Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/apic/vector.c
29269 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Local APIC related interfaces to support IOAPIC, MSI, etc.
4
*
5
* Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6
* Moved from arch/x86/kernel/apic/io_apic.c.
7
* Jiang Liu <[email protected]>
8
* Enable support of hierarchical irqdomains
9
*/
10
#include <linux/interrupt.h>
11
#include <linux/irq.h>
12
#include <linux/seq_file.h>
13
#include <linux/init.h>
14
#include <linux/compiler.h>
15
#include <linux/slab.h>
16
#include <asm/irqdomain.h>
17
#include <asm/hw_irq.h>
18
#include <asm/traps.h>
19
#include <asm/apic.h>
20
#include <asm/i8259.h>
21
#include <asm/desc.h>
22
#include <asm/irq_remapping.h>
23
24
#include <asm/trace/irq_vectors.h>
25
26
struct apic_chip_data {
27
struct irq_cfg hw_irq_cfg;
28
unsigned int vector;
29
unsigned int prev_vector;
30
unsigned int cpu;
31
unsigned int prev_cpu;
32
unsigned int irq;
33
struct hlist_node clist;
34
unsigned int move_in_progress : 1,
35
is_managed : 1,
36
can_reserve : 1,
37
has_reserved : 1;
38
};
39
40
struct irq_domain *x86_vector_domain;
41
EXPORT_SYMBOL_GPL(x86_vector_domain);
42
static DEFINE_RAW_SPINLOCK(vector_lock);
43
static cpumask_var_t vector_searchmask;
44
static struct irq_chip lapic_controller;
45
static struct irq_matrix *vector_matrix;
46
#ifdef CONFIG_SMP
47
48
static void vector_cleanup_callback(struct timer_list *tmr);
49
50
struct vector_cleanup {
51
struct hlist_head head;
52
struct timer_list timer;
53
};
54
55
static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
56
.head = HLIST_HEAD_INIT,
57
.timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
58
};
59
#endif
60
61
void lock_vector_lock(void)
62
{
63
/* Used to the online set of cpus does not change
64
* during assign_irq_vector.
65
*/
66
raw_spin_lock(&vector_lock);
67
}
68
69
void unlock_vector_lock(void)
70
{
71
raw_spin_unlock(&vector_lock);
72
}
73
74
void init_irq_alloc_info(struct irq_alloc_info *info,
75
const struct cpumask *mask)
76
{
77
memset(info, 0, sizeof(*info));
78
info->mask = mask;
79
}
80
81
void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
82
{
83
if (src)
84
*dst = *src;
85
else
86
memset(dst, 0, sizeof(*dst));
87
}
88
89
static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
90
{
91
if (!irqd)
92
return NULL;
93
94
while (irqd->parent_data)
95
irqd = irqd->parent_data;
96
97
return irqd->chip_data;
98
}
99
100
struct irq_cfg *irqd_cfg(struct irq_data *irqd)
101
{
102
struct apic_chip_data *apicd = apic_chip_data(irqd);
103
104
return apicd ? &apicd->hw_irq_cfg : NULL;
105
}
106
EXPORT_SYMBOL_GPL(irqd_cfg);
107
108
struct irq_cfg *irq_cfg(unsigned int irq)
109
{
110
return irqd_cfg(irq_get_irq_data(irq));
111
}
112
113
static struct apic_chip_data *alloc_apic_chip_data(int node)
114
{
115
struct apic_chip_data *apicd;
116
117
apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
118
if (apicd)
119
INIT_HLIST_NODE(&apicd->clist);
120
return apicd;
121
}
122
123
static void free_apic_chip_data(struct apic_chip_data *apicd)
124
{
125
kfree(apicd);
126
}
127
128
static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
129
unsigned int cpu)
130
{
131
struct apic_chip_data *apicd = apic_chip_data(irqd);
132
133
lockdep_assert_held(&vector_lock);
134
135
apicd->hw_irq_cfg.vector = vector;
136
apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
137
138
apic_update_vector(cpu, vector, true);
139
140
irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
141
trace_vector_config(irqd->irq, vector, cpu, apicd->hw_irq_cfg.dest_apicid);
142
}
143
144
static void apic_free_vector(unsigned int cpu, unsigned int vector, bool managed)
145
{
146
apic_update_vector(cpu, vector, false);
147
irq_matrix_free(vector_matrix, cpu, vector, managed);
148
}
149
150
static void chip_data_update(struct irq_data *irqd, unsigned int newvec, unsigned int newcpu)
151
{
152
struct apic_chip_data *apicd = apic_chip_data(irqd);
153
struct irq_desc *desc = irq_data_to_desc(irqd);
154
bool managed = irqd_affinity_is_managed(irqd);
155
156
lockdep_assert_held(&vector_lock);
157
158
trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
159
apicd->cpu);
160
161
/*
162
* If there is no vector associated or if the associated vector is
163
* the shutdown vector, which is associated to make PCI/MSI
164
* shutdown mode work, then there is nothing to release. Clear out
165
* prev_vector for this and the offlined target case.
166
*/
167
apicd->prev_vector = 0;
168
if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
169
goto setnew;
170
/*
171
* If the target CPU of the previous vector is online, then mark
172
* the vector as move in progress and store it for cleanup when the
173
* first interrupt on the new vector arrives. If the target CPU is
174
* offline then the regular release mechanism via the cleanup
175
* vector is not possible and the vector can be immediately freed
176
* in the underlying matrix allocator.
177
*/
178
if (cpu_online(apicd->cpu)) {
179
apicd->move_in_progress = true;
180
apicd->prev_vector = apicd->vector;
181
apicd->prev_cpu = apicd->cpu;
182
WARN_ON_ONCE(apicd->cpu == newcpu);
183
} else {
184
apic_free_vector(apicd->cpu, apicd->vector, managed);
185
}
186
187
setnew:
188
apicd->vector = newvec;
189
apicd->cpu = newcpu;
190
BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
191
per_cpu(vector_irq, newcpu)[newvec] = desc;
192
apic_update_irq_cfg(irqd, newvec, newcpu);
193
}
194
195
static void vector_assign_managed_shutdown(struct irq_data *irqd)
196
{
197
unsigned int cpu = cpumask_first(cpu_online_mask);
198
199
apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
200
}
201
202
static int reserve_managed_vector(struct irq_data *irqd)
203
{
204
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
205
struct apic_chip_data *apicd = apic_chip_data(irqd);
206
unsigned long flags;
207
int ret;
208
209
raw_spin_lock_irqsave(&vector_lock, flags);
210
apicd->is_managed = true;
211
ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
212
raw_spin_unlock_irqrestore(&vector_lock, flags);
213
trace_vector_reserve_managed(irqd->irq, ret);
214
return ret;
215
}
216
217
static void reserve_irq_vector_locked(struct irq_data *irqd)
218
{
219
struct apic_chip_data *apicd = apic_chip_data(irqd);
220
221
irq_matrix_reserve(vector_matrix);
222
apicd->can_reserve = true;
223
apicd->has_reserved = true;
224
irqd_set_can_reserve(irqd);
225
trace_vector_reserve(irqd->irq, 0);
226
vector_assign_managed_shutdown(irqd);
227
}
228
229
static int reserve_irq_vector(struct irq_data *irqd)
230
{
231
unsigned long flags;
232
233
raw_spin_lock_irqsave(&vector_lock, flags);
234
reserve_irq_vector_locked(irqd);
235
raw_spin_unlock_irqrestore(&vector_lock, flags);
236
return 0;
237
}
238
239
static int
240
assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
241
{
242
struct apic_chip_data *apicd = apic_chip_data(irqd);
243
bool resvd = apicd->has_reserved;
244
unsigned int cpu = apicd->cpu;
245
int vector = apicd->vector;
246
247
lockdep_assert_held(&vector_lock);
248
249
/*
250
* If the current target CPU is online and in the new requested
251
* affinity mask, there is no point in moving the interrupt from
252
* one CPU to another.
253
*/
254
if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
255
return 0;
256
257
/*
258
* Careful here. @apicd might either have move_in_progress set or
259
* be enqueued for cleanup. Assigning a new vector would either
260
* leave a stale vector on some CPU around or in case of a pending
261
* cleanup corrupt the hlist.
262
*/
263
if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
264
return -EBUSY;
265
266
vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
267
trace_vector_alloc(irqd->irq, vector, resvd, vector);
268
if (vector < 0)
269
return vector;
270
chip_data_update(irqd, vector, cpu);
271
272
return 0;
273
}
274
275
static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
276
{
277
unsigned long flags;
278
int ret;
279
280
raw_spin_lock_irqsave(&vector_lock, flags);
281
cpumask_and(vector_searchmask, dest, cpu_online_mask);
282
ret = assign_vector_locked(irqd, vector_searchmask);
283
raw_spin_unlock_irqrestore(&vector_lock, flags);
284
return ret;
285
}
286
287
static int assign_irq_vector_any_locked(struct irq_data *irqd)
288
{
289
/* Get the affinity mask - either irq_default_affinity or (user) set */
290
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
291
int node = irq_data_get_node(irqd);
292
293
if (node != NUMA_NO_NODE) {
294
/* Try the intersection of @affmsk and node mask */
295
cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
296
if (!assign_vector_locked(irqd, vector_searchmask))
297
return 0;
298
}
299
300
/* Try the full affinity mask */
301
cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
302
if (!assign_vector_locked(irqd, vector_searchmask))
303
return 0;
304
305
if (node != NUMA_NO_NODE) {
306
/* Try the node mask */
307
if (!assign_vector_locked(irqd, cpumask_of_node(node)))
308
return 0;
309
}
310
311
/* Try the full online mask */
312
return assign_vector_locked(irqd, cpu_online_mask);
313
}
314
315
static int
316
assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
317
{
318
if (irqd_affinity_is_managed(irqd))
319
return reserve_managed_vector(irqd);
320
if (info->mask)
321
return assign_irq_vector(irqd, info->mask);
322
/*
323
* Make only a global reservation with no guarantee. A real vector
324
* is associated at activation time.
325
*/
326
return reserve_irq_vector(irqd);
327
}
328
329
static int
330
assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
331
{
332
const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
333
struct apic_chip_data *apicd = apic_chip_data(irqd);
334
int vector, cpu;
335
336
cpumask_and(vector_searchmask, dest, affmsk);
337
338
/* set_affinity might call here for nothing */
339
if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
340
return 0;
341
vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
342
&cpu);
343
trace_vector_alloc_managed(irqd->irq, vector, vector);
344
if (vector < 0)
345
return vector;
346
chip_data_update(irqd, vector, cpu);
347
348
return 0;
349
}
350
351
static void clear_irq_vector(struct irq_data *irqd)
352
{
353
struct apic_chip_data *apicd = apic_chip_data(irqd);
354
bool managed = irqd_affinity_is_managed(irqd);
355
unsigned int vector = apicd->vector;
356
357
lockdep_assert_held(&vector_lock);
358
359
if (!vector)
360
return;
361
362
trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
363
apicd->prev_cpu);
364
365
per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
366
apic_free_vector(apicd->cpu, vector, managed);
367
apicd->vector = 0;
368
369
/* Clean up move in progress */
370
vector = apicd->prev_vector;
371
if (!vector)
372
return;
373
374
per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
375
apic_free_vector(apicd->prev_cpu, vector, managed);
376
apicd->prev_vector = 0;
377
apicd->move_in_progress = 0;
378
hlist_del_init(&apicd->clist);
379
}
380
381
static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
382
{
383
struct apic_chip_data *apicd = apic_chip_data(irqd);
384
unsigned long flags;
385
386
trace_vector_deactivate(irqd->irq, apicd->is_managed,
387
apicd->can_reserve, false);
388
389
/* Regular fixed assigned interrupt */
390
if (!apicd->is_managed && !apicd->can_reserve)
391
return;
392
/* If the interrupt has a global reservation, nothing to do */
393
if (apicd->has_reserved)
394
return;
395
396
raw_spin_lock_irqsave(&vector_lock, flags);
397
clear_irq_vector(irqd);
398
if (apicd->can_reserve)
399
reserve_irq_vector_locked(irqd);
400
else
401
vector_assign_managed_shutdown(irqd);
402
raw_spin_unlock_irqrestore(&vector_lock, flags);
403
}
404
405
static int activate_reserved(struct irq_data *irqd)
406
{
407
struct apic_chip_data *apicd = apic_chip_data(irqd);
408
int ret;
409
410
ret = assign_irq_vector_any_locked(irqd);
411
if (!ret) {
412
apicd->has_reserved = false;
413
/*
414
* Core might have disabled reservation mode after
415
* allocating the irq descriptor. Ideally this should
416
* happen before allocation time, but that would require
417
* completely convoluted ways of transporting that
418
* information.
419
*/
420
if (!irqd_can_reserve(irqd))
421
apicd->can_reserve = false;
422
}
423
424
/*
425
* Check to ensure that the effective affinity mask is a subset
426
* the user supplied affinity mask, and warn the user if it is not
427
*/
428
if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
429
irq_data_get_affinity_mask(irqd))) {
430
pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
431
irqd->irq);
432
}
433
434
return ret;
435
}
436
437
static int activate_managed(struct irq_data *irqd)
438
{
439
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
440
int ret;
441
442
cpumask_and(vector_searchmask, dest, cpu_online_mask);
443
if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
444
/* Something in the core code broke! Survive gracefully */
445
pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
446
return -EINVAL;
447
}
448
449
ret = assign_managed_vector(irqd, vector_searchmask);
450
/*
451
* This should not happen. The vector reservation got buggered. Handle
452
* it gracefully.
453
*/
454
if (WARN_ON_ONCE(ret < 0)) {
455
pr_err("Managed startup irq %u, no vector available\n",
456
irqd->irq);
457
}
458
return ret;
459
}
460
461
static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
462
bool reserve)
463
{
464
struct apic_chip_data *apicd = apic_chip_data(irqd);
465
unsigned long flags;
466
int ret = 0;
467
468
trace_vector_activate(irqd->irq, apicd->is_managed,
469
apicd->can_reserve, reserve);
470
471
raw_spin_lock_irqsave(&vector_lock, flags);
472
if (!apicd->can_reserve && !apicd->is_managed)
473
assign_irq_vector_any_locked(irqd);
474
else if (reserve || irqd_is_managed_and_shutdown(irqd))
475
vector_assign_managed_shutdown(irqd);
476
else if (apicd->is_managed)
477
ret = activate_managed(irqd);
478
else if (apicd->has_reserved)
479
ret = activate_reserved(irqd);
480
raw_spin_unlock_irqrestore(&vector_lock, flags);
481
return ret;
482
}
483
484
static void vector_free_reserved_and_managed(struct irq_data *irqd)
485
{
486
const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
487
struct apic_chip_data *apicd = apic_chip_data(irqd);
488
489
trace_vector_teardown(irqd->irq, apicd->is_managed,
490
apicd->has_reserved);
491
492
if (apicd->has_reserved)
493
irq_matrix_remove_reserved(vector_matrix);
494
if (apicd->is_managed)
495
irq_matrix_remove_managed(vector_matrix, dest);
496
}
497
498
static void x86_vector_free_irqs(struct irq_domain *domain,
499
unsigned int virq, unsigned int nr_irqs)
500
{
501
struct apic_chip_data *apicd;
502
struct irq_data *irqd;
503
unsigned long flags;
504
int i;
505
506
for (i = 0; i < nr_irqs; i++) {
507
irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
508
if (irqd && irqd->chip_data) {
509
raw_spin_lock_irqsave(&vector_lock, flags);
510
clear_irq_vector(irqd);
511
vector_free_reserved_and_managed(irqd);
512
apicd = irqd->chip_data;
513
irq_domain_reset_irq_data(irqd);
514
raw_spin_unlock_irqrestore(&vector_lock, flags);
515
free_apic_chip_data(apicd);
516
}
517
}
518
}
519
520
static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
521
struct apic_chip_data *apicd)
522
{
523
unsigned long flags;
524
bool realloc = false;
525
526
apicd->vector = ISA_IRQ_VECTOR(virq);
527
apicd->cpu = 0;
528
529
raw_spin_lock_irqsave(&vector_lock, flags);
530
/*
531
* If the interrupt is activated, then it must stay at this vector
532
* position. That's usually the timer interrupt (0).
533
*/
534
if (irqd_is_activated(irqd)) {
535
trace_vector_setup(virq, true, 0);
536
apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
537
} else {
538
/* Release the vector */
539
apicd->can_reserve = true;
540
irqd_set_can_reserve(irqd);
541
clear_irq_vector(irqd);
542
realloc = true;
543
}
544
raw_spin_unlock_irqrestore(&vector_lock, flags);
545
return realloc;
546
}
547
548
static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
549
unsigned int nr_irqs, void *arg)
550
{
551
struct irq_alloc_info *info = arg;
552
struct apic_chip_data *apicd;
553
struct irq_data *irqd;
554
int i, err, node;
555
556
if (apic_is_disabled)
557
return -ENXIO;
558
559
/*
560
* Catch any attempt to touch the cascade interrupt on a PIC
561
* equipped system.
562
*/
563
if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
564
virq == PIC_CASCADE_IR))
565
return -EINVAL;
566
567
for (i = 0; i < nr_irqs; i++) {
568
irqd = irq_domain_get_irq_data(domain, virq + i);
569
BUG_ON(!irqd);
570
node = irq_data_get_node(irqd);
571
WARN_ON_ONCE(irqd->chip_data);
572
apicd = alloc_apic_chip_data(node);
573
if (!apicd) {
574
err = -ENOMEM;
575
goto error;
576
}
577
578
apicd->irq = virq + i;
579
irqd->chip = &lapic_controller;
580
irqd->chip_data = apicd;
581
irqd->hwirq = virq + i;
582
irqd_set_single_target(irqd);
583
/*
584
* Prevent that any of these interrupts is invoked in
585
* non interrupt context via e.g. generic_handle_irq()
586
* as that can corrupt the affinity move state.
587
*/
588
irqd_set_handle_enforce_irqctx(irqd);
589
590
/* Don't invoke affinity setter on deactivated interrupts */
591
irqd_set_affinity_on_activate(irqd);
592
593
/*
594
* Legacy vectors are already assigned when the IOAPIC
595
* takes them over. They stay on the same vector. This is
596
* required for check_timer() to work correctly as it might
597
* switch back to legacy mode. Only update the hardware
598
* config.
599
*/
600
if (info->flags & X86_IRQ_ALLOC_LEGACY) {
601
if (!vector_configure_legacy(virq + i, irqd, apicd))
602
continue;
603
}
604
605
err = assign_irq_vector_policy(irqd, info);
606
trace_vector_setup(virq + i, false, err);
607
if (err) {
608
irqd->chip_data = NULL;
609
free_apic_chip_data(apicd);
610
goto error;
611
}
612
}
613
614
return 0;
615
616
error:
617
x86_vector_free_irqs(domain, virq, i);
618
return err;
619
}
620
621
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
622
static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
623
struct irq_data *irqd, int ind)
624
{
625
struct apic_chip_data apicd;
626
unsigned long flags;
627
int irq;
628
629
if (!irqd) {
630
irq_matrix_debug_show(m, vector_matrix, ind);
631
return;
632
}
633
634
irq = irqd->irq;
635
if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
636
seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
637
seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
638
return;
639
}
640
641
if (!irqd->chip_data) {
642
seq_printf(m, "%*sVector: Not assigned\n", ind, "");
643
return;
644
}
645
646
raw_spin_lock_irqsave(&vector_lock, flags);
647
memcpy(&apicd, irqd->chip_data, sizeof(apicd));
648
raw_spin_unlock_irqrestore(&vector_lock, flags);
649
650
seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
651
seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
652
if (apicd.prev_vector) {
653
seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
654
seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
655
}
656
seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
657
seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
658
seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
659
seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
660
seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
661
}
662
#endif
663
664
int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
665
{
666
if (fwspec->param_count != 1)
667
return 0;
668
669
if (is_fwnode_irqchip(fwspec->fwnode)) {
670
const char *fwname = fwnode_get_name(fwspec->fwnode);
671
return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
672
simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
673
}
674
return to_of_node(fwspec->fwnode) &&
675
of_device_is_compatible(to_of_node(fwspec->fwnode),
676
"intel,ce4100-ioapic");
677
}
678
679
int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
680
{
681
if (fwspec->param_count != 1)
682
return 0;
683
684
if (is_fwnode_irqchip(fwspec->fwnode)) {
685
const char *fwname = fwnode_get_name(fwspec->fwnode);
686
return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
687
simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
688
}
689
return 0;
690
}
691
692
static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
693
enum irq_domain_bus_token bus_token)
694
{
695
/*
696
* HPET and I/OAPIC cannot be parented in the vector domain
697
* if IRQ remapping is enabled. APIC IDs above 15 bits are
698
* only permitted if IRQ remapping is enabled, so check that.
699
*/
700
if (apic_id_valid(32768))
701
return 0;
702
703
return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
704
}
705
706
static const struct irq_domain_ops x86_vector_domain_ops = {
707
.select = x86_vector_select,
708
.alloc = x86_vector_alloc_irqs,
709
.free = x86_vector_free_irqs,
710
.activate = x86_vector_activate,
711
.deactivate = x86_vector_deactivate,
712
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
713
.debug_show = x86_vector_debug_show,
714
#endif
715
};
716
717
int __init arch_probe_nr_irqs(void)
718
{
719
int nr;
720
721
if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids)
722
irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids);
723
724
nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
725
#if defined(CONFIG_PCI_MSI)
726
/*
727
* for MSI and HT dyn irq
728
*/
729
if (gsi_top <= NR_IRQS_LEGACY)
730
nr += 8 * nr_cpu_ids;
731
else
732
nr += gsi_top * 16;
733
#endif
734
if (nr < irq_get_nr_irqs())
735
irq_set_nr_irqs(nr);
736
737
/*
738
* We don't know if PIC is present at this point so we need to do
739
* probe() to get the right number of legacy IRQs.
740
*/
741
return legacy_pic->probe();
742
}
743
744
void lapic_assign_legacy_vector(unsigned int irq, bool replace)
745
{
746
/*
747
* Use assign system here so it won't get accounted as allocated
748
* and movable in the cpu hotplug check and it prevents managed
749
* irq reservation from touching it.
750
*/
751
irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
752
}
753
754
void __init lapic_update_legacy_vectors(void)
755
{
756
unsigned int i;
757
758
if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
759
return;
760
761
/*
762
* If the IO/APIC is disabled via config, kernel command line or
763
* lack of enumeration then all legacy interrupts are routed
764
* through the PIC. Make sure that they are marked as legacy
765
* vectors. PIC_CASCADE_IRQ has already been marked in
766
* lapic_assign_system_vectors().
767
*/
768
for (i = 0; i < nr_legacy_irqs(); i++) {
769
if (i != PIC_CASCADE_IR)
770
lapic_assign_legacy_vector(i, true);
771
}
772
}
773
774
void __init lapic_assign_system_vectors(void)
775
{
776
unsigned int i, vector;
777
778
for_each_set_bit(vector, system_vectors, NR_VECTORS)
779
irq_matrix_assign_system(vector_matrix, vector, false);
780
781
if (nr_legacy_irqs() > 1)
782
lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
783
784
/* System vectors are reserved, online it */
785
irq_matrix_online(vector_matrix);
786
787
/* Mark the preallocated legacy interrupts */
788
for (i = 0; i < nr_legacy_irqs(); i++) {
789
/*
790
* Don't touch the cascade interrupt. It's unusable
791
* on PIC equipped machines. See the large comment
792
* in the IO/APIC code.
793
*/
794
if (i != PIC_CASCADE_IR)
795
irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
796
}
797
}
798
799
int __init arch_early_irq_init(void)
800
{
801
struct fwnode_handle *fn;
802
803
fn = irq_domain_alloc_named_fwnode("VECTOR");
804
BUG_ON(!fn);
805
x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
806
NULL);
807
BUG_ON(x86_vector_domain == NULL);
808
irq_set_default_domain(x86_vector_domain);
809
810
BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
811
812
/*
813
* Allocate the vector matrix allocator data structure and limit the
814
* search area.
815
*/
816
vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
817
FIRST_SYSTEM_VECTOR);
818
BUG_ON(!vector_matrix);
819
820
return arch_early_ioapic_init();
821
}
822
823
#ifdef CONFIG_SMP
824
825
static struct irq_desc *__setup_vector_irq(int vector)
826
{
827
int isairq = vector - ISA_IRQ_VECTOR(0);
828
829
/* Check whether the irq is in the legacy space */
830
if (isairq < 0 || isairq >= nr_legacy_irqs())
831
return VECTOR_UNUSED;
832
/* Check whether the irq is handled by the IOAPIC */
833
if (test_bit(isairq, &io_apic_irqs))
834
return VECTOR_UNUSED;
835
return irq_to_desc(isairq);
836
}
837
838
/* Online the local APIC infrastructure and initialize the vectors */
839
void lapic_online(void)
840
{
841
unsigned int vector;
842
843
lockdep_assert_held(&vector_lock);
844
845
/* Online the vector matrix array for this CPU */
846
irq_matrix_online(vector_matrix);
847
848
/*
849
* The interrupt affinity logic never targets interrupts to offline
850
* CPUs. The exception are the legacy PIC interrupts. In general
851
* they are only targeted to CPU0, but depending on the platform
852
* they can be distributed to any online CPU in hardware. The
853
* kernel has no influence on that. So all active legacy vectors
854
* must be installed on all CPUs. All non legacy interrupts can be
855
* cleared.
856
*/
857
for (vector = 0; vector < NR_VECTORS; vector++)
858
this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
859
}
860
861
static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
862
863
void lapic_offline(void)
864
{
865
struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
866
867
lock_vector_lock();
868
869
/* In case the vector cleanup timer has not expired */
870
__vector_cleanup(cl, false);
871
872
irq_matrix_offline(vector_matrix);
873
WARN_ON_ONCE(timer_delete_sync_try(&cl->timer) < 0);
874
WARN_ON_ONCE(!hlist_empty(&cl->head));
875
876
unlock_vector_lock();
877
}
878
879
static int apic_set_affinity(struct irq_data *irqd,
880
const struct cpumask *dest, bool force)
881
{
882
int err;
883
884
if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
885
return -EIO;
886
887
raw_spin_lock(&vector_lock);
888
cpumask_and(vector_searchmask, dest, cpu_online_mask);
889
if (irqd_affinity_is_managed(irqd))
890
err = assign_managed_vector(irqd, vector_searchmask);
891
else
892
err = assign_vector_locked(irqd, vector_searchmask);
893
raw_spin_unlock(&vector_lock);
894
return err ? err : IRQ_SET_MASK_OK;
895
}
896
897
static void free_moved_vector(struct apic_chip_data *apicd)
898
{
899
unsigned int vector = apicd->prev_vector;
900
unsigned int cpu = apicd->prev_cpu;
901
bool managed = apicd->is_managed;
902
903
/*
904
* Managed interrupts are usually not migrated away
905
* from an online CPU, but CPU isolation 'managed_irq'
906
* can make that happen.
907
* 1) Activation does not take the isolation into account
908
* to keep the code simple
909
* 2) Migration away from an isolated CPU can happen when
910
* a non-isolated CPU which is in the calculated
911
* affinity mask comes online.
912
*/
913
trace_vector_free_moved(apicd->irq, cpu, vector, managed);
914
apic_free_vector(cpu, vector, managed);
915
per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
916
hlist_del_init(&apicd->clist);
917
apicd->prev_vector = 0;
918
apicd->move_in_progress = 0;
919
}
920
921
/*
922
* Called from fixup_irqs() with @desc->lock held and interrupts disabled.
923
*/
924
static void apic_force_complete_move(struct irq_data *irqd)
925
{
926
unsigned int cpu = smp_processor_id();
927
struct apic_chip_data *apicd;
928
unsigned int vector;
929
930
guard(raw_spinlock)(&vector_lock);
931
apicd = apic_chip_data(irqd);
932
if (!apicd)
933
return;
934
935
/*
936
* If prev_vector is empty or the descriptor is neither currently
937
* nor previously on the outgoing CPU no action required.
938
*/
939
vector = apicd->prev_vector;
940
if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu))
941
return;
942
943
/*
944
* This is tricky. If the cleanup of the old vector has not been
945
* done yet, then the following setaffinity call will fail with
946
* -EBUSY. This can leave the interrupt in a stale state.
947
*
948
* All CPUs are stuck in stop machine with interrupts disabled so
949
* calling __irq_complete_move() would be completely pointless.
950
*
951
* 1) The interrupt is in move_in_progress state. That means that we
952
* have not seen an interrupt since the io_apic was reprogrammed to
953
* the new vector.
954
*
955
* 2) The interrupt has fired on the new vector, but the cleanup IPIs
956
* have not been processed yet.
957
*/
958
if (apicd->move_in_progress) {
959
/*
960
* In theory there is a race:
961
*
962
* set_ioapic(new_vector) <-- Interrupt is raised before update
963
* is effective, i.e. it's raised on
964
* the old vector.
965
*
966
* So if the target cpu cannot handle that interrupt before
967
* the old vector is cleaned up, we get a spurious interrupt
968
* and in the worst case the ioapic irq line becomes stale.
969
*
970
* But in case of cpu hotplug this should be a non issue
971
* because if the affinity update happens right before all
972
* cpus rendezvous in stop machine, there is no way that the
973
* interrupt can be blocked on the target cpu because all cpus
974
* loops first with interrupts enabled in stop machine, so the
975
* old vector is not yet cleaned up when the interrupt fires.
976
*
977
* So the only way to run into this issue is if the delivery
978
* of the interrupt on the apic/system bus would be delayed
979
* beyond the point where the target cpu disables interrupts
980
* in stop machine. I doubt that it can happen, but at least
981
* there is a theoretical chance. Virtualization might be
982
* able to expose this, but AFAICT the IOAPIC emulation is not
983
* as stupid as the real hardware.
984
*
985
* Anyway, there is nothing we can do about that at this point
986
* w/o refactoring the whole fixup_irq() business completely.
987
* We print at least the irq number and the old vector number,
988
* so we have the necessary information when a problem in that
989
* area arises.
990
*/
991
pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
992
irqd->irq, vector);
993
}
994
free_moved_vector(apicd);
995
}
996
997
#else
998
# define apic_set_affinity NULL
999
# define apic_force_complete_move NULL
1000
#endif
1001
1002
static int apic_retrigger_irq(struct irq_data *irqd)
1003
{
1004
struct apic_chip_data *apicd = apic_chip_data(irqd);
1005
unsigned long flags;
1006
1007
raw_spin_lock_irqsave(&vector_lock, flags);
1008
__apic_send_IPI(apicd->cpu, apicd->vector);
1009
raw_spin_unlock_irqrestore(&vector_lock, flags);
1010
1011
return 1;
1012
}
1013
1014
void apic_ack_irq(struct irq_data *irqd)
1015
{
1016
irq_move_irq(irqd);
1017
apic_eoi();
1018
}
1019
1020
void apic_ack_edge(struct irq_data *irqd)
1021
{
1022
irq_complete_move(irqd_cfg(irqd));
1023
apic_ack_irq(irqd);
1024
}
1025
1026
static void x86_vector_msi_compose_msg(struct irq_data *data,
1027
struct msi_msg *msg)
1028
{
1029
__irq_msi_compose_msg(irqd_cfg(data), msg, false);
1030
}
1031
1032
static struct irq_chip lapic_controller = {
1033
.name = "APIC",
1034
.irq_ack = apic_ack_edge,
1035
.irq_set_affinity = apic_set_affinity,
1036
.irq_compose_msi_msg = x86_vector_msi_compose_msg,
1037
.irq_force_complete_move = apic_force_complete_move,
1038
.irq_retrigger = apic_retrigger_irq,
1039
};
1040
1041
#ifdef CONFIG_SMP
1042
1043
static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
1044
{
1045
struct apic_chip_data *apicd;
1046
struct hlist_node *tmp;
1047
bool rearm = false;
1048
1049
lockdep_assert_held(&vector_lock);
1050
1051
hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
1052
unsigned int vector = apicd->prev_vector;
1053
1054
/*
1055
* Paranoia: Check if the vector that needs to be cleaned
1056
* up is registered at the APICs IRR. That's clearly a
1057
* hardware issue if the vector arrived on the old target
1058
* _after_ interrupts were disabled above. Keep @apicd
1059
* on the list and schedule the timer again to give the CPU
1060
* a chance to handle the pending interrupt.
1061
*
1062
* Do not check IRR when called from lapic_offline(), because
1063
* fixup_irqs() was just called to scan IRR for set bits and
1064
* forward them to new destination CPUs via IPIs.
1065
*/
1066
if (check_irr && is_vector_pending(vector)) {
1067
pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
1068
rearm = true;
1069
continue;
1070
}
1071
free_moved_vector(apicd);
1072
}
1073
1074
/*
1075
* Must happen under vector_lock to make the timer_pending() check
1076
* in __vector_schedule_cleanup() race free against the rearm here.
1077
*/
1078
if (rearm)
1079
mod_timer(&cl->timer, jiffies + 1);
1080
}
1081
1082
static void vector_cleanup_callback(struct timer_list *tmr)
1083
{
1084
struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1085
1086
/* Prevent vectors vanishing under us */
1087
raw_spin_lock_irq(&vector_lock);
1088
__vector_cleanup(cl, true);
1089
raw_spin_unlock_irq(&vector_lock);
1090
}
1091
1092
static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1093
{
1094
unsigned int cpu = apicd->prev_cpu;
1095
1096
raw_spin_lock(&vector_lock);
1097
apicd->move_in_progress = 0;
1098
if (cpu_online(cpu)) {
1099
struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1100
1101
hlist_add_head(&apicd->clist, &cl->head);
1102
1103
/*
1104
* The lockless timer_pending() check is safe here. If it
1105
* returns true, then the callback will observe this new
1106
* apic data in the hlist as everything is serialized by
1107
* vector lock.
1108
*
1109
* If it returns false then the timer is either not armed
1110
* or the other CPU executes the callback, which again
1111
* would be blocked on vector lock. Rearming it in the
1112
* latter case makes it fire for nothing.
1113
*
1114
* This is also safe against the callback rearming the timer
1115
* because that's serialized via vector lock too.
1116
*/
1117
if (!timer_pending(&cl->timer)) {
1118
cl->timer.expires = jiffies + 1;
1119
add_timer_on(&cl->timer, cpu);
1120
}
1121
} else {
1122
pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu);
1123
free_moved_vector(apicd);
1124
}
1125
raw_spin_unlock(&vector_lock);
1126
}
1127
1128
void vector_schedule_cleanup(struct irq_cfg *cfg)
1129
{
1130
struct apic_chip_data *apicd;
1131
1132
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1133
if (apicd->move_in_progress)
1134
__vector_schedule_cleanup(apicd);
1135
}
1136
1137
void irq_complete_move(struct irq_cfg *cfg)
1138
{
1139
struct apic_chip_data *apicd;
1140
1141
apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1142
if (likely(!apicd->move_in_progress))
1143
return;
1144
1145
/*
1146
* If the interrupt arrived on the new target CPU, cleanup the
1147
* vector on the old target CPU. A vector check is not required
1148
* because an interrupt can never move from one vector to another
1149
* on the same CPU.
1150
*/
1151
if (apicd->cpu == smp_processor_id())
1152
__vector_schedule_cleanup(apicd);
1153
}
1154
1155
#ifdef CONFIG_HOTPLUG_CPU
1156
/*
1157
* Note, this is not accurate accounting, but at least good enough to
1158
* prevent that the actual interrupt move will run out of vectors.
1159
*/
1160
int lapic_can_unplug_cpu(void)
1161
{
1162
unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1163
int ret = 0;
1164
1165
raw_spin_lock(&vector_lock);
1166
tomove = irq_matrix_allocated(vector_matrix);
1167
avl = irq_matrix_available(vector_matrix, true);
1168
if (avl < tomove) {
1169
pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1170
cpu, tomove, avl);
1171
ret = -ENOSPC;
1172
goto out;
1173
}
1174
rsvd = irq_matrix_reserved(vector_matrix);
1175
if (avl < rsvd) {
1176
pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1177
rsvd, avl);
1178
}
1179
out:
1180
raw_spin_unlock(&vector_lock);
1181
return ret;
1182
}
1183
#endif /* HOTPLUG_CPU */
1184
#endif /* SMP */
1185
1186
static void __init print_APIC_field(int base)
1187
{
1188
int i;
1189
1190
printk(KERN_DEBUG);
1191
1192
for (i = 0; i < 8; i++)
1193
pr_cont("%08x", apic_read(base + i*0x10));
1194
1195
pr_cont("\n");
1196
}
1197
1198
static void __init print_local_APIC(void *dummy)
1199
{
1200
unsigned int i, v, ver, maxlvt;
1201
u64 icr;
1202
1203
pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1204
smp_processor_id(), read_apic_id());
1205
v = apic_read(APIC_ID);
1206
pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
1207
v = apic_read(APIC_LVR);
1208
pr_info("... APIC VERSION: %08x\n", v);
1209
ver = GET_APIC_VERSION(v);
1210
maxlvt = lapic_get_maxlvt();
1211
1212
v = apic_read(APIC_TASKPRI);
1213
pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1214
1215
/* !82489DX */
1216
if (APIC_INTEGRATED(ver)) {
1217
if (!APIC_XAPIC(ver)) {
1218
v = apic_read(APIC_ARBPRI);
1219
pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1220
v, v & APIC_ARBPRI_MASK);
1221
}
1222
v = apic_read(APIC_PROCPRI);
1223
pr_debug("... APIC PROCPRI: %08x\n", v);
1224
}
1225
1226
/*
1227
* Remote read supported only in the 82489DX and local APIC for
1228
* Pentium processors.
1229
*/
1230
if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1231
v = apic_read(APIC_RRR);
1232
pr_debug("... APIC RRR: %08x\n", v);
1233
}
1234
1235
v = apic_read(APIC_LDR);
1236
pr_debug("... APIC LDR: %08x\n", v);
1237
if (!x2apic_enabled()) {
1238
v = apic_read(APIC_DFR);
1239
pr_debug("... APIC DFR: %08x\n", v);
1240
}
1241
v = apic_read(APIC_SPIV);
1242
pr_debug("... APIC SPIV: %08x\n", v);
1243
1244
pr_debug("... APIC ISR field:\n");
1245
print_APIC_field(APIC_ISR);
1246
pr_debug("... APIC TMR field:\n");
1247
print_APIC_field(APIC_TMR);
1248
pr_debug("... APIC IRR field:\n");
1249
print_APIC_field(APIC_IRR);
1250
1251
/* !82489DX */
1252
if (APIC_INTEGRATED(ver)) {
1253
/* Due to the Pentium erratum 3AP. */
1254
if (maxlvt > 3)
1255
apic_write(APIC_ESR, 0);
1256
1257
v = apic_read(APIC_ESR);
1258
pr_debug("... APIC ESR: %08x\n", v);
1259
}
1260
1261
icr = apic_icr_read();
1262
pr_debug("... APIC ICR: %08x\n", (u32)icr);
1263
pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1264
1265
v = apic_read(APIC_LVTT);
1266
pr_debug("... APIC LVTT: %08x\n", v);
1267
1268
if (maxlvt > 3) {
1269
/* PC is LVT#4. */
1270
v = apic_read(APIC_LVTPC);
1271
pr_debug("... APIC LVTPC: %08x\n", v);
1272
}
1273
v = apic_read(APIC_LVT0);
1274
pr_debug("... APIC LVT0: %08x\n", v);
1275
v = apic_read(APIC_LVT1);
1276
pr_debug("... APIC LVT1: %08x\n", v);
1277
1278
if (maxlvt > 2) {
1279
/* ERR is LVT#3. */
1280
v = apic_read(APIC_LVTERR);
1281
pr_debug("... APIC LVTERR: %08x\n", v);
1282
}
1283
1284
v = apic_read(APIC_TMICT);
1285
pr_debug("... APIC TMICT: %08x\n", v);
1286
v = apic_read(APIC_TMCCT);
1287
pr_debug("... APIC TMCCT: %08x\n", v);
1288
v = apic_read(APIC_TDCR);
1289
pr_debug("... APIC TDCR: %08x\n", v);
1290
1291
if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1292
v = apic_read(APIC_EFEAT);
1293
maxlvt = (v >> 16) & 0xff;
1294
pr_debug("... APIC EFEAT: %08x\n", v);
1295
v = apic_read(APIC_ECTRL);
1296
pr_debug("... APIC ECTRL: %08x\n", v);
1297
for (i = 0; i < maxlvt; i++) {
1298
v = apic_read(APIC_EILVTn(i));
1299
pr_debug("... APIC EILVT%d: %08x\n", i, v);
1300
}
1301
}
1302
pr_cont("\n");
1303
}
1304
1305
static void __init print_local_APICs(int maxcpu)
1306
{
1307
int cpu;
1308
1309
if (!maxcpu)
1310
return;
1311
1312
preempt_disable();
1313
for_each_online_cpu(cpu) {
1314
if (cpu >= maxcpu)
1315
break;
1316
smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1317
}
1318
preempt_enable();
1319
}
1320
1321
static void __init print_PIC(void)
1322
{
1323
unsigned int v;
1324
unsigned long flags;
1325
1326
if (!nr_legacy_irqs())
1327
return;
1328
1329
pr_debug("\nprinting PIC contents\n");
1330
1331
raw_spin_lock_irqsave(&i8259A_lock, flags);
1332
1333
v = inb(0xa1) << 8 | inb(0x21);
1334
pr_debug("... PIC IMR: %04x\n", v);
1335
1336
v = inb(0xa0) << 8 | inb(0x20);
1337
pr_debug("... PIC IRR: %04x\n", v);
1338
1339
outb(0x0b, 0xa0);
1340
outb(0x0b, 0x20);
1341
v = inb(0xa0) << 8 | inb(0x20);
1342
outb(0x0a, 0xa0);
1343
outb(0x0a, 0x20);
1344
1345
raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1346
1347
pr_debug("... PIC ISR: %04x\n", v);
1348
1349
v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1350
pr_debug("... PIC ELCR: %04x\n", v);
1351
}
1352
1353
static int show_lapic __initdata = 1;
1354
static __init int setup_show_lapic(char *arg)
1355
{
1356
int num = -1;
1357
1358
if (strcmp(arg, "all") == 0) {
1359
show_lapic = CONFIG_NR_CPUS;
1360
} else {
1361
get_option(&arg, &num);
1362
if (num >= 0)
1363
show_lapic = num;
1364
}
1365
1366
return 1;
1367
}
1368
__setup("show_lapic=", setup_show_lapic);
1369
1370
static int __init print_ICs(void)
1371
{
1372
if (apic_verbosity == APIC_QUIET)
1373
return 0;
1374
1375
print_PIC();
1376
1377
/* don't print out if apic is not there */
1378
if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1379
return 0;
1380
1381
print_local_APICs(show_lapic);
1382
print_IO_APICs();
1383
1384
return 0;
1385
}
1386
1387
late_initcall(print_ICs);
1388
1389