Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/events/intel/core.c
29284 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Per core/cpu state
4
*
5
* Used to coordinate shared registers between HT threads or
6
* among events on a single PMU.
7
*/
8
9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11
#include <linux/stddef.h>
12
#include <linux/types.h>
13
#include <linux/init.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16
#include <linux/nmi.h>
17
#include <linux/kvm_host.h>
18
19
#include <asm/cpufeature.h>
20
#include <asm/debugreg.h>
21
#include <asm/hardirq.h>
22
#include <asm/intel-family.h>
23
#include <asm/intel_pt.h>
24
#include <asm/apic.h>
25
#include <asm/cpu_device_id.h>
26
#include <asm/msr.h>
27
28
#include "../perf_event.h"
29
30
/*
31
* Intel PerfMon, used on Core and later.
32
*/
33
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
34
{
35
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
36
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
37
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
38
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
39
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
40
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
41
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
42
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
43
};
44
45
static struct event_constraint intel_core_event_constraints[] __read_mostly =
46
{
47
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
48
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
49
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
50
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
51
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
52
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
53
EVENT_CONSTRAINT_END
54
};
55
56
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
57
{
58
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
59
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
60
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
61
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
62
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
63
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
64
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
65
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
66
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
67
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
68
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
69
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
70
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
71
EVENT_CONSTRAINT_END
72
};
73
74
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
75
{
76
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
77
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
78
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
79
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
80
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
81
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
82
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
83
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
84
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
85
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
86
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
87
EVENT_CONSTRAINT_END
88
};
89
90
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
91
{
92
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
93
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
94
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
95
EVENT_EXTRA_END
96
};
97
98
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
99
{
100
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
101
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
102
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
103
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
104
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
105
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
106
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
107
EVENT_CONSTRAINT_END
108
};
109
110
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
111
{
112
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
113
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
114
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
115
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
117
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
119
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
120
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
121
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
122
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
123
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
124
125
/*
126
* When HT is off these events can only run on the bottom 4 counters
127
* When HT is on, they are impacted by the HT bug and require EXCL access
128
*/
129
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
130
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
131
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
132
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
133
134
EVENT_CONSTRAINT_END
135
};
136
137
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
138
{
139
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
140
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
141
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
142
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
143
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
144
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
145
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
146
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
147
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
148
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
149
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
150
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
151
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
152
153
/*
154
* When HT is off these events can only run on the bottom 4 counters
155
* When HT is on, they are impacted by the HT bug and require EXCL access
156
*/
157
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
158
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
159
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
160
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
161
162
EVENT_CONSTRAINT_END
163
};
164
165
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
166
{
167
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
168
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
169
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
170
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
171
EVENT_EXTRA_END
172
};
173
174
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
175
{
176
EVENT_CONSTRAINT_END
177
};
178
179
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
180
{
181
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184
EVENT_CONSTRAINT_END
185
};
186
187
static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
188
{
189
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
190
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
191
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
192
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
193
FIXED_EVENT_CONSTRAINT(0x0500, 4),
194
FIXED_EVENT_CONSTRAINT(0x0600, 5),
195
FIXED_EVENT_CONSTRAINT(0x0700, 6),
196
FIXED_EVENT_CONSTRAINT(0x0800, 7),
197
FIXED_EVENT_CONSTRAINT(0x0900, 8),
198
FIXED_EVENT_CONSTRAINT(0x0a00, 9),
199
FIXED_EVENT_CONSTRAINT(0x0b00, 10),
200
FIXED_EVENT_CONSTRAINT(0x0c00, 11),
201
FIXED_EVENT_CONSTRAINT(0x0d00, 12),
202
FIXED_EVENT_CONSTRAINT(0x0e00, 13),
203
FIXED_EVENT_CONSTRAINT(0x0f00, 14),
204
FIXED_EVENT_CONSTRAINT(0x1000, 15),
205
EVENT_CONSTRAINT_END
206
};
207
208
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
209
{
210
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
211
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
212
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
213
EVENT_CONSTRAINT_END
214
};
215
216
static struct event_constraint intel_grt_event_constraints[] __read_mostly = {
217
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
218
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
219
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
220
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
221
EVENT_CONSTRAINT_END
222
};
223
224
static struct event_constraint intel_skt_event_constraints[] __read_mostly = {
225
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
226
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
227
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
228
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
229
FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */
230
FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */
231
FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */
232
EVENT_CONSTRAINT_END
233
};
234
235
static struct event_constraint intel_skl_event_constraints[] = {
236
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
237
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
238
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
239
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
240
241
/*
242
* when HT is off, these can only run on the bottom 4 counters
243
*/
244
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
245
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
246
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
247
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
248
INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
249
250
EVENT_CONSTRAINT_END
251
};
252
253
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
254
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
255
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
256
EVENT_EXTRA_END
257
};
258
259
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
260
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
261
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
262
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
263
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
264
EVENT_EXTRA_END
265
};
266
267
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
268
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
269
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
270
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
271
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
272
EVENT_EXTRA_END
273
};
274
275
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
276
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
277
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
278
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
279
/*
280
* Note the low 8 bits eventsel code is not a continuous field, containing
281
* some #GPing bits. These are masked out.
282
*/
283
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
284
EVENT_EXTRA_END
285
};
286
287
static struct event_constraint intel_icl_event_constraints[] = {
288
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
289
FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
290
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
291
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
292
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
293
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
294
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298
INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
299
INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
300
INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
301
INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
302
INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
303
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
304
INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
305
INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
306
INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
307
INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
308
INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
309
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
310
INTEL_EVENT_CONSTRAINT(0xef, 0xf),
311
INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
312
EVENT_CONSTRAINT_END
313
};
314
315
static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
316
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
317
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
318
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
319
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
320
EVENT_EXTRA_END
321
};
322
323
static struct extra_reg intel_glc_extra_regs[] __read_mostly = {
324
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
325
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
326
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
327
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
328
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
329
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
330
EVENT_EXTRA_END
331
};
332
333
static struct event_constraint intel_glc_event_constraints[] = {
334
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
335
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
336
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
337
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
338
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
339
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
340
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
341
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
342
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
343
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
344
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
345
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
346
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
347
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
348
349
INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
350
INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
351
/*
352
* Generally event codes < 0x90 are restricted to counters 0-3.
353
* The 0x2E and 0x3C are exception, which has no restriction.
354
*/
355
INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
356
357
INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
358
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
359
INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
360
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
361
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
362
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
363
INTEL_EVENT_CONSTRAINT(0xce, 0x1),
364
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
365
/*
366
* Generally event codes >= 0x90 are likely to have no restrictions.
367
* The exception are defined as above.
368
*/
369
INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
370
371
EVENT_CONSTRAINT_END
372
};
373
374
static struct extra_reg intel_rwc_extra_regs[] __read_mostly = {
375
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
376
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
377
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
378
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
379
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
380
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
381
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
382
EVENT_EXTRA_END
383
};
384
385
static struct event_constraint intel_lnc_event_constraints[] = {
386
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
387
FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
388
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
389
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
390
FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */
391
FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
392
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
393
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
394
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
395
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
396
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
397
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
398
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
399
METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
400
401
INTEL_EVENT_CONSTRAINT(0x20, 0xf),
402
403
INTEL_UEVENT_CONSTRAINT(0x012a, 0xf),
404
INTEL_UEVENT_CONSTRAINT(0x012b, 0xf),
405
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4),
406
INTEL_UEVENT_CONSTRAINT(0x0175, 0x4),
407
408
INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff),
409
INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff),
410
411
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
412
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
413
INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
414
INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
415
INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1),
416
INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8),
417
INTEL_UEVENT_CONSTRAINT(0x01cd, 0x3fc),
418
INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3),
419
420
INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
421
422
INTEL_UEVENT_CONSTRAINT(0x00e0, 0xf),
423
424
EVENT_CONSTRAINT_END
425
};
426
427
static struct extra_reg intel_lnc_extra_regs[] __read_mostly = {
428
INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0),
429
INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1),
430
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
431
INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
432
INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
433
INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE),
434
INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
435
EVENT_EXTRA_END
436
};
437
438
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
439
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
440
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
441
442
static struct attribute *nhm_mem_events_attrs[] = {
443
EVENT_PTR(mem_ld_nhm),
444
NULL,
445
};
446
447
/*
448
* topdown events for Intel Core CPUs.
449
*
450
* The events are all in slots, which is a free slot in a 4 wide
451
* pipeline. Some events are already reported in slots, for cycle
452
* events we multiply by the pipeline width (4).
453
*
454
* With Hyper Threading on, topdown metrics are either summed or averaged
455
* between the threads of a core: (count_t0 + count_t1).
456
*
457
* For the average case the metric is always scaled to pipeline width,
458
* so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
459
*/
460
461
EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
462
"event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
463
"event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
464
EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
465
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
466
"event=0xe,umask=0x1"); /* uops_issued.any */
467
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
468
"event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
469
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
470
"event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
471
EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
472
"event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
473
"event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
474
EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
475
"4", "2");
476
477
EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
478
EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
479
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
480
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
481
EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
482
EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
483
EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
484
EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
485
EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
486
487
static struct attribute *snb_events_attrs[] = {
488
EVENT_PTR(td_slots_issued),
489
EVENT_PTR(td_slots_retired),
490
EVENT_PTR(td_fetch_bubbles),
491
EVENT_PTR(td_total_slots),
492
EVENT_PTR(td_total_slots_scale),
493
EVENT_PTR(td_recovery_bubbles),
494
EVENT_PTR(td_recovery_bubbles_scale),
495
NULL,
496
};
497
498
static struct attribute *snb_mem_events_attrs[] = {
499
EVENT_PTR(mem_ld_snb),
500
EVENT_PTR(mem_st_snb),
501
NULL,
502
};
503
504
static struct event_constraint intel_hsw_event_constraints[] = {
505
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
506
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
507
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
508
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
509
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
510
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
511
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
512
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
513
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
514
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
515
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
516
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
517
518
/*
519
* When HT is off these events can only run on the bottom 4 counters
520
* When HT is on, they are impacted by the HT bug and require EXCL access
521
*/
522
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
523
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
524
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
525
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
526
527
EVENT_CONSTRAINT_END
528
};
529
530
static struct event_constraint intel_bdw_event_constraints[] = {
531
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
532
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
533
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
534
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
535
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
536
/*
537
* when HT is off, these can only run on the bottom 4 counters
538
*/
539
INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
540
INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
541
INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
542
INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
543
EVENT_CONSTRAINT_END
544
};
545
546
static u64 intel_pmu_event_map(int hw_event)
547
{
548
return intel_perfmon_event_map[hw_event];
549
}
550
551
static __initconst const u64 glc_hw_cache_event_ids
552
[PERF_COUNT_HW_CACHE_MAX]
553
[PERF_COUNT_HW_CACHE_OP_MAX]
554
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
555
{
556
[ C(L1D ) ] = {
557
[ C(OP_READ) ] = {
558
[ C(RESULT_ACCESS) ] = 0x81d0,
559
[ C(RESULT_MISS) ] = 0xe124,
560
},
561
[ C(OP_WRITE) ] = {
562
[ C(RESULT_ACCESS) ] = 0x82d0,
563
},
564
},
565
[ C(L1I ) ] = {
566
[ C(OP_READ) ] = {
567
[ C(RESULT_MISS) ] = 0xe424,
568
},
569
[ C(OP_WRITE) ] = {
570
[ C(RESULT_ACCESS) ] = -1,
571
[ C(RESULT_MISS) ] = -1,
572
},
573
},
574
[ C(LL ) ] = {
575
[ C(OP_READ) ] = {
576
[ C(RESULT_ACCESS) ] = 0x12a,
577
[ C(RESULT_MISS) ] = 0x12a,
578
},
579
[ C(OP_WRITE) ] = {
580
[ C(RESULT_ACCESS) ] = 0x12a,
581
[ C(RESULT_MISS) ] = 0x12a,
582
},
583
},
584
[ C(DTLB) ] = {
585
[ C(OP_READ) ] = {
586
[ C(RESULT_ACCESS) ] = 0x81d0,
587
[ C(RESULT_MISS) ] = 0xe12,
588
},
589
[ C(OP_WRITE) ] = {
590
[ C(RESULT_ACCESS) ] = 0x82d0,
591
[ C(RESULT_MISS) ] = 0xe13,
592
},
593
},
594
[ C(ITLB) ] = {
595
[ C(OP_READ) ] = {
596
[ C(RESULT_ACCESS) ] = -1,
597
[ C(RESULT_MISS) ] = 0xe11,
598
},
599
[ C(OP_WRITE) ] = {
600
[ C(RESULT_ACCESS) ] = -1,
601
[ C(RESULT_MISS) ] = -1,
602
},
603
[ C(OP_PREFETCH) ] = {
604
[ C(RESULT_ACCESS) ] = -1,
605
[ C(RESULT_MISS) ] = -1,
606
},
607
},
608
[ C(BPU ) ] = {
609
[ C(OP_READ) ] = {
610
[ C(RESULT_ACCESS) ] = 0x4c4,
611
[ C(RESULT_MISS) ] = 0x4c5,
612
},
613
[ C(OP_WRITE) ] = {
614
[ C(RESULT_ACCESS) ] = -1,
615
[ C(RESULT_MISS) ] = -1,
616
},
617
[ C(OP_PREFETCH) ] = {
618
[ C(RESULT_ACCESS) ] = -1,
619
[ C(RESULT_MISS) ] = -1,
620
},
621
},
622
[ C(NODE) ] = {
623
[ C(OP_READ) ] = {
624
[ C(RESULT_ACCESS) ] = 0x12a,
625
[ C(RESULT_MISS) ] = 0x12a,
626
},
627
},
628
};
629
630
static __initconst const u64 glc_hw_cache_extra_regs
631
[PERF_COUNT_HW_CACHE_MAX]
632
[PERF_COUNT_HW_CACHE_OP_MAX]
633
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
634
{
635
[ C(LL ) ] = {
636
[ C(OP_READ) ] = {
637
[ C(RESULT_ACCESS) ] = 0x10001,
638
[ C(RESULT_MISS) ] = 0x3fbfc00001,
639
},
640
[ C(OP_WRITE) ] = {
641
[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
642
[ C(RESULT_MISS) ] = 0x3f3fc00002,
643
},
644
},
645
[ C(NODE) ] = {
646
[ C(OP_READ) ] = {
647
[ C(RESULT_ACCESS) ] = 0x10c000001,
648
[ C(RESULT_MISS) ] = 0x3fb3000001,
649
},
650
},
651
};
652
653
/*
654
* Notes on the events:
655
* - data reads do not include code reads (comparable to earlier tables)
656
* - data counts include speculative execution (except L1 write, dtlb, bpu)
657
* - remote node access includes remote memory, remote cache, remote mmio.
658
* - prefetches are not included in the counts.
659
* - icache miss does not include decoded icache
660
*/
661
662
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
663
#define SKL_DEMAND_RFO BIT_ULL(1)
664
#define SKL_ANY_RESPONSE BIT_ULL(16)
665
#define SKL_SUPPLIER_NONE BIT_ULL(17)
666
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
667
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
668
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
669
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
670
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
671
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
672
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
673
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
674
#define SKL_SPL_HIT BIT_ULL(30)
675
#define SKL_SNOOP_NONE BIT_ULL(31)
676
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
677
#define SKL_SNOOP_MISS BIT_ULL(33)
678
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
679
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
680
#define SKL_SNOOP_HITM BIT_ULL(36)
681
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
682
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
683
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
684
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
685
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
686
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
687
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
688
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
689
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
690
SKL_SNOOP_HITM|SKL_SPL_HIT)
691
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
692
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
693
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
694
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
695
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
696
697
static __initconst const u64 skl_hw_cache_event_ids
698
[PERF_COUNT_HW_CACHE_MAX]
699
[PERF_COUNT_HW_CACHE_OP_MAX]
700
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
701
{
702
[ C(L1D ) ] = {
703
[ C(OP_READ) ] = {
704
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
705
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
706
},
707
[ C(OP_WRITE) ] = {
708
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
709
[ C(RESULT_MISS) ] = 0x0,
710
},
711
[ C(OP_PREFETCH) ] = {
712
[ C(RESULT_ACCESS) ] = 0x0,
713
[ C(RESULT_MISS) ] = 0x0,
714
},
715
},
716
[ C(L1I ) ] = {
717
[ C(OP_READ) ] = {
718
[ C(RESULT_ACCESS) ] = 0x0,
719
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
720
},
721
[ C(OP_WRITE) ] = {
722
[ C(RESULT_ACCESS) ] = -1,
723
[ C(RESULT_MISS) ] = -1,
724
},
725
[ C(OP_PREFETCH) ] = {
726
[ C(RESULT_ACCESS) ] = 0x0,
727
[ C(RESULT_MISS) ] = 0x0,
728
},
729
},
730
[ C(LL ) ] = {
731
[ C(OP_READ) ] = {
732
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
733
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
734
},
735
[ C(OP_WRITE) ] = {
736
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
737
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
738
},
739
[ C(OP_PREFETCH) ] = {
740
[ C(RESULT_ACCESS) ] = 0x0,
741
[ C(RESULT_MISS) ] = 0x0,
742
},
743
},
744
[ C(DTLB) ] = {
745
[ C(OP_READ) ] = {
746
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
747
[ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
748
},
749
[ C(OP_WRITE) ] = {
750
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
751
[ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
752
},
753
[ C(OP_PREFETCH) ] = {
754
[ C(RESULT_ACCESS) ] = 0x0,
755
[ C(RESULT_MISS) ] = 0x0,
756
},
757
},
758
[ C(ITLB) ] = {
759
[ C(OP_READ) ] = {
760
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
761
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
762
},
763
[ C(OP_WRITE) ] = {
764
[ C(RESULT_ACCESS) ] = -1,
765
[ C(RESULT_MISS) ] = -1,
766
},
767
[ C(OP_PREFETCH) ] = {
768
[ C(RESULT_ACCESS) ] = -1,
769
[ C(RESULT_MISS) ] = -1,
770
},
771
},
772
[ C(BPU ) ] = {
773
[ C(OP_READ) ] = {
774
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
775
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
776
},
777
[ C(OP_WRITE) ] = {
778
[ C(RESULT_ACCESS) ] = -1,
779
[ C(RESULT_MISS) ] = -1,
780
},
781
[ C(OP_PREFETCH) ] = {
782
[ C(RESULT_ACCESS) ] = -1,
783
[ C(RESULT_MISS) ] = -1,
784
},
785
},
786
[ C(NODE) ] = {
787
[ C(OP_READ) ] = {
788
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
789
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
790
},
791
[ C(OP_WRITE) ] = {
792
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
793
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
794
},
795
[ C(OP_PREFETCH) ] = {
796
[ C(RESULT_ACCESS) ] = 0x0,
797
[ C(RESULT_MISS) ] = 0x0,
798
},
799
},
800
};
801
802
static __initconst const u64 skl_hw_cache_extra_regs
803
[PERF_COUNT_HW_CACHE_MAX]
804
[PERF_COUNT_HW_CACHE_OP_MAX]
805
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
806
{
807
[ C(LL ) ] = {
808
[ C(OP_READ) ] = {
809
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
810
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
811
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
812
SKL_L3_MISS|SKL_ANY_SNOOP|
813
SKL_SUPPLIER_NONE,
814
},
815
[ C(OP_WRITE) ] = {
816
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
817
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
818
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
819
SKL_L3_MISS|SKL_ANY_SNOOP|
820
SKL_SUPPLIER_NONE,
821
},
822
[ C(OP_PREFETCH) ] = {
823
[ C(RESULT_ACCESS) ] = 0x0,
824
[ C(RESULT_MISS) ] = 0x0,
825
},
826
},
827
[ C(NODE) ] = {
828
[ C(OP_READ) ] = {
829
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
830
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
831
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
832
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
833
},
834
[ C(OP_WRITE) ] = {
835
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
836
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
837
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
838
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
839
},
840
[ C(OP_PREFETCH) ] = {
841
[ C(RESULT_ACCESS) ] = 0x0,
842
[ C(RESULT_MISS) ] = 0x0,
843
},
844
},
845
};
846
847
#define SNB_DMND_DATA_RD (1ULL << 0)
848
#define SNB_DMND_RFO (1ULL << 1)
849
#define SNB_DMND_IFETCH (1ULL << 2)
850
#define SNB_DMND_WB (1ULL << 3)
851
#define SNB_PF_DATA_RD (1ULL << 4)
852
#define SNB_PF_RFO (1ULL << 5)
853
#define SNB_PF_IFETCH (1ULL << 6)
854
#define SNB_LLC_DATA_RD (1ULL << 7)
855
#define SNB_LLC_RFO (1ULL << 8)
856
#define SNB_LLC_IFETCH (1ULL << 9)
857
#define SNB_BUS_LOCKS (1ULL << 10)
858
#define SNB_STRM_ST (1ULL << 11)
859
#define SNB_OTHER (1ULL << 15)
860
#define SNB_RESP_ANY (1ULL << 16)
861
#define SNB_NO_SUPP (1ULL << 17)
862
#define SNB_LLC_HITM (1ULL << 18)
863
#define SNB_LLC_HITE (1ULL << 19)
864
#define SNB_LLC_HITS (1ULL << 20)
865
#define SNB_LLC_HITF (1ULL << 21)
866
#define SNB_LOCAL (1ULL << 22)
867
#define SNB_REMOTE (0xffULL << 23)
868
#define SNB_SNP_NONE (1ULL << 31)
869
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
870
#define SNB_SNP_MISS (1ULL << 33)
871
#define SNB_NO_FWD (1ULL << 34)
872
#define SNB_SNP_FWD (1ULL << 35)
873
#define SNB_HITM (1ULL << 36)
874
#define SNB_NON_DRAM (1ULL << 37)
875
876
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
877
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
878
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
879
880
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
881
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
882
SNB_HITM)
883
884
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
885
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
886
887
#define SNB_L3_ACCESS SNB_RESP_ANY
888
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
889
890
static __initconst const u64 snb_hw_cache_extra_regs
891
[PERF_COUNT_HW_CACHE_MAX]
892
[PERF_COUNT_HW_CACHE_OP_MAX]
893
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
894
{
895
[ C(LL ) ] = {
896
[ C(OP_READ) ] = {
897
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
898
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
899
},
900
[ C(OP_WRITE) ] = {
901
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
902
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
903
},
904
[ C(OP_PREFETCH) ] = {
905
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
906
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
907
},
908
},
909
[ C(NODE) ] = {
910
[ C(OP_READ) ] = {
911
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
912
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
913
},
914
[ C(OP_WRITE) ] = {
915
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
916
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
917
},
918
[ C(OP_PREFETCH) ] = {
919
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
920
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
921
},
922
},
923
};
924
925
static __initconst const u64 snb_hw_cache_event_ids
926
[PERF_COUNT_HW_CACHE_MAX]
927
[PERF_COUNT_HW_CACHE_OP_MAX]
928
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
929
{
930
[ C(L1D) ] = {
931
[ C(OP_READ) ] = {
932
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
933
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
934
},
935
[ C(OP_WRITE) ] = {
936
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
937
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
938
},
939
[ C(OP_PREFETCH) ] = {
940
[ C(RESULT_ACCESS) ] = 0x0,
941
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
942
},
943
},
944
[ C(L1I ) ] = {
945
[ C(OP_READ) ] = {
946
[ C(RESULT_ACCESS) ] = 0x0,
947
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
948
},
949
[ C(OP_WRITE) ] = {
950
[ C(RESULT_ACCESS) ] = -1,
951
[ C(RESULT_MISS) ] = -1,
952
},
953
[ C(OP_PREFETCH) ] = {
954
[ C(RESULT_ACCESS) ] = 0x0,
955
[ C(RESULT_MISS) ] = 0x0,
956
},
957
},
958
[ C(LL ) ] = {
959
[ C(OP_READ) ] = {
960
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961
[ C(RESULT_ACCESS) ] = 0x01b7,
962
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963
[ C(RESULT_MISS) ] = 0x01b7,
964
},
965
[ C(OP_WRITE) ] = {
966
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
967
[ C(RESULT_ACCESS) ] = 0x01b7,
968
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
969
[ C(RESULT_MISS) ] = 0x01b7,
970
},
971
[ C(OP_PREFETCH) ] = {
972
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
973
[ C(RESULT_ACCESS) ] = 0x01b7,
974
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
975
[ C(RESULT_MISS) ] = 0x01b7,
976
},
977
},
978
[ C(DTLB) ] = {
979
[ C(OP_READ) ] = {
980
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
981
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
982
},
983
[ C(OP_WRITE) ] = {
984
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
985
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
986
},
987
[ C(OP_PREFETCH) ] = {
988
[ C(RESULT_ACCESS) ] = 0x0,
989
[ C(RESULT_MISS) ] = 0x0,
990
},
991
},
992
[ C(ITLB) ] = {
993
[ C(OP_READ) ] = {
994
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
995
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
996
},
997
[ C(OP_WRITE) ] = {
998
[ C(RESULT_ACCESS) ] = -1,
999
[ C(RESULT_MISS) ] = -1,
1000
},
1001
[ C(OP_PREFETCH) ] = {
1002
[ C(RESULT_ACCESS) ] = -1,
1003
[ C(RESULT_MISS) ] = -1,
1004
},
1005
},
1006
[ C(BPU ) ] = {
1007
[ C(OP_READ) ] = {
1008
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1009
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1010
},
1011
[ C(OP_WRITE) ] = {
1012
[ C(RESULT_ACCESS) ] = -1,
1013
[ C(RESULT_MISS) ] = -1,
1014
},
1015
[ C(OP_PREFETCH) ] = {
1016
[ C(RESULT_ACCESS) ] = -1,
1017
[ C(RESULT_MISS) ] = -1,
1018
},
1019
},
1020
[ C(NODE) ] = {
1021
[ C(OP_READ) ] = {
1022
[ C(RESULT_ACCESS) ] = 0x01b7,
1023
[ C(RESULT_MISS) ] = 0x01b7,
1024
},
1025
[ C(OP_WRITE) ] = {
1026
[ C(RESULT_ACCESS) ] = 0x01b7,
1027
[ C(RESULT_MISS) ] = 0x01b7,
1028
},
1029
[ C(OP_PREFETCH) ] = {
1030
[ C(RESULT_ACCESS) ] = 0x01b7,
1031
[ C(RESULT_MISS) ] = 0x01b7,
1032
},
1033
},
1034
1035
};
1036
1037
/*
1038
* Notes on the events:
1039
* - data reads do not include code reads (comparable to earlier tables)
1040
* - data counts include speculative execution (except L1 write, dtlb, bpu)
1041
* - remote node access includes remote memory, remote cache, remote mmio.
1042
* - prefetches are not included in the counts because they are not
1043
* reliably counted.
1044
*/
1045
1046
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
1047
#define HSW_DEMAND_RFO BIT_ULL(1)
1048
#define HSW_ANY_RESPONSE BIT_ULL(16)
1049
#define HSW_SUPPLIER_NONE BIT_ULL(17)
1050
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
1051
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
1052
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
1053
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
1054
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
1055
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1056
HSW_L3_MISS_REMOTE_HOP2P)
1057
#define HSW_SNOOP_NONE BIT_ULL(31)
1058
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
1059
#define HSW_SNOOP_MISS BIT_ULL(33)
1060
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
1061
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
1062
#define HSW_SNOOP_HITM BIT_ULL(36)
1063
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
1064
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
1065
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
1066
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
1067
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
1068
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
1069
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
1070
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
1071
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
1072
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
1073
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
1074
1075
#define BDW_L3_MISS_LOCAL BIT(26)
1076
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
1077
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1078
HSW_L3_MISS_REMOTE_HOP2P)
1079
1080
1081
static __initconst const u64 hsw_hw_cache_event_ids
1082
[PERF_COUNT_HW_CACHE_MAX]
1083
[PERF_COUNT_HW_CACHE_OP_MAX]
1084
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1085
{
1086
[ C(L1D ) ] = {
1087
[ C(OP_READ) ] = {
1088
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1089
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
1090
},
1091
[ C(OP_WRITE) ] = {
1092
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1093
[ C(RESULT_MISS) ] = 0x0,
1094
},
1095
[ C(OP_PREFETCH) ] = {
1096
[ C(RESULT_ACCESS) ] = 0x0,
1097
[ C(RESULT_MISS) ] = 0x0,
1098
},
1099
},
1100
[ C(L1I ) ] = {
1101
[ C(OP_READ) ] = {
1102
[ C(RESULT_ACCESS) ] = 0x0,
1103
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
1104
},
1105
[ C(OP_WRITE) ] = {
1106
[ C(RESULT_ACCESS) ] = -1,
1107
[ C(RESULT_MISS) ] = -1,
1108
},
1109
[ C(OP_PREFETCH) ] = {
1110
[ C(RESULT_ACCESS) ] = 0x0,
1111
[ C(RESULT_MISS) ] = 0x0,
1112
},
1113
},
1114
[ C(LL ) ] = {
1115
[ C(OP_READ) ] = {
1116
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1117
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1118
},
1119
[ C(OP_WRITE) ] = {
1120
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1121
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1122
},
1123
[ C(OP_PREFETCH) ] = {
1124
[ C(RESULT_ACCESS) ] = 0x0,
1125
[ C(RESULT_MISS) ] = 0x0,
1126
},
1127
},
1128
[ C(DTLB) ] = {
1129
[ C(OP_READ) ] = {
1130
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1131
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1132
},
1133
[ C(OP_WRITE) ] = {
1134
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1135
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1136
},
1137
[ C(OP_PREFETCH) ] = {
1138
[ C(RESULT_ACCESS) ] = 0x0,
1139
[ C(RESULT_MISS) ] = 0x0,
1140
},
1141
},
1142
[ C(ITLB) ] = {
1143
[ C(OP_READ) ] = {
1144
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1145
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1146
},
1147
[ C(OP_WRITE) ] = {
1148
[ C(RESULT_ACCESS) ] = -1,
1149
[ C(RESULT_MISS) ] = -1,
1150
},
1151
[ C(OP_PREFETCH) ] = {
1152
[ C(RESULT_ACCESS) ] = -1,
1153
[ C(RESULT_MISS) ] = -1,
1154
},
1155
},
1156
[ C(BPU ) ] = {
1157
[ C(OP_READ) ] = {
1158
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1159
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1160
},
1161
[ C(OP_WRITE) ] = {
1162
[ C(RESULT_ACCESS) ] = -1,
1163
[ C(RESULT_MISS) ] = -1,
1164
},
1165
[ C(OP_PREFETCH) ] = {
1166
[ C(RESULT_ACCESS) ] = -1,
1167
[ C(RESULT_MISS) ] = -1,
1168
},
1169
},
1170
[ C(NODE) ] = {
1171
[ C(OP_READ) ] = {
1172
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1173
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1174
},
1175
[ C(OP_WRITE) ] = {
1176
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1177
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1178
},
1179
[ C(OP_PREFETCH) ] = {
1180
[ C(RESULT_ACCESS) ] = 0x0,
1181
[ C(RESULT_MISS) ] = 0x0,
1182
},
1183
},
1184
};
1185
1186
static __initconst const u64 hsw_hw_cache_extra_regs
1187
[PERF_COUNT_HW_CACHE_MAX]
1188
[PERF_COUNT_HW_CACHE_OP_MAX]
1189
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1190
{
1191
[ C(LL ) ] = {
1192
[ C(OP_READ) ] = {
1193
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1194
HSW_LLC_ACCESS,
1195
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1196
HSW_L3_MISS|HSW_ANY_SNOOP,
1197
},
1198
[ C(OP_WRITE) ] = {
1199
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1200
HSW_LLC_ACCESS,
1201
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1202
HSW_L3_MISS|HSW_ANY_SNOOP,
1203
},
1204
[ C(OP_PREFETCH) ] = {
1205
[ C(RESULT_ACCESS) ] = 0x0,
1206
[ C(RESULT_MISS) ] = 0x0,
1207
},
1208
},
1209
[ C(NODE) ] = {
1210
[ C(OP_READ) ] = {
1211
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1212
HSW_L3_MISS_LOCAL_DRAM|
1213
HSW_SNOOP_DRAM,
1214
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1215
HSW_L3_MISS_REMOTE|
1216
HSW_SNOOP_DRAM,
1217
},
1218
[ C(OP_WRITE) ] = {
1219
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1220
HSW_L3_MISS_LOCAL_DRAM|
1221
HSW_SNOOP_DRAM,
1222
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1223
HSW_L3_MISS_REMOTE|
1224
HSW_SNOOP_DRAM,
1225
},
1226
[ C(OP_PREFETCH) ] = {
1227
[ C(RESULT_ACCESS) ] = 0x0,
1228
[ C(RESULT_MISS) ] = 0x0,
1229
},
1230
},
1231
};
1232
1233
static __initconst const u64 westmere_hw_cache_event_ids
1234
[PERF_COUNT_HW_CACHE_MAX]
1235
[PERF_COUNT_HW_CACHE_OP_MAX]
1236
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1237
{
1238
[ C(L1D) ] = {
1239
[ C(OP_READ) ] = {
1240
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1241
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1242
},
1243
[ C(OP_WRITE) ] = {
1244
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1245
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1246
},
1247
[ C(OP_PREFETCH) ] = {
1248
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1249
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1250
},
1251
},
1252
[ C(L1I ) ] = {
1253
[ C(OP_READ) ] = {
1254
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1255
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1256
},
1257
[ C(OP_WRITE) ] = {
1258
[ C(RESULT_ACCESS) ] = -1,
1259
[ C(RESULT_MISS) ] = -1,
1260
},
1261
[ C(OP_PREFETCH) ] = {
1262
[ C(RESULT_ACCESS) ] = 0x0,
1263
[ C(RESULT_MISS) ] = 0x0,
1264
},
1265
},
1266
[ C(LL ) ] = {
1267
[ C(OP_READ) ] = {
1268
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1269
[ C(RESULT_ACCESS) ] = 0x01b7,
1270
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1271
[ C(RESULT_MISS) ] = 0x01b7,
1272
},
1273
/*
1274
* Use RFO, not WRITEBACK, because a write miss would typically occur
1275
* on RFO.
1276
*/
1277
[ C(OP_WRITE) ] = {
1278
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1279
[ C(RESULT_ACCESS) ] = 0x01b7,
1280
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1281
[ C(RESULT_MISS) ] = 0x01b7,
1282
},
1283
[ C(OP_PREFETCH) ] = {
1284
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1285
[ C(RESULT_ACCESS) ] = 0x01b7,
1286
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1287
[ C(RESULT_MISS) ] = 0x01b7,
1288
},
1289
},
1290
[ C(DTLB) ] = {
1291
[ C(OP_READ) ] = {
1292
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1293
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1294
},
1295
[ C(OP_WRITE) ] = {
1296
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1297
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1298
},
1299
[ C(OP_PREFETCH) ] = {
1300
[ C(RESULT_ACCESS) ] = 0x0,
1301
[ C(RESULT_MISS) ] = 0x0,
1302
},
1303
},
1304
[ C(ITLB) ] = {
1305
[ C(OP_READ) ] = {
1306
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1307
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1308
},
1309
[ C(OP_WRITE) ] = {
1310
[ C(RESULT_ACCESS) ] = -1,
1311
[ C(RESULT_MISS) ] = -1,
1312
},
1313
[ C(OP_PREFETCH) ] = {
1314
[ C(RESULT_ACCESS) ] = -1,
1315
[ C(RESULT_MISS) ] = -1,
1316
},
1317
},
1318
[ C(BPU ) ] = {
1319
[ C(OP_READ) ] = {
1320
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1321
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1322
},
1323
[ C(OP_WRITE) ] = {
1324
[ C(RESULT_ACCESS) ] = -1,
1325
[ C(RESULT_MISS) ] = -1,
1326
},
1327
[ C(OP_PREFETCH) ] = {
1328
[ C(RESULT_ACCESS) ] = -1,
1329
[ C(RESULT_MISS) ] = -1,
1330
},
1331
},
1332
[ C(NODE) ] = {
1333
[ C(OP_READ) ] = {
1334
[ C(RESULT_ACCESS) ] = 0x01b7,
1335
[ C(RESULT_MISS) ] = 0x01b7,
1336
},
1337
[ C(OP_WRITE) ] = {
1338
[ C(RESULT_ACCESS) ] = 0x01b7,
1339
[ C(RESULT_MISS) ] = 0x01b7,
1340
},
1341
[ C(OP_PREFETCH) ] = {
1342
[ C(RESULT_ACCESS) ] = 0x01b7,
1343
[ C(RESULT_MISS) ] = 0x01b7,
1344
},
1345
},
1346
};
1347
1348
/*
1349
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1350
* See IA32 SDM Vol 3B 30.6.1.3
1351
*/
1352
1353
#define NHM_DMND_DATA_RD (1 << 0)
1354
#define NHM_DMND_RFO (1 << 1)
1355
#define NHM_DMND_IFETCH (1 << 2)
1356
#define NHM_DMND_WB (1 << 3)
1357
#define NHM_PF_DATA_RD (1 << 4)
1358
#define NHM_PF_DATA_RFO (1 << 5)
1359
#define NHM_PF_IFETCH (1 << 6)
1360
#define NHM_OFFCORE_OTHER (1 << 7)
1361
#define NHM_UNCORE_HIT (1 << 8)
1362
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1363
#define NHM_OTHER_CORE_HITM (1 << 10)
1364
/* reserved */
1365
#define NHM_REMOTE_CACHE_FWD (1 << 12)
1366
#define NHM_REMOTE_DRAM (1 << 13)
1367
#define NHM_LOCAL_DRAM (1 << 14)
1368
#define NHM_NON_DRAM (1 << 15)
1369
1370
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1371
#define NHM_REMOTE (NHM_REMOTE_DRAM)
1372
1373
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
1374
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1375
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1376
1377
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1378
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1379
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1380
1381
static __initconst const u64 nehalem_hw_cache_extra_regs
1382
[PERF_COUNT_HW_CACHE_MAX]
1383
[PERF_COUNT_HW_CACHE_OP_MAX]
1384
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1385
{
1386
[ C(LL ) ] = {
1387
[ C(OP_READ) ] = {
1388
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1389
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1390
},
1391
[ C(OP_WRITE) ] = {
1392
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1393
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1394
},
1395
[ C(OP_PREFETCH) ] = {
1396
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1397
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1398
},
1399
},
1400
[ C(NODE) ] = {
1401
[ C(OP_READ) ] = {
1402
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1403
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1404
},
1405
[ C(OP_WRITE) ] = {
1406
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1407
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1408
},
1409
[ C(OP_PREFETCH) ] = {
1410
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1411
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1412
},
1413
},
1414
};
1415
1416
static __initconst const u64 nehalem_hw_cache_event_ids
1417
[PERF_COUNT_HW_CACHE_MAX]
1418
[PERF_COUNT_HW_CACHE_OP_MAX]
1419
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1420
{
1421
[ C(L1D) ] = {
1422
[ C(OP_READ) ] = {
1423
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1424
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1425
},
1426
[ C(OP_WRITE) ] = {
1427
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1428
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1429
},
1430
[ C(OP_PREFETCH) ] = {
1431
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1432
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1433
},
1434
},
1435
[ C(L1I ) ] = {
1436
[ C(OP_READ) ] = {
1437
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1438
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1439
},
1440
[ C(OP_WRITE) ] = {
1441
[ C(RESULT_ACCESS) ] = -1,
1442
[ C(RESULT_MISS) ] = -1,
1443
},
1444
[ C(OP_PREFETCH) ] = {
1445
[ C(RESULT_ACCESS) ] = 0x0,
1446
[ C(RESULT_MISS) ] = 0x0,
1447
},
1448
},
1449
[ C(LL ) ] = {
1450
[ C(OP_READ) ] = {
1451
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1452
[ C(RESULT_ACCESS) ] = 0x01b7,
1453
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1454
[ C(RESULT_MISS) ] = 0x01b7,
1455
},
1456
/*
1457
* Use RFO, not WRITEBACK, because a write miss would typically occur
1458
* on RFO.
1459
*/
1460
[ C(OP_WRITE) ] = {
1461
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1462
[ C(RESULT_ACCESS) ] = 0x01b7,
1463
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1464
[ C(RESULT_MISS) ] = 0x01b7,
1465
},
1466
[ C(OP_PREFETCH) ] = {
1467
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1468
[ C(RESULT_ACCESS) ] = 0x01b7,
1469
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1470
[ C(RESULT_MISS) ] = 0x01b7,
1471
},
1472
},
1473
[ C(DTLB) ] = {
1474
[ C(OP_READ) ] = {
1475
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1476
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1477
},
1478
[ C(OP_WRITE) ] = {
1479
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1480
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1481
},
1482
[ C(OP_PREFETCH) ] = {
1483
[ C(RESULT_ACCESS) ] = 0x0,
1484
[ C(RESULT_MISS) ] = 0x0,
1485
},
1486
},
1487
[ C(ITLB) ] = {
1488
[ C(OP_READ) ] = {
1489
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1490
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1491
},
1492
[ C(OP_WRITE) ] = {
1493
[ C(RESULT_ACCESS) ] = -1,
1494
[ C(RESULT_MISS) ] = -1,
1495
},
1496
[ C(OP_PREFETCH) ] = {
1497
[ C(RESULT_ACCESS) ] = -1,
1498
[ C(RESULT_MISS) ] = -1,
1499
},
1500
},
1501
[ C(BPU ) ] = {
1502
[ C(OP_READ) ] = {
1503
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1504
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1505
},
1506
[ C(OP_WRITE) ] = {
1507
[ C(RESULT_ACCESS) ] = -1,
1508
[ C(RESULT_MISS) ] = -1,
1509
},
1510
[ C(OP_PREFETCH) ] = {
1511
[ C(RESULT_ACCESS) ] = -1,
1512
[ C(RESULT_MISS) ] = -1,
1513
},
1514
},
1515
[ C(NODE) ] = {
1516
[ C(OP_READ) ] = {
1517
[ C(RESULT_ACCESS) ] = 0x01b7,
1518
[ C(RESULT_MISS) ] = 0x01b7,
1519
},
1520
[ C(OP_WRITE) ] = {
1521
[ C(RESULT_ACCESS) ] = 0x01b7,
1522
[ C(RESULT_MISS) ] = 0x01b7,
1523
},
1524
[ C(OP_PREFETCH) ] = {
1525
[ C(RESULT_ACCESS) ] = 0x01b7,
1526
[ C(RESULT_MISS) ] = 0x01b7,
1527
},
1528
},
1529
};
1530
1531
static __initconst const u64 core2_hw_cache_event_ids
1532
[PERF_COUNT_HW_CACHE_MAX]
1533
[PERF_COUNT_HW_CACHE_OP_MAX]
1534
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1535
{
1536
[ C(L1D) ] = {
1537
[ C(OP_READ) ] = {
1538
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1539
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1540
},
1541
[ C(OP_WRITE) ] = {
1542
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1543
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1544
},
1545
[ C(OP_PREFETCH) ] = {
1546
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1547
[ C(RESULT_MISS) ] = 0,
1548
},
1549
},
1550
[ C(L1I ) ] = {
1551
[ C(OP_READ) ] = {
1552
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1553
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1554
},
1555
[ C(OP_WRITE) ] = {
1556
[ C(RESULT_ACCESS) ] = -1,
1557
[ C(RESULT_MISS) ] = -1,
1558
},
1559
[ C(OP_PREFETCH) ] = {
1560
[ C(RESULT_ACCESS) ] = 0,
1561
[ C(RESULT_MISS) ] = 0,
1562
},
1563
},
1564
[ C(LL ) ] = {
1565
[ C(OP_READ) ] = {
1566
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1567
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1568
},
1569
[ C(OP_WRITE) ] = {
1570
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1571
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1572
},
1573
[ C(OP_PREFETCH) ] = {
1574
[ C(RESULT_ACCESS) ] = 0,
1575
[ C(RESULT_MISS) ] = 0,
1576
},
1577
},
1578
[ C(DTLB) ] = {
1579
[ C(OP_READ) ] = {
1580
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1581
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1582
},
1583
[ C(OP_WRITE) ] = {
1584
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1585
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1586
},
1587
[ C(OP_PREFETCH) ] = {
1588
[ C(RESULT_ACCESS) ] = 0,
1589
[ C(RESULT_MISS) ] = 0,
1590
},
1591
},
1592
[ C(ITLB) ] = {
1593
[ C(OP_READ) ] = {
1594
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1595
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1596
},
1597
[ C(OP_WRITE) ] = {
1598
[ C(RESULT_ACCESS) ] = -1,
1599
[ C(RESULT_MISS) ] = -1,
1600
},
1601
[ C(OP_PREFETCH) ] = {
1602
[ C(RESULT_ACCESS) ] = -1,
1603
[ C(RESULT_MISS) ] = -1,
1604
},
1605
},
1606
[ C(BPU ) ] = {
1607
[ C(OP_READ) ] = {
1608
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1609
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1610
},
1611
[ C(OP_WRITE) ] = {
1612
[ C(RESULT_ACCESS) ] = -1,
1613
[ C(RESULT_MISS) ] = -1,
1614
},
1615
[ C(OP_PREFETCH) ] = {
1616
[ C(RESULT_ACCESS) ] = -1,
1617
[ C(RESULT_MISS) ] = -1,
1618
},
1619
},
1620
};
1621
1622
static __initconst const u64 atom_hw_cache_event_ids
1623
[PERF_COUNT_HW_CACHE_MAX]
1624
[PERF_COUNT_HW_CACHE_OP_MAX]
1625
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1626
{
1627
[ C(L1D) ] = {
1628
[ C(OP_READ) ] = {
1629
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1630
[ C(RESULT_MISS) ] = 0,
1631
},
1632
[ C(OP_WRITE) ] = {
1633
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1634
[ C(RESULT_MISS) ] = 0,
1635
},
1636
[ C(OP_PREFETCH) ] = {
1637
[ C(RESULT_ACCESS) ] = 0x0,
1638
[ C(RESULT_MISS) ] = 0,
1639
},
1640
},
1641
[ C(L1I ) ] = {
1642
[ C(OP_READ) ] = {
1643
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1644
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1645
},
1646
[ C(OP_WRITE) ] = {
1647
[ C(RESULT_ACCESS) ] = -1,
1648
[ C(RESULT_MISS) ] = -1,
1649
},
1650
[ C(OP_PREFETCH) ] = {
1651
[ C(RESULT_ACCESS) ] = 0,
1652
[ C(RESULT_MISS) ] = 0,
1653
},
1654
},
1655
[ C(LL ) ] = {
1656
[ C(OP_READ) ] = {
1657
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1658
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1659
},
1660
[ C(OP_WRITE) ] = {
1661
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1662
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1663
},
1664
[ C(OP_PREFETCH) ] = {
1665
[ C(RESULT_ACCESS) ] = 0,
1666
[ C(RESULT_MISS) ] = 0,
1667
},
1668
},
1669
[ C(DTLB) ] = {
1670
[ C(OP_READ) ] = {
1671
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1672
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1673
},
1674
[ C(OP_WRITE) ] = {
1675
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1676
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1677
},
1678
[ C(OP_PREFETCH) ] = {
1679
[ C(RESULT_ACCESS) ] = 0,
1680
[ C(RESULT_MISS) ] = 0,
1681
},
1682
},
1683
[ C(ITLB) ] = {
1684
[ C(OP_READ) ] = {
1685
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1686
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1687
},
1688
[ C(OP_WRITE) ] = {
1689
[ C(RESULT_ACCESS) ] = -1,
1690
[ C(RESULT_MISS) ] = -1,
1691
},
1692
[ C(OP_PREFETCH) ] = {
1693
[ C(RESULT_ACCESS) ] = -1,
1694
[ C(RESULT_MISS) ] = -1,
1695
},
1696
},
1697
[ C(BPU ) ] = {
1698
[ C(OP_READ) ] = {
1699
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1700
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1701
},
1702
[ C(OP_WRITE) ] = {
1703
[ C(RESULT_ACCESS) ] = -1,
1704
[ C(RESULT_MISS) ] = -1,
1705
},
1706
[ C(OP_PREFETCH) ] = {
1707
[ C(RESULT_ACCESS) ] = -1,
1708
[ C(RESULT_MISS) ] = -1,
1709
},
1710
},
1711
};
1712
1713
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1714
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1715
/* no_alloc_cycles.not_delivered */
1716
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1717
"event=0xca,umask=0x50");
1718
EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1719
/* uops_retired.all */
1720
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1721
"event=0xc2,umask=0x10");
1722
/* uops_retired.all */
1723
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1724
"event=0xc2,umask=0x10");
1725
1726
static struct attribute *slm_events_attrs[] = {
1727
EVENT_PTR(td_total_slots_slm),
1728
EVENT_PTR(td_total_slots_scale_slm),
1729
EVENT_PTR(td_fetch_bubbles_slm),
1730
EVENT_PTR(td_fetch_bubbles_scale_slm),
1731
EVENT_PTR(td_slots_issued_slm),
1732
EVENT_PTR(td_slots_retired_slm),
1733
NULL
1734
};
1735
1736
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1737
{
1738
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1739
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1740
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1741
EVENT_EXTRA_END
1742
};
1743
1744
#define SLM_DMND_READ SNB_DMND_DATA_RD
1745
#define SLM_DMND_WRITE SNB_DMND_RFO
1746
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1747
1748
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1749
#define SLM_LLC_ACCESS SNB_RESP_ANY
1750
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1751
1752
static __initconst const u64 slm_hw_cache_extra_regs
1753
[PERF_COUNT_HW_CACHE_MAX]
1754
[PERF_COUNT_HW_CACHE_OP_MAX]
1755
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1756
{
1757
[ C(LL ) ] = {
1758
[ C(OP_READ) ] = {
1759
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1760
[ C(RESULT_MISS) ] = 0,
1761
},
1762
[ C(OP_WRITE) ] = {
1763
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1764
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1765
},
1766
[ C(OP_PREFETCH) ] = {
1767
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1768
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1769
},
1770
},
1771
};
1772
1773
static __initconst const u64 slm_hw_cache_event_ids
1774
[PERF_COUNT_HW_CACHE_MAX]
1775
[PERF_COUNT_HW_CACHE_OP_MAX]
1776
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1777
{
1778
[ C(L1D) ] = {
1779
[ C(OP_READ) ] = {
1780
[ C(RESULT_ACCESS) ] = 0,
1781
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1782
},
1783
[ C(OP_WRITE) ] = {
1784
[ C(RESULT_ACCESS) ] = 0,
1785
[ C(RESULT_MISS) ] = 0,
1786
},
1787
[ C(OP_PREFETCH) ] = {
1788
[ C(RESULT_ACCESS) ] = 0,
1789
[ C(RESULT_MISS) ] = 0,
1790
},
1791
},
1792
[ C(L1I ) ] = {
1793
[ C(OP_READ) ] = {
1794
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1795
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1796
},
1797
[ C(OP_WRITE) ] = {
1798
[ C(RESULT_ACCESS) ] = -1,
1799
[ C(RESULT_MISS) ] = -1,
1800
},
1801
[ C(OP_PREFETCH) ] = {
1802
[ C(RESULT_ACCESS) ] = 0,
1803
[ C(RESULT_MISS) ] = 0,
1804
},
1805
},
1806
[ C(LL ) ] = {
1807
[ C(OP_READ) ] = {
1808
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1809
[ C(RESULT_ACCESS) ] = 0x01b7,
1810
[ C(RESULT_MISS) ] = 0,
1811
},
1812
[ C(OP_WRITE) ] = {
1813
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1814
[ C(RESULT_ACCESS) ] = 0x01b7,
1815
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1816
[ C(RESULT_MISS) ] = 0x01b7,
1817
},
1818
[ C(OP_PREFETCH) ] = {
1819
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1820
[ C(RESULT_ACCESS) ] = 0x01b7,
1821
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1822
[ C(RESULT_MISS) ] = 0x01b7,
1823
},
1824
},
1825
[ C(DTLB) ] = {
1826
[ C(OP_READ) ] = {
1827
[ C(RESULT_ACCESS) ] = 0,
1828
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1829
},
1830
[ C(OP_WRITE) ] = {
1831
[ C(RESULT_ACCESS) ] = 0,
1832
[ C(RESULT_MISS) ] = 0,
1833
},
1834
[ C(OP_PREFETCH) ] = {
1835
[ C(RESULT_ACCESS) ] = 0,
1836
[ C(RESULT_MISS) ] = 0,
1837
},
1838
},
1839
[ C(ITLB) ] = {
1840
[ C(OP_READ) ] = {
1841
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1842
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1843
},
1844
[ C(OP_WRITE) ] = {
1845
[ C(RESULT_ACCESS) ] = -1,
1846
[ C(RESULT_MISS) ] = -1,
1847
},
1848
[ C(OP_PREFETCH) ] = {
1849
[ C(RESULT_ACCESS) ] = -1,
1850
[ C(RESULT_MISS) ] = -1,
1851
},
1852
},
1853
[ C(BPU ) ] = {
1854
[ C(OP_READ) ] = {
1855
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1856
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1857
},
1858
[ C(OP_WRITE) ] = {
1859
[ C(RESULT_ACCESS) ] = -1,
1860
[ C(RESULT_MISS) ] = -1,
1861
},
1862
[ C(OP_PREFETCH) ] = {
1863
[ C(RESULT_ACCESS) ] = -1,
1864
[ C(RESULT_MISS) ] = -1,
1865
},
1866
},
1867
};
1868
1869
EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1870
EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1871
/* UOPS_NOT_DELIVERED.ANY */
1872
EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1873
/* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1874
EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1875
/* UOPS_RETIRED.ANY */
1876
EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1877
/* UOPS_ISSUED.ANY */
1878
EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1879
1880
static struct attribute *glm_events_attrs[] = {
1881
EVENT_PTR(td_total_slots_glm),
1882
EVENT_PTR(td_total_slots_scale_glm),
1883
EVENT_PTR(td_fetch_bubbles_glm),
1884
EVENT_PTR(td_recovery_bubbles_glm),
1885
EVENT_PTR(td_slots_issued_glm),
1886
EVENT_PTR(td_slots_retired_glm),
1887
NULL
1888
};
1889
1890
static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1891
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1892
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1893
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1894
EVENT_EXTRA_END
1895
};
1896
1897
#define GLM_DEMAND_DATA_RD BIT_ULL(0)
1898
#define GLM_DEMAND_RFO BIT_ULL(1)
1899
#define GLM_ANY_RESPONSE BIT_ULL(16)
1900
#define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1901
#define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1902
#define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1903
#define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1904
#define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1905
#define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1906
#define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1907
1908
static __initconst const u64 glm_hw_cache_event_ids
1909
[PERF_COUNT_HW_CACHE_MAX]
1910
[PERF_COUNT_HW_CACHE_OP_MAX]
1911
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1912
[C(L1D)] = {
1913
[C(OP_READ)] = {
1914
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1915
[C(RESULT_MISS)] = 0x0,
1916
},
1917
[C(OP_WRITE)] = {
1918
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1919
[C(RESULT_MISS)] = 0x0,
1920
},
1921
[C(OP_PREFETCH)] = {
1922
[C(RESULT_ACCESS)] = 0x0,
1923
[C(RESULT_MISS)] = 0x0,
1924
},
1925
},
1926
[C(L1I)] = {
1927
[C(OP_READ)] = {
1928
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1929
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1930
},
1931
[C(OP_WRITE)] = {
1932
[C(RESULT_ACCESS)] = -1,
1933
[C(RESULT_MISS)] = -1,
1934
},
1935
[C(OP_PREFETCH)] = {
1936
[C(RESULT_ACCESS)] = 0x0,
1937
[C(RESULT_MISS)] = 0x0,
1938
},
1939
},
1940
[C(LL)] = {
1941
[C(OP_READ)] = {
1942
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1943
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1944
},
1945
[C(OP_WRITE)] = {
1946
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1947
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1948
},
1949
[C(OP_PREFETCH)] = {
1950
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1951
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952
},
1953
},
1954
[C(DTLB)] = {
1955
[C(OP_READ)] = {
1956
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1957
[C(RESULT_MISS)] = 0x0,
1958
},
1959
[C(OP_WRITE)] = {
1960
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1961
[C(RESULT_MISS)] = 0x0,
1962
},
1963
[C(OP_PREFETCH)] = {
1964
[C(RESULT_ACCESS)] = 0x0,
1965
[C(RESULT_MISS)] = 0x0,
1966
},
1967
},
1968
[C(ITLB)] = {
1969
[C(OP_READ)] = {
1970
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1971
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1972
},
1973
[C(OP_WRITE)] = {
1974
[C(RESULT_ACCESS)] = -1,
1975
[C(RESULT_MISS)] = -1,
1976
},
1977
[C(OP_PREFETCH)] = {
1978
[C(RESULT_ACCESS)] = -1,
1979
[C(RESULT_MISS)] = -1,
1980
},
1981
},
1982
[C(BPU)] = {
1983
[C(OP_READ)] = {
1984
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1985
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1986
},
1987
[C(OP_WRITE)] = {
1988
[C(RESULT_ACCESS)] = -1,
1989
[C(RESULT_MISS)] = -1,
1990
},
1991
[C(OP_PREFETCH)] = {
1992
[C(RESULT_ACCESS)] = -1,
1993
[C(RESULT_MISS)] = -1,
1994
},
1995
},
1996
};
1997
1998
static __initconst const u64 glm_hw_cache_extra_regs
1999
[PERF_COUNT_HW_CACHE_MAX]
2000
[PERF_COUNT_HW_CACHE_OP_MAX]
2001
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2002
[C(LL)] = {
2003
[C(OP_READ)] = {
2004
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2005
GLM_LLC_ACCESS,
2006
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2007
GLM_LLC_MISS,
2008
},
2009
[C(OP_WRITE)] = {
2010
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2011
GLM_LLC_ACCESS,
2012
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2013
GLM_LLC_MISS,
2014
},
2015
[C(OP_PREFETCH)] = {
2016
[C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
2017
GLM_LLC_ACCESS,
2018
[C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
2019
GLM_LLC_MISS,
2020
},
2021
},
2022
};
2023
2024
static __initconst const u64 glp_hw_cache_event_ids
2025
[PERF_COUNT_HW_CACHE_MAX]
2026
[PERF_COUNT_HW_CACHE_OP_MAX]
2027
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2028
[C(L1D)] = {
2029
[C(OP_READ)] = {
2030
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2031
[C(RESULT_MISS)] = 0x0,
2032
},
2033
[C(OP_WRITE)] = {
2034
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2035
[C(RESULT_MISS)] = 0x0,
2036
},
2037
[C(OP_PREFETCH)] = {
2038
[C(RESULT_ACCESS)] = 0x0,
2039
[C(RESULT_MISS)] = 0x0,
2040
},
2041
},
2042
[C(L1I)] = {
2043
[C(OP_READ)] = {
2044
[C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
2045
[C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
2046
},
2047
[C(OP_WRITE)] = {
2048
[C(RESULT_ACCESS)] = -1,
2049
[C(RESULT_MISS)] = -1,
2050
},
2051
[C(OP_PREFETCH)] = {
2052
[C(RESULT_ACCESS)] = 0x0,
2053
[C(RESULT_MISS)] = 0x0,
2054
},
2055
},
2056
[C(LL)] = {
2057
[C(OP_READ)] = {
2058
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2059
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2060
},
2061
[C(OP_WRITE)] = {
2062
[C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
2063
[C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
2064
},
2065
[C(OP_PREFETCH)] = {
2066
[C(RESULT_ACCESS)] = 0x0,
2067
[C(RESULT_MISS)] = 0x0,
2068
},
2069
},
2070
[C(DTLB)] = {
2071
[C(OP_READ)] = {
2072
[C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
2073
[C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
2074
},
2075
[C(OP_WRITE)] = {
2076
[C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
2077
[C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
2078
},
2079
[C(OP_PREFETCH)] = {
2080
[C(RESULT_ACCESS)] = 0x0,
2081
[C(RESULT_MISS)] = 0x0,
2082
},
2083
},
2084
[C(ITLB)] = {
2085
[C(OP_READ)] = {
2086
[C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
2087
[C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
2088
},
2089
[C(OP_WRITE)] = {
2090
[C(RESULT_ACCESS)] = -1,
2091
[C(RESULT_MISS)] = -1,
2092
},
2093
[C(OP_PREFETCH)] = {
2094
[C(RESULT_ACCESS)] = -1,
2095
[C(RESULT_MISS)] = -1,
2096
},
2097
},
2098
[C(BPU)] = {
2099
[C(OP_READ)] = {
2100
[C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
2101
[C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
2102
},
2103
[C(OP_WRITE)] = {
2104
[C(RESULT_ACCESS)] = -1,
2105
[C(RESULT_MISS)] = -1,
2106
},
2107
[C(OP_PREFETCH)] = {
2108
[C(RESULT_ACCESS)] = -1,
2109
[C(RESULT_MISS)] = -1,
2110
},
2111
},
2112
};
2113
2114
static __initconst const u64 glp_hw_cache_extra_regs
2115
[PERF_COUNT_HW_CACHE_MAX]
2116
[PERF_COUNT_HW_CACHE_OP_MAX]
2117
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2118
[C(LL)] = {
2119
[C(OP_READ)] = {
2120
[C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2121
GLM_LLC_ACCESS,
2122
[C(RESULT_MISS)] = GLM_DEMAND_READ|
2123
GLM_LLC_MISS,
2124
},
2125
[C(OP_WRITE)] = {
2126
[C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2127
GLM_LLC_ACCESS,
2128
[C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2129
GLM_LLC_MISS,
2130
},
2131
[C(OP_PREFETCH)] = {
2132
[C(RESULT_ACCESS)] = 0x0,
2133
[C(RESULT_MISS)] = 0x0,
2134
},
2135
},
2136
};
2137
2138
#define TNT_LOCAL_DRAM BIT_ULL(26)
2139
#define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2140
#define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2141
#define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2142
#define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2143
SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2144
#define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2145
2146
static __initconst const u64 tnt_hw_cache_extra_regs
2147
[PERF_COUNT_HW_CACHE_MAX]
2148
[PERF_COUNT_HW_CACHE_OP_MAX]
2149
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2150
[C(LL)] = {
2151
[C(OP_READ)] = {
2152
[C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2153
TNT_LLC_ACCESS,
2154
[C(RESULT_MISS)] = TNT_DEMAND_READ|
2155
TNT_LLC_MISS,
2156
},
2157
[C(OP_WRITE)] = {
2158
[C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2159
TNT_LLC_ACCESS,
2160
[C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2161
TNT_LLC_MISS,
2162
},
2163
[C(OP_PREFETCH)] = {
2164
[C(RESULT_ACCESS)] = 0x0,
2165
[C(RESULT_MISS)] = 0x0,
2166
},
2167
},
2168
};
2169
2170
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2171
EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2172
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2173
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2174
2175
static struct attribute *tnt_events_attrs[] = {
2176
EVENT_PTR(td_fe_bound_tnt),
2177
EVENT_PTR(td_retiring_tnt),
2178
EVENT_PTR(td_bad_spec_tnt),
2179
EVENT_PTR(td_be_bound_tnt),
2180
NULL,
2181
};
2182
2183
static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2184
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2185
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2186
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2187
EVENT_EXTRA_END
2188
};
2189
2190
EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3");
2191
EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6");
2192
2193
static struct attribute *grt_mem_attrs[] = {
2194
EVENT_PTR(mem_ld_grt),
2195
EVENT_PTR(mem_st_grt),
2196
NULL
2197
};
2198
2199
static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2200
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2201
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2202
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2203
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2204
EVENT_EXTRA_END
2205
};
2206
2207
EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0");
2208
EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0");
2209
2210
static struct attribute *cmt_events_attrs[] = {
2211
EVENT_PTR(td_fe_bound_tnt),
2212
EVENT_PTR(td_retiring_cmt),
2213
EVENT_PTR(td_bad_spec_cmt),
2214
EVENT_PTR(td_be_bound_tnt),
2215
NULL
2216
};
2217
2218
static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2219
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2220
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2221
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2222
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2223
INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2224
INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2225
EVENT_EXTRA_END
2226
};
2227
2228
EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_skt, "event=0x9c,umask=0x01");
2229
EVENT_ATTR_STR(topdown-retiring, td_retiring_skt, "event=0xc2,umask=0x02");
2230
EVENT_ATTR_STR(topdown-be-bound, td_be_bound_skt, "event=0xa4,umask=0x02");
2231
2232
static struct attribute *skt_events_attrs[] = {
2233
EVENT_PTR(td_fe_bound_skt),
2234
EVENT_PTR(td_retiring_skt),
2235
EVENT_PTR(td_bad_spec_cmt),
2236
EVENT_PTR(td_be_bound_skt),
2237
NULL,
2238
};
2239
2240
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2241
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2242
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
2243
#define KNL_MCDRAM_FAR BIT_ULL(22)
2244
#define KNL_DDR_LOCAL BIT_ULL(23)
2245
#define KNL_DDR_FAR BIT_ULL(24)
2246
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2247
KNL_DDR_LOCAL | KNL_DDR_FAR)
2248
#define KNL_L2_READ SLM_DMND_READ
2249
#define KNL_L2_WRITE SLM_DMND_WRITE
2250
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2251
#define KNL_L2_ACCESS SLM_LLC_ACCESS
2252
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2253
KNL_DRAM_ANY | SNB_SNP_ANY | \
2254
SNB_NON_DRAM)
2255
2256
static __initconst const u64 knl_hw_cache_extra_regs
2257
[PERF_COUNT_HW_CACHE_MAX]
2258
[PERF_COUNT_HW_CACHE_OP_MAX]
2259
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2260
[C(LL)] = {
2261
[C(OP_READ)] = {
2262
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2263
[C(RESULT_MISS)] = 0,
2264
},
2265
[C(OP_WRITE)] = {
2266
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2267
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2268
},
2269
[C(OP_PREFETCH)] = {
2270
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2271
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2272
},
2273
},
2274
};
2275
2276
/*
2277
* Used from PMIs where the LBRs are already disabled.
2278
*
2279
* This function could be called consecutively. It is required to remain in
2280
* disabled state if called consecutively.
2281
*
2282
* During consecutive calls, the same disable value will be written to related
2283
* registers, so the PMU state remains unchanged.
2284
*
2285
* intel_bts events don't coexist with intel PMU's BTS events because of
2286
* x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2287
* disabled around intel PMU's event batching etc, only inside the PMI handler.
2288
*
2289
* Avoid PEBS_ENABLE MSR access in PMIs.
2290
* The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2291
* It doesn't matter if the PEBS is enabled or not.
2292
* Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2293
* access PEBS_ENABLE MSR in disable_all()/enable_all().
2294
* However, there are some cases which may change PEBS status, e.g. PMI
2295
* throttle. The PEBS_ENABLE should be updated where the status changes.
2296
*/
2297
static __always_inline void __intel_pmu_disable_all(bool bts)
2298
{
2299
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2300
2301
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2302
2303
if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2304
intel_pmu_disable_bts();
2305
}
2306
2307
static __always_inline void intel_pmu_disable_all(void)
2308
{
2309
__intel_pmu_disable_all(true);
2310
static_call_cond(x86_pmu_pebs_disable_all)();
2311
intel_pmu_lbr_disable_all();
2312
}
2313
2314
static void __intel_pmu_enable_all(int added, bool pmi)
2315
{
2316
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2318
2319
intel_pmu_lbr_enable_all(pmi);
2320
2321
if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2322
wrmsrq(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2323
cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2324
}
2325
2326
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL,
2327
intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2328
2329
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2330
struct perf_event *event =
2331
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2332
2333
if (WARN_ON_ONCE(!event))
2334
return;
2335
2336
intel_pmu_enable_bts(event->hw.config);
2337
}
2338
}
2339
2340
static void intel_pmu_enable_all(int added)
2341
{
2342
static_call_cond(x86_pmu_pebs_enable_all)();
2343
__intel_pmu_enable_all(added, false);
2344
}
2345
2346
static noinline int
2347
__intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2348
unsigned int cnt, unsigned long flags)
2349
{
2350
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2351
2352
intel_pmu_lbr_read();
2353
cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2354
2355
memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2356
intel_pmu_enable_all(0);
2357
local_irq_restore(flags);
2358
return cnt;
2359
}
2360
2361
static int
2362
intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2363
{
2364
unsigned long flags;
2365
2366
/* must not have branches... */
2367
local_irq_save(flags);
2368
__intel_pmu_disable_all(false); /* we don't care about BTS */
2369
__intel_pmu_lbr_disable();
2370
/* ... until here */
2371
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2372
}
2373
2374
static int
2375
intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2376
{
2377
unsigned long flags;
2378
2379
/* must not have branches... */
2380
local_irq_save(flags);
2381
__intel_pmu_disable_all(false); /* we don't care about BTS */
2382
__intel_pmu_arch_lbr_disable();
2383
/* ... until here */
2384
return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2385
}
2386
2387
/*
2388
* Workaround for:
2389
* Intel Errata AAK100 (model 26)
2390
* Intel Errata AAP53 (model 30)
2391
* Intel Errata BD53 (model 44)
2392
*
2393
* The official story:
2394
* These chips need to be 'reset' when adding counters by programming the
2395
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2396
* in sequence on the same PMC or on different PMCs.
2397
*
2398
* In practice it appears some of these events do in fact count, and
2399
* we need to program all 4 events.
2400
*/
2401
static void intel_pmu_nhm_workaround(void)
2402
{
2403
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404
static const unsigned long nhm_magic[4] = {
2405
0x4300B5,
2406
0x4300D2,
2407
0x4300B1,
2408
0x4300B1
2409
};
2410
struct perf_event *event;
2411
int i;
2412
2413
/*
2414
* The Errata requires below steps:
2415
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2416
* 2) Configure 4 PERFEVTSELx with the magic events and clear
2417
* the corresponding PMCx;
2418
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2419
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2420
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2421
*/
2422
2423
/*
2424
* The real steps we choose are a little different from above.
2425
* A) To reduce MSR operations, we don't run step 1) as they
2426
* are already cleared before this function is called;
2427
* B) Call x86_perf_event_update to save PMCx before configuring
2428
* PERFEVTSELx with magic number;
2429
* C) With step 5), we do clear only when the PERFEVTSELx is
2430
* not used currently.
2431
* D) Call x86_perf_event_set_period to restore PMCx;
2432
*/
2433
2434
/* We always operate 4 pairs of PERF Counters */
2435
for (i = 0; i < 4; i++) {
2436
event = cpuc->events[i];
2437
if (event)
2438
static_call(x86_pmu_update)(event);
2439
}
2440
2441
for (i = 0; i < 4; i++) {
2442
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2443
wrmsrq(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2444
}
2445
2446
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2447
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2448
2449
for (i = 0; i < 4; i++) {
2450
event = cpuc->events[i];
2451
2452
if (event) {
2453
static_call(x86_pmu_set_period)(event);
2454
__x86_pmu_enable_event(&event->hw,
2455
ARCH_PERFMON_EVENTSEL_ENABLE);
2456
} else
2457
wrmsrq(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2458
}
2459
}
2460
2461
static void intel_pmu_nhm_enable_all(int added)
2462
{
2463
if (added)
2464
intel_pmu_nhm_workaround();
2465
intel_pmu_enable_all(added);
2466
}
2467
2468
static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2469
{
2470
u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2471
2472
if (cpuc->tfa_shadow != val) {
2473
cpuc->tfa_shadow = val;
2474
wrmsrq(MSR_TSX_FORCE_ABORT, val);
2475
}
2476
}
2477
2478
static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2479
{
2480
/*
2481
* We're going to use PMC3, make sure TFA is set before we touch it.
2482
*/
2483
if (cntr == 3)
2484
intel_set_tfa(cpuc, true);
2485
}
2486
2487
static void intel_tfa_pmu_enable_all(int added)
2488
{
2489
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2490
2491
/*
2492
* If we find PMC3 is no longer used when we enable the PMU, we can
2493
* clear TFA.
2494
*/
2495
if (!test_bit(3, cpuc->active_mask))
2496
intel_set_tfa(cpuc, false);
2497
2498
intel_pmu_enable_all(added);
2499
}
2500
2501
static inline u64 intel_pmu_get_status(void)
2502
{
2503
u64 status;
2504
2505
rdmsrq(MSR_CORE_PERF_GLOBAL_STATUS, status);
2506
2507
return status;
2508
}
2509
2510
static inline void intel_pmu_ack_status(u64 ack)
2511
{
2512
wrmsrq(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2513
}
2514
2515
static inline bool event_is_checkpointed(struct perf_event *event)
2516
{
2517
return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2518
}
2519
2520
static inline void intel_set_masks(struct perf_event *event, int idx)
2521
{
2522
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2523
2524
if (event->attr.exclude_host)
2525
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2526
if (event->attr.exclude_guest)
2527
__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2528
if (event_is_checkpointed(event))
2529
__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2530
}
2531
2532
static inline void intel_clear_masks(struct perf_event *event, int idx)
2533
{
2534
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535
2536
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2537
__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2538
__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2539
}
2540
2541
static void intel_pmu_disable_fixed(struct perf_event *event)
2542
{
2543
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2544
struct hw_perf_event *hwc = &event->hw;
2545
int idx = hwc->idx;
2546
u64 mask;
2547
2548
if (is_topdown_idx(idx)) {
2549
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2550
2551
/*
2552
* When there are other active TopDown events,
2553
* don't disable the fixed counter 3.
2554
*/
2555
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2556
return;
2557
idx = INTEL_PMC_IDX_FIXED_SLOTS;
2558
}
2559
2560
intel_clear_masks(event, idx);
2561
2562
mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2563
cpuc->fixed_ctrl_val &= ~mask;
2564
}
2565
2566
static void intel_pmu_disable_event(struct perf_event *event)
2567
{
2568
struct hw_perf_event *hwc = &event->hw;
2569
int idx = hwc->idx;
2570
2571
switch (idx) {
2572
case 0 ... INTEL_PMC_IDX_FIXED - 1:
2573
intel_clear_masks(event, idx);
2574
x86_pmu_disable_event(event);
2575
break;
2576
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2577
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2578
intel_pmu_disable_fixed(event);
2579
break;
2580
case INTEL_PMC_IDX_FIXED_BTS:
2581
intel_pmu_disable_bts();
2582
intel_pmu_drain_bts_buffer();
2583
return;
2584
case INTEL_PMC_IDX_FIXED_VLBR:
2585
intel_clear_masks(event, idx);
2586
break;
2587
default:
2588
intel_clear_masks(event, idx);
2589
pr_warn("Failed to disable the event with invalid index %d\n",
2590
idx);
2591
return;
2592
}
2593
2594
/*
2595
* Needs to be called after x86_pmu_disable_event,
2596
* so we don't trigger the event without PEBS bit set.
2597
*/
2598
if (unlikely(event->attr.precise_ip))
2599
static_call(x86_pmu_pebs_disable)(event);
2600
}
2601
2602
static void intel_pmu_assign_event(struct perf_event *event, int idx)
2603
{
2604
if (is_pebs_pt(event))
2605
perf_report_aux_output_id(event, idx);
2606
}
2607
2608
static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event)
2609
{
2610
return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK;
2611
}
2612
2613
static void intel_pmu_del_event(struct perf_event *event)
2614
{
2615
if (intel_pmu_needs_branch_stack(event))
2616
intel_pmu_lbr_del(event);
2617
if (event->attr.precise_ip)
2618
intel_pmu_pebs_del(event);
2619
if (is_pebs_counter_event_group(event) ||
2620
is_acr_event_group(event))
2621
this_cpu_ptr(&cpu_hw_events)->n_late_setup--;
2622
}
2623
2624
static int icl_set_topdown_event_period(struct perf_event *event)
2625
{
2626
struct hw_perf_event *hwc = &event->hw;
2627
s64 left = local64_read(&hwc->period_left);
2628
2629
/*
2630
* The values in PERF_METRICS MSR are derived from fixed counter 3.
2631
* Software should start both registers, PERF_METRICS and fixed
2632
* counter 3, from zero.
2633
* Clear PERF_METRICS and Fixed counter 3 in initialization.
2634
* After that, both MSRs will be cleared for each read.
2635
* Don't need to clear them again.
2636
*/
2637
if (left == x86_pmu.max_period) {
2638
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2639
wrmsrq(MSR_PERF_METRICS, 0);
2640
hwc->saved_slots = 0;
2641
hwc->saved_metric = 0;
2642
}
2643
2644
if ((hwc->saved_slots) && is_slots_event(event)) {
2645
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2646
wrmsrq(MSR_PERF_METRICS, hwc->saved_metric);
2647
}
2648
2649
perf_event_update_userpage(event);
2650
2651
return 0;
2652
}
2653
2654
DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2655
2656
static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2657
{
2658
u32 val;
2659
2660
/*
2661
* The metric is reported as an 8bit integer fraction
2662
* summing up to 0xff.
2663
* slots-in-metric = (Metric / 0xff) * slots
2664
*/
2665
val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2666
return mul_u64_u32_div(slots, val, 0xff);
2667
}
2668
2669
static u64 icl_get_topdown_value(struct perf_event *event,
2670
u64 slots, u64 metrics)
2671
{
2672
int idx = event->hw.idx;
2673
u64 delta;
2674
2675
if (is_metric_idx(idx))
2676
delta = icl_get_metrics_event_value(metrics, slots, idx);
2677
else
2678
delta = slots;
2679
2680
return delta;
2681
}
2682
2683
static void __icl_update_topdown_event(struct perf_event *event,
2684
u64 slots, u64 metrics,
2685
u64 last_slots, u64 last_metrics)
2686
{
2687
u64 delta, last = 0;
2688
2689
delta = icl_get_topdown_value(event, slots, metrics);
2690
if (last_slots)
2691
last = icl_get_topdown_value(event, last_slots, last_metrics);
2692
2693
/*
2694
* The 8bit integer fraction of metric may be not accurate,
2695
* especially when the changes is very small.
2696
* For example, if only a few bad_spec happens, the fraction
2697
* may be reduced from 1 to 0. If so, the bad_spec event value
2698
* will be 0 which is definitely less than the last value.
2699
* Avoid update event->count for this case.
2700
*/
2701
if (delta > last) {
2702
delta -= last;
2703
local64_add(delta, &event->count);
2704
}
2705
}
2706
2707
static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2708
u64 metrics, int metric_end)
2709
{
2710
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2711
struct perf_event *other;
2712
int idx;
2713
2714
event->hw.saved_slots = slots;
2715
event->hw.saved_metric = metrics;
2716
2717
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2718
if (!is_topdown_idx(idx))
2719
continue;
2720
other = cpuc->events[idx];
2721
other->hw.saved_slots = slots;
2722
other->hw.saved_metric = metrics;
2723
}
2724
}
2725
2726
/*
2727
* Update all active Topdown events.
2728
*
2729
* The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2730
* modify by a NMI. PMU has to be disabled before calling this function.
2731
*/
2732
2733
static u64 intel_update_topdown_event(struct perf_event *event, int metric_end, u64 *val)
2734
{
2735
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2736
struct perf_event *other;
2737
u64 slots, metrics;
2738
bool reset = true;
2739
int idx;
2740
2741
if (!val) {
2742
/* read Fixed counter 3 */
2743
slots = rdpmc(3 | INTEL_PMC_FIXED_RDPMC_BASE);
2744
if (!slots)
2745
return 0;
2746
2747
/* read PERF_METRICS */
2748
metrics = rdpmc(INTEL_PMC_FIXED_RDPMC_METRICS);
2749
} else {
2750
slots = val[0];
2751
metrics = val[1];
2752
/*
2753
* Don't reset the PERF_METRICS and Fixed counter 3
2754
* for each PEBS record read. Utilize the RDPMC metrics
2755
* clear mode.
2756
*/
2757
reset = false;
2758
}
2759
2760
for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2761
if (!is_topdown_idx(idx))
2762
continue;
2763
other = cpuc->events[idx];
2764
__icl_update_topdown_event(other, slots, metrics,
2765
event ? event->hw.saved_slots : 0,
2766
event ? event->hw.saved_metric : 0);
2767
}
2768
2769
/*
2770
* Check and update this event, which may have been cleared
2771
* in active_mask e.g. x86_pmu_stop()
2772
*/
2773
if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2774
__icl_update_topdown_event(event, slots, metrics,
2775
event->hw.saved_slots,
2776
event->hw.saved_metric);
2777
2778
/*
2779
* In x86_pmu_stop(), the event is cleared in active_mask first,
2780
* then drain the delta, which indicates context switch for
2781
* counting.
2782
* Save metric and slots for context switch.
2783
* Don't need to reset the PERF_METRICS and Fixed counter 3.
2784
* Because the values will be restored in next schedule in.
2785
*/
2786
update_saved_topdown_regs(event, slots, metrics, metric_end);
2787
reset = false;
2788
}
2789
2790
if (reset) {
2791
/* The fixed counter 3 has to be written before the PERF_METRICS. */
2792
wrmsrq(MSR_CORE_PERF_FIXED_CTR3, 0);
2793
wrmsrq(MSR_PERF_METRICS, 0);
2794
if (event)
2795
update_saved_topdown_regs(event, 0, 0, metric_end);
2796
}
2797
2798
return slots;
2799
}
2800
2801
static u64 icl_update_topdown_event(struct perf_event *event, u64 *val)
2802
{
2803
return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2804
x86_pmu.num_topdown_events - 1,
2805
val);
2806
}
2807
2808
DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, intel_pmu_topdown_event_update);
2809
2810
static void intel_pmu_read_event(struct perf_event *event)
2811
{
2812
if (event->hw.flags & (PERF_X86_EVENT_AUTO_RELOAD | PERF_X86_EVENT_TOPDOWN) ||
2813
is_pebs_counter_event_group(event)) {
2814
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815
bool pmu_enabled = cpuc->enabled;
2816
2817
/* Only need to call update_topdown_event() once for group read. */
2818
if (is_metric_event(event) && (cpuc->txn_flags & PERF_PMU_TXN_READ))
2819
return;
2820
2821
cpuc->enabled = 0;
2822
if (pmu_enabled)
2823
intel_pmu_disable_all();
2824
2825
/*
2826
* If the PEBS counters snapshotting is enabled,
2827
* the topdown event is available in PEBS records.
2828
*/
2829
if (is_topdown_count(event) && !is_pebs_counter_event_group(event))
2830
static_call(intel_pmu_update_topdown_event)(event, NULL);
2831
else
2832
intel_pmu_drain_pebs_buffer();
2833
2834
cpuc->enabled = pmu_enabled;
2835
if (pmu_enabled)
2836
intel_pmu_enable_all(0);
2837
2838
return;
2839
}
2840
2841
x86_perf_event_update(event);
2842
}
2843
2844
static void intel_pmu_enable_fixed(struct perf_event *event)
2845
{
2846
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2847
struct hw_perf_event *hwc = &event->hw;
2848
int idx = hwc->idx;
2849
u64 bits = 0;
2850
2851
if (is_topdown_idx(idx)) {
2852
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2853
/*
2854
* When there are other active TopDown events,
2855
* don't enable the fixed counter 3 again.
2856
*/
2857
if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2858
return;
2859
2860
idx = INTEL_PMC_IDX_FIXED_SLOTS;
2861
2862
if (event->attr.config1 & INTEL_TD_CFG_METRIC_CLEAR)
2863
bits |= INTEL_FIXED_3_METRICS_CLEAR;
2864
}
2865
2866
intel_set_masks(event, idx);
2867
2868
/*
2869
* Enable IRQ generation (0x8), if not PEBS,
2870
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2871
* if requested:
2872
*/
2873
if (!event->attr.precise_ip)
2874
bits |= INTEL_FIXED_0_ENABLE_PMI;
2875
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2876
bits |= INTEL_FIXED_0_USER;
2877
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2878
bits |= INTEL_FIXED_0_KERNEL;
2879
2880
/*
2881
* ANY bit is supported in v3 and up
2882
*/
2883
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2884
bits |= INTEL_FIXED_0_ANYTHREAD;
2885
2886
idx -= INTEL_PMC_IDX_FIXED;
2887
bits = intel_fixed_bits_by_idx(idx, bits);
2888
if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip)
2889
bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2890
2891
cpuc->fixed_ctrl_val &= ~intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2892
cpuc->fixed_ctrl_val |= bits;
2893
}
2894
2895
static void intel_pmu_config_acr(int idx, u64 mask, u32 reload)
2896
{
2897
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2898
int msr_b, msr_c;
2899
int msr_offset;
2900
2901
if (!mask && !cpuc->acr_cfg_b[idx])
2902
return;
2903
2904
if (idx < INTEL_PMC_IDX_FIXED) {
2905
msr_b = MSR_IA32_PMC_V6_GP0_CFG_B;
2906
msr_c = MSR_IA32_PMC_V6_GP0_CFG_C;
2907
msr_offset = x86_pmu.addr_offset(idx, false);
2908
} else {
2909
msr_b = MSR_IA32_PMC_V6_FX0_CFG_B;
2910
msr_c = MSR_IA32_PMC_V6_FX0_CFG_C;
2911
msr_offset = x86_pmu.addr_offset(idx - INTEL_PMC_IDX_FIXED, false);
2912
}
2913
2914
if (cpuc->acr_cfg_b[idx] != mask) {
2915
wrmsrl(msr_b + msr_offset, mask);
2916
cpuc->acr_cfg_b[idx] = mask;
2917
}
2918
/* Only need to update the reload value when there is a valid config value. */
2919
if (mask && cpuc->acr_cfg_c[idx] != reload) {
2920
wrmsrl(msr_c + msr_offset, reload);
2921
cpuc->acr_cfg_c[idx] = reload;
2922
}
2923
}
2924
2925
static void intel_pmu_enable_acr(struct perf_event *event)
2926
{
2927
struct hw_perf_event *hwc = &event->hw;
2928
2929
if (!is_acr_event_group(event) || !event->attr.config2) {
2930
/*
2931
* The disable doesn't clear the ACR CFG register.
2932
* Check and clear the ACR CFG register.
2933
*/
2934
intel_pmu_config_acr(hwc->idx, 0, 0);
2935
return;
2936
}
2937
2938
intel_pmu_config_acr(hwc->idx, hwc->config1, -hwc->sample_period);
2939
}
2940
2941
DEFINE_STATIC_CALL_NULL(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
2942
2943
static void intel_pmu_enable_event(struct perf_event *event)
2944
{
2945
u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE;
2946
struct hw_perf_event *hwc = &event->hw;
2947
int idx = hwc->idx;
2948
2949
if (unlikely(event->attr.precise_ip))
2950
static_call(x86_pmu_pebs_enable)(event);
2951
2952
switch (idx) {
2953
case 0 ... INTEL_PMC_IDX_FIXED - 1:
2954
if (branch_sample_counters(event))
2955
enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR;
2956
intel_set_masks(event, idx);
2957
static_call_cond(intel_pmu_enable_acr_event)(event);
2958
__x86_pmu_enable_event(hwc, enable_mask);
2959
break;
2960
case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2961
static_call_cond(intel_pmu_enable_acr_event)(event);
2962
fallthrough;
2963
case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2964
intel_pmu_enable_fixed(event);
2965
break;
2966
case INTEL_PMC_IDX_FIXED_BTS:
2967
if (!__this_cpu_read(cpu_hw_events.enabled))
2968
return;
2969
intel_pmu_enable_bts(hwc->config);
2970
break;
2971
case INTEL_PMC_IDX_FIXED_VLBR:
2972
intel_set_masks(event, idx);
2973
break;
2974
default:
2975
pr_warn("Failed to enable the event with invalid index %d\n",
2976
idx);
2977
}
2978
}
2979
2980
static void intel_pmu_acr_late_setup(struct cpu_hw_events *cpuc)
2981
{
2982
struct perf_event *event, *leader;
2983
int i, j, idx;
2984
2985
for (i = 0; i < cpuc->n_events; i++) {
2986
leader = cpuc->event_list[i];
2987
if (!is_acr_event_group(leader))
2988
continue;
2989
2990
/* The ACR events must be contiguous. */
2991
for (j = i; j < cpuc->n_events; j++) {
2992
event = cpuc->event_list[j];
2993
if (event->group_leader != leader->group_leader)
2994
break;
2995
for_each_set_bit(idx, (unsigned long *)&event->attr.config2, X86_PMC_IDX_MAX) {
2996
if (i + idx >= cpuc->n_events ||
2997
!is_acr_event_group(cpuc->event_list[i + idx]))
2998
return;
2999
__set_bit(cpuc->assign[i + idx], (unsigned long *)&event->hw.config1);
3000
}
3001
}
3002
i = j - 1;
3003
}
3004
}
3005
3006
void intel_pmu_late_setup(void)
3007
{
3008
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3009
3010
if (!cpuc->n_late_setup)
3011
return;
3012
3013
intel_pmu_pebs_late_setup(cpuc);
3014
intel_pmu_acr_late_setup(cpuc);
3015
}
3016
3017
static void intel_pmu_add_event(struct perf_event *event)
3018
{
3019
if (event->attr.precise_ip)
3020
intel_pmu_pebs_add(event);
3021
if (intel_pmu_needs_branch_stack(event))
3022
intel_pmu_lbr_add(event);
3023
if (is_pebs_counter_event_group(event) ||
3024
is_acr_event_group(event))
3025
this_cpu_ptr(&cpu_hw_events)->n_late_setup++;
3026
}
3027
3028
/*
3029
* Save and restart an expired event. Called by NMI contexts,
3030
* so it has to be careful about preempting normal event ops:
3031
*/
3032
int intel_pmu_save_and_restart(struct perf_event *event)
3033
{
3034
static_call(x86_pmu_update)(event);
3035
/*
3036
* For a checkpointed counter always reset back to 0. This
3037
* avoids a situation where the counter overflows, aborts the
3038
* transaction and is then set back to shortly before the
3039
* overflow, and overflows and aborts again.
3040
*/
3041
if (unlikely(event_is_checkpointed(event))) {
3042
/* No race with NMIs because the counter should not be armed */
3043
wrmsrq(event->hw.event_base, 0);
3044
local64_set(&event->hw.prev_count, 0);
3045
}
3046
return static_call(x86_pmu_set_period)(event);
3047
}
3048
3049
static int intel_pmu_set_period(struct perf_event *event)
3050
{
3051
if (unlikely(is_topdown_count(event)))
3052
return static_call(intel_pmu_set_topdown_event_period)(event);
3053
3054
return x86_perf_event_set_period(event);
3055
}
3056
3057
static u64 intel_pmu_update(struct perf_event *event)
3058
{
3059
if (unlikely(is_topdown_count(event)))
3060
return static_call(intel_pmu_update_topdown_event)(event, NULL);
3061
3062
return x86_perf_event_update(event);
3063
}
3064
3065
static void intel_pmu_reset(void)
3066
{
3067
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
3068
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3069
unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask);
3070
unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask);
3071
unsigned long flags;
3072
int idx;
3073
3074
if (!*(u64 *)cntr_mask)
3075
return;
3076
3077
local_irq_save(flags);
3078
3079
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
3080
3081
for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) {
3082
wrmsrq_safe(x86_pmu_config_addr(idx), 0ull);
3083
wrmsrq_safe(x86_pmu_event_addr(idx), 0ull);
3084
}
3085
for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) {
3086
if (fixed_counter_disabled(idx, cpuc->pmu))
3087
continue;
3088
wrmsrq_safe(x86_pmu_fixed_ctr_addr(idx), 0ull);
3089
}
3090
3091
if (ds)
3092
ds->bts_index = ds->bts_buffer_base;
3093
3094
/* Ack all overflows and disable fixed counters */
3095
if (x86_pmu.version >= 2) {
3096
intel_pmu_ack_status(intel_pmu_get_status());
3097
wrmsrq(MSR_CORE_PERF_GLOBAL_CTRL, 0);
3098
}
3099
3100
/* Reset LBRs and LBR freezing */
3101
if (x86_pmu.lbr_nr) {
3102
update_debugctlmsr(get_debugctlmsr() &
3103
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
3104
}
3105
3106
local_irq_restore(flags);
3107
}
3108
3109
/*
3110
* We may be running with guest PEBS events created by KVM, and the
3111
* PEBS records are logged into the guest's DS and invisible to host.
3112
*
3113
* In the case of guest PEBS overflow, we only trigger a fake event
3114
* to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
3115
* The guest will then vm-entry and check the guest DS area to read
3116
* the guest PEBS records.
3117
*
3118
* The contents and other behavior of the guest event do not matter.
3119
*/
3120
static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
3121
struct perf_sample_data *data)
3122
{
3123
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3124
u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
3125
struct perf_event *event = NULL;
3126
int bit;
3127
3128
if (!unlikely(perf_guest_state()))
3129
return;
3130
3131
if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
3132
!guest_pebs_idxs)
3133
return;
3134
3135
for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) {
3136
event = cpuc->events[bit];
3137
if (!event->attr.precise_ip)
3138
continue;
3139
3140
perf_sample_data_init(data, 0, event->hw.last_period);
3141
perf_event_overflow(event, data, regs);
3142
3143
/* Inject one fake event is enough. */
3144
break;
3145
}
3146
}
3147
3148
static int handle_pmi_common(struct pt_regs *regs, u64 status)
3149
{
3150
struct perf_sample_data data;
3151
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3152
int bit;
3153
int handled = 0;
3154
3155
inc_irq_stat(apic_perf_irqs);
3156
3157
/*
3158
* Ignore a range of extra bits in status that do not indicate
3159
* overflow by themselves.
3160
*/
3161
status &= ~(GLOBAL_STATUS_COND_CHG |
3162
GLOBAL_STATUS_ASIF |
3163
GLOBAL_STATUS_LBRS_FROZEN);
3164
if (!status)
3165
return 0;
3166
/*
3167
* In case multiple PEBS events are sampled at the same time,
3168
* it is possible to have GLOBAL_STATUS bit 62 set indicating
3169
* PEBS buffer overflow and also seeing at most 3 PEBS counters
3170
* having their bits set in the status register. This is a sign
3171
* that there was at least one PEBS record pending at the time
3172
* of the PMU interrupt. PEBS counters must only be processed
3173
* via the drain_pebs() calls and not via the regular sample
3174
* processing loop coming after that the function, otherwise
3175
* phony regular samples may be generated in the sampling buffer
3176
* not marked with the EXACT tag. Another possibility is to have
3177
* one PEBS event and at least one non-PEBS event which overflows
3178
* while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
3179
* not be set, yet the overflow status bit for the PEBS counter will
3180
* be on Skylake.
3181
*
3182
* To avoid this problem, we systematically ignore the PEBS-enabled
3183
* counters from the GLOBAL_STATUS mask and we always process PEBS
3184
* events via drain_pebs().
3185
*/
3186
status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3187
3188
/*
3189
* PEBS overflow sets bit 62 in the global status register
3190
*/
3191
if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3192
u64 pebs_enabled = cpuc->pebs_enabled;
3193
3194
handled++;
3195
x86_pmu_handle_guest_pebs(regs, &data);
3196
static_call(x86_pmu_drain_pebs)(regs, &data);
3197
3198
/*
3199
* PMI throttle may be triggered, which stops the PEBS event.
3200
* Although cpuc->pebs_enabled is updated accordingly, the
3201
* MSR_IA32_PEBS_ENABLE is not updated. Because the
3202
* cpuc->enabled has been forced to 0 in PMI.
3203
* Update the MSR if pebs_enabled is changed.
3204
*/
3205
if (pebs_enabled != cpuc->pebs_enabled)
3206
wrmsrq(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3207
3208
/*
3209
* Above PEBS handler (PEBS counters snapshotting) has updated fixed
3210
* counter 3 and perf metrics counts if they are in counter group,
3211
* unnecessary to update again.
3212
*/
3213
if (cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS] &&
3214
is_pebs_counter_event_group(cpuc->events[INTEL_PMC_IDX_FIXED_SLOTS]))
3215
status &= ~GLOBAL_STATUS_PERF_METRICS_OVF_BIT;
3216
}
3217
3218
/*
3219
* Intel PT
3220
*/
3221
if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3222
handled++;
3223
if (!perf_guest_handle_intel_pt_intr())
3224
intel_pt_interrupt();
3225
}
3226
3227
/*
3228
* Intel Perf metrics
3229
*/
3230
if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3231
handled++;
3232
static_call(intel_pmu_update_topdown_event)(NULL, NULL);
3233
}
3234
3235
status &= hybrid(cpuc->pmu, intel_ctrl);
3236
3237
/*
3238
* Checkpointed counters can lead to 'spurious' PMIs because the
3239
* rollback caused by the PMI will have cleared the overflow status
3240
* bit. Therefore always force probe these counters.
3241
*/
3242
status |= cpuc->intel_cp_status;
3243
3244
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3245
struct perf_event *event = cpuc->events[bit];
3246
u64 last_period;
3247
3248
handled++;
3249
3250
if (!test_bit(bit, cpuc->active_mask))
3251
continue;
3252
3253
/*
3254
* There may be unprocessed PEBS records in the PEBS buffer,
3255
* which still stores the previous values.
3256
* Process those records first before handling the latest value.
3257
* For example,
3258
* A is a regular counter
3259
* B is a PEBS event which reads A
3260
* C is a PEBS event
3261
*
3262
* The following can happen:
3263
* B-assist A=1
3264
* C A=2
3265
* B-assist A=3
3266
* A-overflow-PMI A=4
3267
* C-assist-PMI (PEBS buffer) A=5
3268
*
3269
* The PEBS buffer has to be drained before handling the A-PMI
3270
*/
3271
if (is_pebs_counter_event_group(event))
3272
x86_pmu.drain_pebs(regs, &data);
3273
3274
last_period = event->hw.last_period;
3275
3276
if (!intel_pmu_save_and_restart(event))
3277
continue;
3278
3279
perf_sample_data_init(&data, 0, last_period);
3280
3281
if (has_branch_stack(event))
3282
intel_pmu_lbr_save_brstack(&data, cpuc, event);
3283
3284
perf_event_overflow(event, &data, regs);
3285
}
3286
3287
return handled;
3288
}
3289
3290
/*
3291
* This handler is triggered by the local APIC, so the APIC IRQ handling
3292
* rules apply:
3293
*/
3294
static int intel_pmu_handle_irq(struct pt_regs *regs)
3295
{
3296
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3297
bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3298
bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3299
int loops;
3300
u64 status;
3301
int handled;
3302
int pmu_enabled;
3303
3304
/*
3305
* Save the PMU state.
3306
* It needs to be restored when leaving the handler.
3307
*/
3308
pmu_enabled = cpuc->enabled;
3309
/*
3310
* In general, the early ACK is only applied for old platforms.
3311
* For the big core starts from Haswell, the late ACK should be
3312
* applied.
3313
* For the small core after Tremont, we have to do the ACK right
3314
* before re-enabling counters, which is in the middle of the
3315
* NMI handler.
3316
*/
3317
if (!late_ack && !mid_ack)
3318
apic_write(APIC_LVTPC, APIC_DM_NMI);
3319
intel_bts_disable_local();
3320
cpuc->enabled = 0;
3321
__intel_pmu_disable_all(true);
3322
handled = intel_pmu_drain_bts_buffer();
3323
handled += intel_bts_interrupt();
3324
status = intel_pmu_get_status();
3325
if (!status)
3326
goto done;
3327
3328
loops = 0;
3329
again:
3330
intel_pmu_lbr_read();
3331
intel_pmu_ack_status(status);
3332
if (++loops > 100) {
3333
static bool warned;
3334
3335
if (!warned) {
3336
WARN(1, "perfevents: irq loop stuck!\n");
3337
perf_event_print_debug();
3338
warned = true;
3339
}
3340
intel_pmu_reset();
3341
goto done;
3342
}
3343
3344
handled += handle_pmi_common(regs, status);
3345
3346
/*
3347
* Repeat if there is more work to be done:
3348
*/
3349
status = intel_pmu_get_status();
3350
if (status)
3351
goto again;
3352
3353
done:
3354
if (mid_ack)
3355
apic_write(APIC_LVTPC, APIC_DM_NMI);
3356
/* Only restore PMU state when it's active. See x86_pmu_disable(). */
3357
cpuc->enabled = pmu_enabled;
3358
if (pmu_enabled)
3359
__intel_pmu_enable_all(0, true);
3360
intel_bts_enable_local();
3361
3362
/*
3363
* Only unmask the NMI after the overflow counters
3364
* have been reset. This avoids spurious NMIs on
3365
* Haswell CPUs.
3366
*/
3367
if (late_ack)
3368
apic_write(APIC_LVTPC, APIC_DM_NMI);
3369
return handled;
3370
}
3371
3372
static struct event_constraint *
3373
intel_bts_constraints(struct perf_event *event)
3374
{
3375
if (unlikely(intel_pmu_has_bts(event)))
3376
return &bts_constraint;
3377
3378
return NULL;
3379
}
3380
3381
/*
3382
* Note: matches a fake event, like Fixed2.
3383
*/
3384
static struct event_constraint *
3385
intel_vlbr_constraints(struct perf_event *event)
3386
{
3387
struct event_constraint *c = &vlbr_constraint;
3388
3389
if (unlikely(constraint_match(c, event->hw.config))) {
3390
event->hw.flags |= c->flags;
3391
return c;
3392
}
3393
3394
return NULL;
3395
}
3396
3397
static int intel_alt_er(struct cpu_hw_events *cpuc,
3398
int idx, u64 config)
3399
{
3400
struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3401
int alt_idx = idx;
3402
3403
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3404
return idx;
3405
3406
if (idx == EXTRA_REG_RSP_0)
3407
alt_idx = EXTRA_REG_RSP_1;
3408
3409
if (idx == EXTRA_REG_RSP_1)
3410
alt_idx = EXTRA_REG_RSP_0;
3411
3412
if (config & ~extra_regs[alt_idx].valid_mask)
3413
return idx;
3414
3415
return alt_idx;
3416
}
3417
3418
static void intel_fixup_er(struct perf_event *event, int idx)
3419
{
3420
struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3421
event->hw.extra_reg.idx = idx;
3422
3423
if (idx == EXTRA_REG_RSP_0) {
3424
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3425
event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3426
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3427
} else if (idx == EXTRA_REG_RSP_1) {
3428
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3429
event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3430
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3431
}
3432
}
3433
3434
/*
3435
* manage allocation of shared extra msr for certain events
3436
*
3437
* sharing can be:
3438
* per-cpu: to be shared between the various events on a single PMU
3439
* per-core: per-cpu + shared by HT threads
3440
*/
3441
static struct event_constraint *
3442
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3443
struct perf_event *event,
3444
struct hw_perf_event_extra *reg)
3445
{
3446
struct event_constraint *c = &emptyconstraint;
3447
struct er_account *era;
3448
unsigned long flags;
3449
int idx = reg->idx;
3450
3451
/*
3452
* reg->alloc can be set due to existing state, so for fake cpuc we
3453
* need to ignore this, otherwise we might fail to allocate proper fake
3454
* state for this extra reg constraint. Also see the comment below.
3455
*/
3456
if (reg->alloc && !cpuc->is_fake)
3457
return NULL; /* call x86_get_event_constraint() */
3458
3459
again:
3460
era = &cpuc->shared_regs->regs[idx];
3461
/*
3462
* we use spin_lock_irqsave() to avoid lockdep issues when
3463
* passing a fake cpuc
3464
*/
3465
raw_spin_lock_irqsave(&era->lock, flags);
3466
3467
if (!atomic_read(&era->ref) || era->config == reg->config) {
3468
3469
/*
3470
* If its a fake cpuc -- as per validate_{group,event}() we
3471
* shouldn't touch event state and we can avoid doing so
3472
* since both will only call get_event_constraints() once
3473
* on each event, this avoids the need for reg->alloc.
3474
*
3475
* Not doing the ER fixup will only result in era->reg being
3476
* wrong, but since we won't actually try and program hardware
3477
* this isn't a problem either.
3478
*/
3479
if (!cpuc->is_fake) {
3480
if (idx != reg->idx)
3481
intel_fixup_er(event, idx);
3482
3483
/*
3484
* x86_schedule_events() can call get_event_constraints()
3485
* multiple times on events in the case of incremental
3486
* scheduling(). reg->alloc ensures we only do the ER
3487
* allocation once.
3488
*/
3489
reg->alloc = 1;
3490
}
3491
3492
/* lock in msr value */
3493
era->config = reg->config;
3494
era->reg = reg->reg;
3495
3496
/* one more user */
3497
atomic_inc(&era->ref);
3498
3499
/*
3500
* need to call x86_get_event_constraint()
3501
* to check if associated event has constraints
3502
*/
3503
c = NULL;
3504
} else {
3505
idx = intel_alt_er(cpuc, idx, reg->config);
3506
if (idx != reg->idx) {
3507
raw_spin_unlock_irqrestore(&era->lock, flags);
3508
goto again;
3509
}
3510
}
3511
raw_spin_unlock_irqrestore(&era->lock, flags);
3512
3513
return c;
3514
}
3515
3516
static void
3517
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3518
struct hw_perf_event_extra *reg)
3519
{
3520
struct er_account *era;
3521
3522
/*
3523
* Only put constraint if extra reg was actually allocated. Also takes
3524
* care of event which do not use an extra shared reg.
3525
*
3526
* Also, if this is a fake cpuc we shouldn't touch any event state
3527
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
3528
* either since it'll be thrown out.
3529
*/
3530
if (!reg->alloc || cpuc->is_fake)
3531
return;
3532
3533
era = &cpuc->shared_regs->regs[reg->idx];
3534
3535
/* one fewer user */
3536
atomic_dec(&era->ref);
3537
3538
/* allocate again next time */
3539
reg->alloc = 0;
3540
}
3541
3542
static struct event_constraint *
3543
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3544
struct perf_event *event)
3545
{
3546
struct event_constraint *c = NULL, *d;
3547
struct hw_perf_event_extra *xreg, *breg;
3548
3549
xreg = &event->hw.extra_reg;
3550
if (xreg->idx != EXTRA_REG_NONE) {
3551
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3552
if (c == &emptyconstraint)
3553
return c;
3554
}
3555
breg = &event->hw.branch_reg;
3556
if (breg->idx != EXTRA_REG_NONE) {
3557
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3558
if (d == &emptyconstraint) {
3559
__intel_shared_reg_put_constraints(cpuc, xreg);
3560
c = d;
3561
}
3562
}
3563
return c;
3564
}
3565
3566
struct event_constraint *
3567
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3568
struct perf_event *event)
3569
{
3570
struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3571
struct event_constraint *c;
3572
3573
if (event_constraints) {
3574
for_each_event_constraint(c, event_constraints) {
3575
if (constraint_match(c, event->hw.config)) {
3576
event->hw.flags |= c->flags;
3577
return c;
3578
}
3579
}
3580
}
3581
3582
return &hybrid_var(cpuc->pmu, unconstrained);
3583
}
3584
3585
static struct event_constraint *
3586
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3587
struct perf_event *event)
3588
{
3589
struct event_constraint *c;
3590
3591
c = intel_vlbr_constraints(event);
3592
if (c)
3593
return c;
3594
3595
c = intel_bts_constraints(event);
3596
if (c)
3597
return c;
3598
3599
c = intel_shared_regs_constraints(cpuc, event);
3600
if (c)
3601
return c;
3602
3603
c = intel_pebs_constraints(event);
3604
if (c)
3605
return c;
3606
3607
return x86_get_event_constraints(cpuc, idx, event);
3608
}
3609
3610
static void
3611
intel_start_scheduling(struct cpu_hw_events *cpuc)
3612
{
3613
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3614
struct intel_excl_states *xl;
3615
int tid = cpuc->excl_thread_id;
3616
3617
/*
3618
* nothing needed if in group validation mode
3619
*/
3620
if (cpuc->is_fake || !is_ht_workaround_enabled())
3621
return;
3622
3623
/*
3624
* no exclusion needed
3625
*/
3626
if (WARN_ON_ONCE(!excl_cntrs))
3627
return;
3628
3629
xl = &excl_cntrs->states[tid];
3630
3631
xl->sched_started = true;
3632
/*
3633
* lock shared state until we are done scheduling
3634
* in stop_event_scheduling()
3635
* makes scheduling appear as a transaction
3636
*/
3637
raw_spin_lock(&excl_cntrs->lock);
3638
}
3639
3640
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3641
{
3642
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3643
struct event_constraint *c = cpuc->event_constraint[idx];
3644
struct intel_excl_states *xl;
3645
int tid = cpuc->excl_thread_id;
3646
3647
if (cpuc->is_fake || !is_ht_workaround_enabled())
3648
return;
3649
3650
if (WARN_ON_ONCE(!excl_cntrs))
3651
return;
3652
3653
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3654
return;
3655
3656
xl = &excl_cntrs->states[tid];
3657
3658
lockdep_assert_held(&excl_cntrs->lock);
3659
3660
if (c->flags & PERF_X86_EVENT_EXCL)
3661
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3662
else
3663
xl->state[cntr] = INTEL_EXCL_SHARED;
3664
}
3665
3666
static void
3667
intel_stop_scheduling(struct cpu_hw_events *cpuc)
3668
{
3669
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3670
struct intel_excl_states *xl;
3671
int tid = cpuc->excl_thread_id;
3672
3673
/*
3674
* nothing needed if in group validation mode
3675
*/
3676
if (cpuc->is_fake || !is_ht_workaround_enabled())
3677
return;
3678
/*
3679
* no exclusion needed
3680
*/
3681
if (WARN_ON_ONCE(!excl_cntrs))
3682
return;
3683
3684
xl = &excl_cntrs->states[tid];
3685
3686
xl->sched_started = false;
3687
/*
3688
* release shared state lock (acquired in intel_start_scheduling())
3689
*/
3690
raw_spin_unlock(&excl_cntrs->lock);
3691
}
3692
3693
static struct event_constraint *
3694
dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3695
{
3696
WARN_ON_ONCE(!cpuc->constraint_list);
3697
3698
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3699
struct event_constraint *cx;
3700
3701
/*
3702
* grab pre-allocated constraint entry
3703
*/
3704
cx = &cpuc->constraint_list[idx];
3705
3706
/*
3707
* initialize dynamic constraint
3708
* with static constraint
3709
*/
3710
*cx = *c;
3711
3712
/*
3713
* mark constraint as dynamic
3714
*/
3715
cx->flags |= PERF_X86_EVENT_DYNAMIC;
3716
c = cx;
3717
}
3718
3719
return c;
3720
}
3721
3722
static struct event_constraint *
3723
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3724
int idx, struct event_constraint *c)
3725
{
3726
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3727
struct intel_excl_states *xlo;
3728
int tid = cpuc->excl_thread_id;
3729
int is_excl, i, w;
3730
3731
/*
3732
* validating a group does not require
3733
* enforcing cross-thread exclusion
3734
*/
3735
if (cpuc->is_fake || !is_ht_workaround_enabled())
3736
return c;
3737
3738
/*
3739
* no exclusion needed
3740
*/
3741
if (WARN_ON_ONCE(!excl_cntrs))
3742
return c;
3743
3744
/*
3745
* because we modify the constraint, we need
3746
* to make a copy. Static constraints come
3747
* from static const tables.
3748
*
3749
* only needed when constraint has not yet
3750
* been cloned (marked dynamic)
3751
*/
3752
c = dyn_constraint(cpuc, c, idx);
3753
3754
/*
3755
* From here on, the constraint is dynamic.
3756
* Either it was just allocated above, or it
3757
* was allocated during a earlier invocation
3758
* of this function
3759
*/
3760
3761
/*
3762
* state of sibling HT
3763
*/
3764
xlo = &excl_cntrs->states[tid ^ 1];
3765
3766
/*
3767
* event requires exclusive counter access
3768
* across HT threads
3769
*/
3770
is_excl = c->flags & PERF_X86_EVENT_EXCL;
3771
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3772
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3773
if (!cpuc->n_excl++)
3774
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3775
}
3776
3777
/*
3778
* Modify static constraint with current dynamic
3779
* state of thread
3780
*
3781
* EXCLUSIVE: sibling counter measuring exclusive event
3782
* SHARED : sibling counter measuring non-exclusive event
3783
* UNUSED : sibling counter unused
3784
*/
3785
w = c->weight;
3786
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3787
/*
3788
* exclusive event in sibling counter
3789
* our corresponding counter cannot be used
3790
* regardless of our event
3791
*/
3792
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3793
__clear_bit(i, c->idxmsk);
3794
w--;
3795
continue;
3796
}
3797
/*
3798
* if measuring an exclusive event, sibling
3799
* measuring non-exclusive, then counter cannot
3800
* be used
3801
*/
3802
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3803
__clear_bit(i, c->idxmsk);
3804
w--;
3805
continue;
3806
}
3807
}
3808
3809
/*
3810
* if we return an empty mask, then switch
3811
* back to static empty constraint to avoid
3812
* the cost of freeing later on
3813
*/
3814
if (!w)
3815
c = &emptyconstraint;
3816
3817
c->weight = w;
3818
3819
return c;
3820
}
3821
3822
static struct event_constraint *
3823
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3824
struct perf_event *event)
3825
{
3826
struct event_constraint *c1, *c2;
3827
3828
c1 = cpuc->event_constraint[idx];
3829
3830
/*
3831
* first time only
3832
* - static constraint: no change across incremental scheduling calls
3833
* - dynamic constraint: handled by intel_get_excl_constraints()
3834
*/
3835
c2 = __intel_get_event_constraints(cpuc, idx, event);
3836
if (c1) {
3837
WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3838
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3839
c1->weight = c2->weight;
3840
c2 = c1;
3841
}
3842
3843
if (cpuc->excl_cntrs)
3844
return intel_get_excl_constraints(cpuc, event, idx, c2);
3845
3846
if (event->hw.dyn_constraint != ~0ULL) {
3847
c2 = dyn_constraint(cpuc, c2, idx);
3848
c2->idxmsk64 &= event->hw.dyn_constraint;
3849
c2->weight = hweight64(c2->idxmsk64);
3850
}
3851
3852
return c2;
3853
}
3854
3855
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3856
struct perf_event *event)
3857
{
3858
struct hw_perf_event *hwc = &event->hw;
3859
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3860
int tid = cpuc->excl_thread_id;
3861
struct intel_excl_states *xl;
3862
3863
/*
3864
* nothing needed if in group validation mode
3865
*/
3866
if (cpuc->is_fake)
3867
return;
3868
3869
if (WARN_ON_ONCE(!excl_cntrs))
3870
return;
3871
3872
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3873
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3874
if (!--cpuc->n_excl)
3875
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3876
}
3877
3878
/*
3879
* If event was actually assigned, then mark the counter state as
3880
* unused now.
3881
*/
3882
if (hwc->idx >= 0) {
3883
xl = &excl_cntrs->states[tid];
3884
3885
/*
3886
* put_constraint may be called from x86_schedule_events()
3887
* which already has the lock held so here make locking
3888
* conditional.
3889
*/
3890
if (!xl->sched_started)
3891
raw_spin_lock(&excl_cntrs->lock);
3892
3893
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3894
3895
if (!xl->sched_started)
3896
raw_spin_unlock(&excl_cntrs->lock);
3897
}
3898
}
3899
3900
static void
3901
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3902
struct perf_event *event)
3903
{
3904
struct hw_perf_event_extra *reg;
3905
3906
reg = &event->hw.extra_reg;
3907
if (reg->idx != EXTRA_REG_NONE)
3908
__intel_shared_reg_put_constraints(cpuc, reg);
3909
3910
reg = &event->hw.branch_reg;
3911
if (reg->idx != EXTRA_REG_NONE)
3912
__intel_shared_reg_put_constraints(cpuc, reg);
3913
}
3914
3915
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3916
struct perf_event *event)
3917
{
3918
intel_put_shared_regs_event_constraints(cpuc, event);
3919
3920
/*
3921
* is PMU has exclusive counter restrictions, then
3922
* all events are subject to and must call the
3923
* put_excl_constraints() routine
3924
*/
3925
if (cpuc->excl_cntrs)
3926
intel_put_excl_constraints(cpuc, event);
3927
}
3928
3929
static void intel_pebs_aliases_core2(struct perf_event *event)
3930
{
3931
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3932
/*
3933
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3934
* (0x003c) so that we can use it with PEBS.
3935
*
3936
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3937
* PEBS capable. However we can use INST_RETIRED.ANY_P
3938
* (0x00c0), which is a PEBS capable event, to get the same
3939
* count.
3940
*
3941
* INST_RETIRED.ANY_P counts the number of cycles that retires
3942
* CNTMASK instructions. By setting CNTMASK to a value (16)
3943
* larger than the maximum number of instructions that can be
3944
* retired per cycle (4) and then inverting the condition, we
3945
* count all cycles that retire 16 or less instructions, which
3946
* is every cycle.
3947
*
3948
* Thereby we gain a PEBS capable cycle counter.
3949
*/
3950
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3951
3952
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3953
event->hw.config = alt_config;
3954
}
3955
}
3956
3957
static void intel_pebs_aliases_snb(struct perf_event *event)
3958
{
3959
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3960
/*
3961
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3962
* (0x003c) so that we can use it with PEBS.
3963
*
3964
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3965
* PEBS capable. However we can use UOPS_RETIRED.ALL
3966
* (0x01c2), which is a PEBS capable event, to get the same
3967
* count.
3968
*
3969
* UOPS_RETIRED.ALL counts the number of cycles that retires
3970
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
3971
* larger than the maximum number of micro-ops that can be
3972
* retired per cycle (4) and then inverting the condition, we
3973
* count all cycles that retire 16 or less micro-ops, which
3974
* is every cycle.
3975
*
3976
* Thereby we gain a PEBS capable cycle counter.
3977
*/
3978
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3979
3980
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3981
event->hw.config = alt_config;
3982
}
3983
}
3984
3985
static void intel_pebs_aliases_precdist(struct perf_event *event)
3986
{
3987
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3988
/*
3989
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3990
* (0x003c) so that we can use it with PEBS.
3991
*
3992
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3993
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
3994
* (0x01c0), which is a PEBS capable event, to get the same
3995
* count.
3996
*
3997
* The PREC_DIST event has special support to minimize sample
3998
* shadowing effects. One drawback is that it can be
3999
* only programmed on counter 1, but that seems like an
4000
* acceptable trade off.
4001
*/
4002
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
4003
4004
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
4005
event->hw.config = alt_config;
4006
}
4007
}
4008
4009
static void intel_pebs_aliases_ivb(struct perf_event *event)
4010
{
4011
if (event->attr.precise_ip < 3)
4012
return intel_pebs_aliases_snb(event);
4013
return intel_pebs_aliases_precdist(event);
4014
}
4015
4016
static void intel_pebs_aliases_skl(struct perf_event *event)
4017
{
4018
if (event->attr.precise_ip < 3)
4019
return intel_pebs_aliases_core2(event);
4020
return intel_pebs_aliases_precdist(event);
4021
}
4022
4023
static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
4024
{
4025
unsigned long flags = x86_pmu.large_pebs_flags;
4026
4027
if (event->attr.use_clockid)
4028
flags &= ~PERF_SAMPLE_TIME;
4029
if (!event->attr.exclude_kernel)
4030
flags &= ~PERF_SAMPLE_REGS_USER;
4031
if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
4032
flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
4033
return flags;
4034
}
4035
4036
static int intel_pmu_bts_config(struct perf_event *event)
4037
{
4038
struct perf_event_attr *attr = &event->attr;
4039
4040
if (unlikely(intel_pmu_has_bts(event))) {
4041
/* BTS is not supported by this architecture. */
4042
if (!x86_pmu.bts_active)
4043
return -EOPNOTSUPP;
4044
4045
/* BTS is currently only allowed for user-mode. */
4046
if (!attr->exclude_kernel)
4047
return -EOPNOTSUPP;
4048
4049
/* BTS is not allowed for precise events. */
4050
if (attr->precise_ip)
4051
return -EOPNOTSUPP;
4052
4053
/* disallow bts if conflicting events are present */
4054
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4055
return -EBUSY;
4056
4057
event->destroy = hw_perf_lbr_event_destroy;
4058
}
4059
4060
return 0;
4061
}
4062
4063
static int core_pmu_hw_config(struct perf_event *event)
4064
{
4065
int ret = x86_pmu_hw_config(event);
4066
4067
if (ret)
4068
return ret;
4069
4070
return intel_pmu_bts_config(event);
4071
}
4072
4073
#define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
4074
((x86_pmu.num_topdown_events - 1) << 8))
4075
4076
static bool is_available_metric_event(struct perf_event *event)
4077
{
4078
return is_metric_event(event) &&
4079
event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
4080
}
4081
4082
static inline bool is_mem_loads_event(struct perf_event *event)
4083
{
4084
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
4085
}
4086
4087
static inline bool is_mem_loads_aux_event(struct perf_event *event)
4088
{
4089
return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
4090
}
4091
4092
static inline bool require_mem_loads_aux_event(struct perf_event *event)
4093
{
4094
if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
4095
return false;
4096
4097
if (is_hybrid())
4098
return hybrid_pmu(event->pmu)->pmu_type == hybrid_big;
4099
4100
return true;
4101
}
4102
4103
static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
4104
{
4105
union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
4106
4107
return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
4108
}
4109
4110
static u64 intel_pmu_freq_start_period(struct perf_event *event)
4111
{
4112
int type = event->attr.type;
4113
u64 config, factor;
4114
s64 start;
4115
4116
/*
4117
* The 127 is the lowest possible recommended SAV (sample after value)
4118
* for a 4000 freq (default freq), according to the event list JSON file.
4119
* Also, assume the workload is idle 50% time.
4120
*/
4121
factor = 64 * 4000;
4122
if (type != PERF_TYPE_HARDWARE && type != PERF_TYPE_HW_CACHE)
4123
goto end;
4124
4125
/*
4126
* The estimation of the start period in the freq mode is
4127
* based on the below assumption.
4128
*
4129
* For a cycles or an instructions event, 1GHZ of the
4130
* underlying platform, 1 IPC. The workload is idle 50% time.
4131
* The start period = 1,000,000,000 * 1 / freq / 2.
4132
* = 500,000,000 / freq
4133
*
4134
* Usually, the branch-related events occur less than the
4135
* instructions event. According to the Intel event list JSON
4136
* file, the SAV (sample after value) of a branch-related event
4137
* is usually 1/4 of an instruction event.
4138
* The start period of branch-related events = 125,000,000 / freq.
4139
*
4140
* The cache-related events occurs even less. The SAV is usually
4141
* 1/20 of an instruction event.
4142
* The start period of cache-related events = 25,000,000 / freq.
4143
*/
4144
config = event->attr.config & PERF_HW_EVENT_MASK;
4145
if (type == PERF_TYPE_HARDWARE) {
4146
switch (config) {
4147
case PERF_COUNT_HW_CPU_CYCLES:
4148
case PERF_COUNT_HW_INSTRUCTIONS:
4149
case PERF_COUNT_HW_BUS_CYCLES:
4150
case PERF_COUNT_HW_STALLED_CYCLES_FRONTEND:
4151
case PERF_COUNT_HW_STALLED_CYCLES_BACKEND:
4152
case PERF_COUNT_HW_REF_CPU_CYCLES:
4153
factor = 500000000;
4154
break;
4155
case PERF_COUNT_HW_BRANCH_INSTRUCTIONS:
4156
case PERF_COUNT_HW_BRANCH_MISSES:
4157
factor = 125000000;
4158
break;
4159
case PERF_COUNT_HW_CACHE_REFERENCES:
4160
case PERF_COUNT_HW_CACHE_MISSES:
4161
factor = 25000000;
4162
break;
4163
default:
4164
goto end;
4165
}
4166
}
4167
4168
if (type == PERF_TYPE_HW_CACHE)
4169
factor = 25000000;
4170
end:
4171
/*
4172
* Usually, a prime or a number with less factors (close to prime)
4173
* is chosen as an SAV, which makes it less likely that the sampling
4174
* period synchronizes with some periodic event in the workload.
4175
* Minus 1 to make it at least avoiding values near power of twos
4176
* for the default freq.
4177
*/
4178
start = DIV_ROUND_UP_ULL(factor, event->attr.sample_freq) - 1;
4179
4180
if (start > x86_pmu.max_period)
4181
start = x86_pmu.max_period;
4182
4183
if (x86_pmu.limit_period)
4184
x86_pmu.limit_period(event, &start);
4185
4186
return start;
4187
}
4188
4189
static inline bool intel_pmu_has_acr(struct pmu *pmu)
4190
{
4191
return !!hybrid(pmu, acr_cause_mask64);
4192
}
4193
4194
static bool intel_pmu_is_acr_group(struct perf_event *event)
4195
{
4196
/* The group leader has the ACR flag set */
4197
if (is_acr_event_group(event))
4198
return true;
4199
4200
/* The acr_mask is set */
4201
if (event->attr.config2)
4202
return true;
4203
4204
return false;
4205
}
4206
4207
static inline void intel_pmu_set_acr_cntr_constr(struct perf_event *event,
4208
u64 *cause_mask, int *num)
4209
{
4210
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cntr_mask64);
4211
*cause_mask |= event->attr.config2;
4212
*num += 1;
4213
}
4214
4215
static inline void intel_pmu_set_acr_caused_constr(struct perf_event *event,
4216
int idx, u64 cause_mask)
4217
{
4218
if (test_bit(idx, (unsigned long *)&cause_mask))
4219
event->hw.dyn_constraint &= hybrid(event->pmu, acr_cause_mask64);
4220
}
4221
4222
static int intel_pmu_hw_config(struct perf_event *event)
4223
{
4224
int ret = x86_pmu_hw_config(event);
4225
4226
if (ret)
4227
return ret;
4228
4229
ret = intel_pmu_bts_config(event);
4230
if (ret)
4231
return ret;
4232
4233
if (event->attr.freq && event->attr.sample_freq) {
4234
event->hw.sample_period = intel_pmu_freq_start_period(event);
4235
event->hw.last_period = event->hw.sample_period;
4236
local64_set(&event->hw.period_left, event->hw.sample_period);
4237
}
4238
4239
if (event->attr.precise_ip) {
4240
if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
4241
return -EINVAL;
4242
4243
if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
4244
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
4245
if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) &&
4246
!has_aux_action(event)) {
4247
event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
4248
event->attach_state |= PERF_ATTACH_SCHED_CB;
4249
}
4250
}
4251
if (x86_pmu.pebs_aliases)
4252
x86_pmu.pebs_aliases(event);
4253
}
4254
4255
if (needs_branch_stack(event)) {
4256
/* Avoid branch stack setup for counting events in SAMPLE READ */
4257
if (is_sampling_event(event) ||
4258
!(event->attr.sample_type & PERF_SAMPLE_READ))
4259
event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4260
}
4261
4262
if (branch_sample_counters(event)) {
4263
struct perf_event *leader, *sibling;
4264
int num = 0;
4265
4266
if (!(x86_pmu.flags & PMU_FL_BR_CNTR) ||
4267
(event->attr.config & ~INTEL_ARCH_EVENT_MASK))
4268
return -EINVAL;
4269
4270
/*
4271
* The branch counter logging is not supported in the call stack
4272
* mode yet, since we cannot simply flush the LBR during e.g.,
4273
* multiplexing. Also, there is no obvious usage with the call
4274
* stack mode. Simply forbids it for now.
4275
*
4276
* If any events in the group enable the branch counter logging
4277
* feature, the group is treated as a branch counter logging
4278
* group, which requires the extra space to store the counters.
4279
*/
4280
leader = event->group_leader;
4281
if (branch_sample_call_stack(leader))
4282
return -EINVAL;
4283
if (branch_sample_counters(leader)) {
4284
num++;
4285
leader->hw.dyn_constraint &= x86_pmu.lbr_counters;
4286
}
4287
leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS;
4288
4289
for_each_sibling_event(sibling, leader) {
4290
if (branch_sample_call_stack(sibling))
4291
return -EINVAL;
4292
if (branch_sample_counters(sibling)) {
4293
num++;
4294
sibling->hw.dyn_constraint &= x86_pmu.lbr_counters;
4295
}
4296
}
4297
4298
if (num > fls(x86_pmu.lbr_counters))
4299
return -EINVAL;
4300
/*
4301
* Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't
4302
* require any branch stack setup.
4303
* Clear the bit to avoid unnecessary branch stack setup.
4304
*/
4305
if (0 == (event->attr.branch_sample_type &
4306
~(PERF_SAMPLE_BRANCH_PLM_ALL |
4307
PERF_SAMPLE_BRANCH_COUNTERS)))
4308
event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK;
4309
4310
/*
4311
* Force the leader to be a LBR event. So LBRs can be reset
4312
* with the leader event. See intel_pmu_lbr_del() for details.
4313
*/
4314
if (!intel_pmu_needs_branch_stack(leader))
4315
return -EINVAL;
4316
}
4317
4318
if (intel_pmu_needs_branch_stack(event)) {
4319
ret = intel_pmu_setup_lbr_filter(event);
4320
if (ret)
4321
return ret;
4322
event->attach_state |= PERF_ATTACH_SCHED_CB;
4323
4324
/*
4325
* BTS is set up earlier in this path, so don't account twice
4326
*/
4327
if (!unlikely(intel_pmu_has_bts(event))) {
4328
/* disallow lbr if conflicting events are present */
4329
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
4330
return -EBUSY;
4331
4332
event->destroy = hw_perf_lbr_event_destroy;
4333
}
4334
}
4335
4336
if (event->attr.aux_output) {
4337
if (!event->attr.precise_ip)
4338
return -EINVAL;
4339
4340
event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
4341
}
4342
4343
if ((event->attr.sample_type & PERF_SAMPLE_READ) &&
4344
(x86_pmu.intel_cap.pebs_format >= 6) &&
4345
x86_pmu.intel_cap.pebs_baseline &&
4346
is_sampling_event(event) &&
4347
event->attr.precise_ip)
4348
event->group_leader->hw.flags |= PERF_X86_EVENT_PEBS_CNTR;
4349
4350
if (intel_pmu_has_acr(event->pmu) && intel_pmu_is_acr_group(event)) {
4351
struct perf_event *sibling, *leader = event->group_leader;
4352
struct pmu *pmu = event->pmu;
4353
bool has_sw_event = false;
4354
int num = 0, idx = 0;
4355
u64 cause_mask = 0;
4356
4357
/* Not support perf metrics */
4358
if (is_metric_event(event))
4359
return -EINVAL;
4360
4361
/* Not support freq mode */
4362
if (event->attr.freq)
4363
return -EINVAL;
4364
4365
/* PDist is not supported */
4366
if (event->attr.config2 && event->attr.precise_ip > 2)
4367
return -EINVAL;
4368
4369
/* The reload value cannot exceeds the max period */
4370
if (event->attr.sample_period > x86_pmu.max_period)
4371
return -EINVAL;
4372
/*
4373
* The counter-constraints of each event cannot be finalized
4374
* unless the whole group is scanned. However, it's hard
4375
* to know whether the event is the last one of the group.
4376
* Recalculate the counter-constraints for each event when
4377
* adding a new event.
4378
*
4379
* The group is traversed twice, which may be optimized later.
4380
* In the first round,
4381
* - Find all events which do reload when other events
4382
* overflow and set the corresponding counter-constraints
4383
* - Add all events, which can cause other events reload,
4384
* in the cause_mask
4385
* - Error out if the number of events exceeds the HW limit
4386
* - The ACR events must be contiguous.
4387
* Error out if there are non-X86 events between ACR events.
4388
* This is not a HW limit, but a SW limit.
4389
* With the assumption, the intel_pmu_acr_late_setup() can
4390
* easily convert the event idx to counter idx without
4391
* traversing the whole event list.
4392
*/
4393
if (!is_x86_event(leader))
4394
return -EINVAL;
4395
4396
if (leader->attr.config2)
4397
intel_pmu_set_acr_cntr_constr(leader, &cause_mask, &num);
4398
4399
if (leader->nr_siblings) {
4400
for_each_sibling_event(sibling, leader) {
4401
if (!is_x86_event(sibling)) {
4402
has_sw_event = true;
4403
continue;
4404
}
4405
if (!sibling->attr.config2)
4406
continue;
4407
if (has_sw_event)
4408
return -EINVAL;
4409
intel_pmu_set_acr_cntr_constr(sibling, &cause_mask, &num);
4410
}
4411
}
4412
if (leader != event && event->attr.config2) {
4413
if (has_sw_event)
4414
return -EINVAL;
4415
intel_pmu_set_acr_cntr_constr(event, &cause_mask, &num);
4416
}
4417
4418
if (hweight64(cause_mask) > hweight64(hybrid(pmu, acr_cause_mask64)) ||
4419
num > hweight64(hybrid(event->pmu, acr_cntr_mask64)))
4420
return -EINVAL;
4421
/*
4422
* In the second round, apply the counter-constraints for
4423
* the events which can cause other events reload.
4424
*/
4425
intel_pmu_set_acr_caused_constr(leader, idx++, cause_mask);
4426
4427
if (leader->nr_siblings) {
4428
for_each_sibling_event(sibling, leader)
4429
intel_pmu_set_acr_caused_constr(sibling, idx++, cause_mask);
4430
}
4431
4432
if (leader != event)
4433
intel_pmu_set_acr_caused_constr(event, idx, cause_mask);
4434
4435
leader->hw.flags |= PERF_X86_EVENT_ACR;
4436
}
4437
4438
if ((event->attr.type == PERF_TYPE_HARDWARE) ||
4439
(event->attr.type == PERF_TYPE_HW_CACHE))
4440
return 0;
4441
4442
/*
4443
* Config Topdown slots and metric events
4444
*
4445
* The slots event on Fixed Counter 3 can support sampling,
4446
* which will be handled normally in x86_perf_event_update().
4447
*
4448
* Metric events don't support sampling and require being paired
4449
* with a slots event as group leader. When the slots event
4450
* is used in a metrics group, it too cannot support sampling.
4451
*/
4452
if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
4453
/* The metrics_clear can only be set for the slots event */
4454
if (event->attr.config1 &&
4455
(!is_slots_event(event) || (event->attr.config1 & ~INTEL_TD_CFG_METRIC_CLEAR)))
4456
return -EINVAL;
4457
4458
if (event->attr.config2)
4459
return -EINVAL;
4460
4461
/*
4462
* The TopDown metrics events and slots event don't
4463
* support any filters.
4464
*/
4465
if (event->attr.config & X86_ALL_EVENT_FLAGS)
4466
return -EINVAL;
4467
4468
if (is_available_metric_event(event)) {
4469
struct perf_event *leader = event->group_leader;
4470
4471
/* The metric events don't support sampling. */
4472
if (is_sampling_event(event))
4473
return -EINVAL;
4474
4475
/* The metric events require a slots group leader. */
4476
if (!is_slots_event(leader))
4477
return -EINVAL;
4478
4479
/*
4480
* The leader/SLOTS must not be a sampling event for
4481
* metric use; hardware requires it starts at 0 when used
4482
* in conjunction with MSR_PERF_METRICS.
4483
*/
4484
if (is_sampling_event(leader))
4485
return -EINVAL;
4486
4487
event->event_caps |= PERF_EV_CAP_SIBLING;
4488
/*
4489
* Only once we have a METRICs sibling do we
4490
* need TopDown magic.
4491
*/
4492
leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4493
event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
4494
}
4495
}
4496
4497
/*
4498
* The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
4499
* doesn't function quite right. As a work-around it needs to always be
4500
* co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
4501
* The actual count of this second event is irrelevant it just needs
4502
* to be active to make the first event function correctly.
4503
*
4504
* In a group, the auxiliary event must be in front of the load latency
4505
* event. The rule is to simplify the implementation of the check.
4506
* That's because perf cannot have a complete group at the moment.
4507
*/
4508
if (require_mem_loads_aux_event(event) &&
4509
(event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4510
is_mem_loads_event(event)) {
4511
struct perf_event *leader = event->group_leader;
4512
struct perf_event *sibling = NULL;
4513
4514
/*
4515
* When this memload event is also the first event (no group
4516
* exists yet), then there is no aux event before it.
4517
*/
4518
if (leader == event)
4519
return -ENODATA;
4520
4521
if (!is_mem_loads_aux_event(leader)) {
4522
for_each_sibling_event(sibling, leader) {
4523
if (is_mem_loads_aux_event(sibling))
4524
break;
4525
}
4526
if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4527
return -ENODATA;
4528
}
4529
}
4530
4531
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4532
return 0;
4533
4534
if (x86_pmu.version < 3)
4535
return -EINVAL;
4536
4537
ret = perf_allow_cpu();
4538
if (ret)
4539
return ret;
4540
4541
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4542
4543
return 0;
4544
}
4545
4546
/*
4547
* Currently, the only caller of this function is the atomic_switch_perf_msrs().
4548
* The host perf context helps to prepare the values of the real hardware for
4549
* a set of msrs that need to be switched atomically in a vmx transaction.
4550
*
4551
* For example, the pseudocode needed to add a new msr should look like:
4552
*
4553
* arr[(*nr)++] = (struct perf_guest_switch_msr){
4554
* .msr = the hardware msr address,
4555
* .host = the value the hardware has when it doesn't run a guest,
4556
* .guest = the value the hardware has when it runs a guest,
4557
* };
4558
*
4559
* These values have nothing to do with the emulated values the guest sees
4560
* when it uses {RD,WR}MSR, which should be handled by the KVM context,
4561
* specifically in the intel_pmu_{get,set}_msr().
4562
*/
4563
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4564
{
4565
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4566
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4567
struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4568
u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4569
u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4570
int global_ctrl, pebs_enable;
4571
4572
/*
4573
* In addition to obeying exclude_guest/exclude_host, remove bits being
4574
* used for PEBS when running a guest, because PEBS writes to virtual
4575
* addresses (not physical addresses).
4576
*/
4577
*nr = 0;
4578
global_ctrl = (*nr)++;
4579
arr[global_ctrl] = (struct perf_guest_switch_msr){
4580
.msr = MSR_CORE_PERF_GLOBAL_CTRL,
4581
.host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4582
.guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4583
};
4584
4585
if (!x86_pmu.ds_pebs)
4586
return arr;
4587
4588
/*
4589
* If PMU counter has PEBS enabled it is not enough to
4590
* disable counter on a guest entry since PEBS memory
4591
* write can overshoot guest entry and corrupt guest
4592
* memory. Disabling PEBS solves the problem.
4593
*
4594
* Don't do this if the CPU already enforces it.
4595
*/
4596
if (x86_pmu.pebs_no_isolation) {
4597
arr[(*nr)++] = (struct perf_guest_switch_msr){
4598
.msr = MSR_IA32_PEBS_ENABLE,
4599
.host = cpuc->pebs_enabled,
4600
.guest = 0,
4601
};
4602
return arr;
4603
}
4604
4605
if (!kvm_pmu || !x86_pmu.pebs_ept)
4606
return arr;
4607
4608
arr[(*nr)++] = (struct perf_guest_switch_msr){
4609
.msr = MSR_IA32_DS_AREA,
4610
.host = (unsigned long)cpuc->ds,
4611
.guest = kvm_pmu->ds_area,
4612
};
4613
4614
if (x86_pmu.intel_cap.pebs_baseline) {
4615
arr[(*nr)++] = (struct perf_guest_switch_msr){
4616
.msr = MSR_PEBS_DATA_CFG,
4617
.host = cpuc->active_pebs_data_cfg,
4618
.guest = kvm_pmu->pebs_data_cfg,
4619
};
4620
}
4621
4622
pebs_enable = (*nr)++;
4623
arr[pebs_enable] = (struct perf_guest_switch_msr){
4624
.msr = MSR_IA32_PEBS_ENABLE,
4625
.host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4626
.guest = pebs_mask & ~cpuc->intel_ctrl_host_mask & kvm_pmu->pebs_enable,
4627
};
4628
4629
if (arr[pebs_enable].host) {
4630
/* Disable guest PEBS if host PEBS is enabled. */
4631
arr[pebs_enable].guest = 0;
4632
} else {
4633
/* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4634
arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4635
arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4636
/* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4637
arr[global_ctrl].guest |= arr[pebs_enable].guest;
4638
}
4639
4640
return arr;
4641
}
4642
4643
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4644
{
4645
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4646
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4647
int idx;
4648
4649
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4650
struct perf_event *event = cpuc->events[idx];
4651
4652
arr[idx].msr = x86_pmu_config_addr(idx);
4653
arr[idx].host = arr[idx].guest = 0;
4654
4655
if (!test_bit(idx, cpuc->active_mask))
4656
continue;
4657
4658
arr[idx].host = arr[idx].guest =
4659
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4660
4661
if (event->attr.exclude_host)
4662
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4663
else if (event->attr.exclude_guest)
4664
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4665
}
4666
4667
*nr = x86_pmu_max_num_counters(cpuc->pmu);
4668
return arr;
4669
}
4670
4671
static void core_pmu_enable_event(struct perf_event *event)
4672
{
4673
if (!event->attr.exclude_host)
4674
x86_pmu_enable_event(event);
4675
}
4676
4677
static void core_pmu_enable_all(int added)
4678
{
4679
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4680
int idx;
4681
4682
for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
4683
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4684
4685
if (!test_bit(idx, cpuc->active_mask) ||
4686
cpuc->events[idx]->attr.exclude_host)
4687
continue;
4688
4689
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4690
}
4691
}
4692
4693
static int hsw_hw_config(struct perf_event *event)
4694
{
4695
int ret = intel_pmu_hw_config(event);
4696
4697
if (ret)
4698
return ret;
4699
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4700
return 0;
4701
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4702
4703
/*
4704
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4705
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
4706
* this combination.
4707
*/
4708
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4709
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4710
event->attr.precise_ip > 0))
4711
return -EOPNOTSUPP;
4712
4713
if (event_is_checkpointed(event)) {
4714
/*
4715
* Sampling of checkpointed events can cause situations where
4716
* the CPU constantly aborts because of a overflow, which is
4717
* then checkpointed back and ignored. Forbid checkpointing
4718
* for sampling.
4719
*
4720
* But still allow a long sampling period, so that perf stat
4721
* from KVM works.
4722
*/
4723
if (event->attr.sample_period > 0 &&
4724
event->attr.sample_period < 0x7fffffff)
4725
return -EOPNOTSUPP;
4726
}
4727
return 0;
4728
}
4729
4730
static struct event_constraint counter0_constraint =
4731
INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4732
4733
static struct event_constraint counter1_constraint =
4734
INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4735
4736
static struct event_constraint counter0_1_constraint =
4737
INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4738
4739
static struct event_constraint counter2_constraint =
4740
EVENT_CONSTRAINT(0, 0x4, 0);
4741
4742
static struct event_constraint fixed0_constraint =
4743
FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4744
4745
static struct event_constraint fixed0_counter0_constraint =
4746
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4747
4748
static struct event_constraint fixed0_counter0_1_constraint =
4749
INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4750
4751
static struct event_constraint counters_1_7_constraint =
4752
INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4753
4754
static struct event_constraint *
4755
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4756
struct perf_event *event)
4757
{
4758
struct event_constraint *c;
4759
4760
c = intel_get_event_constraints(cpuc, idx, event);
4761
4762
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4763
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4764
if (c->idxmsk64 & (1U << 2))
4765
return &counter2_constraint;
4766
return &emptyconstraint;
4767
}
4768
4769
return c;
4770
}
4771
4772
static struct event_constraint *
4773
icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4774
struct perf_event *event)
4775
{
4776
/*
4777
* Fixed counter 0 has less skid.
4778
* Force instruction:ppp in Fixed counter 0
4779
*/
4780
if ((event->attr.precise_ip == 3) &&
4781
constraint_match(&fixed0_constraint, event->hw.config))
4782
return &fixed0_constraint;
4783
4784
return hsw_get_event_constraints(cpuc, idx, event);
4785
}
4786
4787
static struct event_constraint *
4788
glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4789
struct perf_event *event)
4790
{
4791
struct event_constraint *c;
4792
4793
c = icl_get_event_constraints(cpuc, idx, event);
4794
4795
/*
4796
* The :ppp indicates the Precise Distribution (PDist) facility, which
4797
* is only supported on the GP counter 0. If a :ppp event which is not
4798
* available on the GP counter 0, error out.
4799
* Exception: Instruction PDIR is only available on the fixed counter 0.
4800
*/
4801
if ((event->attr.precise_ip == 3) &&
4802
!constraint_match(&fixed0_constraint, event->hw.config)) {
4803
if (c->idxmsk64 & BIT_ULL(0))
4804
return &counter0_constraint;
4805
4806
return &emptyconstraint;
4807
}
4808
4809
return c;
4810
}
4811
4812
static struct event_constraint *
4813
glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4814
struct perf_event *event)
4815
{
4816
struct event_constraint *c;
4817
4818
/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4819
if (event->attr.precise_ip == 3)
4820
return &counter0_constraint;
4821
4822
c = intel_get_event_constraints(cpuc, idx, event);
4823
4824
return c;
4825
}
4826
4827
static struct event_constraint *
4828
tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4829
struct perf_event *event)
4830
{
4831
struct event_constraint *c;
4832
4833
c = intel_get_event_constraints(cpuc, idx, event);
4834
4835
/*
4836
* :ppp means to do reduced skid PEBS,
4837
* which is available on PMC0 and fixed counter 0.
4838
*/
4839
if (event->attr.precise_ip == 3) {
4840
/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4841
if (constraint_match(&fixed0_constraint, event->hw.config))
4842
return &fixed0_counter0_constraint;
4843
4844
return &counter0_constraint;
4845
}
4846
4847
return c;
4848
}
4849
4850
static bool allow_tsx_force_abort = true;
4851
4852
static struct event_constraint *
4853
tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4854
struct perf_event *event)
4855
{
4856
struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4857
4858
/*
4859
* Without TFA we must not use PMC3.
4860
*/
4861
if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4862
c = dyn_constraint(cpuc, c, idx);
4863
c->idxmsk64 &= ~(1ULL << 3);
4864
c->weight--;
4865
}
4866
4867
return c;
4868
}
4869
4870
static struct event_constraint *
4871
adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4872
struct perf_event *event)
4873
{
4874
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4875
4876
if (pmu->pmu_type == hybrid_big)
4877
return glc_get_event_constraints(cpuc, idx, event);
4878
else if (pmu->pmu_type == hybrid_small)
4879
return tnt_get_event_constraints(cpuc, idx, event);
4880
4881
WARN_ON(1);
4882
return &emptyconstraint;
4883
}
4884
4885
static struct event_constraint *
4886
cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4887
struct perf_event *event)
4888
{
4889
struct event_constraint *c;
4890
4891
c = intel_get_event_constraints(cpuc, idx, event);
4892
4893
/*
4894
* The :ppp indicates the Precise Distribution (PDist) facility, which
4895
* is only supported on the GP counter 0 & 1 and Fixed counter 0.
4896
* If a :ppp event which is not available on the above eligible counters,
4897
* error out.
4898
*/
4899
if (event->attr.precise_ip == 3) {
4900
/* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4901
if (constraint_match(&fixed0_constraint, event->hw.config)) {
4902
/* The fixed counter 0 doesn't support LBR event logging. */
4903
if (branch_sample_counters(event))
4904
return &counter0_1_constraint;
4905
else
4906
return &fixed0_counter0_1_constraint;
4907
}
4908
4909
switch (c->idxmsk64 & 0x3ull) {
4910
case 0x1:
4911
return &counter0_constraint;
4912
case 0x2:
4913
return &counter1_constraint;
4914
case 0x3:
4915
return &counter0_1_constraint;
4916
}
4917
return &emptyconstraint;
4918
}
4919
4920
return c;
4921
}
4922
4923
static struct event_constraint *
4924
rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4925
struct perf_event *event)
4926
{
4927
struct event_constraint *c;
4928
4929
c = glc_get_event_constraints(cpuc, idx, event);
4930
4931
/* The Retire Latency is not supported by the fixed counter 0. */
4932
if (event->attr.precise_ip &&
4933
(event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4934
constraint_match(&fixed0_constraint, event->hw.config)) {
4935
/*
4936
* The Instruction PDIR is only available
4937
* on the fixed counter 0. Error out for this case.
4938
*/
4939
if (event->attr.precise_ip == 3)
4940
return &emptyconstraint;
4941
return &counters_1_7_constraint;
4942
}
4943
4944
return c;
4945
}
4946
4947
static struct event_constraint *
4948
mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4949
struct perf_event *event)
4950
{
4951
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4952
4953
if (pmu->pmu_type == hybrid_big)
4954
return rwc_get_event_constraints(cpuc, idx, event);
4955
if (pmu->pmu_type == hybrid_small)
4956
return cmt_get_event_constraints(cpuc, idx, event);
4957
4958
WARN_ON(1);
4959
return &emptyconstraint;
4960
}
4961
4962
static int adl_hw_config(struct perf_event *event)
4963
{
4964
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4965
4966
if (pmu->pmu_type == hybrid_big)
4967
return hsw_hw_config(event);
4968
else if (pmu->pmu_type == hybrid_small)
4969
return intel_pmu_hw_config(event);
4970
4971
WARN_ON(1);
4972
return -EOPNOTSUPP;
4973
}
4974
4975
static enum intel_cpu_type adl_get_hybrid_cpu_type(void)
4976
{
4977
return INTEL_CPU_TYPE_CORE;
4978
}
4979
4980
static inline bool erratum_hsw11(struct perf_event *event)
4981
{
4982
return (event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4983
X86_CONFIG(.event=0xc0, .umask=0x01);
4984
}
4985
4986
static struct event_constraint *
4987
arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4988
struct perf_event *event)
4989
{
4990
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4991
4992
if (pmu->pmu_type == hybrid_tiny)
4993
return cmt_get_event_constraints(cpuc, idx, event);
4994
4995
return mtl_get_event_constraints(cpuc, idx, event);
4996
}
4997
4998
static int arl_h_hw_config(struct perf_event *event)
4999
{
5000
struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
5001
5002
if (pmu->pmu_type == hybrid_tiny)
5003
return intel_pmu_hw_config(event);
5004
5005
return adl_hw_config(event);
5006
}
5007
5008
/*
5009
* The HSW11 requires a period larger than 100 which is the same as the BDM11.
5010
* A minimum period of 128 is enforced as well for the INST_RETIRED.ALL.
5011
*
5012
* The message 'interrupt took too long' can be observed on any counter which
5013
* was armed with a period < 32 and two events expired in the same NMI.
5014
* A minimum period of 32 is enforced for the rest of the events.
5015
*/
5016
static void hsw_limit_period(struct perf_event *event, s64 *left)
5017
{
5018
*left = max(*left, erratum_hsw11(event) ? 128 : 32);
5019
}
5020
5021
/*
5022
* Broadwell:
5023
*
5024
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
5025
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
5026
* the two to enforce a minimum period of 128 (the smallest value that has bits
5027
* 0-5 cleared and >= 100).
5028
*
5029
* Because of how the code in x86_perf_event_set_period() works, the truncation
5030
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
5031
* to make up for the 'lost' events due to carrying the 'error' in period_left.
5032
*
5033
* Therefore the effective (average) period matches the requested period,
5034
* despite coarser hardware granularity.
5035
*/
5036
static void bdw_limit_period(struct perf_event *event, s64 *left)
5037
{
5038
if (erratum_hsw11(event)) {
5039
if (*left < 128)
5040
*left = 128;
5041
*left &= ~0x3fULL;
5042
}
5043
}
5044
5045
static void nhm_limit_period(struct perf_event *event, s64 *left)
5046
{
5047
*left = max(*left, 32LL);
5048
}
5049
5050
static void glc_limit_period(struct perf_event *event, s64 *left)
5051
{
5052
if (event->attr.precise_ip == 3)
5053
*left = max(*left, 128LL);
5054
}
5055
5056
PMU_FORMAT_ATTR(event, "config:0-7" );
5057
PMU_FORMAT_ATTR(umask, "config:8-15" );
5058
PMU_FORMAT_ATTR(edge, "config:18" );
5059
PMU_FORMAT_ATTR(pc, "config:19" );
5060
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
5061
PMU_FORMAT_ATTR(inv, "config:23" );
5062
PMU_FORMAT_ATTR(cmask, "config:24-31" );
5063
PMU_FORMAT_ATTR(in_tx, "config:32" );
5064
PMU_FORMAT_ATTR(in_tx_cp, "config:33" );
5065
PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */
5066
5067
PMU_FORMAT_ATTR(metrics_clear, "config1:0"); /* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5068
5069
static ssize_t umask2_show(struct device *dev,
5070
struct device_attribute *attr,
5071
char *page)
5072
{
5073
u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2;
5074
5075
if (mask == ARCH_PERFMON_EVENTSEL_UMASK2)
5076
return sprintf(page, "config:8-15,40-47\n");
5077
5078
/* Roll back to the old format if umask2 is not supported. */
5079
return sprintf(page, "config:8-15\n");
5080
}
5081
5082
static struct device_attribute format_attr_umask2 =
5083
__ATTR(umask, 0444, umask2_show, NULL);
5084
5085
static struct attribute *format_evtsel_ext_attrs[] = {
5086
&format_attr_umask2.attr,
5087
&format_attr_eq.attr,
5088
&format_attr_metrics_clear.attr,
5089
NULL
5090
};
5091
5092
static umode_t
5093
evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5094
{
5095
struct device *dev = kobj_to_dev(kobj);
5096
u64 mask;
5097
5098
/*
5099
* The umask and umask2 have different formats but share the
5100
* same attr name. In update mode, the previous value of the
5101
* umask is unconditionally removed before is_visible. If
5102
* umask2 format is not enumerated, it's impossible to roll
5103
* back to the old format.
5104
* Does the check in umask2_show rather than is_visible.
5105
*/
5106
if (i == 0)
5107
return attr->mode;
5108
5109
mask = hybrid(dev_get_drvdata(dev), config_mask);
5110
if (i == 1)
5111
return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0;
5112
5113
/* PERF_CAPABILITIES.RDPMC_METRICS_CLEAR */
5114
if (i == 2) {
5115
union perf_capabilities intel_cap = hybrid(dev_get_drvdata(dev), intel_cap);
5116
5117
return intel_cap.rdpmc_metrics_clear ? attr->mode : 0;
5118
}
5119
5120
return 0;
5121
}
5122
5123
static struct attribute *intel_arch_formats_attr[] = {
5124
&format_attr_event.attr,
5125
&format_attr_umask.attr,
5126
&format_attr_edge.attr,
5127
&format_attr_pc.attr,
5128
&format_attr_inv.attr,
5129
&format_attr_cmask.attr,
5130
NULL,
5131
};
5132
5133
ssize_t intel_event_sysfs_show(char *page, u64 config)
5134
{
5135
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
5136
5137
return x86_event_sysfs_show(page, config, event);
5138
}
5139
5140
static struct intel_shared_regs *allocate_shared_regs(int cpu)
5141
{
5142
struct intel_shared_regs *regs;
5143
int i;
5144
5145
regs = kzalloc_node(sizeof(struct intel_shared_regs),
5146
GFP_KERNEL, cpu_to_node(cpu));
5147
if (regs) {
5148
/*
5149
* initialize the locks to keep lockdep happy
5150
*/
5151
for (i = 0; i < EXTRA_REG_MAX; i++)
5152
raw_spin_lock_init(&regs->regs[i].lock);
5153
5154
regs->core_id = -1;
5155
}
5156
return regs;
5157
}
5158
5159
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
5160
{
5161
struct intel_excl_cntrs *c;
5162
5163
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
5164
GFP_KERNEL, cpu_to_node(cpu));
5165
if (c) {
5166
raw_spin_lock_init(&c->lock);
5167
c->core_id = -1;
5168
}
5169
return c;
5170
}
5171
5172
5173
int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
5174
{
5175
cpuc->pebs_record_size = x86_pmu.pebs_record_size;
5176
5177
if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
5178
cpuc->shared_regs = allocate_shared_regs(cpu);
5179
if (!cpuc->shared_regs)
5180
goto err;
5181
}
5182
5183
if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_DYN_CONSTRAINT)) {
5184
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
5185
5186
cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
5187
if (!cpuc->constraint_list)
5188
goto err_shared_regs;
5189
}
5190
5191
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5192
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
5193
if (!cpuc->excl_cntrs)
5194
goto err_constraint_list;
5195
5196
cpuc->excl_thread_id = 0;
5197
}
5198
5199
return 0;
5200
5201
err_constraint_list:
5202
kfree(cpuc->constraint_list);
5203
cpuc->constraint_list = NULL;
5204
5205
err_shared_regs:
5206
kfree(cpuc->shared_regs);
5207
cpuc->shared_regs = NULL;
5208
5209
err:
5210
return -ENOMEM;
5211
}
5212
5213
static int intel_pmu_cpu_prepare(int cpu)
5214
{
5215
return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
5216
}
5217
5218
static void flip_smm_bit(void *data)
5219
{
5220
unsigned long set = *(unsigned long *)data;
5221
5222
if (set > 0) {
5223
msr_set_bit(MSR_IA32_DEBUGCTLMSR,
5224
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5225
} else {
5226
msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
5227
DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
5228
}
5229
}
5230
5231
static void intel_pmu_check_counters_mask(u64 *cntr_mask,
5232
u64 *fixed_cntr_mask,
5233
u64 *intel_ctrl)
5234
{
5235
unsigned int bit;
5236
5237
bit = fls64(*cntr_mask);
5238
if (bit > INTEL_PMC_MAX_GENERIC) {
5239
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5240
bit, INTEL_PMC_MAX_GENERIC);
5241
*cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0);
5242
}
5243
*intel_ctrl = *cntr_mask;
5244
5245
bit = fls64(*fixed_cntr_mask);
5246
if (bit > INTEL_PMC_MAX_FIXED) {
5247
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5248
bit, INTEL_PMC_MAX_FIXED);
5249
*fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
5250
}
5251
5252
*intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED;
5253
}
5254
5255
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5256
u64 cntr_mask,
5257
u64 fixed_cntr_mask,
5258
u64 intel_ctrl);
5259
5260
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs);
5261
5262
static inline bool intel_pmu_broken_perf_cap(void)
5263
{
5264
/* The Perf Metric (Bit 15) is always cleared */
5265
if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE ||
5266
boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L)
5267
return true;
5268
5269
return false;
5270
}
5271
5272
static void update_pmu_cap(struct pmu *pmu)
5273
{
5274
unsigned int cntr, fixed_cntr, ecx, edx;
5275
union cpuid35_eax eax;
5276
union cpuid35_ebx ebx;
5277
5278
cpuid(ARCH_PERFMON_EXT_LEAF, &eax.full, &ebx.full, &ecx, &edx);
5279
5280
if (ebx.split.umask2)
5281
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_UMASK2;
5282
if (ebx.split.eq)
5283
hybrid(pmu, config_mask) |= ARCH_PERFMON_EVENTSEL_EQ;
5284
5285
if (eax.split.cntr_subleaf) {
5286
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
5287
&cntr, &fixed_cntr, &ecx, &edx);
5288
hybrid(pmu, cntr_mask64) = cntr;
5289
hybrid(pmu, fixed_cntr_mask64) = fixed_cntr;
5290
}
5291
5292
if (eax.split.acr_subleaf) {
5293
cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_ACR_LEAF,
5294
&cntr, &fixed_cntr, &ecx, &edx);
5295
/* The mask of the counters which can be reloaded */
5296
hybrid(pmu, acr_cntr_mask64) = cntr | ((u64)fixed_cntr << INTEL_PMC_IDX_FIXED);
5297
5298
/* The mask of the counters which can cause a reload of reloadable counters */
5299
hybrid(pmu, acr_cause_mask64) = ecx | ((u64)edx << INTEL_PMC_IDX_FIXED);
5300
}
5301
5302
if (!intel_pmu_broken_perf_cap()) {
5303
/* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */
5304
rdmsrq(MSR_IA32_PERF_CAPABILITIES, hybrid(pmu, intel_cap).capabilities);
5305
}
5306
}
5307
5308
static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu)
5309
{
5310
intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64,
5311
&pmu->intel_ctrl);
5312
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
5313
pmu->unconstrained = (struct event_constraint)
5314
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
5315
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
5316
5317
if (pmu->intel_cap.perf_metrics)
5318
pmu->intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
5319
else
5320
pmu->intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5321
5322
intel_pmu_check_event_constraints(pmu->event_constraints,
5323
pmu->cntr_mask64,
5324
pmu->fixed_cntr_mask64,
5325
pmu->intel_ctrl);
5326
5327
intel_pmu_check_extra_regs(pmu->extra_regs);
5328
}
5329
5330
static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void)
5331
{
5332
struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
5333
enum intel_cpu_type cpu_type = c->topo.intel_type;
5334
int i;
5335
5336
/*
5337
* This is running on a CPU model that is known to have hybrid
5338
* configurations. But the CPU told us it is not hybrid, shame
5339
* on it. There should be a fixup function provided for these
5340
* troublesome CPUs (->get_hybrid_cpu_type).
5341
*/
5342
if (cpu_type == INTEL_CPU_TYPE_UNKNOWN) {
5343
if (x86_pmu.get_hybrid_cpu_type)
5344
cpu_type = x86_pmu.get_hybrid_cpu_type();
5345
else
5346
return NULL;
5347
}
5348
5349
/*
5350
* This essentially just maps between the 'hybrid_cpu_type'
5351
* and 'hybrid_pmu_type' enums except for ARL-H processor
5352
* which needs to compare atom uarch native id since ARL-H
5353
* contains two different atom uarchs.
5354
*/
5355
for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5356
enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type;
5357
u32 native_id;
5358
5359
if (cpu_type == INTEL_CPU_TYPE_CORE && pmu_type == hybrid_big)
5360
return &x86_pmu.hybrid_pmu[i];
5361
if (cpu_type == INTEL_CPU_TYPE_ATOM) {
5362
if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small)
5363
return &x86_pmu.hybrid_pmu[i];
5364
5365
native_id = c->topo.intel_native_model_id;
5366
if (native_id == INTEL_ATOM_SKT_NATIVE_ID && pmu_type == hybrid_small)
5367
return &x86_pmu.hybrid_pmu[i];
5368
if (native_id == INTEL_ATOM_CMT_NATIVE_ID && pmu_type == hybrid_tiny)
5369
return &x86_pmu.hybrid_pmu[i];
5370
}
5371
}
5372
5373
return NULL;
5374
}
5375
5376
static bool init_hybrid_pmu(int cpu)
5377
{
5378
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5379
struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu();
5380
5381
if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
5382
cpuc->pmu = NULL;
5383
return false;
5384
}
5385
5386
/* Only check and dump the PMU information for the first CPU */
5387
if (!cpumask_empty(&pmu->supported_cpus))
5388
goto end;
5389
5390
if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
5391
update_pmu_cap(&pmu->pmu);
5392
5393
intel_pmu_check_hybrid_pmus(pmu);
5394
5395
if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask))
5396
return false;
5397
5398
pr_info("%s PMU driver: ", pmu->name);
5399
5400
pr_cont("\n");
5401
5402
x86_pmu_show_pmu_cap(&pmu->pmu);
5403
5404
end:
5405
cpumask_set_cpu(cpu, &pmu->supported_cpus);
5406
cpuc->pmu = &pmu->pmu;
5407
5408
return true;
5409
}
5410
5411
static void intel_pmu_cpu_starting(int cpu)
5412
{
5413
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5414
int core_id = topology_core_id(cpu);
5415
int i;
5416
5417
if (is_hybrid() && !init_hybrid_pmu(cpu))
5418
return;
5419
5420
init_debug_store_on_cpu(cpu);
5421
/*
5422
* Deal with CPUs that don't clear their LBRs on power-up, and that may
5423
* even boot with LBRs enabled.
5424
*/
5425
if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && x86_pmu.lbr_nr)
5426
msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR_BIT);
5427
intel_pmu_lbr_reset();
5428
5429
cpuc->lbr_sel = NULL;
5430
5431
if (x86_pmu.flags & PMU_FL_TFA) {
5432
WARN_ON_ONCE(cpuc->tfa_shadow);
5433
cpuc->tfa_shadow = ~0ULL;
5434
intel_set_tfa(cpuc, false);
5435
}
5436
5437
if (x86_pmu.version > 1)
5438
flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
5439
5440
/*
5441
* Disable perf metrics if any added CPU doesn't support it.
5442
*
5443
* Turn off the check for a hybrid architecture, because the
5444
* architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
5445
* the architecture features. The perf metrics is a model-specific
5446
* feature for now. The corresponding bit should always be 0 on
5447
* a hybrid platform, e.g., Alder Lake.
5448
*/
5449
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
5450
union perf_capabilities perf_cap;
5451
5452
rdmsrq(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
5453
if (!perf_cap.perf_metrics) {
5454
x86_pmu.intel_cap.perf_metrics = 0;
5455
x86_pmu.intel_ctrl &= ~GLOBAL_CTRL_EN_PERF_METRICS;
5456
}
5457
}
5458
5459
if (!cpuc->shared_regs)
5460
return;
5461
5462
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
5463
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5464
struct intel_shared_regs *pc;
5465
5466
pc = per_cpu(cpu_hw_events, i).shared_regs;
5467
if (pc && pc->core_id == core_id) {
5468
cpuc->kfree_on_online[0] = cpuc->shared_regs;
5469
cpuc->shared_regs = pc;
5470
break;
5471
}
5472
}
5473
cpuc->shared_regs->core_id = core_id;
5474
cpuc->shared_regs->refcnt++;
5475
}
5476
5477
if (x86_pmu.lbr_sel_map)
5478
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
5479
5480
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
5481
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
5482
struct cpu_hw_events *sibling;
5483
struct intel_excl_cntrs *c;
5484
5485
sibling = &per_cpu(cpu_hw_events, i);
5486
c = sibling->excl_cntrs;
5487
if (c && c->core_id == core_id) {
5488
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
5489
cpuc->excl_cntrs = c;
5490
if (!sibling->excl_thread_id)
5491
cpuc->excl_thread_id = 1;
5492
break;
5493
}
5494
}
5495
cpuc->excl_cntrs->core_id = core_id;
5496
cpuc->excl_cntrs->refcnt++;
5497
}
5498
}
5499
5500
static void free_excl_cntrs(struct cpu_hw_events *cpuc)
5501
{
5502
struct intel_excl_cntrs *c;
5503
5504
c = cpuc->excl_cntrs;
5505
if (c) {
5506
if (c->core_id == -1 || --c->refcnt == 0)
5507
kfree(c);
5508
cpuc->excl_cntrs = NULL;
5509
}
5510
5511
kfree(cpuc->constraint_list);
5512
cpuc->constraint_list = NULL;
5513
}
5514
5515
static void intel_pmu_cpu_dying(int cpu)
5516
{
5517
fini_debug_store_on_cpu(cpu);
5518
}
5519
5520
void intel_cpuc_finish(struct cpu_hw_events *cpuc)
5521
{
5522
struct intel_shared_regs *pc;
5523
5524
pc = cpuc->shared_regs;
5525
if (pc) {
5526
if (pc->core_id == -1 || --pc->refcnt == 0)
5527
kfree(pc);
5528
cpuc->shared_regs = NULL;
5529
}
5530
5531
free_excl_cntrs(cpuc);
5532
}
5533
5534
static void intel_pmu_cpu_dead(int cpu)
5535
{
5536
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
5537
5538
intel_cpuc_finish(cpuc);
5539
5540
if (is_hybrid() && cpuc->pmu)
5541
cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
5542
}
5543
5544
static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
5545
struct task_struct *task, bool sched_in)
5546
{
5547
intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
5548
intel_pmu_lbr_sched_task(pmu_ctx, task, sched_in);
5549
}
5550
5551
static int intel_pmu_check_period(struct perf_event *event, u64 value)
5552
{
5553
return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
5554
}
5555
5556
static void intel_aux_output_init(void)
5557
{
5558
/* Refer also intel_pmu_aux_output_match() */
5559
if (x86_pmu.intel_cap.pebs_output_pt_available)
5560
x86_pmu.assign = intel_pmu_assign_event;
5561
}
5562
5563
static int intel_pmu_aux_output_match(struct perf_event *event)
5564
{
5565
/* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
5566
if (!x86_pmu.intel_cap.pebs_output_pt_available)
5567
return 0;
5568
5569
return is_intel_pt_event(event);
5570
}
5571
5572
static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
5573
{
5574
struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
5575
5576
*ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
5577
}
5578
5579
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
5580
5581
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
5582
5583
PMU_FORMAT_ATTR(frontend, "config1:0-23");
5584
5585
PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
5586
5587
static struct attribute *intel_arch3_formats_attr[] = {
5588
&format_attr_event.attr,
5589
&format_attr_umask.attr,
5590
&format_attr_edge.attr,
5591
&format_attr_pc.attr,
5592
&format_attr_any.attr,
5593
&format_attr_inv.attr,
5594
&format_attr_cmask.attr,
5595
NULL,
5596
};
5597
5598
static struct attribute *hsw_format_attr[] = {
5599
&format_attr_in_tx.attr,
5600
&format_attr_in_tx_cp.attr,
5601
&format_attr_offcore_rsp.attr,
5602
&format_attr_ldlat.attr,
5603
NULL
5604
};
5605
5606
static struct attribute *nhm_format_attr[] = {
5607
&format_attr_offcore_rsp.attr,
5608
&format_attr_ldlat.attr,
5609
NULL
5610
};
5611
5612
static struct attribute *slm_format_attr[] = {
5613
&format_attr_offcore_rsp.attr,
5614
NULL
5615
};
5616
5617
static struct attribute *cmt_format_attr[] = {
5618
&format_attr_offcore_rsp.attr,
5619
&format_attr_ldlat.attr,
5620
&format_attr_snoop_rsp.attr,
5621
NULL
5622
};
5623
5624
static struct attribute *skl_format_attr[] = {
5625
&format_attr_frontend.attr,
5626
NULL,
5627
};
5628
5629
static __initconst const struct x86_pmu core_pmu = {
5630
.name = "core",
5631
.handle_irq = x86_pmu_handle_irq,
5632
.disable_all = x86_pmu_disable_all,
5633
.enable_all = core_pmu_enable_all,
5634
.enable = core_pmu_enable_event,
5635
.disable = x86_pmu_disable_event,
5636
.hw_config = core_pmu_hw_config,
5637
.schedule_events = x86_schedule_events,
5638
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5639
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5640
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5641
.event_map = intel_pmu_event_map,
5642
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
5643
.apic = 1,
5644
.large_pebs_flags = LARGE_PEBS_FLAGS,
5645
5646
/*
5647
* Intel PMCs cannot be accessed sanely above 32-bit width,
5648
* so we install an artificial 1<<31 period regardless of
5649
* the generic event period:
5650
*/
5651
.max_period = (1ULL<<31) - 1,
5652
.get_event_constraints = intel_get_event_constraints,
5653
.put_event_constraints = intel_put_event_constraints,
5654
.event_constraints = intel_core_event_constraints,
5655
.guest_get_msrs = core_guest_get_msrs,
5656
.format_attrs = intel_arch_formats_attr,
5657
.events_sysfs_show = intel_event_sysfs_show,
5658
5659
/*
5660
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
5661
* together with PMU version 1 and thus be using core_pmu with
5662
* shared_regs. We need following callbacks here to allocate
5663
* it properly.
5664
*/
5665
.cpu_prepare = intel_pmu_cpu_prepare,
5666
.cpu_starting = intel_pmu_cpu_starting,
5667
.cpu_dying = intel_pmu_cpu_dying,
5668
.cpu_dead = intel_pmu_cpu_dead,
5669
5670
.check_period = intel_pmu_check_period,
5671
5672
.lbr_reset = intel_pmu_lbr_reset_64,
5673
.lbr_read = intel_pmu_lbr_read_64,
5674
.lbr_save = intel_pmu_lbr_save,
5675
.lbr_restore = intel_pmu_lbr_restore,
5676
};
5677
5678
static __initconst const struct x86_pmu intel_pmu = {
5679
.name = "Intel",
5680
.handle_irq = intel_pmu_handle_irq,
5681
.disable_all = intel_pmu_disable_all,
5682
.enable_all = intel_pmu_enable_all,
5683
.enable = intel_pmu_enable_event,
5684
.disable = intel_pmu_disable_event,
5685
.add = intel_pmu_add_event,
5686
.del = intel_pmu_del_event,
5687
.read = intel_pmu_read_event,
5688
.set_period = intel_pmu_set_period,
5689
.update = intel_pmu_update,
5690
.hw_config = intel_pmu_hw_config,
5691
.schedule_events = x86_schedule_events,
5692
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
5693
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
5694
.fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0,
5695
.event_map = intel_pmu_event_map,
5696
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
5697
.apic = 1,
5698
.large_pebs_flags = LARGE_PEBS_FLAGS,
5699
/*
5700
* Intel PMCs cannot be accessed sanely above 32 bit width,
5701
* so we install an artificial 1<<31 period regardless of
5702
* the generic event period:
5703
*/
5704
.max_period = (1ULL << 31) - 1,
5705
.get_event_constraints = intel_get_event_constraints,
5706
.put_event_constraints = intel_put_event_constraints,
5707
.pebs_aliases = intel_pebs_aliases_core2,
5708
5709
.format_attrs = intel_arch3_formats_attr,
5710
.events_sysfs_show = intel_event_sysfs_show,
5711
5712
.cpu_prepare = intel_pmu_cpu_prepare,
5713
.cpu_starting = intel_pmu_cpu_starting,
5714
.cpu_dying = intel_pmu_cpu_dying,
5715
.cpu_dead = intel_pmu_cpu_dead,
5716
5717
.guest_get_msrs = intel_guest_get_msrs,
5718
.sched_task = intel_pmu_sched_task,
5719
5720
.check_period = intel_pmu_check_period,
5721
5722
.aux_output_match = intel_pmu_aux_output_match,
5723
5724
.lbr_reset = intel_pmu_lbr_reset_64,
5725
.lbr_read = intel_pmu_lbr_read_64,
5726
.lbr_save = intel_pmu_lbr_save,
5727
.lbr_restore = intel_pmu_lbr_restore,
5728
5729
/*
5730
* SMM has access to all 4 rings and while traditionally SMM code only
5731
* ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5732
*
5733
* Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5734
* between SMM or not, this results in what should be pure userspace
5735
* counters including SMM data.
5736
*
5737
* This is a clear privilege issue, therefore globally disable
5738
* counting SMM by default.
5739
*/
5740
.attr_freeze_on_smi = 1,
5741
};
5742
5743
static __init void intel_clovertown_quirk(void)
5744
{
5745
/*
5746
* PEBS is unreliable due to:
5747
*
5748
* AJ67 - PEBS may experience CPL leaks
5749
* AJ68 - PEBS PMI may be delayed by one event
5750
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5751
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5752
*
5753
* AJ67 could be worked around by restricting the OS/USR flags.
5754
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5755
*
5756
* AJ106 could possibly be worked around by not allowing LBR
5757
* usage from PEBS, including the fixup.
5758
* AJ68 could possibly be worked around by always programming
5759
* a pebs_event_reset[0] value and coping with the lost events.
5760
*
5761
* But taken together it might just make sense to not enable PEBS on
5762
* these chips.
5763
*/
5764
pr_warn("PEBS disabled due to CPU errata\n");
5765
x86_pmu.ds_pebs = 0;
5766
x86_pmu.pebs_constraints = NULL;
5767
}
5768
5769
static const struct x86_cpu_id isolation_ucodes[] = {
5770
X86_MATCH_VFM_STEPS(INTEL_HASWELL, 3, 3, 0x0000001f),
5771
X86_MATCH_VFM_STEPS(INTEL_HASWELL_L, 1, 1, 0x0000001e),
5772
X86_MATCH_VFM_STEPS(INTEL_HASWELL_G, 1, 1, 0x00000015),
5773
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 2, 2, 0x00000037),
5774
X86_MATCH_VFM_STEPS(INTEL_HASWELL_X, 4, 4, 0x0000000a),
5775
X86_MATCH_VFM_STEPS(INTEL_BROADWELL, 4, 4, 0x00000023),
5776
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_G, 1, 1, 0x00000014),
5777
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 2, 2, 0x00000010),
5778
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 3, 3, 0x07000009),
5779
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 4, 4, 0x0f000009),
5780
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_D, 5, 5, 0x0e000002),
5781
X86_MATCH_VFM_STEPS(INTEL_BROADWELL_X, 1, 1, 0x0b000014),
5782
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 3, 3, 0x00000021),
5783
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 4, 7, 0x00000000),
5784
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_X, 11, 11, 0x00000000),
5785
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE_L, 3, 3, 0x0000007c),
5786
X86_MATCH_VFM_STEPS(INTEL_SKYLAKE, 3, 3, 0x0000007c),
5787
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE, 9, 13, 0x0000004e),
5788
X86_MATCH_VFM_STEPS(INTEL_KABYLAKE_L, 9, 12, 0x0000004e),
5789
{}
5790
};
5791
5792
static void intel_check_pebs_isolation(void)
5793
{
5794
x86_pmu.pebs_no_isolation = !x86_match_min_microcode_rev(isolation_ucodes);
5795
}
5796
5797
static __init void intel_pebs_isolation_quirk(void)
5798
{
5799
WARN_ON_ONCE(x86_pmu.check_microcode);
5800
x86_pmu.check_microcode = intel_check_pebs_isolation;
5801
intel_check_pebs_isolation();
5802
}
5803
5804
static const struct x86_cpu_id pebs_ucodes[] = {
5805
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE, 7, 7, 0x00000028),
5806
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 6, 6, 0x00000618),
5807
X86_MATCH_VFM_STEPS(INTEL_SANDYBRIDGE_X, 7, 7, 0x0000070c),
5808
{}
5809
};
5810
5811
static bool intel_snb_pebs_broken(void)
5812
{
5813
return !x86_match_min_microcode_rev(pebs_ucodes);
5814
}
5815
5816
static void intel_snb_check_microcode(void)
5817
{
5818
if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5819
return;
5820
5821
/*
5822
* Serialized by the microcode lock..
5823
*/
5824
if (x86_pmu.pebs_broken) {
5825
pr_info("PEBS enabled due to microcode update\n");
5826
x86_pmu.pebs_broken = 0;
5827
} else {
5828
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5829
x86_pmu.pebs_broken = 1;
5830
}
5831
}
5832
5833
static bool is_lbr_from(unsigned long msr)
5834
{
5835
unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5836
5837
return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5838
}
5839
5840
/*
5841
* Under certain circumstances, access certain MSR may cause #GP.
5842
* The function tests if the input MSR can be safely accessed.
5843
*/
5844
static bool check_msr(unsigned long msr, u64 mask)
5845
{
5846
u64 val_old, val_new, val_tmp;
5847
5848
/*
5849
* Disable the check for real HW, so we don't
5850
* mess with potentially enabled registers:
5851
*/
5852
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5853
return true;
5854
5855
/*
5856
* Read the current value, change it and read it back to see if it
5857
* matches, this is needed to detect certain hardware emulators
5858
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
5859
*/
5860
if (rdmsrq_safe(msr, &val_old))
5861
return false;
5862
5863
/*
5864
* Only change the bits which can be updated by wrmsrq.
5865
*/
5866
val_tmp = val_old ^ mask;
5867
5868
if (is_lbr_from(msr))
5869
val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5870
5871
if (wrmsrq_safe(msr, val_tmp) ||
5872
rdmsrq_safe(msr, &val_new))
5873
return false;
5874
5875
/*
5876
* Quirk only affects validation in wrmsr(), so wrmsrq()'s value
5877
* should equal rdmsrq()'s even with the quirk.
5878
*/
5879
if (val_new != val_tmp)
5880
return false;
5881
5882
if (is_lbr_from(msr))
5883
val_old = lbr_from_signext_quirk_wr(val_old);
5884
5885
/* Here it's sure that the MSR can be safely accessed.
5886
* Restore the old value and return.
5887
*/
5888
wrmsrq(msr, val_old);
5889
5890
return true;
5891
}
5892
5893
static __init void intel_sandybridge_quirk(void)
5894
{
5895
x86_pmu.check_microcode = intel_snb_check_microcode;
5896
cpus_read_lock();
5897
intel_snb_check_microcode();
5898
cpus_read_unlock();
5899
}
5900
5901
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5902
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5903
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5904
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5905
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5906
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5907
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5908
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5909
};
5910
5911
static __init void intel_arch_events_quirk(void)
5912
{
5913
int bit;
5914
5915
/* disable event that reported as not present by cpuid */
5916
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5917
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5918
pr_warn("CPUID marked event: \'%s\' unavailable\n",
5919
intel_arch_events_map[bit].name);
5920
}
5921
}
5922
5923
static __init void intel_nehalem_quirk(void)
5924
{
5925
union cpuid10_ebx ebx;
5926
5927
ebx.full = x86_pmu.events_maskl;
5928
if (ebx.split.no_branch_misses_retired) {
5929
/*
5930
* Erratum AAJ80 detected, we work it around by using
5931
* the BR_MISP_EXEC.ANY event. This will over-count
5932
* branch-misses, but it's still much better than the
5933
* architectural event which is often completely bogus:
5934
*/
5935
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5936
ebx.split.no_branch_misses_retired = 0;
5937
x86_pmu.events_maskl = ebx.full;
5938
pr_info("CPU erratum AAJ80 worked around\n");
5939
}
5940
}
5941
5942
/*
5943
* enable software workaround for errata:
5944
* SNB: BJ122
5945
* IVB: BV98
5946
* HSW: HSD29
5947
*
5948
* Only needed when HT is enabled. However detecting
5949
* if HT is enabled is difficult (model specific). So instead,
5950
* we enable the workaround in the early boot, and verify if
5951
* it is needed in a later initcall phase once we have valid
5952
* topology information to check if HT is actually enabled
5953
*/
5954
static __init void intel_ht_bug(void)
5955
{
5956
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5957
5958
x86_pmu.start_scheduling = intel_start_scheduling;
5959
x86_pmu.commit_scheduling = intel_commit_scheduling;
5960
x86_pmu.stop_scheduling = intel_stop_scheduling;
5961
}
5962
5963
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
5964
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
5965
5966
/* Haswell special events */
5967
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
5968
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
5969
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
5970
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
5971
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
5972
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
5973
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
5974
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
5975
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
5976
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
5977
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
5978
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
5979
5980
static struct attribute *hsw_events_attrs[] = {
5981
EVENT_PTR(td_slots_issued),
5982
EVENT_PTR(td_slots_retired),
5983
EVENT_PTR(td_fetch_bubbles),
5984
EVENT_PTR(td_total_slots),
5985
EVENT_PTR(td_total_slots_scale),
5986
EVENT_PTR(td_recovery_bubbles),
5987
EVENT_PTR(td_recovery_bubbles_scale),
5988
NULL
5989
};
5990
5991
static struct attribute *hsw_mem_events_attrs[] = {
5992
EVENT_PTR(mem_ld_hsw),
5993
EVENT_PTR(mem_st_hsw),
5994
NULL,
5995
};
5996
5997
static struct attribute *hsw_tsx_events_attrs[] = {
5998
EVENT_PTR(tx_start),
5999
EVENT_PTR(tx_commit),
6000
EVENT_PTR(tx_abort),
6001
EVENT_PTR(tx_capacity),
6002
EVENT_PTR(tx_conflict),
6003
EVENT_PTR(el_start),
6004
EVENT_PTR(el_commit),
6005
EVENT_PTR(el_abort),
6006
EVENT_PTR(el_capacity),
6007
EVENT_PTR(el_conflict),
6008
EVENT_PTR(cycles_t),
6009
EVENT_PTR(cycles_ct),
6010
NULL
6011
};
6012
6013
EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
6014
EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
6015
EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
6016
EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
6017
6018
static struct attribute *icl_events_attrs[] = {
6019
EVENT_PTR(mem_ld_hsw),
6020
EVENT_PTR(mem_st_hsw),
6021
NULL,
6022
};
6023
6024
static struct attribute *icl_td_events_attrs[] = {
6025
EVENT_PTR(slots),
6026
EVENT_PTR(td_retiring),
6027
EVENT_PTR(td_bad_spec),
6028
EVENT_PTR(td_fe_bound),
6029
EVENT_PTR(td_be_bound),
6030
NULL,
6031
};
6032
6033
static struct attribute *icl_tsx_events_attrs[] = {
6034
EVENT_PTR(tx_start),
6035
EVENT_PTR(tx_abort),
6036
EVENT_PTR(tx_commit),
6037
EVENT_PTR(tx_capacity_read),
6038
EVENT_PTR(tx_capacity_write),
6039
EVENT_PTR(tx_conflict),
6040
EVENT_PTR(el_start),
6041
EVENT_PTR(el_abort),
6042
EVENT_PTR(el_commit),
6043
EVENT_PTR(el_capacity_read),
6044
EVENT_PTR(el_capacity_write),
6045
EVENT_PTR(el_conflict),
6046
EVENT_PTR(cycles_t),
6047
EVENT_PTR(cycles_ct),
6048
NULL,
6049
};
6050
6051
6052
EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
6053
EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
6054
6055
static struct attribute *glc_events_attrs[] = {
6056
EVENT_PTR(mem_ld_hsw),
6057
EVENT_PTR(mem_st_spr),
6058
EVENT_PTR(mem_ld_aux),
6059
NULL,
6060
};
6061
6062
static struct attribute *glc_td_events_attrs[] = {
6063
EVENT_PTR(slots),
6064
EVENT_PTR(td_retiring),
6065
EVENT_PTR(td_bad_spec),
6066
EVENT_PTR(td_fe_bound),
6067
EVENT_PTR(td_be_bound),
6068
EVENT_PTR(td_heavy_ops),
6069
EVENT_PTR(td_br_mispredict),
6070
EVENT_PTR(td_fetch_lat),
6071
EVENT_PTR(td_mem_bound),
6072
NULL,
6073
};
6074
6075
static struct attribute *glc_tsx_events_attrs[] = {
6076
EVENT_PTR(tx_start),
6077
EVENT_PTR(tx_abort),
6078
EVENT_PTR(tx_commit),
6079
EVENT_PTR(tx_capacity_read),
6080
EVENT_PTR(tx_capacity_write),
6081
EVENT_PTR(tx_conflict),
6082
EVENT_PTR(cycles_t),
6083
EVENT_PTR(cycles_ct),
6084
NULL,
6085
};
6086
6087
static ssize_t freeze_on_smi_show(struct device *cdev,
6088
struct device_attribute *attr,
6089
char *buf)
6090
{
6091
return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
6092
}
6093
6094
static DEFINE_MUTEX(freeze_on_smi_mutex);
6095
6096
static ssize_t freeze_on_smi_store(struct device *cdev,
6097
struct device_attribute *attr,
6098
const char *buf, size_t count)
6099
{
6100
unsigned long val;
6101
ssize_t ret;
6102
6103
ret = kstrtoul(buf, 0, &val);
6104
if (ret)
6105
return ret;
6106
6107
if (val > 1)
6108
return -EINVAL;
6109
6110
mutex_lock(&freeze_on_smi_mutex);
6111
6112
if (x86_pmu.attr_freeze_on_smi == val)
6113
goto done;
6114
6115
x86_pmu.attr_freeze_on_smi = val;
6116
6117
cpus_read_lock();
6118
on_each_cpu(flip_smm_bit, &val, 1);
6119
cpus_read_unlock();
6120
done:
6121
mutex_unlock(&freeze_on_smi_mutex);
6122
6123
return count;
6124
}
6125
6126
static void update_tfa_sched(void *ignored)
6127
{
6128
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
6129
6130
/*
6131
* check if PMC3 is used
6132
* and if so force schedule out for all event types all contexts
6133
*/
6134
if (test_bit(3, cpuc->active_mask))
6135
perf_pmu_resched(x86_get_pmu(smp_processor_id()));
6136
}
6137
6138
static ssize_t show_sysctl_tfa(struct device *cdev,
6139
struct device_attribute *attr,
6140
char *buf)
6141
{
6142
return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
6143
}
6144
6145
static ssize_t set_sysctl_tfa(struct device *cdev,
6146
struct device_attribute *attr,
6147
const char *buf, size_t count)
6148
{
6149
bool val;
6150
ssize_t ret;
6151
6152
ret = kstrtobool(buf, &val);
6153
if (ret)
6154
return ret;
6155
6156
/* no change */
6157
if (val == allow_tsx_force_abort)
6158
return count;
6159
6160
allow_tsx_force_abort = val;
6161
6162
cpus_read_lock();
6163
on_each_cpu(update_tfa_sched, NULL, 1);
6164
cpus_read_unlock();
6165
6166
return count;
6167
}
6168
6169
6170
static DEVICE_ATTR_RW(freeze_on_smi);
6171
6172
static ssize_t branches_show(struct device *cdev,
6173
struct device_attribute *attr,
6174
char *buf)
6175
{
6176
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
6177
}
6178
6179
static DEVICE_ATTR_RO(branches);
6180
6181
static ssize_t branch_counter_nr_show(struct device *cdev,
6182
struct device_attribute *attr,
6183
char *buf)
6184
{
6185
return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters));
6186
}
6187
6188
static DEVICE_ATTR_RO(branch_counter_nr);
6189
6190
static ssize_t branch_counter_width_show(struct device *cdev,
6191
struct device_attribute *attr,
6192
char *buf)
6193
{
6194
return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS);
6195
}
6196
6197
static DEVICE_ATTR_RO(branch_counter_width);
6198
6199
static struct attribute *lbr_attrs[] = {
6200
&dev_attr_branches.attr,
6201
&dev_attr_branch_counter_nr.attr,
6202
&dev_attr_branch_counter_width.attr,
6203
NULL
6204
};
6205
6206
static umode_t
6207
lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6208
{
6209
/* branches */
6210
if (i == 0)
6211
return x86_pmu.lbr_nr ? attr->mode : 0;
6212
6213
return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0;
6214
}
6215
6216
static char pmu_name_str[30];
6217
6218
static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str);
6219
6220
static struct attribute *intel_pmu_caps_attrs[] = {
6221
&dev_attr_pmu_name.attr.attr,
6222
NULL
6223
};
6224
6225
static DEVICE_ATTR(allow_tsx_force_abort, 0644,
6226
show_sysctl_tfa,
6227
set_sysctl_tfa);
6228
6229
static struct attribute *intel_pmu_attrs[] = {
6230
&dev_attr_freeze_on_smi.attr,
6231
&dev_attr_allow_tsx_force_abort.attr,
6232
NULL,
6233
};
6234
6235
static umode_t
6236
default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6237
{
6238
if (attr == &dev_attr_allow_tsx_force_abort.attr)
6239
return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
6240
6241
return attr->mode;
6242
}
6243
6244
static umode_t
6245
tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6246
{
6247
return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
6248
}
6249
6250
static umode_t
6251
pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6252
{
6253
return x86_pmu.ds_pebs ? attr->mode : 0;
6254
}
6255
6256
static umode_t
6257
mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6258
{
6259
if (attr == &event_attr_mem_ld_aux.attr.attr)
6260
return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
6261
6262
return pebs_is_visible(kobj, attr, i);
6263
}
6264
6265
static umode_t
6266
exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6267
{
6268
return x86_pmu.version >= 2 ? attr->mode : 0;
6269
}
6270
6271
static umode_t
6272
td_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6273
{
6274
/*
6275
* Hide the perf metrics topdown events
6276
* if the feature is not enumerated.
6277
*/
6278
if (x86_pmu.num_topdown_events)
6279
return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0;
6280
6281
return attr->mode;
6282
}
6283
6284
PMU_FORMAT_ATTR(acr_mask, "config2:0-63");
6285
6286
static struct attribute *format_acr_attrs[] = {
6287
&format_attr_acr_mask.attr,
6288
NULL
6289
};
6290
6291
static umode_t
6292
acr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
6293
{
6294
struct device *dev = kobj_to_dev(kobj);
6295
6296
return intel_pmu_has_acr(dev_get_drvdata(dev)) ? attr->mode : 0;
6297
}
6298
6299
static struct attribute_group group_events_td = {
6300
.name = "events",
6301
.is_visible = td_is_visible,
6302
};
6303
6304
static struct attribute_group group_events_mem = {
6305
.name = "events",
6306
.is_visible = mem_is_visible,
6307
};
6308
6309
static struct attribute_group group_events_tsx = {
6310
.name = "events",
6311
.is_visible = tsx_is_visible,
6312
};
6313
6314
static struct attribute_group group_caps_gen = {
6315
.name = "caps",
6316
.attrs = intel_pmu_caps_attrs,
6317
};
6318
6319
static struct attribute_group group_caps_lbr = {
6320
.name = "caps",
6321
.attrs = lbr_attrs,
6322
.is_visible = lbr_is_visible,
6323
};
6324
6325
static struct attribute_group group_format_extra = {
6326
.name = "format",
6327
.is_visible = exra_is_visible,
6328
};
6329
6330
static struct attribute_group group_format_extra_skl = {
6331
.name = "format",
6332
.is_visible = exra_is_visible,
6333
};
6334
6335
static struct attribute_group group_format_evtsel_ext = {
6336
.name = "format",
6337
.attrs = format_evtsel_ext_attrs,
6338
.is_visible = evtsel_ext_is_visible,
6339
};
6340
6341
static struct attribute_group group_format_acr = {
6342
.name = "format",
6343
.attrs = format_acr_attrs,
6344
.is_visible = acr_is_visible,
6345
};
6346
6347
static struct attribute_group group_default = {
6348
.attrs = intel_pmu_attrs,
6349
.is_visible = default_is_visible,
6350
};
6351
6352
static const struct attribute_group *attr_update[] = {
6353
&group_events_td,
6354
&group_events_mem,
6355
&group_events_tsx,
6356
&group_caps_gen,
6357
&group_caps_lbr,
6358
&group_format_extra,
6359
&group_format_extra_skl,
6360
&group_format_evtsel_ext,
6361
&group_format_acr,
6362
&group_default,
6363
NULL,
6364
};
6365
6366
EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
6367
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
6368
EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
6369
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
6370
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
6371
EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
6372
EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
6373
EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
6374
EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
6375
6376
static struct attribute *adl_hybrid_events_attrs[] = {
6377
EVENT_PTR(slots_adl),
6378
EVENT_PTR(td_retiring_adl),
6379
EVENT_PTR(td_bad_spec_adl),
6380
EVENT_PTR(td_fe_bound_adl),
6381
EVENT_PTR(td_be_bound_adl),
6382
EVENT_PTR(td_heavy_ops_adl),
6383
EVENT_PTR(td_br_mis_adl),
6384
EVENT_PTR(td_fetch_lat_adl),
6385
EVENT_PTR(td_mem_bound_adl),
6386
NULL,
6387
};
6388
6389
EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small);
6390
EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small);
6391
EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small);
6392
6393
static struct attribute *lnl_hybrid_events_attrs[] = {
6394
EVENT_PTR(slots_adl),
6395
EVENT_PTR(td_retiring_lnl),
6396
EVENT_PTR(td_bad_spec_adl),
6397
EVENT_PTR(td_fe_bound_lnl),
6398
EVENT_PTR(td_be_bound_lnl),
6399
EVENT_PTR(td_heavy_ops_adl),
6400
EVENT_PTR(td_br_mis_adl),
6401
EVENT_PTR(td_fetch_lat_adl),
6402
EVENT_PTR(td_mem_bound_adl),
6403
NULL
6404
};
6405
6406
/* The event string must be in PMU IDX order. */
6407
EVENT_ATTR_STR_HYBRID(topdown-retiring,
6408
td_retiring_arl_h,
6409
"event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0",
6410
hybrid_big_small_tiny);
6411
EVENT_ATTR_STR_HYBRID(topdown-bad-spec,
6412
td_bad_spec_arl_h,
6413
"event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0",
6414
hybrid_big_small_tiny);
6415
EVENT_ATTR_STR_HYBRID(topdown-fe-bound,
6416
td_fe_bound_arl_h,
6417
"event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0",
6418
hybrid_big_small_tiny);
6419
EVENT_ATTR_STR_HYBRID(topdown-be-bound,
6420
td_be_bound_arl_h,
6421
"event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0",
6422
hybrid_big_small_tiny);
6423
6424
static struct attribute *arl_h_hybrid_events_attrs[] = {
6425
EVENT_PTR(slots_adl),
6426
EVENT_PTR(td_retiring_arl_h),
6427
EVENT_PTR(td_bad_spec_arl_h),
6428
EVENT_PTR(td_fe_bound_arl_h),
6429
EVENT_PTR(td_be_bound_arl_h),
6430
EVENT_PTR(td_heavy_ops_adl),
6431
EVENT_PTR(td_br_mis_adl),
6432
EVENT_PTR(td_fetch_lat_adl),
6433
EVENT_PTR(td_mem_bound_adl),
6434
NULL,
6435
};
6436
6437
/* Must be in IDX order */
6438
EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
6439
EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
6440
EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
6441
6442
static struct attribute *adl_hybrid_mem_attrs[] = {
6443
EVENT_PTR(mem_ld_adl),
6444
EVENT_PTR(mem_st_adl),
6445
EVENT_PTR(mem_ld_aux_adl),
6446
NULL,
6447
};
6448
6449
static struct attribute *mtl_hybrid_mem_attrs[] = {
6450
EVENT_PTR(mem_ld_adl),
6451
EVENT_PTR(mem_st_adl),
6452
NULL
6453
};
6454
6455
EVENT_ATTR_STR_HYBRID(mem-loads,
6456
mem_ld_arl_h,
6457
"event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3",
6458
hybrid_big_small_tiny);
6459
EVENT_ATTR_STR_HYBRID(mem-stores,
6460
mem_st_arl_h,
6461
"event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6",
6462
hybrid_big_small_tiny);
6463
6464
static struct attribute *arl_h_hybrid_mem_attrs[] = {
6465
EVENT_PTR(mem_ld_arl_h),
6466
EVENT_PTR(mem_st_arl_h),
6467
NULL,
6468
};
6469
6470
EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
6471
EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
6472
EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
6473
EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
6474
EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
6475
EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
6476
EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
6477
EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
6478
6479
static struct attribute *adl_hybrid_tsx_attrs[] = {
6480
EVENT_PTR(tx_start_adl),
6481
EVENT_PTR(tx_abort_adl),
6482
EVENT_PTR(tx_commit_adl),
6483
EVENT_PTR(tx_capacity_read_adl),
6484
EVENT_PTR(tx_capacity_write_adl),
6485
EVENT_PTR(tx_conflict_adl),
6486
EVENT_PTR(cycles_t_adl),
6487
EVENT_PTR(cycles_ct_adl),
6488
NULL,
6489
};
6490
6491
FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
6492
FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
6493
FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny);
6494
FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny);
6495
FORMAT_ATTR_HYBRID(frontend, hybrid_big);
6496
6497
#define ADL_HYBRID_RTM_FORMAT_ATTR \
6498
FORMAT_HYBRID_PTR(in_tx), \
6499
FORMAT_HYBRID_PTR(in_tx_cp)
6500
6501
#define ADL_HYBRID_FORMAT_ATTR \
6502
FORMAT_HYBRID_PTR(offcore_rsp), \
6503
FORMAT_HYBRID_PTR(ldlat), \
6504
FORMAT_HYBRID_PTR(frontend)
6505
6506
static struct attribute *adl_hybrid_extra_attr_rtm[] = {
6507
ADL_HYBRID_RTM_FORMAT_ATTR,
6508
ADL_HYBRID_FORMAT_ATTR,
6509
NULL
6510
};
6511
6512
static struct attribute *adl_hybrid_extra_attr[] = {
6513
ADL_HYBRID_FORMAT_ATTR,
6514
NULL
6515
};
6516
6517
FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny);
6518
6519
static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
6520
ADL_HYBRID_RTM_FORMAT_ATTR,
6521
ADL_HYBRID_FORMAT_ATTR,
6522
FORMAT_HYBRID_PTR(snoop_rsp),
6523
NULL
6524
};
6525
6526
static struct attribute *mtl_hybrid_extra_attr[] = {
6527
ADL_HYBRID_FORMAT_ATTR,
6528
FORMAT_HYBRID_PTR(snoop_rsp),
6529
NULL
6530
};
6531
6532
static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
6533
{
6534
struct device *dev = kobj_to_dev(kobj);
6535
struct x86_hybrid_pmu *pmu =
6536
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6537
struct perf_pmu_events_hybrid_attr *pmu_attr =
6538
container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
6539
6540
return pmu->pmu_type & pmu_attr->pmu_type;
6541
}
6542
6543
static umode_t hybrid_events_is_visible(struct kobject *kobj,
6544
struct attribute *attr, int i)
6545
{
6546
return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
6547
}
6548
6549
static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
6550
{
6551
int cpu = cpumask_first(&pmu->supported_cpus);
6552
6553
return (cpu >= nr_cpu_ids) ? -1 : cpu;
6554
}
6555
6556
static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
6557
struct attribute *attr, int i)
6558
{
6559
struct device *dev = kobj_to_dev(kobj);
6560
struct x86_hybrid_pmu *pmu =
6561
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6562
int cpu = hybrid_find_supported_cpu(pmu);
6563
6564
return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
6565
}
6566
6567
static umode_t hybrid_format_is_visible(struct kobject *kobj,
6568
struct attribute *attr, int i)
6569
{
6570
struct device *dev = kobj_to_dev(kobj);
6571
struct x86_hybrid_pmu *pmu =
6572
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6573
struct perf_pmu_format_hybrid_attr *pmu_attr =
6574
container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
6575
int cpu = hybrid_find_supported_cpu(pmu);
6576
6577
return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0;
6578
}
6579
6580
static umode_t hybrid_td_is_visible(struct kobject *kobj,
6581
struct attribute *attr, int i)
6582
{
6583
struct device *dev = kobj_to_dev(kobj);
6584
struct x86_hybrid_pmu *pmu =
6585
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6586
6587
if (!is_attr_for_this_pmu(kobj, attr))
6588
return 0;
6589
6590
6591
/* Only the big core supports perf metrics */
6592
if (pmu->pmu_type == hybrid_big)
6593
return pmu->intel_cap.perf_metrics ? attr->mode : 0;
6594
6595
return attr->mode;
6596
}
6597
6598
static struct attribute_group hybrid_group_events_td = {
6599
.name = "events",
6600
.is_visible = hybrid_td_is_visible,
6601
};
6602
6603
static struct attribute_group hybrid_group_events_mem = {
6604
.name = "events",
6605
.is_visible = hybrid_events_is_visible,
6606
};
6607
6608
static struct attribute_group hybrid_group_events_tsx = {
6609
.name = "events",
6610
.is_visible = hybrid_tsx_is_visible,
6611
};
6612
6613
static struct attribute_group hybrid_group_format_extra = {
6614
.name = "format",
6615
.is_visible = hybrid_format_is_visible,
6616
};
6617
6618
static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
6619
struct device_attribute *attr,
6620
char *buf)
6621
{
6622
struct x86_hybrid_pmu *pmu =
6623
container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
6624
6625
return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
6626
}
6627
6628
static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
6629
static struct attribute *intel_hybrid_cpus_attrs[] = {
6630
&dev_attr_cpus.attr,
6631
NULL,
6632
};
6633
6634
static struct attribute_group hybrid_group_cpus = {
6635
.attrs = intel_hybrid_cpus_attrs,
6636
};
6637
6638
static const struct attribute_group *hybrid_attr_update[] = {
6639
&hybrid_group_events_td,
6640
&hybrid_group_events_mem,
6641
&hybrid_group_events_tsx,
6642
&group_caps_gen,
6643
&group_caps_lbr,
6644
&hybrid_group_format_extra,
6645
&group_format_evtsel_ext,
6646
&group_format_acr,
6647
&group_default,
6648
&hybrid_group_cpus,
6649
NULL,
6650
};
6651
6652
static struct attribute *empty_attrs;
6653
6654
static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
6655
u64 cntr_mask,
6656
u64 fixed_cntr_mask,
6657
u64 intel_ctrl)
6658
{
6659
struct event_constraint *c;
6660
6661
if (!event_constraints)
6662
return;
6663
6664
/*
6665
* event on fixed counter2 (REF_CYCLES) only works on this
6666
* counter, so do not extend mask to generic counters
6667
*/
6668
for_each_event_constraint(c, event_constraints) {
6669
/*
6670
* Don't extend the topdown slots and metrics
6671
* events to the generic counters.
6672
*/
6673
if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
6674
/*
6675
* Disable topdown slots and metrics events,
6676
* if slots event is not in CPUID.
6677
*/
6678
if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
6679
c->idxmsk64 = 0;
6680
c->weight = hweight64(c->idxmsk64);
6681
continue;
6682
}
6683
6684
if (c->cmask == FIXED_EVENT_FLAGS) {
6685
/* Disabled fixed counters which are not in CPUID */
6686
c->idxmsk64 &= intel_ctrl;
6687
6688
/*
6689
* Don't extend the pseudo-encoding to the
6690
* generic counters
6691
*/
6692
if (!use_fixed_pseudo_encoding(c->code))
6693
c->idxmsk64 |= cntr_mask;
6694
}
6695
c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED);
6696
c->weight = hweight64(c->idxmsk64);
6697
}
6698
}
6699
6700
static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
6701
{
6702
struct extra_reg *er;
6703
6704
/*
6705
* Access extra MSR may cause #GP under certain circumstances.
6706
* E.g. KVM doesn't support offcore event
6707
* Check all extra_regs here.
6708
*/
6709
if (!extra_regs)
6710
return;
6711
6712
for (er = extra_regs; er->msr; er++) {
6713
er->extra_msr_access = check_msr(er->msr, 0x11UL);
6714
/* Disable LBR select mapping */
6715
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
6716
x86_pmu.lbr_sel_map = NULL;
6717
}
6718
}
6719
6720
static inline int intel_pmu_v6_addr_offset(int index, bool eventsel)
6721
{
6722
return MSR_IA32_PMC_V6_STEP * index;
6723
}
6724
6725
static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = {
6726
{ hybrid_small, "cpu_atom" },
6727
{ hybrid_big, "cpu_core" },
6728
{ hybrid_tiny, "cpu_lowpower" },
6729
};
6730
6731
static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus)
6732
{
6733
unsigned long pmus_mask = pmus;
6734
struct x86_hybrid_pmu *pmu;
6735
int idx = 0, bit;
6736
6737
x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask);
6738
x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus,
6739
sizeof(struct x86_hybrid_pmu),
6740
GFP_KERNEL);
6741
if (!x86_pmu.hybrid_pmu)
6742
return -ENOMEM;
6743
6744
static_branch_enable(&perf_is_hybrid);
6745
x86_pmu.filter = intel_pmu_filter;
6746
6747
for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) {
6748
pmu = &x86_pmu.hybrid_pmu[idx++];
6749
pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id;
6750
pmu->name = intel_hybrid_pmu_type_map[bit].name;
6751
6752
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
6753
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
6754
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
6755
pmu->config_mask = X86_RAW_EVENT_MASK;
6756
pmu->unconstrained = (struct event_constraint)
6757
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
6758
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
6759
6760
pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6761
if (pmu->pmu_type & hybrid_small_tiny) {
6762
pmu->intel_cap.perf_metrics = 0;
6763
pmu->mid_ack = true;
6764
} else if (pmu->pmu_type & hybrid_big) {
6765
pmu->intel_cap.perf_metrics = 1;
6766
pmu->late_ack = true;
6767
}
6768
}
6769
6770
return 0;
6771
}
6772
6773
static __always_inline void intel_pmu_ref_cycles_ext(void)
6774
{
6775
if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED)))
6776
intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c;
6777
}
6778
6779
static __always_inline void intel_pmu_init_glc(struct pmu *pmu)
6780
{
6781
x86_pmu.late_ack = true;
6782
x86_pmu.limit_period = glc_limit_period;
6783
x86_pmu.pebs_aliases = NULL;
6784
x86_pmu.pebs_prec_dist = true;
6785
x86_pmu.pebs_block = true;
6786
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6787
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6788
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6789
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6790
x86_pmu.lbr_pt_coexist = true;
6791
x86_pmu.num_topdown_events = 8;
6792
static_call_update(intel_pmu_update_topdown_event,
6793
&icl_update_topdown_event);
6794
static_call_update(intel_pmu_set_topdown_event_period,
6795
&icl_set_topdown_event_period);
6796
6797
memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6798
memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6799
hybrid(pmu, event_constraints) = intel_glc_event_constraints;
6800
hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints;
6801
6802
intel_pmu_ref_cycles_ext();
6803
}
6804
6805
static __always_inline void intel_pmu_init_grt(struct pmu *pmu)
6806
{
6807
x86_pmu.mid_ack = true;
6808
x86_pmu.limit_period = glc_limit_period;
6809
x86_pmu.pebs_aliases = NULL;
6810
x86_pmu.pebs_prec_dist = true;
6811
x86_pmu.pebs_block = true;
6812
x86_pmu.lbr_pt_coexist = true;
6813
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6814
x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6815
6816
memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6817
memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6818
hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6819
hybrid(pmu, event_constraints) = intel_grt_event_constraints;
6820
hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints;
6821
hybrid(pmu, extra_regs) = intel_grt_extra_regs;
6822
6823
intel_pmu_ref_cycles_ext();
6824
}
6825
6826
static __always_inline void intel_pmu_init_lnc(struct pmu *pmu)
6827
{
6828
intel_pmu_init_glc(pmu);
6829
hybrid(pmu, event_constraints) = intel_lnc_event_constraints;
6830
hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints;
6831
hybrid(pmu, extra_regs) = intel_lnc_extra_regs;
6832
}
6833
6834
static __always_inline void intel_pmu_init_skt(struct pmu *pmu)
6835
{
6836
intel_pmu_init_grt(pmu);
6837
hybrid(pmu, event_constraints) = intel_skt_event_constraints;
6838
hybrid(pmu, extra_regs) = intel_cmt_extra_regs;
6839
static_call_update(intel_pmu_enable_acr_event, intel_pmu_enable_acr);
6840
}
6841
6842
__init int intel_pmu_init(void)
6843
{
6844
struct attribute **extra_skl_attr = &empty_attrs;
6845
struct attribute **extra_attr = &empty_attrs;
6846
struct attribute **td_attr = &empty_attrs;
6847
struct attribute **mem_attr = &empty_attrs;
6848
struct attribute **tsx_attr = &empty_attrs;
6849
union cpuid10_edx edx;
6850
union cpuid10_eax eax;
6851
union cpuid10_ebx ebx;
6852
unsigned int fixed_mask;
6853
bool pmem = false;
6854
int version, i;
6855
char *name;
6856
struct x86_hybrid_pmu *pmu;
6857
6858
/* Architectural Perfmon was introduced starting with Core "Yonah" */
6859
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
6860
switch (boot_cpu_data.x86) {
6861
case 6:
6862
if (boot_cpu_data.x86_vfm < INTEL_CORE_YONAH)
6863
return p6_pmu_init();
6864
break;
6865
case 11:
6866
return knc_pmu_init();
6867
case 15:
6868
return p4_pmu_init();
6869
}
6870
6871
pr_cont("unsupported CPU family %d model %d ",
6872
boot_cpu_data.x86, boot_cpu_data.x86_model);
6873
return -ENODEV;
6874
}
6875
6876
/*
6877
* Check whether the Architectural PerfMon supports
6878
* Branch Misses Retired hw_event or not.
6879
*/
6880
cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
6881
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
6882
return -ENODEV;
6883
6884
version = eax.split.version_id;
6885
if (version < 2)
6886
x86_pmu = core_pmu;
6887
else
6888
x86_pmu = intel_pmu;
6889
6890
x86_pmu.version = version;
6891
x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0);
6892
x86_pmu.cntval_bits = eax.split.bit_width;
6893
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
6894
6895
x86_pmu.events_maskl = ebx.full;
6896
x86_pmu.events_mask_len = eax.split.mask_length;
6897
6898
x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64);
6899
x86_pmu.pebs_capable = PEBS_COUNTER_MASK;
6900
x86_pmu.config_mask = X86_RAW_EVENT_MASK;
6901
6902
/*
6903
* Quirk: v2 perfmon does not report fixed-purpose events, so
6904
* assume at least 3 events, when not running in a hypervisor:
6905
*/
6906
if (version > 1 && version < 5) {
6907
int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
6908
6909
x86_pmu.fixed_cntr_mask64 =
6910
GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0);
6911
} else if (version >= 5)
6912
x86_pmu.fixed_cntr_mask64 = fixed_mask;
6913
6914
if (boot_cpu_has(X86_FEATURE_PDCM)) {
6915
u64 capabilities;
6916
6917
rdmsrq(MSR_IA32_PERF_CAPABILITIES, capabilities);
6918
x86_pmu.intel_cap.capabilities = capabilities;
6919
}
6920
6921
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
6922
x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6923
x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6924
}
6925
6926
if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6927
intel_pmu_arch_lbr_init();
6928
6929
intel_pebs_init();
6930
6931
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6932
6933
if (version >= 5) {
6934
x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6935
if (x86_pmu.intel_cap.anythread_deprecated)
6936
pr_cont(" AnyThread deprecated, ");
6937
}
6938
6939
/*
6940
* Many features on and after V6 require dynamic constraint,
6941
* e.g., Arch PEBS, ACR.
6942
*/
6943
if (version >= 6)
6944
x86_pmu.flags |= PMU_FL_DYN_CONSTRAINT;
6945
/*
6946
* Install the hw-cache-events table:
6947
*/
6948
switch (boot_cpu_data.x86_vfm) {
6949
case INTEL_CORE_YONAH:
6950
pr_cont("Core events, ");
6951
name = "core";
6952
break;
6953
6954
case INTEL_CORE2_MEROM:
6955
x86_add_quirk(intel_clovertown_quirk);
6956
fallthrough;
6957
6958
case INTEL_CORE2_MEROM_L:
6959
case INTEL_CORE2_PENRYN:
6960
case INTEL_CORE2_DUNNINGTON:
6961
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6962
sizeof(hw_cache_event_ids));
6963
6964
intel_pmu_lbr_init_core();
6965
6966
x86_pmu.event_constraints = intel_core2_event_constraints;
6967
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6968
pr_cont("Core2 events, ");
6969
name = "core2";
6970
break;
6971
6972
case INTEL_NEHALEM:
6973
case INTEL_NEHALEM_EP:
6974
case INTEL_NEHALEM_EX:
6975
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6976
sizeof(hw_cache_event_ids));
6977
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6978
sizeof(hw_cache_extra_regs));
6979
6980
intel_pmu_lbr_init_nhm();
6981
6982
x86_pmu.event_constraints = intel_nehalem_event_constraints;
6983
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6984
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6985
x86_pmu.extra_regs = intel_nehalem_extra_regs;
6986
x86_pmu.limit_period = nhm_limit_period;
6987
6988
mem_attr = nhm_mem_events_attrs;
6989
6990
/* UOPS_ISSUED.STALLED_CYCLES */
6991
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6992
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6993
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6994
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6995
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6996
6997
intel_pmu_pebs_data_source_nhm();
6998
x86_add_quirk(intel_nehalem_quirk);
6999
x86_pmu.pebs_no_tlb = 1;
7000
extra_attr = nhm_format_attr;
7001
7002
pr_cont("Nehalem events, ");
7003
name = "nehalem";
7004
break;
7005
7006
case INTEL_ATOM_BONNELL:
7007
case INTEL_ATOM_BONNELL_MID:
7008
case INTEL_ATOM_SALTWELL:
7009
case INTEL_ATOM_SALTWELL_MID:
7010
case INTEL_ATOM_SALTWELL_TABLET:
7011
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
7012
sizeof(hw_cache_event_ids));
7013
7014
intel_pmu_lbr_init_atom();
7015
7016
x86_pmu.event_constraints = intel_gen_event_constraints;
7017
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
7018
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
7019
pr_cont("Atom events, ");
7020
name = "bonnell";
7021
break;
7022
7023
case INTEL_ATOM_SILVERMONT:
7024
case INTEL_ATOM_SILVERMONT_D:
7025
case INTEL_ATOM_SILVERMONT_MID:
7026
case INTEL_ATOM_AIRMONT:
7027
case INTEL_ATOM_SILVERMONT_MID2:
7028
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
7029
sizeof(hw_cache_event_ids));
7030
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
7031
sizeof(hw_cache_extra_regs));
7032
7033
intel_pmu_lbr_init_slm();
7034
7035
x86_pmu.event_constraints = intel_slm_event_constraints;
7036
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7037
x86_pmu.extra_regs = intel_slm_extra_regs;
7038
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7039
td_attr = slm_events_attrs;
7040
extra_attr = slm_format_attr;
7041
pr_cont("Silvermont events, ");
7042
name = "silvermont";
7043
break;
7044
7045
case INTEL_ATOM_GOLDMONT:
7046
case INTEL_ATOM_GOLDMONT_D:
7047
memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
7048
sizeof(hw_cache_event_ids));
7049
memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
7050
sizeof(hw_cache_extra_regs));
7051
7052
intel_pmu_lbr_init_skl();
7053
7054
x86_pmu.event_constraints = intel_slm_event_constraints;
7055
x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
7056
x86_pmu.extra_regs = intel_glm_extra_regs;
7057
/*
7058
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7059
* for precise cycles.
7060
* :pp is identical to :ppp
7061
*/
7062
x86_pmu.pebs_aliases = NULL;
7063
x86_pmu.pebs_prec_dist = true;
7064
x86_pmu.lbr_pt_coexist = true;
7065
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7066
td_attr = glm_events_attrs;
7067
extra_attr = slm_format_attr;
7068
pr_cont("Goldmont events, ");
7069
name = "goldmont";
7070
break;
7071
7072
case INTEL_ATOM_GOLDMONT_PLUS:
7073
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7074
sizeof(hw_cache_event_ids));
7075
memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
7076
sizeof(hw_cache_extra_regs));
7077
7078
intel_pmu_lbr_init_skl();
7079
7080
x86_pmu.event_constraints = intel_slm_event_constraints;
7081
x86_pmu.extra_regs = intel_glm_extra_regs;
7082
/*
7083
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7084
* for precise cycles.
7085
*/
7086
x86_pmu.pebs_aliases = NULL;
7087
x86_pmu.pebs_prec_dist = true;
7088
x86_pmu.lbr_pt_coexist = true;
7089
x86_pmu.pebs_capable = ~0ULL;
7090
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7091
x86_pmu.flags |= PMU_FL_PEBS_ALL;
7092
x86_pmu.get_event_constraints = glp_get_event_constraints;
7093
td_attr = glm_events_attrs;
7094
/* Goldmont Plus has 4-wide pipeline */
7095
event_attr_td_total_slots_scale_glm.event_str = "4";
7096
extra_attr = slm_format_attr;
7097
pr_cont("Goldmont plus events, ");
7098
name = "goldmont_plus";
7099
break;
7100
7101
case INTEL_ATOM_TREMONT_D:
7102
case INTEL_ATOM_TREMONT:
7103
case INTEL_ATOM_TREMONT_L:
7104
x86_pmu.late_ack = true;
7105
memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
7106
sizeof(hw_cache_event_ids));
7107
memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
7108
sizeof(hw_cache_extra_regs));
7109
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7110
7111
intel_pmu_lbr_init_skl();
7112
7113
x86_pmu.event_constraints = intel_slm_event_constraints;
7114
x86_pmu.extra_regs = intel_tnt_extra_regs;
7115
/*
7116
* It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
7117
* for precise cycles.
7118
*/
7119
x86_pmu.pebs_aliases = NULL;
7120
x86_pmu.pebs_prec_dist = true;
7121
x86_pmu.lbr_pt_coexist = true;
7122
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7123
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7124
td_attr = tnt_events_attrs;
7125
extra_attr = slm_format_attr;
7126
pr_cont("Tremont events, ");
7127
name = "Tremont";
7128
break;
7129
7130
case INTEL_ATOM_GRACEMONT:
7131
intel_pmu_init_grt(NULL);
7132
intel_pmu_pebs_data_source_grt();
7133
x86_pmu.pebs_latency_data = grt_latency_data;
7134
x86_pmu.get_event_constraints = tnt_get_event_constraints;
7135
td_attr = tnt_events_attrs;
7136
mem_attr = grt_mem_attrs;
7137
extra_attr = nhm_format_attr;
7138
pr_cont("Gracemont events, ");
7139
name = "gracemont";
7140
break;
7141
7142
case INTEL_ATOM_CRESTMONT:
7143
case INTEL_ATOM_CRESTMONT_X:
7144
intel_pmu_init_grt(NULL);
7145
x86_pmu.extra_regs = intel_cmt_extra_regs;
7146
intel_pmu_pebs_data_source_cmt();
7147
x86_pmu.pebs_latency_data = cmt_latency_data;
7148
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7149
td_attr = cmt_events_attrs;
7150
mem_attr = grt_mem_attrs;
7151
extra_attr = cmt_format_attr;
7152
pr_cont("Crestmont events, ");
7153
name = "crestmont";
7154
break;
7155
7156
case INTEL_ATOM_DARKMONT_X:
7157
intel_pmu_init_skt(NULL);
7158
intel_pmu_pebs_data_source_cmt();
7159
x86_pmu.pebs_latency_data = cmt_latency_data;
7160
x86_pmu.get_event_constraints = cmt_get_event_constraints;
7161
td_attr = skt_events_attrs;
7162
mem_attr = grt_mem_attrs;
7163
extra_attr = cmt_format_attr;
7164
pr_cont("Darkmont events, ");
7165
name = "darkmont";
7166
break;
7167
7168
case INTEL_WESTMERE:
7169
case INTEL_WESTMERE_EP:
7170
case INTEL_WESTMERE_EX:
7171
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
7172
sizeof(hw_cache_event_ids));
7173
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
7174
sizeof(hw_cache_extra_regs));
7175
7176
intel_pmu_lbr_init_nhm();
7177
7178
x86_pmu.event_constraints = intel_westmere_event_constraints;
7179
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
7180
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
7181
x86_pmu.extra_regs = intel_westmere_extra_regs;
7182
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7183
7184
mem_attr = nhm_mem_events_attrs;
7185
7186
/* UOPS_ISSUED.STALLED_CYCLES */
7187
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7188
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7189
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
7190
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7191
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
7192
7193
intel_pmu_pebs_data_source_nhm();
7194
extra_attr = nhm_format_attr;
7195
pr_cont("Westmere events, ");
7196
name = "westmere";
7197
break;
7198
7199
case INTEL_SANDYBRIDGE:
7200
case INTEL_SANDYBRIDGE_X:
7201
x86_add_quirk(intel_sandybridge_quirk);
7202
x86_add_quirk(intel_ht_bug);
7203
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7204
sizeof(hw_cache_event_ids));
7205
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7206
sizeof(hw_cache_extra_regs));
7207
7208
intel_pmu_lbr_init_snb();
7209
7210
x86_pmu.event_constraints = intel_snb_event_constraints;
7211
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
7212
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
7213
if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X)
7214
x86_pmu.extra_regs = intel_snbep_extra_regs;
7215
else
7216
x86_pmu.extra_regs = intel_snb_extra_regs;
7217
7218
7219
/* all extra regs are per-cpu when HT is on */
7220
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7221
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7222
7223
td_attr = snb_events_attrs;
7224
mem_attr = snb_mem_events_attrs;
7225
7226
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7227
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7228
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7229
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
7230
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
7231
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
7232
7233
extra_attr = nhm_format_attr;
7234
7235
pr_cont("SandyBridge events, ");
7236
name = "sandybridge";
7237
break;
7238
7239
case INTEL_IVYBRIDGE:
7240
case INTEL_IVYBRIDGE_X:
7241
x86_add_quirk(intel_ht_bug);
7242
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
7243
sizeof(hw_cache_event_ids));
7244
/* dTLB-load-misses on IVB is different than SNB */
7245
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
7246
7247
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
7248
sizeof(hw_cache_extra_regs));
7249
7250
intel_pmu_lbr_init_snb();
7251
7252
x86_pmu.event_constraints = intel_ivb_event_constraints;
7253
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
7254
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7255
x86_pmu.pebs_prec_dist = true;
7256
if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X)
7257
x86_pmu.extra_regs = intel_snbep_extra_regs;
7258
else
7259
x86_pmu.extra_regs = intel_snb_extra_regs;
7260
/* all extra regs are per-cpu when HT is on */
7261
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7262
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7263
7264
td_attr = snb_events_attrs;
7265
mem_attr = snb_mem_events_attrs;
7266
7267
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
7268
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
7269
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
7270
7271
extra_attr = nhm_format_attr;
7272
7273
pr_cont("IvyBridge events, ");
7274
name = "ivybridge";
7275
break;
7276
7277
7278
case INTEL_HASWELL:
7279
case INTEL_HASWELL_X:
7280
case INTEL_HASWELL_L:
7281
case INTEL_HASWELL_G:
7282
x86_add_quirk(intel_ht_bug);
7283
x86_add_quirk(intel_pebs_isolation_quirk);
7284
x86_pmu.late_ack = true;
7285
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7286
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7287
7288
intel_pmu_lbr_init_hsw();
7289
7290
x86_pmu.event_constraints = intel_hsw_event_constraints;
7291
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
7292
x86_pmu.extra_regs = intel_snbep_extra_regs;
7293
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7294
x86_pmu.pebs_prec_dist = true;
7295
/* all extra regs are per-cpu when HT is on */
7296
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7297
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7298
7299
x86_pmu.hw_config = hsw_hw_config;
7300
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7301
x86_pmu.limit_period = hsw_limit_period;
7302
x86_pmu.lbr_double_abort = true;
7303
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7304
hsw_format_attr : nhm_format_attr;
7305
td_attr = hsw_events_attrs;
7306
mem_attr = hsw_mem_events_attrs;
7307
tsx_attr = hsw_tsx_events_attrs;
7308
pr_cont("Haswell events, ");
7309
name = "haswell";
7310
break;
7311
7312
case INTEL_BROADWELL:
7313
case INTEL_BROADWELL_D:
7314
case INTEL_BROADWELL_G:
7315
case INTEL_BROADWELL_X:
7316
x86_add_quirk(intel_pebs_isolation_quirk);
7317
x86_pmu.late_ack = true;
7318
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7319
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7320
7321
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
7322
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
7323
BDW_L3_MISS|HSW_SNOOP_DRAM;
7324
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
7325
HSW_SNOOP_DRAM;
7326
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
7327
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7328
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
7329
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
7330
7331
intel_pmu_lbr_init_hsw();
7332
7333
x86_pmu.event_constraints = intel_bdw_event_constraints;
7334
x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
7335
x86_pmu.extra_regs = intel_snbep_extra_regs;
7336
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
7337
x86_pmu.pebs_prec_dist = true;
7338
/* all extra regs are per-cpu when HT is on */
7339
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7340
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7341
7342
x86_pmu.hw_config = hsw_hw_config;
7343
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7344
x86_pmu.limit_period = bdw_limit_period;
7345
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7346
hsw_format_attr : nhm_format_attr;
7347
td_attr = hsw_events_attrs;
7348
mem_attr = hsw_mem_events_attrs;
7349
tsx_attr = hsw_tsx_events_attrs;
7350
pr_cont("Broadwell events, ");
7351
name = "broadwell";
7352
break;
7353
7354
case INTEL_XEON_PHI_KNL:
7355
case INTEL_XEON_PHI_KNM:
7356
memcpy(hw_cache_event_ids,
7357
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7358
memcpy(hw_cache_extra_regs,
7359
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7360
intel_pmu_lbr_init_knl();
7361
7362
x86_pmu.event_constraints = intel_slm_event_constraints;
7363
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
7364
x86_pmu.extra_regs = intel_knl_extra_regs;
7365
7366
/* all extra regs are per-cpu when HT is on */
7367
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7368
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7369
extra_attr = slm_format_attr;
7370
pr_cont("Knights Landing/Mill events, ");
7371
name = "knights-landing";
7372
break;
7373
7374
case INTEL_SKYLAKE_X:
7375
pmem = true;
7376
fallthrough;
7377
case INTEL_SKYLAKE_L:
7378
case INTEL_SKYLAKE:
7379
case INTEL_KABYLAKE_L:
7380
case INTEL_KABYLAKE:
7381
case INTEL_COMETLAKE_L:
7382
case INTEL_COMETLAKE:
7383
x86_add_quirk(intel_pebs_isolation_quirk);
7384
x86_pmu.late_ack = true;
7385
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7386
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7387
intel_pmu_lbr_init_skl();
7388
7389
/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
7390
event_attr_td_recovery_bubbles.event_str_noht =
7391
"event=0xd,umask=0x1,cmask=1";
7392
event_attr_td_recovery_bubbles.event_str_ht =
7393
"event=0xd,umask=0x1,cmask=1,any=1";
7394
7395
x86_pmu.event_constraints = intel_skl_event_constraints;
7396
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
7397
x86_pmu.extra_regs = intel_skl_extra_regs;
7398
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
7399
x86_pmu.pebs_prec_dist = true;
7400
/* all extra regs are per-cpu when HT is on */
7401
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7402
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7403
7404
x86_pmu.hw_config = hsw_hw_config;
7405
x86_pmu.get_event_constraints = hsw_get_event_constraints;
7406
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7407
hsw_format_attr : nhm_format_attr;
7408
extra_skl_attr = skl_format_attr;
7409
td_attr = hsw_events_attrs;
7410
mem_attr = hsw_mem_events_attrs;
7411
tsx_attr = hsw_tsx_events_attrs;
7412
intel_pmu_pebs_data_source_skl(pmem);
7413
7414
/*
7415
* Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
7416
* TSX force abort hooks are not required on these systems. Only deploy
7417
* workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
7418
*/
7419
if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
7420
!boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
7421
x86_pmu.flags |= PMU_FL_TFA;
7422
x86_pmu.get_event_constraints = tfa_get_event_constraints;
7423
x86_pmu.enable_all = intel_tfa_pmu_enable_all;
7424
x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
7425
}
7426
7427
pr_cont("Skylake events, ");
7428
name = "skylake";
7429
break;
7430
7431
case INTEL_ICELAKE_X:
7432
case INTEL_ICELAKE_D:
7433
x86_pmu.pebs_ept = 1;
7434
pmem = true;
7435
fallthrough;
7436
case INTEL_ICELAKE_L:
7437
case INTEL_ICELAKE:
7438
case INTEL_TIGERLAKE_L:
7439
case INTEL_TIGERLAKE:
7440
case INTEL_ROCKETLAKE:
7441
x86_pmu.late_ack = true;
7442
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
7443
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
7444
hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
7445
intel_pmu_lbr_init_skl();
7446
7447
x86_pmu.event_constraints = intel_icl_event_constraints;
7448
x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
7449
x86_pmu.extra_regs = intel_icl_extra_regs;
7450
x86_pmu.pebs_aliases = NULL;
7451
x86_pmu.pebs_prec_dist = true;
7452
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
7453
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
7454
7455
x86_pmu.hw_config = hsw_hw_config;
7456
x86_pmu.get_event_constraints = icl_get_event_constraints;
7457
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7458
hsw_format_attr : nhm_format_attr;
7459
extra_skl_attr = skl_format_attr;
7460
mem_attr = icl_events_attrs;
7461
td_attr = icl_td_events_attrs;
7462
tsx_attr = icl_tsx_events_attrs;
7463
x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
7464
x86_pmu.lbr_pt_coexist = true;
7465
intel_pmu_pebs_data_source_skl(pmem);
7466
x86_pmu.num_topdown_events = 4;
7467
static_call_update(intel_pmu_update_topdown_event,
7468
&icl_update_topdown_event);
7469
static_call_update(intel_pmu_set_topdown_event_period,
7470
&icl_set_topdown_event_period);
7471
pr_cont("Icelake events, ");
7472
name = "icelake";
7473
break;
7474
7475
case INTEL_SAPPHIRERAPIDS_X:
7476
case INTEL_EMERALDRAPIDS_X:
7477
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7478
x86_pmu.extra_regs = intel_glc_extra_regs;
7479
pr_cont("Sapphire Rapids events, ");
7480
name = "sapphire_rapids";
7481
goto glc_common;
7482
7483
case INTEL_GRANITERAPIDS_X:
7484
case INTEL_GRANITERAPIDS_D:
7485
x86_pmu.extra_regs = intel_rwc_extra_regs;
7486
pr_cont("Granite Rapids events, ");
7487
name = "granite_rapids";
7488
7489
glc_common:
7490
intel_pmu_init_glc(NULL);
7491
x86_pmu.pebs_ept = 1;
7492
x86_pmu.hw_config = hsw_hw_config;
7493
x86_pmu.get_event_constraints = glc_get_event_constraints;
7494
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7495
hsw_format_attr : nhm_format_attr;
7496
extra_skl_attr = skl_format_attr;
7497
mem_attr = glc_events_attrs;
7498
td_attr = glc_td_events_attrs;
7499
tsx_attr = glc_tsx_events_attrs;
7500
intel_pmu_pebs_data_source_skl(true);
7501
break;
7502
7503
case INTEL_ALDERLAKE:
7504
case INTEL_ALDERLAKE_L:
7505
case INTEL_RAPTORLAKE:
7506
case INTEL_RAPTORLAKE_P:
7507
case INTEL_RAPTORLAKE_S:
7508
/*
7509
* Alder Lake has 2 types of CPU, core and atom.
7510
*
7511
* Initialize the common PerfMon capabilities here.
7512
*/
7513
intel_pmu_init_hybrid(hybrid_big_small);
7514
7515
x86_pmu.pebs_latency_data = grt_latency_data;
7516
x86_pmu.get_event_constraints = adl_get_event_constraints;
7517
x86_pmu.hw_config = adl_hw_config;
7518
x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
7519
7520
td_attr = adl_hybrid_events_attrs;
7521
mem_attr = adl_hybrid_mem_attrs;
7522
tsx_attr = adl_hybrid_tsx_attrs;
7523
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7524
adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
7525
7526
/* Initialize big core specific PerfMon capabilities.*/
7527
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7528
intel_pmu_init_glc(&pmu->pmu);
7529
if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
7530
pmu->cntr_mask64 <<= 2;
7531
pmu->cntr_mask64 |= 0x3;
7532
pmu->fixed_cntr_mask64 <<= 1;
7533
pmu->fixed_cntr_mask64 |= 0x1;
7534
} else {
7535
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7536
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7537
}
7538
7539
/*
7540
* Quirk: For some Alder Lake machine, when all E-cores are disabled in
7541
* a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
7542
* the X86_FEATURE_HYBRID_CPU is still set. The above codes will
7543
* mistakenly add extra counters for P-cores. Correct the number of
7544
* counters here.
7545
*/
7546
if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) {
7547
pmu->cntr_mask64 = x86_pmu.cntr_mask64;
7548
pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64;
7549
}
7550
7551
pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64);
7552
pmu->unconstrained = (struct event_constraint)
7553
__EVENT_CONSTRAINT(0, pmu->cntr_mask64,
7554
0, x86_pmu_num_counters(&pmu->pmu), 0, 0);
7555
7556
pmu->extra_regs = intel_glc_extra_regs;
7557
7558
/* Initialize Atom core specific PerfMon capabilities.*/
7559
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7560
intel_pmu_init_grt(&pmu->pmu);
7561
7562
x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
7563
intel_pmu_pebs_data_source_adl();
7564
pr_cont("Alderlake Hybrid events, ");
7565
name = "alderlake_hybrid";
7566
break;
7567
7568
case INTEL_METEORLAKE:
7569
case INTEL_METEORLAKE_L:
7570
case INTEL_ARROWLAKE_U:
7571
intel_pmu_init_hybrid(hybrid_big_small);
7572
7573
x86_pmu.pebs_latency_data = cmt_latency_data;
7574
x86_pmu.get_event_constraints = mtl_get_event_constraints;
7575
x86_pmu.hw_config = adl_hw_config;
7576
7577
td_attr = adl_hybrid_events_attrs;
7578
mem_attr = mtl_hybrid_mem_attrs;
7579
tsx_attr = adl_hybrid_tsx_attrs;
7580
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7581
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7582
7583
/* Initialize big core specific PerfMon capabilities.*/
7584
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7585
intel_pmu_init_glc(&pmu->pmu);
7586
pmu->extra_regs = intel_rwc_extra_regs;
7587
7588
/* Initialize Atom core specific PerfMon capabilities.*/
7589
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7590
intel_pmu_init_grt(&pmu->pmu);
7591
pmu->extra_regs = intel_cmt_extra_regs;
7592
7593
intel_pmu_pebs_data_source_mtl();
7594
pr_cont("Meteorlake Hybrid events, ");
7595
name = "meteorlake_hybrid";
7596
break;
7597
7598
case INTEL_PANTHERLAKE_L:
7599
pr_cont("Pantherlake Hybrid events, ");
7600
name = "pantherlake_hybrid";
7601
goto lnl_common;
7602
7603
case INTEL_LUNARLAKE_M:
7604
case INTEL_ARROWLAKE:
7605
pr_cont("Lunarlake Hybrid events, ");
7606
name = "lunarlake_hybrid";
7607
7608
lnl_common:
7609
intel_pmu_init_hybrid(hybrid_big_small);
7610
7611
x86_pmu.pebs_latency_data = lnl_latency_data;
7612
x86_pmu.get_event_constraints = mtl_get_event_constraints;
7613
x86_pmu.hw_config = adl_hw_config;
7614
7615
td_attr = lnl_hybrid_events_attrs;
7616
mem_attr = mtl_hybrid_mem_attrs;
7617
tsx_attr = adl_hybrid_tsx_attrs;
7618
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7619
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7620
7621
/* Initialize big core specific PerfMon capabilities.*/
7622
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7623
intel_pmu_init_lnc(&pmu->pmu);
7624
7625
/* Initialize Atom core specific PerfMon capabilities.*/
7626
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7627
intel_pmu_init_skt(&pmu->pmu);
7628
7629
intel_pmu_pebs_data_source_lnl();
7630
break;
7631
7632
case INTEL_ARROWLAKE_H:
7633
intel_pmu_init_hybrid(hybrid_big_small_tiny);
7634
7635
x86_pmu.pebs_latency_data = arl_h_latency_data;
7636
x86_pmu.get_event_constraints = arl_h_get_event_constraints;
7637
x86_pmu.hw_config = arl_h_hw_config;
7638
7639
td_attr = arl_h_hybrid_events_attrs;
7640
mem_attr = arl_h_hybrid_mem_attrs;
7641
tsx_attr = adl_hybrid_tsx_attrs;
7642
extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
7643
mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
7644
7645
/* Initialize big core specific PerfMon capabilities. */
7646
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
7647
intel_pmu_init_lnc(&pmu->pmu);
7648
7649
/* Initialize Atom core specific PerfMon capabilities. */
7650
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
7651
intel_pmu_init_skt(&pmu->pmu);
7652
7653
/* Initialize Lower Power Atom specific PerfMon capabilities. */
7654
pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX];
7655
intel_pmu_init_grt(&pmu->pmu);
7656
pmu->extra_regs = intel_cmt_extra_regs;
7657
7658
intel_pmu_pebs_data_source_arl_h();
7659
pr_cont("ArrowLake-H Hybrid events, ");
7660
name = "arrowlake_h_hybrid";
7661
break;
7662
7663
default:
7664
switch (x86_pmu.version) {
7665
case 1:
7666
x86_pmu.event_constraints = intel_v1_event_constraints;
7667
pr_cont("generic architected perfmon v1, ");
7668
name = "generic_arch_v1";
7669
break;
7670
case 2:
7671
case 3:
7672
case 4:
7673
/*
7674
* default constraints for v2 and up
7675
*/
7676
x86_pmu.event_constraints = intel_gen_event_constraints;
7677
pr_cont("generic architected perfmon, ");
7678
name = "generic_arch_v2+";
7679
break;
7680
default:
7681
/*
7682
* The default constraints for v5 and up can support up to
7683
* 16 fixed counters. For the fixed counters 4 and later,
7684
* the pseudo-encoding is applied.
7685
* The constraints may be cut according to the CPUID enumeration
7686
* by inserting the EVENT_CONSTRAINT_END.
7687
*/
7688
if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED)
7689
x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0);
7690
intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1;
7691
x86_pmu.event_constraints = intel_v5_gen_event_constraints;
7692
pr_cont("generic architected perfmon, ");
7693
name = "generic_arch_v5+";
7694
break;
7695
}
7696
}
7697
7698
snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
7699
7700
if (!is_hybrid()) {
7701
group_events_td.attrs = td_attr;
7702
group_events_mem.attrs = mem_attr;
7703
group_events_tsx.attrs = tsx_attr;
7704
group_format_extra.attrs = extra_attr;
7705
group_format_extra_skl.attrs = extra_skl_attr;
7706
7707
x86_pmu.attr_update = attr_update;
7708
} else {
7709
hybrid_group_events_td.attrs = td_attr;
7710
hybrid_group_events_mem.attrs = mem_attr;
7711
hybrid_group_events_tsx.attrs = tsx_attr;
7712
hybrid_group_format_extra.attrs = extra_attr;
7713
7714
x86_pmu.attr_update = hybrid_attr_update;
7715
}
7716
7717
/*
7718
* The archPerfmonExt (0x23) includes an enhanced enumeration of
7719
* PMU architectural features with a per-core view. For non-hybrid,
7720
* each core has the same PMU capabilities. It's good enough to
7721
* update the x86_pmu from the booting CPU. For hybrid, the x86_pmu
7722
* is used to keep the common capabilities. Still keep the values
7723
* from the leaf 0xa. The core specific update will be done later
7724
* when a new type is online.
7725
*/
7726
if (!is_hybrid() && boot_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
7727
update_pmu_cap(NULL);
7728
7729
intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64,
7730
&x86_pmu.fixed_cntr_mask64,
7731
&x86_pmu.intel_ctrl);
7732
7733
/* AnyThread may be deprecated on arch perfmon v5 or later */
7734
if (x86_pmu.intel_cap.anythread_deprecated)
7735
x86_pmu.format_attrs = intel_arch_formats_attr;
7736
7737
intel_pmu_check_event_constraints(x86_pmu.event_constraints,
7738
x86_pmu.cntr_mask64,
7739
x86_pmu.fixed_cntr_mask64,
7740
x86_pmu.intel_ctrl);
7741
/*
7742
* Access LBR MSR may cause #GP under certain circumstances.
7743
* Check all LBR MSR here.
7744
* Disable LBR access if any LBR MSRs can not be accessed.
7745
*/
7746
if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
7747
x86_pmu.lbr_nr = 0;
7748
for (i = 0; i < x86_pmu.lbr_nr; i++) {
7749
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
7750
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
7751
x86_pmu.lbr_nr = 0;
7752
}
7753
7754
if (x86_pmu.lbr_nr) {
7755
intel_pmu_lbr_init();
7756
7757
pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
7758
7759
/* only support branch_stack snapshot for perfmon >= v2 */
7760
if (x86_pmu.disable_all == intel_pmu_disable_all) {
7761
if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
7762
static_call_update(perf_snapshot_branch_stack,
7763
intel_pmu_snapshot_arch_branch_stack);
7764
} else {
7765
static_call_update(perf_snapshot_branch_stack,
7766
intel_pmu_snapshot_branch_stack);
7767
}
7768
}
7769
}
7770
7771
intel_pmu_check_extra_regs(x86_pmu.extra_regs);
7772
7773
/* Support full width counters using alternative MSR range */
7774
if (x86_pmu.intel_cap.full_width_write) {
7775
x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
7776
x86_pmu.perfctr = MSR_IA32_PMC0;
7777
pr_cont("full-width counters, ");
7778
}
7779
7780
/* Support V6+ MSR Aliasing */
7781
if (x86_pmu.version >= 6) {
7782
x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR;
7783
x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A;
7784
x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR;
7785
x86_pmu.addr_offset = intel_pmu_v6_addr_offset;
7786
}
7787
7788
if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
7789
x86_pmu.intel_ctrl |= GLOBAL_CTRL_EN_PERF_METRICS;
7790
7791
if (x86_pmu.intel_cap.pebs_timing_info)
7792
x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
7793
7794
intel_aux_output_init();
7795
7796
return 0;
7797
}
7798
7799
/*
7800
* HT bug: phase 2 init
7801
* Called once we have valid topology information to check
7802
* whether or not HT is enabled
7803
* If HT is off, then we disable the workaround
7804
*/
7805
static __init int fixup_ht_bug(void)
7806
{
7807
int c;
7808
/*
7809
* problem not present on this CPU model, nothing to do
7810
*/
7811
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
7812
return 0;
7813
7814
if (topology_max_smt_threads() > 1) {
7815
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
7816
return 0;
7817
}
7818
7819
cpus_read_lock();
7820
7821
hardlockup_detector_perf_stop();
7822
7823
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
7824
7825
x86_pmu.start_scheduling = NULL;
7826
x86_pmu.commit_scheduling = NULL;
7827
x86_pmu.stop_scheduling = NULL;
7828
7829
hardlockup_detector_perf_restart();
7830
7831
for_each_online_cpu(c)
7832
free_excl_cntrs(&per_cpu(cpu_hw_events, c));
7833
7834
cpus_read_unlock();
7835
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
7836
return 0;
7837
}
7838
subsys_initcall(fixup_ht_bug)
7839
7840