
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
143
ctxt->fi.cr2 = ctxt->regs->ip;
144
return ES_EXCEPTION;
145
} else if (insn_bytes == -EINVAL) {
146
/* Effective RIP could not be calculated */
147
ctxt->fi.vector = X86_TRAP_GP;
148
ctxt->fi.error_code = 0;
149
ctxt->fi.cr2 = 0;
150
return ES_EXCEPTION;
151
}
152
153
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
154
return ES_DECODE_FAILED;
155
156
if (ctxt->insn.immediate.got)
157
return ES_OK;
158
else
159
return ES_DECODE_FAILED;
160
}
161
162
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
163
{
164
char buffer[MAX_INSN_SIZE];
165
int res, ret;
166
167
res = vc_fetch_insn_kernel(ctxt, buffer);
168
if (res) {
169
ctxt->fi.vector = X86_TRAP_PF;
170
ctxt->fi.error_code = X86_PF_INSTR;
171
ctxt->fi.cr2 = ctxt->regs->ip;
172
return ES_EXCEPTION;
173
}
174
175
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
176
if (ret < 0)
177
return ES_DECODE_FAILED;
178
else
179
return ES_OK;
180
}
181
182
/*
183
* User instruction decoding is also required for the EFI runtime. Even though
184
* the EFI runtime is running in kernel mode, it uses special EFI virtual
185
* address mappings that require the use of efi_mm to properly address and
186
* decode.
187
*/
188
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
189
{
190
if (user_mode(ctxt->regs) || mm_is_efi(current->active_mm))
191
return __vc_decode_user_insn(ctxt);
192
else
193
return __vc_decode_kern_insn(ctxt);
194
}
195
196
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
197
char *dst, char *buf, size_t size)
198
{
199
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
200
201
/*
202
* This function uses __put_user() independent of whether kernel or user
203
* memory is accessed. This works fine because __put_user() does no
204
* sanity checks of the pointer being accessed. All that it does is
205
* to report when the access failed.
206
*
207
* Also, this function runs in atomic context, so __put_user() is not
208
* allowed to sleep. The page-fault handler detects that it is running
209
* in atomic context and will not try to take mmap_sem and handle the
210
* fault, so additional pagefault_enable()/disable() calls are not
211
* needed.
212
*
213
* The access can't be done via copy_to_user() here because
214
* vc_write_mem() must not use string instructions to access unsafe
215
* memory. The reason is that MOVS is emulated by the #VC handler by
216
* splitting the move up into a read and a write and taking a nested #VC
217
* exception on whatever of them is the MMIO access. Using string
218
* instructions here would cause infinite nesting.
219
*/
220
switch (size) {
221
case 1: {
222
u8 d1;
223
u8 __user *target = (u8 __user *)dst;
224
225
memcpy(&d1, buf, 1);
226
if (__put_user(d1, target))
227
goto fault;
228
break;
229
}
230
case 2: {
231
u16 d2;
232
u16 __user *target = (u16 __user *)dst;
233
234
memcpy(&d2, buf, 2);
235
if (__put_user(d2, target))
236
goto fault;
237
break;
238
}
239
case 4: {
240
u32 d4;
241
u32 __user *target = (u32 __user *)dst;
242
243
memcpy(&d4, buf, 4);
244
if (__put_user(d4, target))
245
goto fault;
246
break;
247
}
248
case 8: {
249
u64 d8;
250
u64 __user *target = (u64 __user *)dst;
251
252
memcpy(&d8, buf, 8);
253
if (__put_user(d8, target))
254
goto fault;
255
break;
256
}
257
default:
258
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
259
return ES_UNSUPPORTED;
260
}
261
262
return ES_OK;
263
264
fault:
265
if (user_mode(ctxt->regs))
266
error_code |= X86_PF_USER;
267
268
ctxt->fi.vector = X86_TRAP_PF;
269
ctxt->fi.error_code = error_code;
270
ctxt->fi.cr2 = (unsigned long)dst;
271
272
return ES_EXCEPTION;
273
}
274
275
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
276
char *src, char *buf, size_t size)
277
{
278
unsigned long error_code = X86_PF_PROT;
279
280
/*
281
* This function uses __get_user() independent of whether kernel or user
282
* memory is accessed. This works fine because __get_user() does no
283
* sanity checks of the pointer being accessed. All that it does is
284
* to report when the access failed.
285
*
286
* Also, this function runs in atomic context, so __get_user() is not
287
* allowed to sleep. The page-fault handler detects that it is running
288
* in atomic context and will not try to take mmap_sem and handle the
289
* fault, so additional pagefault_enable()/disable() calls are not
290
* needed.
291
*
292
* The access can't be done via copy_from_user() here because
293
* vc_read_mem() must not use string instructions to access unsafe
294
* memory. The reason is that MOVS is emulated by the #VC handler by
295
* splitting the move up into a read and a write and taking a nested #VC
296
* exception on whatever of them is the MMIO access. Using string
297
* instructions here would cause infinite nesting.
298
*/
299
switch (size) {
300
case 1: {
301
u8 d1;
302
u8 __user *s = (u8 __user *)src;
303
304
if (__get_user(d1, s))
305
goto fault;
306
memcpy(buf, &d1, 1);
307
break;
308
}
309
case 2: {
310
u16 d2;
311
u16 __user *s = (u16 __user *)src;
312
313
if (__get_user(d2, s))
314
goto fault;
315
memcpy(buf, &d2, 2);
316
break;
317
}
318
case 4: {
319
u32 d4;
320
u32 __user *s = (u32 __user *)src;
321
322
if (__get_user(d4, s))
323
goto fault;
324
memcpy(buf, &d4, 4);
325
break;
326
}
327
case 8: {
328
u64 d8;
329
u64 __user *s = (u64 __user *)src;
330
if (__get_user(d8, s))
331
goto fault;
332
memcpy(buf, &d8, 8);
333
break;
334
}
335
default:
336
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
337
return ES_UNSUPPORTED;
338
}
339
340
return ES_OK;
341
342
fault:
343
if (user_mode(ctxt->regs))
344
error_code |= X86_PF_USER;
345
346
ctxt->fi.vector = X86_TRAP_PF;
347
ctxt->fi.error_code = error_code;
348
ctxt->fi.cr2 = (unsigned long)src;
349
350
return ES_EXCEPTION;
351
}
352
353
#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__)
354
#define error(v)
355
#define has_cpuflag(f) boot_cpu_has(f)
356
357
#include "vc-shared.c"
358
359
/* Writes to the SVSM CAA MSR are ignored */
360
static enum es_result __vc_handle_msr_caa(struct pt_regs *regs, bool write)
361
{
362
if (write)
363
return ES_OK;
364
365
regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa));
366
regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa));
367
368
return ES_OK;
369
}
370
371
/*
372
* TSC related accesses should not exit to the hypervisor when a guest is
373
* executing with Secure TSC enabled, so special handling is required for
374
* accesses of MSR_IA32_TSC and MSR_AMD64_GUEST_TSC_FREQ.
375
*/
376
static enum es_result __vc_handle_secure_tsc_msrs(struct es_em_ctxt *ctxt, bool write)
377
{
378
struct pt_regs *regs = ctxt->regs;
379
u64 tsc;
380
381
/*
382
* Writing to MSR_IA32_TSC can cause subsequent reads of the TSC to
383
* return undefined values, and GUEST_TSC_FREQ is read-only. Generate
384
* a #GP on all writes.
385
*/
386
if (write) {
387
ctxt->fi.vector = X86_TRAP_GP;
388
ctxt->fi.error_code = 0;
389
return ES_EXCEPTION;
390
}
391
392
/*
393
* GUEST_TSC_FREQ read should not be intercepted when Secure TSC is
394
* enabled. Terminate the guest if a read is attempted.
395
*/
396
if (regs->cx == MSR_AMD64_GUEST_TSC_FREQ)
397
return ES_VMM_ERROR;
398
399
/* Reads of MSR_IA32_TSC should return the current TSC value. */
400
tsc = rdtsc_ordered();
401
regs->ax = lower_32_bits(tsc);
402
regs->dx = upper_32_bits(tsc);
403
404
return ES_OK;
405
}
406
407
enum es_result sev_es_ghcb_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt, bool write)
408
{
409
struct pt_regs *regs = ctxt->regs;
410
enum es_result ret;
411
412
switch (regs->cx) {
413
case MSR_SVSM_CAA:
414
return __vc_handle_msr_caa(regs, write);
415
case MSR_IA32_TSC:
416
case MSR_AMD64_GUEST_TSC_FREQ:
417
if (sev_status & MSR_AMD64_SNP_SECURE_TSC)
418
return __vc_handle_secure_tsc_msrs(ctxt, write);
419
break;
420
case MSR_AMD64_SAVIC_CONTROL:
421
/*
422
* AMD64_SAVIC_CONTROL should not be intercepted when
423
* Secure AVIC is enabled. Terminate the Secure AVIC guest
424
* if the interception is enabled.
425
*/
426
if (cc_platform_has(CC_ATTR_SNP_SECURE_AVIC))
427
return ES_VMM_ERROR;
428
break;
429
default:
430
break;
431
}
432
433
ghcb_set_rcx(ghcb, regs->cx);
434
if (write) {
435
ghcb_set_rax(ghcb, regs->ax);
436
ghcb_set_rdx(ghcb, regs->dx);
437
}
438
439
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, write, 0);
440
441
if ((ret == ES_OK) && !write) {
442
regs->ax = ghcb->save.rax;
443
regs->dx = ghcb->save.rdx;
444
}
445
446
return ret;
447
}
448
449
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
450
{
451
return sev_es_ghcb_handle_msr(ghcb, ctxt, ctxt->insn.opcode.bytes[1] == 0x30);
452
}
453
454
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
455
{
456
int trapnr = ctxt->fi.vector;
457
458
if (trapnr == X86_TRAP_PF)
459
native_write_cr2(ctxt->fi.cr2);
460
461
ctxt->regs->orig_ax = ctxt->fi.error_code;
462
do_early_exception(ctxt->regs, trapnr);
463
}
464
465
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
466
{
467
long *reg_array;
468
int offset;
469
470
reg_array = (long *)ctxt->regs;
471
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
472
473
if (offset < 0)
474
return NULL;
475
476
offset /= sizeof(long);
477
478
return reg_array + offset;
479
}
480
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481
unsigned int bytes, bool read)
482
{
483
u64 exit_code, exit_info_1, exit_info_2;
484
unsigned long ghcb_pa = __pa(ghcb);
485
enum es_result res;
486
phys_addr_t paddr;
487
void __user *ref;
488
489
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
490
if (ref == (void __user *)-1L)
491
return ES_UNSUPPORTED;
492
493
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
494
495
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
496
if (res != ES_OK) {
497
if (res == ES_EXCEPTION && !read)
498
ctxt->fi.error_code |= X86_PF_WRITE;
499
500
return res;
501
}
502
503
exit_info_1 = paddr;
504
/* Can never be greater than 8 */
505
exit_info_2 = bytes;
506
507
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
508
509
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
510
}
511
512
/*
513
* The MOVS instruction has two memory operands, which raises the
514
* problem that it is not known whether the access to the source or the
515
* destination caused the #VC exception (and hence whether an MMIO read
516
* or write operation needs to be emulated).
517
*
518
* Instead of playing games with walking page-tables and trying to guess
519
* whether the source or destination is an MMIO range, split the move
520
* into two operations, a read and a write with only one memory operand.
521
* This will cause a nested #VC exception on the MMIO address which can
522
* then be handled.
523
*
524
* This implementation has the benefit that it also supports MOVS where
525
* source _and_ destination are MMIO regions.
526
*
527
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
528
* rare operation. If it turns out to be a performance problem the split
529
* operations can be moved to memcpy_fromio() and memcpy_toio().
530
*/
531
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
532
unsigned int bytes)
533
{
534
unsigned long ds_base, es_base;
535
unsigned char *src, *dst;
536
unsigned char buffer[8];
537
enum es_result ret;
538
bool rep;
539
int off;
540
541
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
542
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
543
544
if (ds_base == -1L || es_base == -1L) {
545
ctxt->fi.vector = X86_TRAP_GP;
546
ctxt->fi.error_code = 0;
547
return ES_EXCEPTION;
548
}
549
550
src = ds_base + (unsigned char *)ctxt->regs->si;
551
dst = es_base + (unsigned char *)ctxt->regs->di;
552
553
ret = vc_read_mem(ctxt, src, buffer, bytes);
554
if (ret != ES_OK)
555
return ret;
556
557
ret = vc_write_mem(ctxt, dst, buffer, bytes);
558
if (ret != ES_OK)
559
return ret;
560
561
if (ctxt->regs->flags & X86_EFLAGS_DF)
562
off = -bytes;
563
else
564
off = bytes;
565
566
ctxt->regs->si += off;
567
ctxt->regs->di += off;
568
569
rep = insn_has_rep_prefix(&ctxt->insn);
570
if (rep)
571
ctxt->regs->cx -= 1;
572
573
if (!rep || ctxt->regs->cx == 0)
574
return ES_OK;
575
else
576
return ES_RETRY;
577
}
578
579
static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
580
{
581
struct insn *insn = &ctxt->insn;
582
enum insn_mmio_type mmio;
583
unsigned int bytes = 0;
584
enum es_result ret;
585
u8 sign_byte;
586
long *reg_data;
587
588
mmio = insn_decode_mmio(insn, &bytes);
589
if (mmio == INSN_MMIO_DECODE_FAILED)
590
return ES_DECODE_FAILED;
591
592
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
593
reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
594
if (!reg_data)
595
return ES_DECODE_FAILED;
596
}
597
598
if (user_mode(ctxt->regs))
599
return ES_UNSUPPORTED;
600
601
switch (mmio) {
602
case INSN_MMIO_WRITE:
603
memcpy(ghcb->shared_buffer, reg_data, bytes);
604
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
605
break;
606
case INSN_MMIO_WRITE_IMM:
607
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
608
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
609
break;
610
case INSN_MMIO_READ:
611
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
612
if (ret)
613
break;
614
615
/* Zero-extend for 32-bit operation */
616
if (bytes == 4)
617
*reg_data = 0;
618
619
memcpy(reg_data, ghcb->shared_buffer, bytes);
620
break;
621
case INSN_MMIO_READ_ZERO_EXTEND:
622
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
623
if (ret)
624
break;
625
626
/* Zero extend based on operand size */
627
memset(reg_data, 0, insn->opnd_bytes);
628
memcpy(reg_data, ghcb->shared_buffer, bytes);
629
break;
630
case INSN_MMIO_READ_SIGN_EXTEND:
631
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
632
if (ret)
633
break;
634
635
if (bytes == 1) {
636
u8 *val = (u8 *)ghcb->shared_buffer;
637
638
sign_byte = (*val & 0x80) ? 0xff : 0x00;
639
} else {
640
u16 *val = (u16 *)ghcb->shared_buffer;
641
642
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
643
}
644
645
/* Sign extend based on operand size */
646
memset(reg_data, sign_byte, insn->opnd_bytes);
647
memcpy(reg_data, ghcb->shared_buffer, bytes);
648
break;
649
case INSN_MMIO_MOVS:
650
ret = vc_handle_mmio_movs(ctxt, bytes);
651
break;
652
default:
653
ret = ES_UNSUPPORTED;
654
break;
655
}
656
657
return ret;
658
}
659
660
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
661
struct es_em_ctxt *ctxt)
662
{
663
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
664
long val, *reg = vc_insn_get_rm(ctxt);
665
enum es_result ret;
666
667
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
668
return ES_VMM_ERROR;
669
670
if (!reg)
671
return ES_DECODE_FAILED;
672
673
val = *reg;
674
675
/* Upper 32 bits must be written as zeroes */
676
if (val >> 32) {
677
ctxt->fi.vector = X86_TRAP_GP;
678
ctxt->fi.error_code = 0;
679
return ES_EXCEPTION;
680
}
681
682
/* Clear out other reserved bits and set bit 10 */
683
val = (val & 0xffff23ffL) | BIT(10);
684
685
/* Early non-zero writes to DR7 are not supported */
686
if (!data && (val & ~DR7_RESET_VALUE))
687
return ES_UNSUPPORTED;
688
689
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
690
ghcb_set_rax(ghcb, val);
691
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
692
if (ret != ES_OK)
693
return ret;
694
695
if (data)
696
data->dr7 = val;
697
698
return ES_OK;
699
}
700
701
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
702
struct es_em_ctxt *ctxt)
703
{
704
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
705
long *reg = vc_insn_get_rm(ctxt);
706
707
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
708
return ES_VMM_ERROR;
709
710
if (!reg)
711
return ES_DECODE_FAILED;
712
713
if (data)
714
*reg = data->dr7;
715
else
716
*reg = DR7_RESET_VALUE;
717
718
return ES_OK;
719
}
720
721
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
722
struct es_em_ctxt *ctxt)
723
{
724
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
725
}
726
727
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
728
{
729
enum es_result ret;
730
731
ghcb_set_rcx(ghcb, ctxt->regs->cx);
732
733
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
734
if (ret != ES_OK)
735
return ret;
736
737
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
738
return ES_VMM_ERROR;
739
740
ctxt->regs->ax = ghcb->save.rax;
741
ctxt->regs->dx = ghcb->save.rdx;
742
743
return ES_OK;
744
}
745
746
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
747
struct es_em_ctxt *ctxt)
748
{
749
/*
750
* Treat it as a NOP and do not leak a physical address to the
751
* hypervisor.
752
*/
753
return ES_OK;
754
}
755
756
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
757
struct es_em_ctxt *ctxt)
758
{
759
/* Treat the same as MONITOR/MONITORX */
760
return ES_OK;
761
}
762
763
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
764
struct es_em_ctxt *ctxt)
765
{
766
enum es_result ret;
767
768
ghcb_set_rax(ghcb, ctxt->regs->ax);
769
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
770
771
if (x86_platform.hyper.sev_es_hcall_prepare)
772
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
773
774
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
775
if (ret != ES_OK)
776
return ret;
777
778
if (!ghcb_rax_is_valid(ghcb))
779
return ES_VMM_ERROR;
780
781
ctxt->regs->ax = ghcb->save.rax;
782
783
/*
784
* Call sev_es_hcall_finish() after regs->ax is already set.
785
* This allows the hypervisor handler to overwrite it again if
786
* necessary.
787
*/
788
if (x86_platform.hyper.sev_es_hcall_finish &&
789
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
790
return ES_VMM_ERROR;
791
792
return ES_OK;
793
}
794
795
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
796
struct es_em_ctxt *ctxt)
797
{
798
/*
799
* Calling ecx_alignment_check() directly does not work, because it
800
* enables IRQs and the GHCB is active. Forward the exception and call
801
* it later from vc_forward_exception().
802
*/
803
ctxt->fi.vector = X86_TRAP_AC;
804
ctxt->fi.error_code = 0;
805
return ES_EXCEPTION;
806
}
807
808
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
809
struct ghcb *ghcb,
810
unsigned long exit_code)
811
{
812
enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
813
814
if (result != ES_OK)
815
return result;
816
817
switch (exit_code) {
818
case SVM_EXIT_READ_DR7:
819
result = vc_handle_dr7_read(ghcb, ctxt);
820
break;
821
case SVM_EXIT_WRITE_DR7:
822
result = vc_handle_dr7_write(ghcb, ctxt);
823
break;
824
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
825
result = vc_handle_trap_ac(ghcb, ctxt);
826
break;
827
case SVM_EXIT_RDTSC:
828
case SVM_EXIT_RDTSCP:
829
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
830
break;
831
case SVM_EXIT_RDPMC:
832
result = vc_handle_rdpmc(ghcb, ctxt);
833
break;
834
case SVM_EXIT_INVD:
835
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
836
result = ES_UNSUPPORTED;
837
break;
838
case SVM_EXIT_CPUID:
839
result = vc_handle_cpuid(ghcb, ctxt);
840
break;
841
case SVM_EXIT_IOIO:
842
result = vc_handle_ioio(ghcb, ctxt);
843
break;
844
case SVM_EXIT_MSR:
845
result = vc_handle_msr(ghcb, ctxt);
846
break;
847
case SVM_EXIT_VMMCALL:
848
result = vc_handle_vmmcall(ghcb, ctxt);
849
break;
850
case SVM_EXIT_WBINVD:
851
result = vc_handle_wbinvd(ghcb, ctxt);
852
break;
853
case SVM_EXIT_MONITOR:
854
result = vc_handle_monitor(ghcb, ctxt);
855
break;
856
case SVM_EXIT_MWAIT:
857
result = vc_handle_mwait(ghcb, ctxt);
858
break;
859
case SVM_EXIT_NPF:
860
result = vc_handle_mmio(ghcb, ctxt);
861
break;
862
default:
863
/*
864
* Unexpected #VC exception
865
*/
866
result = ES_UNSUPPORTED;
867
}
868
869
return result;
870
}
871
872
static __always_inline bool is_vc2_stack(unsigned long sp)
873
{
874
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
875
}
876
877
static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
878
{
879
unsigned long sp, prev_sp;
880
881
sp = (unsigned long)regs;
882
prev_sp = regs->sp;
883
884
/*
885
* If the code was already executing on the VC2 stack when the #VC
886
* happened, let it proceed to the normal handling routine. This way the
887
* code executing on the VC2 stack can cause #VC exceptions to get handled.
888
*/
889
return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
890
}
891
892
static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
893
{
894
struct ghcb_state state;
895
struct es_em_ctxt ctxt;
896
enum es_result result;
897
struct ghcb *ghcb;
898
bool ret = true;
899
900
ghcb = __sev_get_ghcb(&state);
901
902
vc_ghcb_invalidate(ghcb);
903
result = vc_init_em_ctxt(&ctxt, regs, error_code);
904
905
if (result == ES_OK)
906
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
907
908
__sev_put_ghcb(&state);
909
910
/* Done - now check the result */
911
switch (result) {
912
case ES_OK:
913
vc_finish_insn(&ctxt);
914
break;
915
case ES_UNSUPPORTED:
916
pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
917
error_code, regs->ip);
918
ret = false;
919
break;
920
case ES_VMM_ERROR:
921
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
922
error_code, regs->ip);
923
ret = false;
924
break;
925
case ES_DECODE_FAILED:
926
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
927
error_code, regs->ip);
928
ret = false;
929
break;
930
case ES_EXCEPTION:
931
vc_forward_exception(&ctxt);
932
break;
933
case ES_RETRY:
934
/* Nothing to do */
935
break;
936
default:
937
pr_emerg("Unknown result in %s():%d\n", __func__, result);
938
/*
939
* Emulating the instruction which caused the #VC exception
940
* failed - can't continue so print debug information
941
*/
942
BUG();
943
}
944
945
return ret;
946
}
947
948
static __always_inline bool vc_is_db(unsigned long error_code)
949
{
950
return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
951
}
952
953
/*
954
* Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
955
* and will panic when an error happens.
956
*/
957
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
958
{
959
irqentry_state_t irq_state;
960
961
/*
962
* With the current implementation it is always possible to switch to a
963
* safe stack because #VC exceptions only happen at known places, like
964
* intercepted instructions or accesses to MMIO areas/IO ports. They can
965
* also happen with code instrumentation when the hypervisor intercepts
966
* #DB, but the critical paths are forbidden to be instrumented, so #DB
967
* exceptions currently also only happen in safe places.
968
*
969
* But keep this here in case the noinstr annotations are violated due
970
* to bug elsewhere.
971
*/
972
if (unlikely(vc_from_invalid_context(regs))) {
973
instrumentation_begin();
974
panic("Can't handle #VC exception from unsupported context\n");
975
instrumentation_end();
976
}
977
978
/*
979
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
980
*/
981
if (vc_is_db(error_code)) {
982
exc_debug(regs);
983
return;
984
}
985
986
irq_state = irqentry_nmi_enter(regs);
987
988
instrumentation_begin();
989
990
if (!vc_raw_handle_exception(regs, error_code)) {
991
/* Show some debug info */
992
show_regs(regs);
993
994
/* Ask hypervisor to sev_es_terminate */
995
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
996
997
/* If that fails and we get here - just panic */
998
panic("Returned from Terminate-Request to Hypervisor\n");
999
}
1000
1001
instrumentation_end();
1002
irqentry_nmi_exit(regs, irq_state);
1003
}
1004
1005
/*
1006
* Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1007
* and will kill the current task with SIGBUS when an error happens.
1008
*/
1009
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1010
{
1011
/*
1012
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
1013
*/
1014
if (vc_is_db(error_code)) {
1015
noist_exc_debug(regs);
1016
return;
1017
}
1018
1019
irqentry_enter_from_user_mode(regs);
1020
instrumentation_begin();
1021
1022
if (!vc_raw_handle_exception(regs, error_code)) {
1023
/*
1024
* Do not kill the machine if user-space triggered the
1025
* exception. Send SIGBUS instead and let user-space deal with
1026
* it.
1027
*/
1028
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1029
}
1030
1031
instrumentation_end();
1032
irqentry_exit_to_user_mode(regs);
1033
}
1034
1035
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1036
{
1037
unsigned long exit_code = regs->orig_ax;
1038
struct es_em_ctxt ctxt;
1039
enum es_result result;
1040
1041
vc_ghcb_invalidate(boot_ghcb);
1042
1043
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1044
if (result == ES_OK)
1045
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1046
1047
/* Done - now check the result */
1048
switch (result) {
1049
case ES_OK:
1050
vc_finish_insn(&ctxt);
1051
break;
1052
case ES_UNSUPPORTED:
1053
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1054
exit_code, regs->ip);
1055
goto fail;
1056
case ES_VMM_ERROR:
1057
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1058
exit_code, regs->ip);
1059
goto fail;
1060
case ES_DECODE_FAILED:
1061
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1062
exit_code, regs->ip);
1063
goto fail;
1064
case ES_EXCEPTION:
1065
vc_early_forward_exception(&ctxt);
1066
break;
1067
case ES_RETRY:
1068
/* Nothing to do */
1069
break;
1070
default:
1071
BUG();
1072
}
1073
1074
return true;
1075
1076
fail:
1077
show_regs(regs);
1078
1079
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1080
}
1081
1082
1083