Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/init.c
29269 views
1
#include <linux/gfp.h>
2
#include <linux/initrd.h>
3
#include <linux/ioport.h>
4
#include <linux/swap.h>
5
#include <linux/memblock.h>
6
#include <linux/swapfile.h>
7
#include <linux/swapops.h>
8
#include <linux/kmemleak.h>
9
#include <linux/sched/task.h>
10
#include <linux/execmem.h>
11
12
#include <asm/set_memory.h>
13
#include <asm/cpu_device_id.h>
14
#include <asm/e820/api.h>
15
#include <asm/init.h>
16
#include <asm/page.h>
17
#include <asm/page_types.h>
18
#include <asm/sections.h>
19
#include <asm/setup.h>
20
#include <asm/tlbflush.h>
21
#include <asm/tlb.h>
22
#include <asm/proto.h>
23
#include <asm/dma.h> /* for MAX_DMA_PFN */
24
#include <asm/kaslr.h>
25
#include <asm/hypervisor.h>
26
#include <asm/cpufeature.h>
27
#include <asm/pti.h>
28
#include <asm/text-patching.h>
29
#include <asm/memtype.h>
30
#include <asm/paravirt.h>
31
#include <asm/mmu_context.h>
32
33
/*
34
* We need to define the tracepoints somewhere, and tlb.c
35
* is only compiled when SMP=y.
36
*/
37
#define CREATE_TRACE_POINTS
38
#include <trace/events/tlb.h>
39
40
#include "mm_internal.h"
41
42
/*
43
* Tables translating between page_cache_type_t and pte encoding.
44
*
45
* The default values are defined statically as minimal supported mode;
46
* WC and WT fall back to UC-. pat_init() updates these values to support
47
* more cache modes, WC and WT, when it is safe to do so. See pat_init()
48
* for the details. Note, __early_ioremap() used during early boot-time
49
* takes pgprot_t (pte encoding) and does not use these tables.
50
*
51
* Index into __cachemode2pte_tbl[] is the cachemode.
52
*
53
* Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
54
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
55
*/
56
static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
57
[_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
58
[_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
59
[_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
60
[_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
61
[_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
62
[_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
63
};
64
65
unsigned long cachemode2protval(enum page_cache_mode pcm)
66
{
67
if (likely(pcm == 0))
68
return 0;
69
return __cachemode2pte_tbl[pcm];
70
}
71
EXPORT_SYMBOL(cachemode2protval);
72
73
static uint8_t __pte2cachemode_tbl[8] = {
74
[__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
75
[__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
76
[__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
77
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
78
[__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
79
[__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80
[__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
81
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
82
};
83
84
/*
85
* Check that the write-protect PAT entry is set for write-protect.
86
* To do this without making assumptions how PAT has been set up (Xen has
87
* another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
88
* mode via the __cachemode2pte_tbl[] into protection bits (those protection
89
* bits will select a cache mode of WP or better), and then translate the
90
* protection bits back into the cache mode using __pte2cm_idx() and the
91
* __pte2cachemode_tbl[] array. This will return the really used cache mode.
92
*/
93
bool x86_has_pat_wp(void)
94
{
95
uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
96
97
return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98
}
99
100
enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
101
{
102
unsigned long masked;
103
104
masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
105
if (likely(masked == 0))
106
return 0;
107
return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108
}
109
110
static unsigned long __initdata pgt_buf_start;
111
static unsigned long __initdata pgt_buf_end;
112
static unsigned long __initdata pgt_buf_top;
113
114
static unsigned long min_pfn_mapped;
115
116
static bool __initdata can_use_brk_pgt = true;
117
118
/*
119
* Pages returned are already directly mapped.
120
*
121
* Changing that is likely to break Xen, see commit:
122
*
123
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
124
*
125
* for detailed information.
126
*/
127
__ref void *alloc_low_pages(unsigned int num)
128
{
129
unsigned long pfn;
130
int i;
131
132
if (after_bootmem) {
133
unsigned int order;
134
135
order = get_order((unsigned long)num << PAGE_SHIFT);
136
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137
}
138
139
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
140
unsigned long ret = 0;
141
142
if (min_pfn_mapped < max_pfn_mapped) {
143
ret = memblock_phys_alloc_range(
144
PAGE_SIZE * num, PAGE_SIZE,
145
min_pfn_mapped << PAGE_SHIFT,
146
max_pfn_mapped << PAGE_SHIFT);
147
}
148
if (!ret && can_use_brk_pgt)
149
ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
150
151
if (!ret)
152
panic("alloc_low_pages: can not alloc memory");
153
154
pfn = ret >> PAGE_SHIFT;
155
} else {
156
pfn = pgt_buf_end;
157
pgt_buf_end += num;
158
}
159
160
for (i = 0; i < num; i++) {
161
void *adr;
162
163
adr = __va((pfn + i) << PAGE_SHIFT);
164
clear_page(adr);
165
}
166
167
return __va(pfn << PAGE_SHIFT);
168
}
169
170
/*
171
* By default need to be able to allocate page tables below PGD firstly for
172
* the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
173
* With KASLR memory randomization, depending on the machine e820 memory and the
174
* PUD alignment, twice that many pages may be needed when KASLR memory
175
* randomization is enabled.
176
*/
177
178
#define INIT_PGD_PAGE_TABLES 4
179
180
#ifndef CONFIG_RANDOMIZE_MEMORY
181
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
182
#else
183
#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
184
#endif
185
186
#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
187
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
188
void __init early_alloc_pgt_buf(void)
189
{
190
unsigned long tables = INIT_PGT_BUF_SIZE;
191
phys_addr_t base;
192
193
base = __pa(extend_brk(tables, PAGE_SIZE));
194
195
pgt_buf_start = base >> PAGE_SHIFT;
196
pgt_buf_end = pgt_buf_start;
197
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
198
}
199
200
int after_bootmem;
201
202
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
203
204
struct map_range {
205
unsigned long start;
206
unsigned long end;
207
unsigned page_size_mask;
208
};
209
210
static int page_size_mask;
211
212
/*
213
* Save some of cr4 feature set we're using (e.g. Pentium 4MB
214
* enable and PPro Global page enable), so that any CPU's that boot
215
* up after us can get the correct flags. Invoked on the boot CPU.
216
*/
217
static inline void cr4_set_bits_and_update_boot(unsigned long mask)
218
{
219
mmu_cr4_features |= mask;
220
if (trampoline_cr4_features)
221
*trampoline_cr4_features = mmu_cr4_features;
222
cr4_set_bits(mask);
223
}
224
225
static void __init probe_page_size_mask(void)
226
{
227
/*
228
* For pagealloc debugging, identity mapping will use small pages.
229
* This will simplify cpa(), which otherwise needs to support splitting
230
* large pages into small in interrupt context, etc.
231
*/
232
if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
233
page_size_mask |= 1 << PG_LEVEL_2M;
234
else
235
direct_gbpages = 0;
236
237
/* Enable PSE if available */
238
if (boot_cpu_has(X86_FEATURE_PSE))
239
cr4_set_bits_and_update_boot(X86_CR4_PSE);
240
241
/* Enable PGE if available */
242
__supported_pte_mask &= ~_PAGE_GLOBAL;
243
if (boot_cpu_has(X86_FEATURE_PGE)) {
244
cr4_set_bits_and_update_boot(X86_CR4_PGE);
245
__supported_pte_mask |= _PAGE_GLOBAL;
246
}
247
248
/* By the default is everything supported: */
249
__default_kernel_pte_mask = __supported_pte_mask;
250
/* Except when with PTI where the kernel is mostly non-Global: */
251
if (cpu_feature_enabled(X86_FEATURE_PTI))
252
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
253
254
/* Enable 1 GB linear kernel mappings if available: */
255
if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
256
printk(KERN_INFO "Using GB pages for direct mapping\n");
257
page_size_mask |= 1 << PG_LEVEL_1G;
258
} else {
259
direct_gbpages = 0;
260
}
261
}
262
263
/*
264
* INVLPG may not properly flush Global entries on
265
* these CPUs. New microcode fixes the issue.
266
*/
267
static const struct x86_cpu_id invlpg_miss_ids[] = {
268
X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e),
269
X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c),
270
X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
271
X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118),
272
X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117),
273
X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e),
274
{}
275
};
276
277
static void setup_pcid(void)
278
{
279
const struct x86_cpu_id *invlpg_miss_match;
280
281
if (!IS_ENABLED(CONFIG_X86_64))
282
return;
283
284
if (!boot_cpu_has(X86_FEATURE_PCID))
285
return;
286
287
invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
288
289
if (invlpg_miss_match &&
290
boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
291
pr_info("Incomplete global flushes, disabling PCID");
292
setup_clear_cpu_cap(X86_FEATURE_PCID);
293
return;
294
}
295
296
if (boot_cpu_has(X86_FEATURE_PGE)) {
297
/*
298
* This can't be cr4_set_bits_and_update_boot() -- the
299
* trampoline code can't handle CR4.PCIDE and it wouldn't
300
* do any good anyway. Despite the name,
301
* cr4_set_bits_and_update_boot() doesn't actually cause
302
* the bits in question to remain set all the way through
303
* the secondary boot asm.
304
*
305
* Instead, we brute-force it and set CR4.PCIDE manually in
306
* start_secondary().
307
*/
308
cr4_set_bits(X86_CR4_PCIDE);
309
} else {
310
/*
311
* flush_tlb_all(), as currently implemented, won't work if
312
* PCID is on but PGE is not. Since that combination
313
* doesn't exist on real hardware, there's no reason to try
314
* to fully support it, but it's polite to avoid corrupting
315
* data if we're on an improperly configured VM.
316
*/
317
setup_clear_cpu_cap(X86_FEATURE_PCID);
318
}
319
}
320
321
#ifdef CONFIG_X86_32
322
#define NR_RANGE_MR 3
323
#else /* CONFIG_X86_64 */
324
#define NR_RANGE_MR 5
325
#endif
326
327
static int __meminit save_mr(struct map_range *mr, int nr_range,
328
unsigned long start_pfn, unsigned long end_pfn,
329
unsigned long page_size_mask)
330
{
331
if (start_pfn < end_pfn) {
332
if (nr_range >= NR_RANGE_MR)
333
panic("run out of range for init_memory_mapping\n");
334
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
335
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
336
mr[nr_range].page_size_mask = page_size_mask;
337
nr_range++;
338
}
339
340
return nr_range;
341
}
342
343
/*
344
* adjust the page_size_mask for small range to go with
345
* big page size instead small one if nearby are ram too.
346
*/
347
static void __ref adjust_range_page_size_mask(struct map_range *mr,
348
int nr_range)
349
{
350
int i;
351
352
for (i = 0; i < nr_range; i++) {
353
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
354
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
355
unsigned long start = round_down(mr[i].start, PMD_SIZE);
356
unsigned long end = round_up(mr[i].end, PMD_SIZE);
357
358
#ifdef CONFIG_X86_32
359
if ((end >> PAGE_SHIFT) > max_low_pfn)
360
continue;
361
#endif
362
363
if (memblock_is_region_memory(start, end - start))
364
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
365
}
366
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
367
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
368
unsigned long start = round_down(mr[i].start, PUD_SIZE);
369
unsigned long end = round_up(mr[i].end, PUD_SIZE);
370
371
if (memblock_is_region_memory(start, end - start))
372
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
373
}
374
}
375
}
376
377
static const char *page_size_string(struct map_range *mr)
378
{
379
static const char str_1g[] = "1G";
380
static const char str_2m[] = "2M";
381
static const char str_4m[] = "4M";
382
static const char str_4k[] = "4k";
383
384
if (mr->page_size_mask & (1<<PG_LEVEL_1G))
385
return str_1g;
386
/*
387
* 32-bit without PAE has a 4M large page size.
388
* PG_LEVEL_2M is misnamed, but we can at least
389
* print out the right size in the string.
390
*/
391
if (IS_ENABLED(CONFIG_X86_32) &&
392
!IS_ENABLED(CONFIG_X86_PAE) &&
393
mr->page_size_mask & (1<<PG_LEVEL_2M))
394
return str_4m;
395
396
if (mr->page_size_mask & (1<<PG_LEVEL_2M))
397
return str_2m;
398
399
return str_4k;
400
}
401
402
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
403
unsigned long start,
404
unsigned long end)
405
{
406
unsigned long start_pfn, end_pfn, limit_pfn;
407
unsigned long pfn;
408
int i;
409
410
limit_pfn = PFN_DOWN(end);
411
412
/* head if not big page alignment ? */
413
pfn = start_pfn = PFN_DOWN(start);
414
#ifdef CONFIG_X86_32
415
/*
416
* Don't use a large page for the first 2/4MB of memory
417
* because there are often fixed size MTRRs in there
418
* and overlapping MTRRs into large pages can cause
419
* slowdowns.
420
*/
421
if (pfn == 0)
422
end_pfn = PFN_DOWN(PMD_SIZE);
423
else
424
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
425
#else /* CONFIG_X86_64 */
426
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427
#endif
428
if (end_pfn > limit_pfn)
429
end_pfn = limit_pfn;
430
if (start_pfn < end_pfn) {
431
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
432
pfn = end_pfn;
433
}
434
435
/* big page (2M) range */
436
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
437
#ifdef CONFIG_X86_32
438
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
439
#else /* CONFIG_X86_64 */
440
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
441
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
442
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
443
#endif
444
445
if (start_pfn < end_pfn) {
446
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
447
page_size_mask & (1<<PG_LEVEL_2M));
448
pfn = end_pfn;
449
}
450
451
#ifdef CONFIG_X86_64
452
/* big page (1G) range */
453
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
454
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
455
if (start_pfn < end_pfn) {
456
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
457
page_size_mask &
458
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
459
pfn = end_pfn;
460
}
461
462
/* tail is not big page (1G) alignment */
463
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
464
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
465
if (start_pfn < end_pfn) {
466
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
467
page_size_mask & (1<<PG_LEVEL_2M));
468
pfn = end_pfn;
469
}
470
#endif
471
472
/* tail is not big page (2M) alignment */
473
start_pfn = pfn;
474
end_pfn = limit_pfn;
475
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
476
477
if (!after_bootmem)
478
adjust_range_page_size_mask(mr, nr_range);
479
480
/* try to merge same page size and continuous */
481
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
482
unsigned long old_start;
483
if (mr[i].end != mr[i+1].start ||
484
mr[i].page_size_mask != mr[i+1].page_size_mask)
485
continue;
486
/* move it */
487
old_start = mr[i].start;
488
memmove(&mr[i], &mr[i+1],
489
(nr_range - 1 - i) * sizeof(struct map_range));
490
mr[i--].start = old_start;
491
nr_range--;
492
}
493
494
for (i = 0; i < nr_range; i++)
495
pr_debug(" [mem %#010lx-%#010lx] page %s\n",
496
mr[i].start, mr[i].end - 1,
497
page_size_string(&mr[i]));
498
499
return nr_range;
500
}
501
502
struct range pfn_mapped[E820_MAX_ENTRIES];
503
int nr_pfn_mapped;
504
505
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
506
{
507
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
508
nr_pfn_mapped, start_pfn, end_pfn);
509
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
510
511
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
512
513
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
514
max_low_pfn_mapped = max(max_low_pfn_mapped,
515
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
516
}
517
518
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
519
{
520
int i;
521
522
for (i = 0; i < nr_pfn_mapped; i++)
523
if ((start_pfn >= pfn_mapped[i].start) &&
524
(end_pfn <= pfn_mapped[i].end))
525
return true;
526
527
return false;
528
}
529
530
/*
531
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
532
* This runs before bootmem is initialized and gets pages directly from
533
* the physical memory. To access them they are temporarily mapped.
534
*/
535
unsigned long __ref init_memory_mapping(unsigned long start,
536
unsigned long end, pgprot_t prot)
537
{
538
struct map_range mr[NR_RANGE_MR];
539
unsigned long ret = 0;
540
int nr_range, i;
541
542
pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
543
start, end - 1);
544
545
memset(mr, 0, sizeof(mr));
546
nr_range = split_mem_range(mr, 0, start, end);
547
548
for (i = 0; i < nr_range; i++)
549
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
550
mr[i].page_size_mask,
551
prot);
552
553
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
554
555
return ret >> PAGE_SHIFT;
556
}
557
558
/*
559
* We need to iterate through the E820 memory map and create direct mappings
560
* for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
561
* create direct mappings for all pfns from [0 to max_low_pfn) and
562
* [4GB to max_pfn) because of possible memory holes in high addresses
563
* that cannot be marked as UC by fixed/variable range MTRRs.
564
* Depending on the alignment of E820 ranges, this may possibly result
565
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
566
*
567
* init_mem_mapping() calls init_range_memory_mapping() with big range.
568
* That range would have hole in the middle or ends, and only ram parts
569
* will be mapped in init_range_memory_mapping().
570
*/
571
static unsigned long __init init_range_memory_mapping(
572
unsigned long r_start,
573
unsigned long r_end)
574
{
575
unsigned long start_pfn, end_pfn;
576
unsigned long mapped_ram_size = 0;
577
int i;
578
579
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
580
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
581
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
582
if (start >= end)
583
continue;
584
585
/*
586
* if it is overlapping with brk pgt, we need to
587
* alloc pgt buf from memblock instead.
588
*/
589
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
590
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
591
init_memory_mapping(start, end, PAGE_KERNEL);
592
mapped_ram_size += end - start;
593
can_use_brk_pgt = true;
594
}
595
596
return mapped_ram_size;
597
}
598
599
static unsigned long __init get_new_step_size(unsigned long step_size)
600
{
601
/*
602
* Initial mapped size is PMD_SIZE (2M).
603
* We can not set step_size to be PUD_SIZE (1G) yet.
604
* In worse case, when we cross the 1G boundary, and
605
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
606
* to map 1G range with PTE. Hence we use one less than the
607
* difference of page table level shifts.
608
*
609
* Don't need to worry about overflow in the top-down case, on 32bit,
610
* when step_size is 0, round_down() returns 0 for start, and that
611
* turns it into 0x100000000ULL.
612
* In the bottom-up case, round_up(x, 0) returns 0 though too, which
613
* needs to be taken into consideration by the code below.
614
*/
615
return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
616
}
617
618
/**
619
* memory_map_top_down - Map [map_start, map_end) top down
620
* @map_start: start address of the target memory range
621
* @map_end: end address of the target memory range
622
*
623
* This function will setup direct mapping for memory range
624
* [map_start, map_end) in top-down. That said, the page tables
625
* will be allocated at the end of the memory, and we map the
626
* memory in top-down.
627
*/
628
static void __init memory_map_top_down(unsigned long map_start,
629
unsigned long map_end)
630
{
631
unsigned long real_end, last_start;
632
unsigned long step_size;
633
unsigned long addr;
634
unsigned long mapped_ram_size = 0;
635
636
/*
637
* Systems that have many reserved areas near top of the memory,
638
* e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
639
* require lots of 4K mappings which may exhaust pgt_buf.
640
* Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
641
* there is enough mapped memory that can be allocated from
642
* memblock.
643
*/
644
addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
645
map_end);
646
if (!addr) {
647
pr_warn("Failed to release memory for alloc_low_pages()");
648
real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE));
649
} else {
650
memblock_phys_free(addr, PMD_SIZE);
651
real_end = addr + PMD_SIZE;
652
}
653
654
/* step_size need to be small so pgt_buf from BRK could cover it */
655
step_size = PMD_SIZE;
656
max_pfn_mapped = 0; /* will get exact value next */
657
min_pfn_mapped = real_end >> PAGE_SHIFT;
658
last_start = real_end;
659
660
/*
661
* We start from the top (end of memory) and go to the bottom.
662
* The memblock_find_in_range() gets us a block of RAM from the
663
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
664
* for page table.
665
*/
666
while (last_start > map_start) {
667
unsigned long start;
668
669
if (last_start > step_size) {
670
start = round_down(last_start - 1, step_size);
671
if (start < map_start)
672
start = map_start;
673
} else
674
start = map_start;
675
mapped_ram_size += init_range_memory_mapping(start,
676
last_start);
677
last_start = start;
678
min_pfn_mapped = last_start >> PAGE_SHIFT;
679
if (mapped_ram_size >= step_size)
680
step_size = get_new_step_size(step_size);
681
}
682
683
if (real_end < map_end)
684
init_range_memory_mapping(real_end, map_end);
685
}
686
687
/**
688
* memory_map_bottom_up - Map [map_start, map_end) bottom up
689
* @map_start: start address of the target memory range
690
* @map_end: end address of the target memory range
691
*
692
* This function will setup direct mapping for memory range
693
* [map_start, map_end) in bottom-up. Since we have limited the
694
* bottom-up allocation above the kernel, the page tables will
695
* be allocated just above the kernel and we map the memory
696
* in [map_start, map_end) in bottom-up.
697
*/
698
static void __init memory_map_bottom_up(unsigned long map_start,
699
unsigned long map_end)
700
{
701
unsigned long next, start;
702
unsigned long mapped_ram_size = 0;
703
/* step_size need to be small so pgt_buf from BRK could cover it */
704
unsigned long step_size = PMD_SIZE;
705
706
start = map_start;
707
min_pfn_mapped = start >> PAGE_SHIFT;
708
709
/*
710
* We start from the bottom (@map_start) and go to the top (@map_end).
711
* The memblock_find_in_range() gets us a block of RAM from the
712
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
713
* for page table.
714
*/
715
while (start < map_end) {
716
if (step_size && map_end - start > step_size) {
717
next = round_up(start + 1, step_size);
718
if (next > map_end)
719
next = map_end;
720
} else {
721
next = map_end;
722
}
723
724
mapped_ram_size += init_range_memory_mapping(start, next);
725
start = next;
726
727
if (mapped_ram_size >= step_size)
728
step_size = get_new_step_size(step_size);
729
}
730
}
731
732
/*
733
* The real mode trampoline, which is required for bootstrapping CPUs
734
* occupies only a small area under the low 1MB. See reserve_real_mode()
735
* for details.
736
*
737
* If KASLR is disabled the first PGD entry of the direct mapping is copied
738
* to map the real mode trampoline.
739
*
740
* If KASLR is enabled, copy only the PUD which covers the low 1MB
741
* area. This limits the randomization granularity to 1GB for both 4-level
742
* and 5-level paging.
743
*/
744
static void __init init_trampoline(void)
745
{
746
#ifdef CONFIG_X86_64
747
/*
748
* The code below will alias kernel page-tables in the user-range of the
749
* address space, including the Global bit. So global TLB entries will
750
* be created when using the trampoline page-table.
751
*/
752
if (!kaslr_memory_enabled())
753
trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
754
else
755
init_trampoline_kaslr();
756
#endif
757
}
758
759
void __init init_mem_mapping(void)
760
{
761
unsigned long end;
762
763
pti_check_boottime_disable();
764
probe_page_size_mask();
765
setup_pcid();
766
767
#ifdef CONFIG_X86_64
768
end = max_pfn << PAGE_SHIFT;
769
#else
770
end = max_low_pfn << PAGE_SHIFT;
771
#endif
772
773
/* the ISA range is always mapped regardless of memory holes */
774
init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
775
776
/* Init the trampoline, possibly with KASLR memory offset */
777
init_trampoline();
778
779
/*
780
* If the allocation is in bottom-up direction, we setup direct mapping
781
* in bottom-up, otherwise we setup direct mapping in top-down.
782
*/
783
if (memblock_bottom_up()) {
784
unsigned long kernel_end = __pa_symbol(_end);
785
786
/*
787
* we need two separate calls here. This is because we want to
788
* allocate page tables above the kernel. So we first map
789
* [kernel_end, end) to make memory above the kernel be mapped
790
* as soon as possible. And then use page tables allocated above
791
* the kernel to map [ISA_END_ADDRESS, kernel_end).
792
*/
793
memory_map_bottom_up(kernel_end, end);
794
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
795
} else {
796
memory_map_top_down(ISA_END_ADDRESS, end);
797
}
798
799
#ifdef CONFIG_X86_64
800
if (max_pfn > max_low_pfn) {
801
/* can we preserve max_low_pfn ?*/
802
max_low_pfn = max_pfn;
803
}
804
#else
805
early_ioremap_page_table_range_init();
806
#endif
807
808
load_cr3(swapper_pg_dir);
809
__flush_tlb_all();
810
811
x86_init.hyper.init_mem_mapping();
812
813
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
814
}
815
816
/*
817
* Initialize an mm_struct to be used during poking and a pointer to be used
818
* during patching.
819
*/
820
void __init poking_init(void)
821
{
822
spinlock_t *ptl;
823
pte_t *ptep;
824
825
text_poke_mm = mm_alloc();
826
BUG_ON(!text_poke_mm);
827
828
/* Xen PV guests need the PGD to be pinned. */
829
paravirt_enter_mmap(text_poke_mm);
830
831
set_notrack_mm(text_poke_mm);
832
833
/*
834
* Randomize the poking address, but make sure that the following page
835
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
836
* and adjust the address if the PMD ends after the first one.
837
*/
838
text_poke_mm_addr = TASK_UNMAPPED_BASE;
839
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
840
text_poke_mm_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
841
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
842
843
if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
844
text_poke_mm_addr += PAGE_SIZE;
845
846
/*
847
* We need to trigger the allocation of the page-tables that will be
848
* needed for poking now. Later, poking may be performed in an atomic
849
* section, which might cause allocation to fail.
850
*/
851
ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
852
BUG_ON(!ptep);
853
pte_unmap_unlock(ptep, ptl);
854
}
855
856
/*
857
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
858
* is valid. The argument is a physical page number.
859
*
860
* On x86, access has to be given to the first megabyte of RAM because that
861
* area traditionally contains BIOS code and data regions used by X, dosemu,
862
* and similar apps. Since they map the entire memory range, the whole range
863
* must be allowed (for mapping), but any areas that would otherwise be
864
* disallowed are flagged as being "zero filled" instead of rejected.
865
* Access has to be given to non-kernel-ram areas as well, these contain the
866
* PCI mmio resources as well as potential bios/acpi data regions.
867
*/
868
int devmem_is_allowed(unsigned long pagenr)
869
{
870
if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
871
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
872
!= REGION_DISJOINT) {
873
/*
874
* For disallowed memory regions in the low 1MB range,
875
* request that the page be shown as all zeros.
876
*/
877
if (pagenr < 256)
878
return 2;
879
880
return 0;
881
}
882
883
/*
884
* This must follow RAM test, since System RAM is considered a
885
* restricted resource under CONFIG_STRICT_DEVMEM.
886
*/
887
if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
888
/* Low 1MB bypasses iomem restrictions. */
889
if (pagenr < 256)
890
return 1;
891
892
return 0;
893
}
894
895
return 1;
896
}
897
898
void free_init_pages(const char *what, unsigned long begin, unsigned long end)
899
{
900
unsigned long begin_aligned, end_aligned;
901
902
/* Make sure boundaries are page aligned */
903
begin_aligned = PAGE_ALIGN(begin);
904
end_aligned = end & PAGE_MASK;
905
906
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
907
begin = begin_aligned;
908
end = end_aligned;
909
}
910
911
if (begin >= end)
912
return;
913
914
/*
915
* If debugging page accesses then do not free this memory but
916
* mark them not present - any buggy init-section access will
917
* create a kernel page fault:
918
*/
919
if (debug_pagealloc_enabled()) {
920
pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
921
begin, end - 1);
922
/*
923
* Inform kmemleak about the hole in the memory since the
924
* corresponding pages will be unmapped.
925
*/
926
kmemleak_free_part((void *)begin, end - begin);
927
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
928
} else {
929
/*
930
* We just marked the kernel text read only above, now that
931
* we are going to free part of that, we need to make that
932
* writeable and non-executable first.
933
*/
934
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
935
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
936
937
free_reserved_area((void *)begin, (void *)end,
938
POISON_FREE_INITMEM, what);
939
}
940
}
941
942
/*
943
* begin/end can be in the direct map or the "high kernel mapping"
944
* used for the kernel image only. free_init_pages() will do the
945
* right thing for either kind of address.
946
*/
947
void free_kernel_image_pages(const char *what, void *begin, void *end)
948
{
949
unsigned long begin_ul = (unsigned long)begin;
950
unsigned long end_ul = (unsigned long)end;
951
unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
952
953
free_init_pages(what, begin_ul, end_ul);
954
955
/*
956
* PTI maps some of the kernel into userspace. For performance,
957
* this includes some kernel areas that do not contain secrets.
958
* Those areas might be adjacent to the parts of the kernel image
959
* being freed, which may contain secrets. Remove the "high kernel
960
* image mapping" for these freed areas, ensuring they are not even
961
* potentially vulnerable to Meltdown regardless of the specific
962
* optimizations PTI is currently using.
963
*
964
* The "noalias" prevents unmapping the direct map alias which is
965
* needed to access the freed pages.
966
*
967
* This is only valid for 64bit kernels. 32bit has only one mapping
968
* which can't be treated in this way for obvious reasons.
969
*/
970
if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
971
set_memory_np_noalias(begin_ul, len_pages);
972
}
973
974
void __ref free_initmem(void)
975
{
976
e820__reallocate_tables();
977
978
mem_encrypt_free_decrypted_mem();
979
980
free_kernel_image_pages("unused kernel image (initmem)",
981
&__init_begin, &__init_end);
982
}
983
984
#ifdef CONFIG_BLK_DEV_INITRD
985
void __init free_initrd_mem(unsigned long start, unsigned long end)
986
{
987
/*
988
* end could be not aligned, and We can not align that,
989
* decompressor could be confused by aligned initrd_end
990
* We already reserve the end partial page before in
991
* - i386_start_kernel()
992
* - x86_64_start_kernel()
993
* - relocate_initrd()
994
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
995
*/
996
free_init_pages("initrd", start, PAGE_ALIGN(end));
997
}
998
#endif
999
1000
void __init zone_sizes_init(void)
1001
{
1002
unsigned long max_zone_pfns[MAX_NR_ZONES];
1003
1004
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005
1006
#ifdef CONFIG_ZONE_DMA
1007
max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1008
#endif
1009
#ifdef CONFIG_ZONE_DMA32
1010
max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1011
#endif
1012
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1013
#ifdef CONFIG_HIGHMEM
1014
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1015
#endif
1016
1017
free_area_init(max_zone_pfns);
1018
}
1019
1020
__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021
.loaded_mm = &init_mm,
1022
.next_asid = 1,
1023
.cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1024
};
1025
1026
#ifdef CONFIG_ADDRESS_MASKING
1027
DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1028
EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1029
#endif
1030
1031
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1032
{
1033
/* entry 0 MUST be WB (hardwired to speed up translations) */
1034
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1035
1036
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1037
__pte2cachemode_tbl[entry] = cache;
1038
}
1039
1040
#ifdef CONFIG_SWAP
1041
unsigned long arch_max_swapfile_size(void)
1042
{
1043
unsigned long pages;
1044
1045
pages = generic_max_swapfile_size();
1046
1047
if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1048
/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1049
unsigned long long l1tf_limit = l1tf_pfn_limit();
1050
/*
1051
* We encode swap offsets also with 3 bits below those for pfn
1052
* which makes the usable limit higher.
1053
*/
1054
#if CONFIG_PGTABLE_LEVELS > 2
1055
l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1056
#endif
1057
pages = min_t(unsigned long long, l1tf_limit, pages);
1058
}
1059
return pages;
1060
}
1061
#endif
1062
1063
#ifdef CONFIG_EXECMEM
1064
static struct execmem_info execmem_info __ro_after_init;
1065
1066
#ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
1067
void execmem_fill_trapping_insns(void *ptr, size_t size)
1068
{
1069
memset(ptr, INT3_INSN_OPCODE, size);
1070
}
1071
#endif
1072
1073
struct execmem_info __init *execmem_arch_setup(void)
1074
{
1075
unsigned long start, offset = 0;
1076
enum execmem_range_flags flags;
1077
pgprot_t pgprot;
1078
1079
if (kaslr_enabled())
1080
offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1081
1082
start = MODULES_VADDR + offset;
1083
1084
if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX) &&
1085
cpu_feature_enabled(X86_FEATURE_PSE)) {
1086
pgprot = PAGE_KERNEL_ROX;
1087
flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE;
1088
} else {
1089
pgprot = PAGE_KERNEL;
1090
flags = EXECMEM_KASAN_SHADOW;
1091
}
1092
1093
execmem_info = (struct execmem_info){
1094
.ranges = {
1095
[EXECMEM_MODULE_TEXT] = {
1096
.flags = flags,
1097
.start = start,
1098
.end = MODULES_END,
1099
.pgprot = pgprot,
1100
.alignment = MODULE_ALIGN,
1101
},
1102
[EXECMEM_KPROBES] = {
1103
.flags = flags,
1104
.start = start,
1105
.end = MODULES_END,
1106
.pgprot = PAGE_KERNEL_ROX,
1107
.alignment = MODULE_ALIGN,
1108
},
1109
[EXECMEM_FTRACE] = {
1110
.flags = flags,
1111
.start = start,
1112
.end = MODULES_END,
1113
.pgprot = pgprot,
1114
.alignment = MODULE_ALIGN,
1115
},
1116
[EXECMEM_BPF] = {
1117
.flags = EXECMEM_KASAN_SHADOW,
1118
.start = start,
1119
.end = MODULES_END,
1120
.pgprot = PAGE_KERNEL,
1121
.alignment = MODULE_ALIGN,
1122
},
1123
[EXECMEM_MODULE_DATA] = {
1124
.flags = EXECMEM_KASAN_SHADOW,
1125
.start = start,
1126
.end = MODULES_END,
1127
.pgprot = PAGE_KERNEL,
1128
.alignment = MODULE_ALIGN,
1129
},
1130
},
1131
};
1132
1133
return &execmem_info;
1134
}
1135
#endif /* CONFIG_EXECMEM */
1136
1137