Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/x86/mm/init_64.c
54339 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/arch/x86_64/mm/init.c
4
*
5
* Copyright (C) 1995 Linus Torvalds
6
* Copyright (C) 2000 Pavel Machek <[email protected]>
7
* Copyright (C) 2002,2003 Andi Kleen <[email protected]>
8
*/
9
10
#include <linux/signal.h>
11
#include <linux/sched.h>
12
#include <linux/kernel.h>
13
#include <linux/errno.h>
14
#include <linux/string.h>
15
#include <linux/types.h>
16
#include <linux/ptrace.h>
17
#include <linux/mman.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/smp.h>
21
#include <linux/init.h>
22
#include <linux/initrd.h>
23
#include <linux/pagemap.h>
24
#include <linux/memblock.h>
25
#include <linux/proc_fs.h>
26
#include <linux/pci.h>
27
#include <linux/pfn.h>
28
#include <linux/poison.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/memory.h>
31
#include <linux/memory_hotplug.h>
32
#include <linux/memremap.h>
33
#include <linux/nmi.h>
34
#include <linux/gfp.h>
35
#include <linux/kcore.h>
36
#include <linux/bootmem_info.h>
37
38
#include <asm/processor.h>
39
#include <asm/bios_ebda.h>
40
#include <linux/uaccess.h>
41
#include <asm/pgalloc.h>
42
#include <asm/dma.h>
43
#include <asm/fixmap.h>
44
#include <asm/e820/api.h>
45
#include <asm/apic.h>
46
#include <asm/tlb.h>
47
#include <asm/mmu_context.h>
48
#include <asm/proto.h>
49
#include <asm/smp.h>
50
#include <asm/sections.h>
51
#include <asm/kdebug.h>
52
#include <asm/numa.h>
53
#include <asm/set_memory.h>
54
#include <asm/init.h>
55
#include <asm/uv/uv.h>
56
#include <asm/setup.h>
57
#include <asm/ftrace.h>
58
59
#include "mm_internal.h"
60
61
#include "ident_map.c"
62
63
#define DEFINE_POPULATE(fname, type1, type2, init) \
64
static inline void fname##_init(struct mm_struct *mm, \
65
type1##_t *arg1, type2##_t *arg2, bool init) \
66
{ \
67
if (init) \
68
fname##_safe(mm, arg1, arg2); \
69
else \
70
fname(mm, arg1, arg2); \
71
}
72
73
DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74
DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75
DEFINE_POPULATE(pud_populate, pud, pmd, init)
76
DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78
#define DEFINE_ENTRY(type1, type2, init) \
79
static inline void set_##type1##_init(type1##_t *arg1, \
80
type2##_t arg2, bool init) \
81
{ \
82
if (init) \
83
set_##type1##_safe(arg1, arg2); \
84
else \
85
set_##type1(arg1, arg2); \
86
}
87
88
DEFINE_ENTRY(p4d, p4d, init)
89
DEFINE_ENTRY(pud, pud, init)
90
DEFINE_ENTRY(pmd, pmd, init)
91
DEFINE_ENTRY(pte, pte, init)
92
93
static inline pgprot_t prot_sethuge(pgprot_t prot)
94
{
95
WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97
return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98
}
99
100
/*
101
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102
* physical space so we can cache the place of the first one and move
103
* around without checking the pgd every time.
104
*/
105
106
/* Bits supported by the hardware: */
107
pteval_t __supported_pte_mask __read_mostly = ~0;
108
/* Bits allowed in normal kernel mappings: */
109
pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110
EXPORT_SYMBOL_GPL(__supported_pte_mask);
111
/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112
EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114
int force_personality32;
115
116
/*
117
* noexec32=on|off
118
* Control non executable heap for 32bit processes.
119
*
120
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121
* off PROT_READ implies PROT_EXEC
122
*/
123
static int __init nonx32_setup(char *str)
124
{
125
if (!strcmp(str, "on"))
126
force_personality32 &= ~READ_IMPLIES_EXEC;
127
else if (!strcmp(str, "off"))
128
force_personality32 |= READ_IMPLIES_EXEC;
129
return 1;
130
}
131
__setup("noexec32=", nonx32_setup);
132
133
static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134
{
135
unsigned long addr;
136
137
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138
const pgd_t *pgd_ref = pgd_offset_k(addr);
139
struct page *page;
140
141
/* Check for overflow */
142
if (addr < start)
143
break;
144
145
if (pgd_none(*pgd_ref))
146
continue;
147
148
spin_lock(&pgd_lock);
149
list_for_each_entry(page, &pgd_list, lru) {
150
pgd_t *pgd;
151
spinlock_t *pgt_lock;
152
153
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154
/* the pgt_lock only for Xen */
155
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156
spin_lock(pgt_lock);
157
158
if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161
if (pgd_none(*pgd))
162
set_pgd(pgd, *pgd_ref);
163
164
spin_unlock(pgt_lock);
165
}
166
spin_unlock(&pgd_lock);
167
}
168
}
169
170
static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171
{
172
unsigned long addr;
173
174
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175
pgd_t *pgd_ref = pgd_offset_k(addr);
176
const p4d_t *p4d_ref;
177
struct page *page;
178
179
/*
180
* With folded p4d, pgd_none() is always false, we need to
181
* handle synchronization on p4d level.
182
*/
183
MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184
p4d_ref = p4d_offset(pgd_ref, addr);
185
186
if (p4d_none(*p4d_ref))
187
continue;
188
189
spin_lock(&pgd_lock);
190
list_for_each_entry(page, &pgd_list, lru) {
191
pgd_t *pgd;
192
p4d_t *p4d;
193
spinlock_t *pgt_lock;
194
195
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196
p4d = p4d_offset(pgd, addr);
197
/* the pgt_lock only for Xen */
198
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199
spin_lock(pgt_lock);
200
201
if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202
BUG_ON(p4d_pgtable(*p4d)
203
!= p4d_pgtable(*p4d_ref));
204
205
if (p4d_none(*p4d))
206
set_p4d(p4d, *p4d_ref);
207
208
spin_unlock(pgt_lock);
209
}
210
spin_unlock(&pgd_lock);
211
}
212
}
213
214
/*
215
* When memory was added make sure all the processes MM have
216
* suitable PGD entries in the local PGD level page.
217
*/
218
static void sync_global_pgds(unsigned long start, unsigned long end)
219
{
220
if (pgtable_l5_enabled())
221
sync_global_pgds_l5(start, end);
222
else
223
sync_global_pgds_l4(start, end);
224
}
225
226
/*
227
* Make kernel mappings visible in all page tables in the system.
228
* This is necessary except when the init task populates kernel mappings
229
* during the boot process. In that case, all processes originating from
230
* the init task copies the kernel mappings, so there is no issue.
231
* Otherwise, missing synchronization could lead to kernel crashes due
232
* to missing page table entries for certain kernel mappings.
233
*
234
* Synchronization is performed at the top level, which is the PGD in
235
* 5-level paging systems. But in 4-level paging systems, however,
236
* pgd_populate() is a no-op, so synchronization is done at the P4D level.
237
* sync_global_pgds() handles this difference between paging levels.
238
*/
239
void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
240
{
241
sync_global_pgds(start, end);
242
}
243
244
/*
245
* NOTE: This function is marked __ref because it calls __init function
246
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
247
*/
248
static __ref void *spp_getpage(void)
249
{
250
void *ptr;
251
252
if (after_bootmem)
253
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
254
else
255
ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
256
257
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
258
panic("set_pte_phys: cannot allocate page data %s\n",
259
after_bootmem ? "after bootmem" : "");
260
}
261
262
pr_debug("spp_getpage %p\n", ptr);
263
264
return ptr;
265
}
266
267
static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
268
{
269
if (pgd_none(*pgd)) {
270
p4d_t *p4d = (p4d_t *)spp_getpage();
271
pgd_populate(&init_mm, pgd, p4d);
272
if (p4d != p4d_offset(pgd, 0))
273
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
274
p4d, p4d_offset(pgd, 0));
275
}
276
return p4d_offset(pgd, vaddr);
277
}
278
279
static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
280
{
281
if (p4d_none(*p4d)) {
282
pud_t *pud = (pud_t *)spp_getpage();
283
p4d_populate(&init_mm, p4d, pud);
284
if (pud != pud_offset(p4d, 0))
285
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
286
pud, pud_offset(p4d, 0));
287
}
288
return pud_offset(p4d, vaddr);
289
}
290
291
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
292
{
293
if (pud_none(*pud)) {
294
pmd_t *pmd = (pmd_t *) spp_getpage();
295
pud_populate(&init_mm, pud, pmd);
296
if (pmd != pmd_offset(pud, 0))
297
printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
298
pmd, pmd_offset(pud, 0));
299
}
300
return pmd_offset(pud, vaddr);
301
}
302
303
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
304
{
305
if (pmd_none(*pmd)) {
306
pte_t *pte = (pte_t *) spp_getpage();
307
pmd_populate_kernel(&init_mm, pmd, pte);
308
if (pte != pte_offset_kernel(pmd, 0))
309
printk(KERN_ERR "PAGETABLE BUG #03!\n");
310
}
311
return pte_offset_kernel(pmd, vaddr);
312
}
313
314
static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
315
{
316
pmd_t *pmd = fill_pmd(pud, vaddr);
317
pte_t *pte = fill_pte(pmd, vaddr);
318
319
set_pte(pte, new_pte);
320
321
/*
322
* It's enough to flush this one mapping.
323
* (PGE mappings get flushed as well)
324
*/
325
flush_tlb_one_kernel(vaddr);
326
}
327
328
void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
329
{
330
p4d_t *p4d = p4d_page + p4d_index(vaddr);
331
pud_t *pud = fill_pud(p4d, vaddr);
332
333
__set_pte_vaddr(pud, vaddr, new_pte);
334
}
335
336
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
337
{
338
pud_t *pud = pud_page + pud_index(vaddr);
339
340
__set_pte_vaddr(pud, vaddr, new_pte);
341
}
342
343
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
344
{
345
pgd_t *pgd;
346
p4d_t *p4d_page;
347
348
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
349
350
pgd = pgd_offset_k(vaddr);
351
if (pgd_none(*pgd)) {
352
printk(KERN_ERR
353
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
354
return;
355
}
356
357
p4d_page = p4d_offset(pgd, 0);
358
set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
359
}
360
361
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
362
{
363
pgd_t *pgd;
364
p4d_t *p4d;
365
pud_t *pud;
366
367
pgd = pgd_offset_k(vaddr);
368
p4d = fill_p4d(pgd, vaddr);
369
pud = fill_pud(p4d, vaddr);
370
return fill_pmd(pud, vaddr);
371
}
372
373
pte_t * __init populate_extra_pte(unsigned long vaddr)
374
{
375
pmd_t *pmd;
376
377
pmd = populate_extra_pmd(vaddr);
378
return fill_pte(pmd, vaddr);
379
}
380
381
/*
382
* Create large page table mappings for a range of physical addresses.
383
*/
384
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
385
enum page_cache_mode cache)
386
{
387
pgd_t *pgd;
388
p4d_t *p4d;
389
pud_t *pud;
390
pmd_t *pmd;
391
pgprot_t prot;
392
393
pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
394
protval_4k_2_large(cachemode2protval(cache));
395
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
396
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
397
pgd = pgd_offset_k((unsigned long)__va(phys));
398
if (pgd_none(*pgd)) {
399
p4d = (p4d_t *) spp_getpage();
400
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
401
_PAGE_USER));
402
}
403
p4d = p4d_offset(pgd, (unsigned long)__va(phys));
404
if (p4d_none(*p4d)) {
405
pud = (pud_t *) spp_getpage();
406
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
407
_PAGE_USER));
408
}
409
pud = pud_offset(p4d, (unsigned long)__va(phys));
410
if (pud_none(*pud)) {
411
pmd = (pmd_t *) spp_getpage();
412
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
413
_PAGE_USER));
414
}
415
pmd = pmd_offset(pud, phys);
416
BUG_ON(!pmd_none(*pmd));
417
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
418
}
419
}
420
421
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
422
{
423
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
424
}
425
426
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
427
{
428
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
429
}
430
431
/*
432
* The head.S code sets up the kernel high mapping:
433
*
434
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
435
*
436
* phys_base holds the negative offset to the kernel, which is added
437
* to the compile time generated pmds. This results in invalid pmds up
438
* to the point where we hit the physaddr 0 mapping.
439
*
440
* We limit the mappings to the region from _text to _brk_end. _brk_end
441
* is rounded up to the 2MB boundary. This catches the invalid pmds as
442
* well, as they are located before _text:
443
*/
444
void __init cleanup_highmap(void)
445
{
446
unsigned long vaddr = __START_KERNEL_map;
447
unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
448
unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
449
pmd_t *pmd = level2_kernel_pgt;
450
451
/*
452
* Native path, max_pfn_mapped is not set yet.
453
* Xen has valid max_pfn_mapped set in
454
* arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
455
*/
456
if (max_pfn_mapped)
457
vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
458
459
for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
460
if (pmd_none(*pmd))
461
continue;
462
if (vaddr < (unsigned long) _text || vaddr > end)
463
set_pmd(pmd, __pmd(0));
464
}
465
}
466
467
/*
468
* Create PTE level page table mapping for physical addresses.
469
* It returns the last physical address mapped.
470
*/
471
static unsigned long __meminit
472
phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
473
pgprot_t prot, bool init)
474
{
475
unsigned long pages = 0, paddr_next;
476
unsigned long paddr_last = paddr_end;
477
pte_t *pte;
478
int i;
479
480
pte = pte_page + pte_index(paddr);
481
i = pte_index(paddr);
482
483
for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
484
paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
485
if (paddr >= paddr_end) {
486
if (!after_bootmem &&
487
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
488
E820_TYPE_RAM) &&
489
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
490
E820_TYPE_ACPI))
491
set_pte_init(pte, __pte(0), init);
492
continue;
493
}
494
495
/*
496
* We will re-use the existing mapping.
497
* Xen for example has some special requirements, like mapping
498
* pagetable pages as RO. So assume someone who pre-setup
499
* these mappings are more intelligent.
500
*/
501
if (!pte_none(*pte)) {
502
if (!after_bootmem)
503
pages++;
504
continue;
505
}
506
507
pages++;
508
set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
509
paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
510
}
511
512
update_page_count(PG_LEVEL_4K, pages);
513
514
return paddr_last;
515
}
516
517
/*
518
* Create PMD level page table mapping for physical addresses. The virtual
519
* and physical address have to be aligned at this level.
520
* It returns the last physical address mapped.
521
*/
522
static unsigned long __meminit
523
phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
524
unsigned long page_size_mask, pgprot_t prot, bool init)
525
{
526
unsigned long pages = 0, paddr_next;
527
unsigned long paddr_last = paddr_end;
528
529
int i = pmd_index(paddr);
530
531
for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
532
pmd_t *pmd = pmd_page + pmd_index(paddr);
533
pte_t *pte;
534
pgprot_t new_prot = prot;
535
536
paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
537
if (paddr >= paddr_end) {
538
if (!after_bootmem &&
539
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
540
E820_TYPE_RAM) &&
541
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
542
E820_TYPE_ACPI))
543
set_pmd_init(pmd, __pmd(0), init);
544
continue;
545
}
546
547
if (!pmd_none(*pmd)) {
548
if (!pmd_leaf(*pmd)) {
549
spin_lock(&init_mm.page_table_lock);
550
pte = (pte_t *)pmd_page_vaddr(*pmd);
551
paddr_last = phys_pte_init(pte, paddr,
552
paddr_end, prot,
553
init);
554
spin_unlock(&init_mm.page_table_lock);
555
continue;
556
}
557
/*
558
* If we are ok with PG_LEVEL_2M mapping, then we will
559
* use the existing mapping,
560
*
561
* Otherwise, we will split the large page mapping but
562
* use the same existing protection bits except for
563
* large page, so that we don't violate Intel's TLB
564
* Application note (317080) which says, while changing
565
* the page sizes, new and old translations should
566
* not differ with respect to page frame and
567
* attributes.
568
*/
569
if (page_size_mask & (1 << PG_LEVEL_2M)) {
570
if (!after_bootmem)
571
pages++;
572
paddr_last = paddr_next;
573
continue;
574
}
575
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
576
}
577
578
if (page_size_mask & (1<<PG_LEVEL_2M)) {
579
pages++;
580
spin_lock(&init_mm.page_table_lock);
581
set_pmd_init(pmd,
582
pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
583
init);
584
spin_unlock(&init_mm.page_table_lock);
585
paddr_last = paddr_next;
586
continue;
587
}
588
589
pte = alloc_low_page();
590
paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
591
592
spin_lock(&init_mm.page_table_lock);
593
pmd_populate_kernel_init(&init_mm, pmd, pte, init);
594
spin_unlock(&init_mm.page_table_lock);
595
}
596
update_page_count(PG_LEVEL_2M, pages);
597
return paddr_last;
598
}
599
600
/*
601
* Create PUD level page table mapping for physical addresses. The virtual
602
* and physical address do not have to be aligned at this level. KASLR can
603
* randomize virtual addresses up to this level.
604
* It returns the last physical address mapped.
605
*/
606
static unsigned long __meminit
607
phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
608
unsigned long page_size_mask, pgprot_t _prot, bool init)
609
{
610
unsigned long pages = 0, paddr_next;
611
unsigned long paddr_last = paddr_end;
612
unsigned long vaddr = (unsigned long)__va(paddr);
613
int i = pud_index(vaddr);
614
615
for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
616
pud_t *pud;
617
pmd_t *pmd;
618
pgprot_t prot = _prot;
619
620
vaddr = (unsigned long)__va(paddr);
621
pud = pud_page + pud_index(vaddr);
622
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
623
624
if (paddr >= paddr_end) {
625
if (!after_bootmem &&
626
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
627
E820_TYPE_RAM) &&
628
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
629
E820_TYPE_ACPI))
630
set_pud_init(pud, __pud(0), init);
631
continue;
632
}
633
634
if (!pud_none(*pud)) {
635
if (!pud_leaf(*pud)) {
636
pmd = pmd_offset(pud, 0);
637
paddr_last = phys_pmd_init(pmd, paddr,
638
paddr_end,
639
page_size_mask,
640
prot, init);
641
continue;
642
}
643
/*
644
* If we are ok with PG_LEVEL_1G mapping, then we will
645
* use the existing mapping.
646
*
647
* Otherwise, we will split the gbpage mapping but use
648
* the same existing protection bits except for large
649
* page, so that we don't violate Intel's TLB
650
* Application note (317080) which says, while changing
651
* the page sizes, new and old translations should
652
* not differ with respect to page frame and
653
* attributes.
654
*/
655
if (page_size_mask & (1 << PG_LEVEL_1G)) {
656
if (!after_bootmem)
657
pages++;
658
paddr_last = paddr_next;
659
continue;
660
}
661
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
662
}
663
664
if (page_size_mask & (1<<PG_LEVEL_1G)) {
665
pages++;
666
spin_lock(&init_mm.page_table_lock);
667
set_pud_init(pud,
668
pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
669
init);
670
spin_unlock(&init_mm.page_table_lock);
671
paddr_last = paddr_next;
672
continue;
673
}
674
675
pmd = alloc_low_page();
676
paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
677
page_size_mask, prot, init);
678
679
spin_lock(&init_mm.page_table_lock);
680
pud_populate_init(&init_mm, pud, pmd, init);
681
spin_unlock(&init_mm.page_table_lock);
682
}
683
684
update_page_count(PG_LEVEL_1G, pages);
685
686
return paddr_last;
687
}
688
689
static unsigned long __meminit
690
phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
691
unsigned long page_size_mask, pgprot_t prot, bool init)
692
{
693
unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
694
695
paddr_last = paddr_end;
696
vaddr = (unsigned long)__va(paddr);
697
vaddr_end = (unsigned long)__va(paddr_end);
698
699
if (!pgtable_l5_enabled())
700
return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
701
page_size_mask, prot, init);
702
703
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
704
p4d_t *p4d = p4d_page + p4d_index(vaddr);
705
pud_t *pud;
706
707
vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
708
paddr = __pa(vaddr);
709
710
if (paddr >= paddr_end) {
711
paddr_next = __pa(vaddr_next);
712
if (!after_bootmem &&
713
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
714
E820_TYPE_RAM) &&
715
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
716
E820_TYPE_ACPI))
717
set_p4d_init(p4d, __p4d(0), init);
718
continue;
719
}
720
721
if (!p4d_none(*p4d)) {
722
pud = pud_offset(p4d, 0);
723
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
724
page_size_mask, prot, init);
725
continue;
726
}
727
728
pud = alloc_low_page();
729
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
730
page_size_mask, prot, init);
731
732
spin_lock(&init_mm.page_table_lock);
733
p4d_populate_init(&init_mm, p4d, pud, init);
734
spin_unlock(&init_mm.page_table_lock);
735
}
736
737
return paddr_last;
738
}
739
740
static unsigned long __meminit
741
__kernel_physical_mapping_init(unsigned long paddr_start,
742
unsigned long paddr_end,
743
unsigned long page_size_mask,
744
pgprot_t prot, bool init)
745
{
746
bool pgd_changed = false;
747
unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
748
749
paddr_last = paddr_end;
750
vaddr = (unsigned long)__va(paddr_start);
751
vaddr_end = (unsigned long)__va(paddr_end);
752
vaddr_start = vaddr;
753
754
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
755
pgd_t *pgd = pgd_offset_k(vaddr);
756
p4d_t *p4d;
757
758
vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
759
760
if (pgd_val(*pgd)) {
761
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
762
paddr_last = phys_p4d_init(p4d, __pa(vaddr),
763
__pa(vaddr_end),
764
page_size_mask,
765
prot, init);
766
continue;
767
}
768
769
p4d = alloc_low_page();
770
paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
771
page_size_mask, prot, init);
772
773
spin_lock(&init_mm.page_table_lock);
774
if (pgtable_l5_enabled())
775
pgd_populate_init(&init_mm, pgd, p4d, init);
776
else
777
p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
778
(pud_t *) p4d, init);
779
780
spin_unlock(&init_mm.page_table_lock);
781
pgd_changed = true;
782
}
783
784
if (pgd_changed)
785
sync_global_pgds(vaddr_start, vaddr_end - 1);
786
787
return paddr_last;
788
}
789
790
791
/*
792
* Create page table mapping for the physical memory for specific physical
793
* addresses. Note that it can only be used to populate non-present entries.
794
* The virtual and physical addresses have to be aligned on PMD level
795
* down. It returns the last physical address mapped.
796
*/
797
unsigned long __meminit
798
kernel_physical_mapping_init(unsigned long paddr_start,
799
unsigned long paddr_end,
800
unsigned long page_size_mask, pgprot_t prot)
801
{
802
return __kernel_physical_mapping_init(paddr_start, paddr_end,
803
page_size_mask, prot, true);
804
}
805
806
/*
807
* This function is similar to kernel_physical_mapping_init() above with the
808
* exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
809
* when updating the mapping. The caller is responsible to flush the TLBs after
810
* the function returns.
811
*/
812
unsigned long __meminit
813
kernel_physical_mapping_change(unsigned long paddr_start,
814
unsigned long paddr_end,
815
unsigned long page_size_mask)
816
{
817
return __kernel_physical_mapping_init(paddr_start, paddr_end,
818
page_size_mask, PAGE_KERNEL,
819
false);
820
}
821
822
#ifndef CONFIG_NUMA
823
static __always_inline void x86_numa_init(void)
824
{
825
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
826
}
827
#endif
828
829
void __init initmem_init(void)
830
{
831
x86_numa_init();
832
}
833
834
void __init paging_init(void)
835
{
836
/*
837
* clear the default setting with node 0
838
* note: don't use nodes_clear here, that is really clearing when
839
* numa support is not compiled in, and later node_set_state
840
* will not set it back.
841
*/
842
node_clear_state(0, N_MEMORY);
843
node_clear_state(0, N_NORMAL_MEMORY);
844
}
845
846
#define PAGE_UNUSED 0xFD
847
848
/*
849
* The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
850
* from unused_pmd_start to next PMD_SIZE boundary.
851
*/
852
static unsigned long unused_pmd_start __meminitdata;
853
854
static void __meminit vmemmap_flush_unused_pmd(void)
855
{
856
if (!unused_pmd_start)
857
return;
858
/*
859
* Clears (unused_pmd_start, PMD_END]
860
*/
861
memset((void *)unused_pmd_start, PAGE_UNUSED,
862
ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
863
unused_pmd_start = 0;
864
}
865
866
#ifdef CONFIG_MEMORY_HOTPLUG
867
/* Returns true if the PMD is completely unused and thus it can be freed */
868
static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
869
{
870
unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
871
872
/*
873
* Flush the unused range cache to ensure that memchr_inv() will work
874
* for the whole range.
875
*/
876
vmemmap_flush_unused_pmd();
877
memset((void *)addr, PAGE_UNUSED, end - addr);
878
879
return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
880
}
881
#endif
882
883
static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
884
{
885
/*
886
* As we expect to add in the same granularity as we remove, it's
887
* sufficient to mark only some piece used to block the memmap page from
888
* getting removed when removing some other adjacent memmap (just in
889
* case the first memmap never gets initialized e.g., because the memory
890
* block never gets onlined).
891
*/
892
memset((void *)start, 0, sizeof(struct page));
893
}
894
895
static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
896
{
897
/*
898
* We only optimize if the new used range directly follows the
899
* previously unused range (esp., when populating consecutive sections).
900
*/
901
if (unused_pmd_start == start) {
902
if (likely(IS_ALIGNED(end, PMD_SIZE)))
903
unused_pmd_start = 0;
904
else
905
unused_pmd_start = end;
906
return;
907
}
908
909
/*
910
* If the range does not contiguously follows previous one, make sure
911
* to mark the unused range of the previous one so it can be removed.
912
*/
913
vmemmap_flush_unused_pmd();
914
__vmemmap_use_sub_pmd(start);
915
}
916
917
918
static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
919
{
920
const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
921
922
vmemmap_flush_unused_pmd();
923
924
/*
925
* Could be our memmap page is filled with PAGE_UNUSED already from a
926
* previous remove. Make sure to reset it.
927
*/
928
__vmemmap_use_sub_pmd(start);
929
930
/*
931
* Mark with PAGE_UNUSED the unused parts of the new memmap range
932
*/
933
if (!IS_ALIGNED(start, PMD_SIZE))
934
memset((void *)page, PAGE_UNUSED, start - page);
935
936
/*
937
* We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
938
* consecutive sections. Remember for the last added PMD where the
939
* unused range begins.
940
*/
941
if (!IS_ALIGNED(end, PMD_SIZE))
942
unused_pmd_start = end;
943
}
944
945
/*
946
* Memory hotplug specific functions
947
*/
948
#ifdef CONFIG_MEMORY_HOTPLUG
949
/*
950
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
951
* updating.
952
*/
953
static void update_end_of_memory_vars(u64 start, u64 size)
954
{
955
unsigned long end_pfn = PFN_UP(start + size);
956
957
if (end_pfn > max_pfn) {
958
max_pfn = end_pfn;
959
max_low_pfn = end_pfn;
960
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
961
}
962
}
963
964
int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
965
struct mhp_params *params)
966
{
967
unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
968
int ret;
969
970
if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
971
return -ERANGE;
972
973
ret = __add_pages(nid, start_pfn, nr_pages, params);
974
WARN_ON_ONCE(ret);
975
976
/*
977
* Special case: add_pages() is called by memremap_pages() for adding device
978
* private pages. Do not bump up max_pfn in the device private path,
979
* because max_pfn changes affect dma_addressing_limited().
980
*
981
* dma_addressing_limited() returning true when max_pfn is the device's
982
* addressable memory can force device drivers to use bounce buffers
983
* and impact their performance negatively:
984
*/
985
if (!params->pgmap)
986
/* update max_pfn, max_low_pfn and high_memory */
987
update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
988
989
return ret;
990
}
991
992
int arch_add_memory(int nid, u64 start, u64 size,
993
struct mhp_params *params)
994
{
995
unsigned long start_pfn = start >> PAGE_SHIFT;
996
unsigned long nr_pages = size >> PAGE_SHIFT;
997
998
init_memory_mapping(start, start + size, params->pgprot);
999
1000
return add_pages(nid, start_pfn, nr_pages, params);
1001
}
1002
1003
static void free_reserved_pages(struct page *page, unsigned long nr_pages)
1004
{
1005
while (nr_pages--)
1006
free_reserved_page(page++);
1007
}
1008
1009
static void __meminit free_pagetable(struct page *page, int order)
1010
{
1011
/* bootmem page has reserved flag */
1012
if (PageReserved(page)) {
1013
unsigned long nr_pages = 1 << order;
1014
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1015
enum bootmem_type type = bootmem_type(page);
1016
1017
if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1018
while (nr_pages--)
1019
put_page_bootmem(page++);
1020
} else {
1021
free_reserved_pages(page, nr_pages);
1022
}
1023
#else
1024
free_reserved_pages(page, nr_pages);
1025
#endif
1026
} else {
1027
pagetable_free(page_ptdesc(page));
1028
}
1029
}
1030
1031
static void __meminit free_hugepage_table(struct page *page,
1032
struct vmem_altmap *altmap)
1033
{
1034
if (altmap)
1035
vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1036
else
1037
free_pagetable(page, get_order(PMD_SIZE));
1038
}
1039
1040
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1041
{
1042
pte_t *pte;
1043
int i;
1044
1045
for (i = 0; i < PTRS_PER_PTE; i++) {
1046
pte = pte_start + i;
1047
if (!pte_none(*pte))
1048
return;
1049
}
1050
1051
/* free a pte table */
1052
free_pagetable(pmd_page(*pmd), 0);
1053
spin_lock(&init_mm.page_table_lock);
1054
pmd_clear(pmd);
1055
spin_unlock(&init_mm.page_table_lock);
1056
}
1057
1058
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1059
{
1060
pmd_t *pmd;
1061
int i;
1062
1063
for (i = 0; i < PTRS_PER_PMD; i++) {
1064
pmd = pmd_start + i;
1065
if (!pmd_none(*pmd))
1066
return;
1067
}
1068
1069
/* free a pmd table */
1070
free_pagetable(pud_page(*pud), 0);
1071
spin_lock(&init_mm.page_table_lock);
1072
pud_clear(pud);
1073
spin_unlock(&init_mm.page_table_lock);
1074
}
1075
1076
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1077
{
1078
pud_t *pud;
1079
int i;
1080
1081
for (i = 0; i < PTRS_PER_PUD; i++) {
1082
pud = pud_start + i;
1083
if (!pud_none(*pud))
1084
return;
1085
}
1086
1087
/* free a pud table */
1088
free_pagetable(p4d_page(*p4d), 0);
1089
spin_lock(&init_mm.page_table_lock);
1090
p4d_clear(p4d);
1091
spin_unlock(&init_mm.page_table_lock);
1092
}
1093
1094
static void __meminit
1095
remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1096
bool direct)
1097
{
1098
unsigned long next, pages = 0;
1099
pte_t *pte;
1100
phys_addr_t phys_addr;
1101
1102
pte = pte_start + pte_index(addr);
1103
for (; addr < end; addr = next, pte++) {
1104
next = (addr + PAGE_SIZE) & PAGE_MASK;
1105
if (next > end)
1106
next = end;
1107
1108
if (!pte_present(*pte))
1109
continue;
1110
1111
/*
1112
* We mapped [0,1G) memory as identity mapping when
1113
* initializing, in arch/x86/kernel/head_64.S. These
1114
* pagetables cannot be removed.
1115
*/
1116
phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1117
if (phys_addr < (phys_addr_t)0x40000000)
1118
return;
1119
1120
if (!direct)
1121
free_pagetable(pte_page(*pte), 0);
1122
1123
spin_lock(&init_mm.page_table_lock);
1124
pte_clear(&init_mm, addr, pte);
1125
spin_unlock(&init_mm.page_table_lock);
1126
1127
/* For non-direct mapping, pages means nothing. */
1128
pages++;
1129
}
1130
1131
/* Call free_pte_table() in remove_pmd_table(). */
1132
flush_tlb_all();
1133
if (direct)
1134
update_page_count(PG_LEVEL_4K, -pages);
1135
}
1136
1137
static void __meminit
1138
remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1139
bool direct, struct vmem_altmap *altmap)
1140
{
1141
unsigned long next, pages = 0;
1142
pte_t *pte_base;
1143
pmd_t *pmd;
1144
1145
pmd = pmd_start + pmd_index(addr);
1146
for (; addr < end; addr = next, pmd++) {
1147
next = pmd_addr_end(addr, end);
1148
1149
if (!pmd_present(*pmd))
1150
continue;
1151
1152
if (pmd_leaf(*pmd)) {
1153
if (IS_ALIGNED(addr, PMD_SIZE) &&
1154
IS_ALIGNED(next, PMD_SIZE)) {
1155
if (!direct)
1156
free_hugepage_table(pmd_page(*pmd),
1157
altmap);
1158
1159
spin_lock(&init_mm.page_table_lock);
1160
pmd_clear(pmd);
1161
spin_unlock(&init_mm.page_table_lock);
1162
pages++;
1163
} else if (vmemmap_pmd_is_unused(addr, next)) {
1164
free_hugepage_table(pmd_page(*pmd),
1165
altmap);
1166
spin_lock(&init_mm.page_table_lock);
1167
pmd_clear(pmd);
1168
spin_unlock(&init_mm.page_table_lock);
1169
}
1170
continue;
1171
}
1172
1173
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1174
remove_pte_table(pte_base, addr, next, direct);
1175
free_pte_table(pte_base, pmd);
1176
}
1177
1178
/* Call free_pmd_table() in remove_pud_table(). */
1179
if (direct)
1180
update_page_count(PG_LEVEL_2M, -pages);
1181
}
1182
1183
static void __meminit
1184
remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1185
struct vmem_altmap *altmap, bool direct)
1186
{
1187
unsigned long next, pages = 0;
1188
pmd_t *pmd_base;
1189
pud_t *pud;
1190
1191
pud = pud_start + pud_index(addr);
1192
for (; addr < end; addr = next, pud++) {
1193
next = pud_addr_end(addr, end);
1194
1195
if (!pud_present(*pud))
1196
continue;
1197
1198
if (pud_leaf(*pud) &&
1199
IS_ALIGNED(addr, PUD_SIZE) &&
1200
IS_ALIGNED(next, PUD_SIZE)) {
1201
spin_lock(&init_mm.page_table_lock);
1202
pud_clear(pud);
1203
spin_unlock(&init_mm.page_table_lock);
1204
pages++;
1205
continue;
1206
}
1207
1208
pmd_base = pmd_offset(pud, 0);
1209
remove_pmd_table(pmd_base, addr, next, direct, altmap);
1210
free_pmd_table(pmd_base, pud);
1211
}
1212
1213
if (direct)
1214
update_page_count(PG_LEVEL_1G, -pages);
1215
}
1216
1217
static void __meminit
1218
remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1219
struct vmem_altmap *altmap, bool direct)
1220
{
1221
unsigned long next, pages = 0;
1222
pud_t *pud_base;
1223
p4d_t *p4d;
1224
1225
p4d = p4d_start + p4d_index(addr);
1226
for (; addr < end; addr = next, p4d++) {
1227
next = p4d_addr_end(addr, end);
1228
1229
if (!p4d_present(*p4d))
1230
continue;
1231
1232
BUILD_BUG_ON(p4d_leaf(*p4d));
1233
1234
pud_base = pud_offset(p4d, 0);
1235
remove_pud_table(pud_base, addr, next, altmap, direct);
1236
/*
1237
* For 4-level page tables we do not want to free PUDs, but in the
1238
* 5-level case we should free them. This code will have to change
1239
* to adapt for boot-time switching between 4 and 5 level page tables.
1240
*/
1241
if (pgtable_l5_enabled())
1242
free_pud_table(pud_base, p4d);
1243
}
1244
1245
if (direct)
1246
update_page_count(PG_LEVEL_512G, -pages);
1247
}
1248
1249
/* start and end are both virtual address. */
1250
static void __meminit
1251
remove_pagetable(unsigned long start, unsigned long end, bool direct,
1252
struct vmem_altmap *altmap)
1253
{
1254
unsigned long next;
1255
unsigned long addr;
1256
pgd_t *pgd;
1257
p4d_t *p4d;
1258
1259
for (addr = start; addr < end; addr = next) {
1260
next = pgd_addr_end(addr, end);
1261
1262
pgd = pgd_offset_k(addr);
1263
if (!pgd_present(*pgd))
1264
continue;
1265
1266
p4d = p4d_offset(pgd, 0);
1267
remove_p4d_table(p4d, addr, next, altmap, direct);
1268
}
1269
1270
flush_tlb_all();
1271
}
1272
1273
void __ref vmemmap_free(unsigned long start, unsigned long end,
1274
struct vmem_altmap *altmap)
1275
{
1276
VM_BUG_ON(!PAGE_ALIGNED(start));
1277
VM_BUG_ON(!PAGE_ALIGNED(end));
1278
1279
remove_pagetable(start, end, false, altmap);
1280
}
1281
1282
static void __meminit
1283
kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1284
{
1285
start = (unsigned long)__va(start);
1286
end = (unsigned long)__va(end);
1287
1288
remove_pagetable(start, end, true, NULL);
1289
}
1290
1291
void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1292
{
1293
unsigned long start_pfn = start >> PAGE_SHIFT;
1294
unsigned long nr_pages = size >> PAGE_SHIFT;
1295
1296
__remove_pages(start_pfn, nr_pages, altmap);
1297
kernel_physical_mapping_remove(start, start + size);
1298
}
1299
#endif /* CONFIG_MEMORY_HOTPLUG */
1300
1301
static struct kcore_list kcore_vsyscall;
1302
1303
static void __init register_page_bootmem_info(void)
1304
{
1305
#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1306
int i;
1307
1308
for_each_online_node(i)
1309
register_page_bootmem_info_node(NODE_DATA(i));
1310
#endif
1311
}
1312
1313
/*
1314
* Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1315
* Only the level which needs to be synchronized between all page-tables is
1316
* allocated because the synchronization can be expensive.
1317
*/
1318
static void __init preallocate_vmalloc_pages(void)
1319
{
1320
unsigned long addr;
1321
const char *lvl;
1322
1323
for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1324
pgd_t *pgd = pgd_offset_k(addr);
1325
p4d_t *p4d;
1326
pud_t *pud;
1327
1328
lvl = "p4d";
1329
p4d = p4d_alloc(&init_mm, pgd, addr);
1330
if (!p4d)
1331
goto failed;
1332
1333
if (pgtable_l5_enabled())
1334
continue;
1335
1336
/*
1337
* The goal here is to allocate all possibly required
1338
* hardware page tables pointed to by the top hardware
1339
* level.
1340
*
1341
* On 4-level systems, the P4D layer is folded away and
1342
* the above code does no preallocation. Below, go down
1343
* to the pud _software_ level to ensure the second
1344
* hardware level is allocated on 4-level systems too.
1345
*/
1346
lvl = "pud";
1347
pud = pud_alloc(&init_mm, p4d, addr);
1348
if (!pud)
1349
goto failed;
1350
}
1351
1352
return;
1353
1354
failed:
1355
1356
/*
1357
* The pages have to be there now or they will be missing in
1358
* process page-tables later.
1359
*/
1360
panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1361
}
1362
1363
void __init arch_mm_preinit(void)
1364
{
1365
pci_iommu_alloc();
1366
}
1367
1368
void __init mem_init(void)
1369
{
1370
/* clear_bss() already clear the empty_zero_page */
1371
1372
after_bootmem = 1;
1373
x86_init.hyper.init_after_bootmem();
1374
1375
/*
1376
* Must be done after boot memory is put on freelist, because here we
1377
* might set fields in deferred struct pages that have not yet been
1378
* initialized, and memblock_free_all() initializes all the reserved
1379
* deferred pages for us.
1380
*/
1381
register_page_bootmem_info();
1382
1383
/* Register memory areas for /proc/kcore */
1384
if (get_gate_vma(&init_mm))
1385
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1386
1387
preallocate_vmalloc_pages();
1388
}
1389
1390
int kernel_set_to_readonly;
1391
1392
void mark_rodata_ro(void)
1393
{
1394
unsigned long start = PFN_ALIGN(_text);
1395
unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1396
unsigned long end = (unsigned long)__end_rodata_hpage_align;
1397
unsigned long text_end = PFN_ALIGN(_etext);
1398
unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1399
unsigned long all_end;
1400
1401
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1402
(end - start) >> 10);
1403
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1404
1405
kernel_set_to_readonly = 1;
1406
1407
/*
1408
* The rodata/data/bss/brk section (but not the kernel text!)
1409
* should also be not-executable.
1410
*
1411
* We align all_end to PMD_SIZE because the existing mapping
1412
* is a full PMD. If we would align _brk_end to PAGE_SIZE we
1413
* split the PMD and the reminder between _brk_end and the end
1414
* of the PMD will remain mapped executable.
1415
*
1416
* Any PMD which was setup after the one which covers _brk_end
1417
* has been zapped already via cleanup_highmem().
1418
*/
1419
all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1420
set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1421
1422
set_ftrace_ops_ro();
1423
1424
#ifdef CONFIG_CPA_DEBUG
1425
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1426
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1427
1428
printk(KERN_INFO "Testing CPA: again\n");
1429
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1430
#endif
1431
1432
free_kernel_image_pages("unused kernel image (text/rodata gap)",
1433
(void *)text_end, (void *)rodata_start);
1434
free_kernel_image_pages("unused kernel image (rodata/data gap)",
1435
(void *)rodata_end, (void *)_sdata);
1436
}
1437
1438
/*
1439
* Block size is the minimum amount of memory which can be hotplugged or
1440
* hotremoved. It must be power of two and must be equal or larger than
1441
* MIN_MEMORY_BLOCK_SIZE.
1442
*/
1443
#define MAX_BLOCK_SIZE (2UL << 30)
1444
1445
/* Amount of ram needed to start using large blocks */
1446
#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1447
1448
/* Adjustable memory block size */
1449
static unsigned long set_memory_block_size;
1450
int __init set_memory_block_size_order(unsigned int order)
1451
{
1452
unsigned long size = 1UL << order;
1453
1454
if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1455
return -EINVAL;
1456
1457
set_memory_block_size = size;
1458
return 0;
1459
}
1460
1461
static unsigned long probe_memory_block_size(void)
1462
{
1463
unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1464
unsigned long bz;
1465
1466
/* If memory block size has been set, then use it */
1467
bz = set_memory_block_size;
1468
if (bz)
1469
goto done;
1470
1471
/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1472
if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1473
bz = MIN_MEMORY_BLOCK_SIZE;
1474
goto done;
1475
}
1476
1477
/*
1478
* When hotplug alignment is not a concern, maximize blocksize
1479
* to minimize overhead. Otherwise, align to the lesser of advice
1480
* alignment and end of memory alignment.
1481
*/
1482
bz = memory_block_advised_max_size();
1483
if (!bz) {
1484
bz = MAX_BLOCK_SIZE;
1485
if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1486
goto done;
1487
} else {
1488
bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE);
1489
}
1490
1491
/* Find the largest allowed block size that aligns to memory end */
1492
for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1493
if (IS_ALIGNED(boot_mem_end, bz))
1494
break;
1495
}
1496
done:
1497
pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1498
1499
return bz;
1500
}
1501
1502
static unsigned long memory_block_size_probed;
1503
unsigned long memory_block_size_bytes(void)
1504
{
1505
if (!memory_block_size_probed)
1506
memory_block_size_probed = probe_memory_block_size();
1507
1508
return memory_block_size_probed;
1509
}
1510
1511
/*
1512
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1513
*/
1514
static long __meminitdata addr_start, addr_end;
1515
static void __meminitdata *p_start, *p_end;
1516
static int __meminitdata node_start;
1517
1518
void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1519
unsigned long addr, unsigned long next)
1520
{
1521
pte_t entry;
1522
1523
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1524
PAGE_KERNEL_LARGE);
1525
set_pmd(pmd, __pmd(pte_val(entry)));
1526
1527
/* check to see if we have contiguous blocks */
1528
if (p_end != p || node_start != node) {
1529
if (p_start)
1530
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1531
addr_start, addr_end-1, p_start, p_end-1, node_start);
1532
addr_start = addr;
1533
node_start = node;
1534
p_start = p;
1535
}
1536
1537
addr_end = addr + PMD_SIZE;
1538
p_end = p + PMD_SIZE;
1539
1540
if (!IS_ALIGNED(addr, PMD_SIZE) ||
1541
!IS_ALIGNED(next, PMD_SIZE))
1542
vmemmap_use_new_sub_pmd(addr, next);
1543
}
1544
1545
int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1546
unsigned long addr, unsigned long next)
1547
{
1548
int large = pmd_leaf(*pmd);
1549
1550
if (pmd_leaf(*pmd)) {
1551
vmemmap_verify((pte_t *)pmd, node, addr, next);
1552
vmemmap_use_sub_pmd(addr, next);
1553
}
1554
1555
return large;
1556
}
1557
1558
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1559
struct vmem_altmap *altmap)
1560
{
1561
int err;
1562
1563
VM_BUG_ON(!PAGE_ALIGNED(start));
1564
VM_BUG_ON(!PAGE_ALIGNED(end));
1565
1566
if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1567
err = vmemmap_populate_basepages(start, end, node, NULL);
1568
else if (boot_cpu_has(X86_FEATURE_PSE))
1569
err = vmemmap_populate_hugepages(start, end, node, altmap);
1570
else if (altmap) {
1571
pr_err_once("%s: no cpu support for altmap allocations\n",
1572
__func__);
1573
err = -ENOMEM;
1574
} else
1575
err = vmemmap_populate_basepages(start, end, node, NULL);
1576
if (!err)
1577
sync_global_pgds(start, end - 1);
1578
return err;
1579
}
1580
1581
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1582
void register_page_bootmem_memmap(unsigned long section_nr,
1583
struct page *start_page, unsigned long nr_pages)
1584
{
1585
unsigned long addr = (unsigned long)start_page;
1586
unsigned long end = (unsigned long)(start_page + nr_pages);
1587
unsigned long next;
1588
pgd_t *pgd;
1589
p4d_t *p4d;
1590
pud_t *pud;
1591
pmd_t *pmd;
1592
unsigned int nr_pmd_pages;
1593
struct page *page;
1594
1595
for (; addr < end; addr = next) {
1596
pte_t *pte = NULL;
1597
1598
pgd = pgd_offset_k(addr);
1599
if (pgd_none(*pgd)) {
1600
next = (addr + PAGE_SIZE) & PAGE_MASK;
1601
continue;
1602
}
1603
get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1604
1605
p4d = p4d_offset(pgd, addr);
1606
if (p4d_none(*p4d)) {
1607
next = (addr + PAGE_SIZE) & PAGE_MASK;
1608
continue;
1609
}
1610
get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1611
1612
pud = pud_offset(p4d, addr);
1613
if (pud_none(*pud)) {
1614
next = (addr + PAGE_SIZE) & PAGE_MASK;
1615
continue;
1616
}
1617
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1618
1619
pmd = pmd_offset(pud, addr);
1620
if (pmd_none(*pmd)) {
1621
next = (addr + PAGE_SIZE) & PAGE_MASK;
1622
continue;
1623
}
1624
1625
if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
1626
next = (addr + PAGE_SIZE) & PAGE_MASK;
1627
get_page_bootmem(section_nr, pmd_page(*pmd),
1628
MIX_SECTION_INFO);
1629
1630
pte = pte_offset_kernel(pmd, addr);
1631
if (pte_none(*pte))
1632
continue;
1633
get_page_bootmem(section_nr, pte_page(*pte),
1634
SECTION_INFO);
1635
} else {
1636
next = pmd_addr_end(addr, end);
1637
nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
1638
page = pmd_page(*pmd);
1639
while (nr_pmd_pages--)
1640
get_page_bootmem(section_nr, page++,
1641
SECTION_INFO);
1642
}
1643
}
1644
}
1645
#endif
1646
1647
void __meminit vmemmap_populate_print_last(void)
1648
{
1649
if (p_start) {
1650
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1651
addr_start, addr_end-1, p_start, p_end-1, node_start);
1652
p_start = NULL;
1653
p_end = NULL;
1654
node_start = 0;
1655
}
1656
}
1657
1658