Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/kernel/crash.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4
*
5
* Created by: Hariprasad Nellitheertha ([email protected])
6
*
7
* Copyright (C) IBM Corporation, 2004. All rights reserved.
8
* Copyright (C) Red Hat Inc., 2014. All rights reserved.
9
* Authors:
10
* Vivek Goyal <[email protected]>
11
*
12
*/
13
14
#define pr_fmt(fmt) "kexec: " fmt
15
16
#include <linux/types.h>
17
#include <linux/kernel.h>
18
#include <linux/smp.h>
19
#include <linux/reboot.h>
20
#include <linux/kexec.h>
21
#include <linux/delay.h>
22
#include <linux/elf.h>
23
#include <linux/elfcore.h>
24
#include <linux/export.h>
25
#include <linux/slab.h>
26
#include <linux/vmalloc.h>
27
#include <linux/memblock.h>
28
29
#include <asm/bootparam.h>
30
#include <asm/processor.h>
31
#include <asm/hardirq.h>
32
#include <asm/nmi.h>
33
#include <asm/hw_irq.h>
34
#include <asm/apic.h>
35
#include <asm/e820/types.h>
36
#include <asm/io_apic.h>
37
#include <asm/hpet.h>
38
#include <linux/kdebug.h>
39
#include <asm/cpu.h>
40
#include <asm/reboot.h>
41
#include <asm/intel_pt.h>
42
#include <asm/crash.h>
43
#include <asm/cmdline.h>
44
#include <asm/sev.h>
45
46
/* Used while preparing memory map entries for second kernel */
47
struct crash_memmap_data {
48
struct boot_params *params;
49
/* Type of memory */
50
unsigned int type;
51
};
52
53
#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
54
55
static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
56
{
57
crash_save_cpu(regs, cpu);
58
59
/*
60
* Disable Intel PT to stop its logging
61
*/
62
cpu_emergency_stop_pt();
63
64
kdump_sev_callback();
65
66
disable_local_APIC();
67
}
68
69
void kdump_nmi_shootdown_cpus(void)
70
{
71
nmi_shootdown_cpus(kdump_nmi_callback);
72
73
disable_local_APIC();
74
}
75
76
/* Override the weak function in kernel/panic.c */
77
void crash_smp_send_stop(void)
78
{
79
static int cpus_stopped;
80
81
if (cpus_stopped)
82
return;
83
84
if (smp_ops.crash_stop_other_cpus)
85
smp_ops.crash_stop_other_cpus();
86
else
87
smp_send_stop();
88
89
cpus_stopped = 1;
90
}
91
92
#else
93
void crash_smp_send_stop(void)
94
{
95
/* There are no cpus to shootdown */
96
}
97
#endif
98
99
void native_machine_crash_shutdown(struct pt_regs *regs)
100
{
101
/* This function is only called after the system
102
* has panicked or is otherwise in a critical state.
103
* The minimum amount of code to allow a kexec'd kernel
104
* to run successfully needs to happen here.
105
*
106
* In practice this means shooting down the other cpus in
107
* an SMP system.
108
*/
109
/* The kernel is broken so disable interrupts */
110
local_irq_disable();
111
112
crash_smp_send_stop();
113
114
cpu_emergency_disable_virtualization();
115
116
/*
117
* Disable Intel PT to stop its logging
118
*/
119
cpu_emergency_stop_pt();
120
121
#ifdef CONFIG_X86_IO_APIC
122
/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
123
ioapic_zap_locks();
124
clear_IO_APIC();
125
#endif
126
lapic_shutdown();
127
restore_boot_irq_mode();
128
#ifdef CONFIG_HPET_TIMER
129
hpet_disable();
130
#endif
131
132
/*
133
* Non-crash kexec calls enc_kexec_begin() while scheduling is still
134
* active. This allows the callback to wait until all in-flight
135
* shared<->private conversions are complete. In a crash scenario,
136
* enc_kexec_begin() gets called after all but one CPU have been shut
137
* down and interrupts have been disabled. This allows the callback to
138
* detect a race with the conversion and report it.
139
*/
140
x86_platform.guest.enc_kexec_begin();
141
x86_platform.guest.enc_kexec_finish();
142
143
crash_save_cpu(regs, smp_processor_id());
144
}
145
146
#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_HOTPLUG)
147
static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
148
{
149
unsigned int *nr_ranges = arg;
150
151
(*nr_ranges)++;
152
return 0;
153
}
154
155
/* Gather all the required information to prepare elf headers for ram regions */
156
static struct crash_mem *fill_up_crash_elf_data(void)
157
{
158
unsigned int nr_ranges = 0;
159
struct crash_mem *cmem;
160
161
walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
162
if (!nr_ranges)
163
return NULL;
164
165
/*
166
* Exclusion of crash region, crashk_low_res and/or crashk_cma_ranges
167
* may cause range splits. So add extra slots here.
168
*
169
* Exclusion of low 1M may not cause another range split, because the
170
* range of exclude is [0, 1M] and the condition for splitting a new
171
* region is that the start, end parameters are both in a certain
172
* existing region in cmem and cannot be equal to existing region's
173
* start or end. Obviously, the start of [0, 1M] cannot meet this
174
* condition.
175
*
176
* But in order to lest the low 1M could be changed in the future,
177
* (e.g. [start, 1M]), add a extra slot.
178
*/
179
nr_ranges += 3 + crashk_cma_cnt;
180
cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
181
if (!cmem)
182
return NULL;
183
184
cmem->max_nr_ranges = nr_ranges;
185
186
return cmem;
187
}
188
189
/*
190
* Look for any unwanted ranges between mstart, mend and remove them. This
191
* might lead to split and split ranges are put in cmem->ranges[] array
192
*/
193
static int elf_header_exclude_ranges(struct crash_mem *cmem)
194
{
195
int ret = 0;
196
int i;
197
198
/* Exclude the low 1M because it is always reserved */
199
ret = crash_exclude_mem_range(cmem, 0, SZ_1M - 1);
200
if (ret)
201
return ret;
202
203
/* Exclude crashkernel region */
204
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
205
if (ret)
206
return ret;
207
208
if (crashk_low_res.end)
209
ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
210
crashk_low_res.end);
211
if (ret)
212
return ret;
213
214
for (i = 0; i < crashk_cma_cnt; ++i) {
215
ret = crash_exclude_mem_range(cmem, crashk_cma_ranges[i].start,
216
crashk_cma_ranges[i].end);
217
if (ret)
218
return ret;
219
}
220
221
return 0;
222
}
223
224
static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
225
{
226
struct crash_mem *cmem = arg;
227
228
cmem->ranges[cmem->nr_ranges].start = res->start;
229
cmem->ranges[cmem->nr_ranges].end = res->end;
230
cmem->nr_ranges++;
231
232
return 0;
233
}
234
235
/* Prepare elf headers. Return addr and size */
236
static int prepare_elf_headers(void **addr, unsigned long *sz,
237
unsigned long *nr_mem_ranges)
238
{
239
struct crash_mem *cmem;
240
int ret;
241
242
cmem = fill_up_crash_elf_data();
243
if (!cmem)
244
return -ENOMEM;
245
246
ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
247
if (ret)
248
goto out;
249
250
/* Exclude unwanted mem ranges */
251
ret = elf_header_exclude_ranges(cmem);
252
if (ret)
253
goto out;
254
255
/* Return the computed number of memory ranges, for hotplug usage */
256
*nr_mem_ranges = cmem->nr_ranges;
257
258
/* By default prepare 64bit headers */
259
ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz);
260
261
out:
262
vfree(cmem);
263
return ret;
264
}
265
#endif
266
267
#ifdef CONFIG_KEXEC_FILE
268
static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
269
{
270
unsigned int nr_e820_entries;
271
272
nr_e820_entries = params->e820_entries;
273
if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
274
return 1;
275
276
memcpy(&params->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry));
277
params->e820_entries++;
278
return 0;
279
}
280
281
static int memmap_entry_callback(struct resource *res, void *arg)
282
{
283
struct crash_memmap_data *cmd = arg;
284
struct boot_params *params = cmd->params;
285
struct e820_entry ei;
286
287
ei.addr = res->start;
288
ei.size = resource_size(res);
289
ei.type = cmd->type;
290
add_e820_entry(params, &ei);
291
292
return 0;
293
}
294
295
static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
296
unsigned long long mstart,
297
unsigned long long mend)
298
{
299
unsigned long start, end;
300
int ret;
301
302
cmem->ranges[0].start = mstart;
303
cmem->ranges[0].end = mend;
304
cmem->nr_ranges = 1;
305
306
/* Exclude elf header region */
307
start = image->elf_load_addr;
308
end = start + image->elf_headers_sz - 1;
309
ret = crash_exclude_mem_range(cmem, start, end);
310
311
if (ret)
312
return ret;
313
314
/* Exclude dm crypt keys region */
315
if (image->dm_crypt_keys_addr) {
316
start = image->dm_crypt_keys_addr;
317
end = start + image->dm_crypt_keys_sz - 1;
318
return crash_exclude_mem_range(cmem, start, end);
319
}
320
321
return ret;
322
}
323
324
/* Prepare memory map for crash dump kernel */
325
int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
326
{
327
unsigned int nr_ranges = 0;
328
int i, ret = 0;
329
unsigned long flags;
330
struct e820_entry ei;
331
struct crash_memmap_data cmd;
332
struct crash_mem *cmem;
333
334
/*
335
* In the current x86 architecture code, the elfheader is always
336
* allocated at crashk_res.start. But it depends on the allocation
337
* position of elfheader in crashk_res. To avoid potential out of
338
* bounds in future, add an extra slot.
339
*
340
* And using random kexec_buf for passing dm crypt keys may cause a
341
* range split too, add another extra slot here.
342
*/
343
nr_ranges = 3;
344
cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
345
if (!cmem)
346
return -ENOMEM;
347
348
cmem->max_nr_ranges = nr_ranges;
349
350
memset(&cmd, 0, sizeof(struct crash_memmap_data));
351
cmd.params = params;
352
353
/* Add the low 1M */
354
cmd.type = E820_TYPE_RAM;
355
flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
356
walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd,
357
memmap_entry_callback);
358
359
/* Add ACPI tables */
360
cmd.type = E820_TYPE_ACPI;
361
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
362
walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
363
memmap_entry_callback);
364
365
/* Add ACPI Non-volatile Storage */
366
cmd.type = E820_TYPE_NVS;
367
walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
368
memmap_entry_callback);
369
370
/* Add e820 reserved ranges */
371
cmd.type = E820_TYPE_RESERVED;
372
flags = IORESOURCE_MEM;
373
walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
374
memmap_entry_callback);
375
376
/* Add crashk_low_res region */
377
if (crashk_low_res.end) {
378
ei.addr = crashk_low_res.start;
379
ei.size = resource_size(&crashk_low_res);
380
ei.type = E820_TYPE_RAM;
381
add_e820_entry(params, &ei);
382
}
383
384
/* Exclude some ranges from crashk_res and add rest to memmap */
385
ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end);
386
if (ret)
387
goto out;
388
389
for (i = 0; i < cmem->nr_ranges; i++) {
390
ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
391
392
/* If entry is less than a page, skip it */
393
if (ei.size < PAGE_SIZE)
394
continue;
395
ei.addr = cmem->ranges[i].start;
396
ei.type = E820_TYPE_RAM;
397
add_e820_entry(params, &ei);
398
}
399
400
for (i = 0; i < crashk_cma_cnt; ++i) {
401
ei.addr = crashk_cma_ranges[i].start;
402
ei.size = crashk_cma_ranges[i].end -
403
crashk_cma_ranges[i].start + 1;
404
ei.type = E820_TYPE_RAM;
405
add_e820_entry(params, &ei);
406
}
407
408
out:
409
vfree(cmem);
410
return ret;
411
}
412
413
int crash_load_segments(struct kimage *image)
414
{
415
int ret;
416
unsigned long pnum = 0;
417
struct kexec_buf kbuf = { .image = image, .buf_min = 0,
418
.buf_max = ULONG_MAX, .top_down = false };
419
420
/* Prepare elf headers and add a segment */
421
ret = prepare_elf_headers(&kbuf.buffer, &kbuf.bufsz, &pnum);
422
if (ret)
423
return ret;
424
425
image->elf_headers = kbuf.buffer;
426
image->elf_headers_sz = kbuf.bufsz;
427
kbuf.memsz = kbuf.bufsz;
428
429
#ifdef CONFIG_CRASH_HOTPLUG
430
/*
431
* The elfcorehdr segment size accounts for VMCOREINFO, kernel_map,
432
* maximum CPUs and maximum memory ranges.
433
*/
434
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
435
pnum = 2 + CONFIG_NR_CPUS_DEFAULT + CONFIG_CRASH_MAX_MEMORY_RANGES;
436
else
437
pnum += 2 + CONFIG_NR_CPUS_DEFAULT;
438
439
if (pnum < (unsigned long)PN_XNUM) {
440
kbuf.memsz = pnum * sizeof(Elf64_Phdr);
441
kbuf.memsz += sizeof(Elf64_Ehdr);
442
443
image->elfcorehdr_index = image->nr_segments;
444
445
/* Mark as usable to crash kernel, else crash kernel fails on boot */
446
image->elf_headers_sz = kbuf.memsz;
447
} else {
448
pr_err("number of Phdrs %lu exceeds max\n", pnum);
449
}
450
#endif
451
452
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
453
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
454
ret = kexec_add_buffer(&kbuf);
455
if (ret)
456
return ret;
457
image->elf_load_addr = kbuf.mem;
458
kexec_dprintk("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
459
image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
460
461
return ret;
462
}
463
#endif /* CONFIG_KEXEC_FILE */
464
465
#ifdef CONFIG_CRASH_HOTPLUG
466
467
#undef pr_fmt
468
#define pr_fmt(fmt) "crash hp: " fmt
469
470
int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags)
471
{
472
473
#ifdef CONFIG_KEXEC_FILE
474
if (image->file_mode)
475
return 1;
476
#endif
477
/*
478
* Initially, crash hotplug support for kexec_load was added
479
* with the KEXEC_UPDATE_ELFCOREHDR flag. Later, this
480
* functionality was expanded to accommodate multiple kexec
481
* segment updates, leading to the introduction of the
482
* KEXEC_CRASH_HOTPLUG_SUPPORT kexec flag bit. Consequently,
483
* when the kexec tool sends either of these flags, it indicates
484
* that the required kexec segment (elfcorehdr) is excluded from
485
* the SHA calculation.
486
*/
487
return (kexec_flags & KEXEC_UPDATE_ELFCOREHDR ||
488
kexec_flags & KEXEC_CRASH_HOTPLUG_SUPPORT);
489
}
490
491
unsigned int arch_crash_get_elfcorehdr_size(void)
492
{
493
unsigned int sz;
494
495
/* kernel_map, VMCOREINFO and maximum CPUs */
496
sz = 2 + CONFIG_NR_CPUS_DEFAULT;
497
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
498
sz += CONFIG_CRASH_MAX_MEMORY_RANGES;
499
sz *= sizeof(Elf64_Phdr);
500
return sz;
501
}
502
503
/**
504
* arch_crash_handle_hotplug_event() - Handle hotplug elfcorehdr changes
505
* @image: a pointer to kexec_crash_image
506
* @arg: struct memory_notify handler for memory hotplug case and
507
* NULL for CPU hotplug case.
508
*
509
* Prepare the new elfcorehdr and replace the existing elfcorehdr.
510
*/
511
void arch_crash_handle_hotplug_event(struct kimage *image, void *arg)
512
{
513
void *elfbuf = NULL, *old_elfcorehdr;
514
unsigned long nr_mem_ranges;
515
unsigned long mem, memsz;
516
unsigned long elfsz = 0;
517
518
/*
519
* As crash_prepare_elf64_headers() has already described all
520
* possible CPUs, there is no need to update the elfcorehdr
521
* for additional CPU changes.
522
*/
523
if ((image->file_mode || image->elfcorehdr_updated) &&
524
((image->hp_action == KEXEC_CRASH_HP_ADD_CPU) ||
525
(image->hp_action == KEXEC_CRASH_HP_REMOVE_CPU)))
526
return;
527
528
/*
529
* Create the new elfcorehdr reflecting the changes to CPU and/or
530
* memory resources.
531
*/
532
if (prepare_elf_headers(&elfbuf, &elfsz, &nr_mem_ranges)) {
533
pr_err("unable to create new elfcorehdr");
534
goto out;
535
}
536
537
/*
538
* Obtain address and size of the elfcorehdr segment, and
539
* check it against the new elfcorehdr buffer.
540
*/
541
mem = image->segment[image->elfcorehdr_index].mem;
542
memsz = image->segment[image->elfcorehdr_index].memsz;
543
if (elfsz > memsz) {
544
pr_err("update elfcorehdr elfsz %lu > memsz %lu",
545
elfsz, memsz);
546
goto out;
547
}
548
549
/*
550
* Copy new elfcorehdr over the old elfcorehdr at destination.
551
*/
552
old_elfcorehdr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
553
if (!old_elfcorehdr) {
554
pr_err("mapping elfcorehdr segment failed\n");
555
goto out;
556
}
557
558
/*
559
* Temporarily invalidate the crash image while the
560
* elfcorehdr is updated.
561
*/
562
xchg(&kexec_crash_image, NULL);
563
memcpy_flushcache(old_elfcorehdr, elfbuf, elfsz);
564
xchg(&kexec_crash_image, image);
565
kunmap_local(old_elfcorehdr);
566
pr_debug("updated elfcorehdr\n");
567
568
out:
569
vfree(elfbuf);
570
}
571
#endif
572
573