Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-cgroup.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common Block IO controller cgroup interface
4
*
5
* Based on ideas and code from CFQ, CFS and BFQ:
6
* Copyright (C) 2003 Jens Axboe <[email protected]>
7
*
8
* Copyright (C) 2008 Fabio Checconi <[email protected]>
9
* Paolo Valente <[email protected]>
10
*
11
* Copyright (C) 2009 Vivek Goyal <[email protected]>
12
* Nauman Rafique <[email protected]>
13
*
14
* For policy-specific per-blkcg data:
15
* Copyright (C) 2015 Paolo Valente <[email protected]>
16
* Arianna Avanzini <[email protected]>
17
*/
18
#include <linux/ioprio.h>
19
#include <linux/kdev_t.h>
20
#include <linux/module.h>
21
#include <linux/sched/signal.h>
22
#include <linux/err.h>
23
#include <linux/blkdev.h>
24
#include <linux/backing-dev.h>
25
#include <linux/slab.h>
26
#include <linux/delay.h>
27
#include <linux/atomic.h>
28
#include <linux/ctype.h>
29
#include <linux/resume_user_mode.h>
30
#include <linux/psi.h>
31
#include <linux/part_stat.h>
32
#include "blk.h"
33
#include "blk-cgroup.h"
34
#include "blk-ioprio.h"
35
#include "blk-throttle.h"
36
37
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38
39
/*
40
* blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41
* blkcg_pol_register_mutex nests outside of it and synchronizes entire
42
* policy [un]register operations including cgroup file additions /
43
* removals. Putting cgroup file registration outside blkcg_pol_mutex
44
* allows grabbing it from cgroup callbacks.
45
*/
46
static DEFINE_MUTEX(blkcg_pol_register_mutex);
47
static DEFINE_MUTEX(blkcg_pol_mutex);
48
49
struct blkcg blkcg_root;
50
EXPORT_SYMBOL_GPL(blkcg_root);
51
52
struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53
EXPORT_SYMBOL_GPL(blkcg_root_css);
54
55
static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56
57
static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
58
59
bool blkcg_debug_stats = false;
60
61
static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62
63
#define BLKG_DESTROY_BATCH_SIZE 64
64
65
/*
66
* Lockless lists for tracking IO stats update
67
*
68
* New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69
* There are multiple blkg's (one for each block device) attached to each
70
* blkcg. The rstat code keeps track of which cpu has IO stats updated,
71
* but it doesn't know which blkg has the updated stats. If there are many
72
* block devices in a system, the cost of iterating all the blkg's to flush
73
* out the IO stats can be high. To reduce such overhead, a set of percpu
74
* lockless lists (lhead) per blkcg are used to track the set of recently
75
* updated iostat_cpu's since the last flush. An iostat_cpu will be put
76
* onto the lockless list on the update side [blk_cgroup_bio_start()] if
77
* not there yet and then removed when being flushed [blkcg_rstat_flush()].
78
* References to blkg are gotten and then put back in the process to
79
* protect against blkg removal.
80
*
81
* Return: 0 if successful or -ENOMEM if allocation fails.
82
*/
83
static int init_blkcg_llists(struct blkcg *blkcg)
84
{
85
int cpu;
86
87
blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88
if (!blkcg->lhead)
89
return -ENOMEM;
90
91
for_each_possible_cpu(cpu)
92
init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93
return 0;
94
}
95
96
/**
97
* blkcg_css - find the current css
98
*
99
* Find the css associated with either the kthread or the current task.
100
* This may return a dying css, so it is up to the caller to use tryget logic
101
* to confirm it is alive and well.
102
*/
103
static struct cgroup_subsys_state *blkcg_css(void)
104
{
105
struct cgroup_subsys_state *css;
106
107
css = kthread_blkcg();
108
if (css)
109
return css;
110
return task_css(current, io_cgrp_id);
111
}
112
113
static void blkg_free_workfn(struct work_struct *work)
114
{
115
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
116
free_work);
117
struct request_queue *q = blkg->q;
118
int i;
119
120
/*
121
* pd_free_fn() can also be called from blkcg_deactivate_policy(),
122
* in order to make sure pd_free_fn() is called in order, the deletion
123
* of the list blkg->q_node is delayed to here from blkg_destroy(), and
124
* blkcg_mutex is used to synchronize blkg_free_workfn() and
125
* blkcg_deactivate_policy().
126
*/
127
mutex_lock(&q->blkcg_mutex);
128
for (i = 0; i < BLKCG_MAX_POLS; i++)
129
if (blkg->pd[i])
130
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
131
if (blkg->parent)
132
blkg_put(blkg->parent);
133
spin_lock_irq(&q->queue_lock);
134
list_del_init(&blkg->q_node);
135
spin_unlock_irq(&q->queue_lock);
136
mutex_unlock(&q->blkcg_mutex);
137
138
blk_put_queue(q);
139
free_percpu(blkg->iostat_cpu);
140
percpu_ref_exit(&blkg->refcnt);
141
kfree(blkg);
142
}
143
144
/**
145
* blkg_free - free a blkg
146
* @blkg: blkg to free
147
*
148
* Free @blkg which may be partially allocated.
149
*/
150
static void blkg_free(struct blkcg_gq *blkg)
151
{
152
if (!blkg)
153
return;
154
155
/*
156
* Both ->pd_free_fn() and request queue's release handler may
157
* sleep, so free us by scheduling one work func
158
*/
159
INIT_WORK(&blkg->free_work, blkg_free_workfn);
160
schedule_work(&blkg->free_work);
161
}
162
163
static void __blkg_release(struct rcu_head *rcu)
164
{
165
struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166
struct blkcg *blkcg = blkg->blkcg;
167
int cpu;
168
169
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
170
WARN_ON(!bio_list_empty(&blkg->async_bios));
171
#endif
172
/*
173
* Flush all the non-empty percpu lockless lists before releasing
174
* us, given these stat belongs to us.
175
*
176
* blkg_stat_lock is for serializing blkg stat update
177
*/
178
for_each_possible_cpu(cpu)
179
__blkcg_rstat_flush(blkcg, cpu);
180
181
/* release the blkcg and parent blkg refs this blkg has been holding */
182
css_put(&blkg->blkcg->css);
183
blkg_free(blkg);
184
}
185
186
/*
187
* A group is RCU protected, but having an rcu lock does not mean that one
188
* can access all the fields of blkg and assume these are valid. For
189
* example, don't try to follow throtl_data and request queue links.
190
*
191
* Having a reference to blkg under an rcu allows accesses to only values
192
* local to groups like group stats and group rate limits.
193
*/
194
static void blkg_release(struct percpu_ref *ref)
195
{
196
struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
197
198
call_rcu(&blkg->rcu_head, __blkg_release);
199
}
200
201
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
202
static struct workqueue_struct *blkcg_punt_bio_wq;
203
204
static void blkg_async_bio_workfn(struct work_struct *work)
205
{
206
struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
207
async_bio_work);
208
struct bio_list bios = BIO_EMPTY_LIST;
209
struct bio *bio;
210
struct blk_plug plug;
211
bool need_plug = false;
212
213
/* as long as there are pending bios, @blkg can't go away */
214
spin_lock(&blkg->async_bio_lock);
215
bio_list_merge_init(&bios, &blkg->async_bios);
216
spin_unlock(&blkg->async_bio_lock);
217
218
/* start plug only when bio_list contains at least 2 bios */
219
if (bios.head && bios.head->bi_next) {
220
need_plug = true;
221
blk_start_plug(&plug);
222
}
223
while ((bio = bio_list_pop(&bios)))
224
submit_bio(bio);
225
if (need_plug)
226
blk_finish_plug(&plug);
227
}
228
229
/*
230
* When a shared kthread issues a bio for a cgroup, doing so synchronously can
231
* lead to priority inversions as the kthread can be trapped waiting for that
232
* cgroup. Use this helper instead of submit_bio to punt the actual issuing to
233
* a dedicated per-blkcg work item to avoid such priority inversions.
234
*/
235
void blkcg_punt_bio_submit(struct bio *bio)
236
{
237
struct blkcg_gq *blkg = bio->bi_blkg;
238
239
if (blkg->parent) {
240
spin_lock(&blkg->async_bio_lock);
241
bio_list_add(&blkg->async_bios, bio);
242
spin_unlock(&blkg->async_bio_lock);
243
queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
244
} else {
245
/* never bounce for the root cgroup */
246
submit_bio(bio);
247
}
248
}
249
EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
250
251
static int __init blkcg_punt_bio_init(void)
252
{
253
blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
254
WQ_MEM_RECLAIM | WQ_FREEZABLE |
255
WQ_UNBOUND | WQ_SYSFS, 0);
256
if (!blkcg_punt_bio_wq)
257
return -ENOMEM;
258
return 0;
259
}
260
subsys_initcall(blkcg_punt_bio_init);
261
#endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
262
263
/**
264
* bio_blkcg_css - return the blkcg CSS associated with a bio
265
* @bio: target bio
266
*
267
* This returns the CSS for the blkcg associated with a bio, or %NULL if not
268
* associated. Callers are expected to either handle %NULL or know association
269
* has been done prior to calling this.
270
*/
271
struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
272
{
273
if (!bio || !bio->bi_blkg)
274
return NULL;
275
return &bio->bi_blkg->blkcg->css;
276
}
277
EXPORT_SYMBOL_GPL(bio_blkcg_css);
278
279
/**
280
* blkcg_parent - get the parent of a blkcg
281
* @blkcg: blkcg of interest
282
*
283
* Return the parent blkcg of @blkcg. Can be called anytime.
284
*/
285
static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
286
{
287
return css_to_blkcg(blkcg->css.parent);
288
}
289
290
/**
291
* blkg_alloc - allocate a blkg
292
* @blkcg: block cgroup the new blkg is associated with
293
* @disk: gendisk the new blkg is associated with
294
* @gfp_mask: allocation mask to use
295
*
296
* Allocate a new blkg associating @blkcg and @disk.
297
*/
298
static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
299
gfp_t gfp_mask)
300
{
301
struct blkcg_gq *blkg;
302
int i, cpu;
303
304
/* alloc and init base part */
305
blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
306
if (!blkg)
307
return NULL;
308
if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
309
goto out_free_blkg;
310
blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
311
if (!blkg->iostat_cpu)
312
goto out_exit_refcnt;
313
if (!blk_get_queue(disk->queue))
314
goto out_free_iostat;
315
316
blkg->q = disk->queue;
317
INIT_LIST_HEAD(&blkg->q_node);
318
blkg->blkcg = blkcg;
319
blkg->iostat.blkg = blkg;
320
#ifdef CONFIG_BLK_CGROUP_PUNT_BIO
321
spin_lock_init(&blkg->async_bio_lock);
322
bio_list_init(&blkg->async_bios);
323
INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
324
#endif
325
326
u64_stats_init(&blkg->iostat.sync);
327
for_each_possible_cpu(cpu) {
328
u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
329
per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
330
}
331
332
for (i = 0; i < BLKCG_MAX_POLS; i++) {
333
struct blkcg_policy *pol = blkcg_policy[i];
334
struct blkg_policy_data *pd;
335
336
if (!blkcg_policy_enabled(disk->queue, pol))
337
continue;
338
339
/* alloc per-policy data and attach it to blkg */
340
pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
341
if (!pd)
342
goto out_free_pds;
343
blkg->pd[i] = pd;
344
pd->blkg = blkg;
345
pd->plid = i;
346
pd->online = false;
347
}
348
349
return blkg;
350
351
out_free_pds:
352
while (--i >= 0)
353
if (blkg->pd[i])
354
blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
355
blk_put_queue(disk->queue);
356
out_free_iostat:
357
free_percpu(blkg->iostat_cpu);
358
out_exit_refcnt:
359
percpu_ref_exit(&blkg->refcnt);
360
out_free_blkg:
361
kfree(blkg);
362
return NULL;
363
}
364
365
/*
366
* If @new_blkg is %NULL, this function tries to allocate a new one as
367
* necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
368
*/
369
static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
370
struct blkcg_gq *new_blkg)
371
{
372
struct blkcg_gq *blkg;
373
int i, ret;
374
375
lockdep_assert_held(&disk->queue->queue_lock);
376
377
/* request_queue is dying, do not create/recreate a blkg */
378
if (blk_queue_dying(disk->queue)) {
379
ret = -ENODEV;
380
goto err_free_blkg;
381
}
382
383
/* blkg holds a reference to blkcg */
384
if (!css_tryget_online(&blkcg->css)) {
385
ret = -ENODEV;
386
goto err_free_blkg;
387
}
388
389
/* allocate */
390
if (!new_blkg) {
391
new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT);
392
if (unlikely(!new_blkg)) {
393
ret = -ENOMEM;
394
goto err_put_css;
395
}
396
}
397
blkg = new_blkg;
398
399
/* link parent */
400
if (blkcg_parent(blkcg)) {
401
blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
402
if (WARN_ON_ONCE(!blkg->parent)) {
403
ret = -ENODEV;
404
goto err_put_css;
405
}
406
blkg_get(blkg->parent);
407
}
408
409
/* invoke per-policy init */
410
for (i = 0; i < BLKCG_MAX_POLS; i++) {
411
struct blkcg_policy *pol = blkcg_policy[i];
412
413
if (blkg->pd[i] && pol->pd_init_fn)
414
pol->pd_init_fn(blkg->pd[i]);
415
}
416
417
/* insert */
418
spin_lock(&blkcg->lock);
419
ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
420
if (likely(!ret)) {
421
hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
422
list_add(&blkg->q_node, &disk->queue->blkg_list);
423
424
for (i = 0; i < BLKCG_MAX_POLS; i++) {
425
struct blkcg_policy *pol = blkcg_policy[i];
426
427
if (blkg->pd[i]) {
428
if (pol->pd_online_fn)
429
pol->pd_online_fn(blkg->pd[i]);
430
blkg->pd[i]->online = true;
431
}
432
}
433
}
434
blkg->online = true;
435
spin_unlock(&blkcg->lock);
436
437
if (!ret)
438
return blkg;
439
440
/* @blkg failed fully initialized, use the usual release path */
441
blkg_put(blkg);
442
return ERR_PTR(ret);
443
444
err_put_css:
445
css_put(&blkcg->css);
446
err_free_blkg:
447
if (new_blkg)
448
blkg_free(new_blkg);
449
return ERR_PTR(ret);
450
}
451
452
/**
453
* blkg_lookup_create - lookup blkg, try to create one if not there
454
* @blkcg: blkcg of interest
455
* @disk: gendisk of interest
456
*
457
* Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
458
* create one. blkg creation is performed recursively from blkcg_root such
459
* that all non-root blkg's have access to the parent blkg. This function
460
* should be called under RCU read lock and takes @disk->queue->queue_lock.
461
*
462
* Returns the blkg or the closest blkg if blkg_create() fails as it walks
463
* down from root.
464
*/
465
static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
466
struct gendisk *disk)
467
{
468
struct request_queue *q = disk->queue;
469
struct blkcg_gq *blkg;
470
unsigned long flags;
471
472
WARN_ON_ONCE(!rcu_read_lock_held());
473
474
blkg = blkg_lookup(blkcg, q);
475
if (blkg)
476
return blkg;
477
478
spin_lock_irqsave(&q->queue_lock, flags);
479
blkg = blkg_lookup(blkcg, q);
480
if (blkg) {
481
if (blkcg != &blkcg_root &&
482
blkg != rcu_dereference(blkcg->blkg_hint))
483
rcu_assign_pointer(blkcg->blkg_hint, blkg);
484
goto found;
485
}
486
487
/*
488
* Create blkgs walking down from blkcg_root to @blkcg, so that all
489
* non-root blkgs have access to their parents. Returns the closest
490
* blkg to the intended blkg should blkg_create() fail.
491
*/
492
while (true) {
493
struct blkcg *pos = blkcg;
494
struct blkcg *parent = blkcg_parent(blkcg);
495
struct blkcg_gq *ret_blkg = q->root_blkg;
496
497
while (parent) {
498
blkg = blkg_lookup(parent, q);
499
if (blkg) {
500
/* remember closest blkg */
501
ret_blkg = blkg;
502
break;
503
}
504
pos = parent;
505
parent = blkcg_parent(parent);
506
}
507
508
blkg = blkg_create(pos, disk, NULL);
509
if (IS_ERR(blkg)) {
510
blkg = ret_blkg;
511
break;
512
}
513
if (pos == blkcg)
514
break;
515
}
516
517
found:
518
spin_unlock_irqrestore(&q->queue_lock, flags);
519
return blkg;
520
}
521
522
static void blkg_destroy(struct blkcg_gq *blkg)
523
{
524
struct blkcg *blkcg = blkg->blkcg;
525
int i;
526
527
lockdep_assert_held(&blkg->q->queue_lock);
528
lockdep_assert_held(&blkcg->lock);
529
530
/*
531
* blkg stays on the queue list until blkg_free_workfn(), see details in
532
* blkg_free_workfn(), hence this function can be called from
533
* blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
534
* blkg_free_workfn().
535
*/
536
if (hlist_unhashed(&blkg->blkcg_node))
537
return;
538
539
for (i = 0; i < BLKCG_MAX_POLS; i++) {
540
struct blkcg_policy *pol = blkcg_policy[i];
541
542
if (blkg->pd[i] && blkg->pd[i]->online) {
543
blkg->pd[i]->online = false;
544
if (pol->pd_offline_fn)
545
pol->pd_offline_fn(blkg->pd[i]);
546
}
547
}
548
549
blkg->online = false;
550
551
radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
552
hlist_del_init_rcu(&blkg->blkcg_node);
553
554
/*
555
* Both setting lookup hint to and clearing it from @blkg are done
556
* under queue_lock. If it's not pointing to @blkg now, it never
557
* will. Hint assignment itself can race safely.
558
*/
559
if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
560
rcu_assign_pointer(blkcg->blkg_hint, NULL);
561
562
/*
563
* Put the reference taken at the time of creation so that when all
564
* queues are gone, group can be destroyed.
565
*/
566
percpu_ref_kill(&blkg->refcnt);
567
}
568
569
static void blkg_destroy_all(struct gendisk *disk)
570
{
571
struct request_queue *q = disk->queue;
572
struct blkcg_gq *blkg;
573
int count = BLKG_DESTROY_BATCH_SIZE;
574
int i;
575
576
restart:
577
spin_lock_irq(&q->queue_lock);
578
list_for_each_entry(blkg, &q->blkg_list, q_node) {
579
struct blkcg *blkcg = blkg->blkcg;
580
581
if (hlist_unhashed(&blkg->blkcg_node))
582
continue;
583
584
spin_lock(&blkcg->lock);
585
blkg_destroy(blkg);
586
spin_unlock(&blkcg->lock);
587
588
/*
589
* in order to avoid holding the spin lock for too long, release
590
* it when a batch of blkgs are destroyed.
591
*/
592
if (!(--count)) {
593
count = BLKG_DESTROY_BATCH_SIZE;
594
spin_unlock_irq(&q->queue_lock);
595
cond_resched();
596
goto restart;
597
}
598
}
599
600
/*
601
* Mark policy deactivated since policy offline has been done, and
602
* the free is scheduled, so future blkcg_deactivate_policy() can
603
* be bypassed
604
*/
605
for (i = 0; i < BLKCG_MAX_POLS; i++) {
606
struct blkcg_policy *pol = blkcg_policy[i];
607
608
if (pol)
609
__clear_bit(pol->plid, q->blkcg_pols);
610
}
611
612
q->root_blkg = NULL;
613
spin_unlock_irq(&q->queue_lock);
614
}
615
616
static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
617
{
618
int i;
619
620
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
621
dst->bytes[i] = src->bytes[i];
622
dst->ios[i] = src->ios[i];
623
}
624
}
625
626
static void __blkg_clear_stat(struct blkg_iostat_set *bis)
627
{
628
struct blkg_iostat cur = {0};
629
unsigned long flags;
630
631
flags = u64_stats_update_begin_irqsave(&bis->sync);
632
blkg_iostat_set(&bis->cur, &cur);
633
blkg_iostat_set(&bis->last, &cur);
634
u64_stats_update_end_irqrestore(&bis->sync, flags);
635
}
636
637
static void blkg_clear_stat(struct blkcg_gq *blkg)
638
{
639
int cpu;
640
641
for_each_possible_cpu(cpu) {
642
struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu);
643
644
__blkg_clear_stat(s);
645
}
646
__blkg_clear_stat(&blkg->iostat);
647
}
648
649
static int blkcg_reset_stats(struct cgroup_subsys_state *css,
650
struct cftype *cftype, u64 val)
651
{
652
struct blkcg *blkcg = css_to_blkcg(css);
653
struct blkcg_gq *blkg;
654
int i;
655
656
pr_info_once("blkio.%s is deprecated\n", cftype->name);
657
mutex_lock(&blkcg_pol_mutex);
658
spin_lock_irq(&blkcg->lock);
659
660
/*
661
* Note that stat reset is racy - it doesn't synchronize against
662
* stat updates. This is a debug feature which shouldn't exist
663
* anyway. If you get hit by a race, retry.
664
*/
665
hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
666
blkg_clear_stat(blkg);
667
for (i = 0; i < BLKCG_MAX_POLS; i++) {
668
struct blkcg_policy *pol = blkcg_policy[i];
669
670
if (blkg->pd[i] && pol->pd_reset_stats_fn)
671
pol->pd_reset_stats_fn(blkg->pd[i]);
672
}
673
}
674
675
spin_unlock_irq(&blkcg->lock);
676
mutex_unlock(&blkcg_pol_mutex);
677
return 0;
678
}
679
680
const char *blkg_dev_name(struct blkcg_gq *blkg)
681
{
682
if (!blkg->q->disk)
683
return NULL;
684
return bdi_dev_name(blkg->q->disk->bdi);
685
}
686
687
/**
688
* blkcg_print_blkgs - helper for printing per-blkg data
689
* @sf: seq_file to print to
690
* @blkcg: blkcg of interest
691
* @prfill: fill function to print out a blkg
692
* @pol: policy in question
693
* @data: data to be passed to @prfill
694
* @show_total: to print out sum of prfill return values or not
695
*
696
* This function invokes @prfill on each blkg of @blkcg if pd for the
697
* policy specified by @pol exists. @prfill is invoked with @sf, the
698
* policy data and @data and the matching queue lock held. If @show_total
699
* is %true, the sum of the return values from @prfill is printed with
700
* "Total" label at the end.
701
*
702
* This is to be used to construct print functions for
703
* cftype->read_seq_string method.
704
*/
705
void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
706
u64 (*prfill)(struct seq_file *,
707
struct blkg_policy_data *, int),
708
const struct blkcg_policy *pol, int data,
709
bool show_total)
710
{
711
struct blkcg_gq *blkg;
712
u64 total = 0;
713
714
rcu_read_lock();
715
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
716
spin_lock_irq(&blkg->q->queue_lock);
717
if (blkcg_policy_enabled(blkg->q, pol))
718
total += prfill(sf, blkg->pd[pol->plid], data);
719
spin_unlock_irq(&blkg->q->queue_lock);
720
}
721
rcu_read_unlock();
722
723
if (show_total)
724
seq_printf(sf, "Total %llu\n", (unsigned long long)total);
725
}
726
EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
727
728
/**
729
* __blkg_prfill_u64 - prfill helper for a single u64 value
730
* @sf: seq_file to print to
731
* @pd: policy private data of interest
732
* @v: value to print
733
*
734
* Print @v to @sf for the device associated with @pd.
735
*/
736
u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
737
{
738
const char *dname = blkg_dev_name(pd->blkg);
739
740
if (!dname)
741
return 0;
742
743
seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
744
return v;
745
}
746
EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
747
748
/**
749
* blkg_conf_init - initialize a blkg_conf_ctx
750
* @ctx: blkg_conf_ctx to initialize
751
* @input: input string
752
*
753
* Initialize @ctx which can be used to parse blkg config input string @input.
754
* Once initialized, @ctx can be used with blkg_conf_open_bdev() and
755
* blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
756
*/
757
void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
758
{
759
*ctx = (struct blkg_conf_ctx){ .input = input };
760
}
761
EXPORT_SYMBOL_GPL(blkg_conf_init);
762
763
/**
764
* blkg_conf_open_bdev - parse and open bdev for per-blkg config update
765
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
766
*
767
* Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
768
* @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
769
* set to point past the device node prefix.
770
*
771
* This function may be called multiple times on @ctx and the extra calls become
772
* NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
773
* explicitly if bdev access is needed without resolving the blkcg / policy part
774
* of @ctx->input. Returns -errno on error.
775
*/
776
int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
777
{
778
char *input = ctx->input;
779
unsigned int major, minor;
780
struct block_device *bdev;
781
int key_len;
782
783
if (ctx->bdev)
784
return 0;
785
786
if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
787
return -EINVAL;
788
789
input += key_len;
790
if (!isspace(*input))
791
return -EINVAL;
792
input = skip_spaces(input);
793
794
bdev = blkdev_get_no_open(MKDEV(major, minor), false);
795
if (!bdev)
796
return -ENODEV;
797
if (bdev_is_partition(bdev)) {
798
blkdev_put_no_open(bdev);
799
return -ENODEV;
800
}
801
802
mutex_lock(&bdev->bd_queue->rq_qos_mutex);
803
if (!disk_live(bdev->bd_disk)) {
804
blkdev_put_no_open(bdev);
805
mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
806
return -ENODEV;
807
}
808
809
ctx->body = input;
810
ctx->bdev = bdev;
811
return 0;
812
}
813
/*
814
* Similar to blkg_conf_open_bdev, but additionally freezes the queue,
815
* acquires q->elevator_lock, and ensures the correct locking order
816
* between q->elevator_lock and q->rq_qos_mutex.
817
*
818
* This function returns negative error on failure. On success it returns
819
* memflags which must be saved and later passed to blkg_conf_exit_frozen
820
* for restoring the memalloc scope.
821
*/
822
unsigned long __must_check blkg_conf_open_bdev_frozen(struct blkg_conf_ctx *ctx)
823
{
824
int ret;
825
unsigned long memflags;
826
827
if (ctx->bdev)
828
return -EINVAL;
829
830
ret = blkg_conf_open_bdev(ctx);
831
if (ret < 0)
832
return ret;
833
/*
834
* At this point, we haven’t started protecting anything related to QoS,
835
* so we release q->rq_qos_mutex here, which was first acquired in blkg_
836
* conf_open_bdev. Later, we re-acquire q->rq_qos_mutex after freezing
837
* the queue and acquiring q->elevator_lock to maintain the correct
838
* locking order.
839
*/
840
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
841
842
memflags = blk_mq_freeze_queue(ctx->bdev->bd_queue);
843
mutex_lock(&ctx->bdev->bd_queue->elevator_lock);
844
mutex_lock(&ctx->bdev->bd_queue->rq_qos_mutex);
845
846
return memflags;
847
}
848
849
/**
850
* blkg_conf_prep - parse and prepare for per-blkg config update
851
* @blkcg: target block cgroup
852
* @pol: target policy
853
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
854
*
855
* Parse per-blkg config update from @ctx->input and initialize @ctx
856
* accordingly. On success, @ctx->body points to the part of @ctx->input
857
* following MAJ:MIN, @ctx->bdev points to the target block device and
858
* @ctx->blkg to the blkg being configured.
859
*
860
* blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
861
* function returns with queue lock held and must be followed by
862
* blkg_conf_exit().
863
*/
864
int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
865
struct blkg_conf_ctx *ctx)
866
__acquires(&bdev->bd_queue->queue_lock)
867
{
868
struct gendisk *disk;
869
struct request_queue *q;
870
struct blkcg_gq *blkg;
871
int ret;
872
873
ret = blkg_conf_open_bdev(ctx);
874
if (ret)
875
return ret;
876
877
disk = ctx->bdev->bd_disk;
878
q = disk->queue;
879
880
/* Prevent concurrent with blkcg_deactivate_policy() */
881
mutex_lock(&q->blkcg_mutex);
882
spin_lock_irq(&q->queue_lock);
883
884
if (!blkcg_policy_enabled(q, pol)) {
885
ret = -EOPNOTSUPP;
886
goto fail_unlock;
887
}
888
889
blkg = blkg_lookup(blkcg, q);
890
if (blkg)
891
goto success;
892
893
/*
894
* Create blkgs walking down from blkcg_root to @blkcg, so that all
895
* non-root blkgs have access to their parents.
896
*/
897
while (true) {
898
struct blkcg *pos = blkcg;
899
struct blkcg *parent;
900
struct blkcg_gq *new_blkg;
901
902
parent = blkcg_parent(blkcg);
903
while (parent && !blkg_lookup(parent, q)) {
904
pos = parent;
905
parent = blkcg_parent(parent);
906
}
907
908
/* Drop locks to do new blkg allocation with GFP_KERNEL. */
909
spin_unlock_irq(&q->queue_lock);
910
911
new_blkg = blkg_alloc(pos, disk, GFP_NOIO);
912
if (unlikely(!new_blkg)) {
913
ret = -ENOMEM;
914
goto fail_exit;
915
}
916
917
if (radix_tree_preload(GFP_KERNEL)) {
918
blkg_free(new_blkg);
919
ret = -ENOMEM;
920
goto fail_exit;
921
}
922
923
spin_lock_irq(&q->queue_lock);
924
925
if (!blkcg_policy_enabled(q, pol)) {
926
blkg_free(new_blkg);
927
ret = -EOPNOTSUPP;
928
goto fail_preloaded;
929
}
930
931
blkg = blkg_lookup(pos, q);
932
if (blkg) {
933
blkg_free(new_blkg);
934
} else {
935
blkg = blkg_create(pos, disk, new_blkg);
936
if (IS_ERR(blkg)) {
937
ret = PTR_ERR(blkg);
938
goto fail_preloaded;
939
}
940
}
941
942
radix_tree_preload_end();
943
944
if (pos == blkcg)
945
goto success;
946
}
947
success:
948
mutex_unlock(&q->blkcg_mutex);
949
ctx->blkg = blkg;
950
return 0;
951
952
fail_preloaded:
953
radix_tree_preload_end();
954
fail_unlock:
955
spin_unlock_irq(&q->queue_lock);
956
fail_exit:
957
mutex_unlock(&q->blkcg_mutex);
958
/*
959
* If queue was bypassing, we should retry. Do so after a
960
* short msleep(). It isn't strictly necessary but queue
961
* can be bypassing for some time and it's always nice to
962
* avoid busy looping.
963
*/
964
if (ret == -EBUSY) {
965
msleep(10);
966
ret = restart_syscall();
967
}
968
return ret;
969
}
970
EXPORT_SYMBOL_GPL(blkg_conf_prep);
971
972
/**
973
* blkg_conf_exit - clean up per-blkg config update
974
* @ctx: blkg_conf_ctx initialized with blkg_conf_init()
975
*
976
* Clean up after per-blkg config update. This function must be called on all
977
* blkg_conf_ctx's initialized with blkg_conf_init().
978
*/
979
void blkg_conf_exit(struct blkg_conf_ctx *ctx)
980
__releases(&ctx->bdev->bd_queue->queue_lock)
981
__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
982
{
983
if (ctx->blkg) {
984
spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
985
ctx->blkg = NULL;
986
}
987
988
if (ctx->bdev) {
989
mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
990
blkdev_put_no_open(ctx->bdev);
991
ctx->body = NULL;
992
ctx->bdev = NULL;
993
}
994
}
995
EXPORT_SYMBOL_GPL(blkg_conf_exit);
996
997
/*
998
* Similar to blkg_conf_exit, but also unfreezes the queue and releases
999
* q->elevator_lock. Should be used when blkg_conf_open_bdev_frozen
1000
* is used to open the bdev.
1001
*/
1002
void blkg_conf_exit_frozen(struct blkg_conf_ctx *ctx, unsigned long memflags)
1003
{
1004
if (ctx->bdev) {
1005
struct request_queue *q = ctx->bdev->bd_queue;
1006
1007
blkg_conf_exit(ctx);
1008
mutex_unlock(&q->elevator_lock);
1009
blk_mq_unfreeze_queue(q, memflags);
1010
}
1011
}
1012
1013
static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
1014
{
1015
int i;
1016
1017
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1018
dst->bytes[i] += src->bytes[i];
1019
dst->ios[i] += src->ios[i];
1020
}
1021
}
1022
1023
static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
1024
{
1025
int i;
1026
1027
for (i = 0; i < BLKG_IOSTAT_NR; i++) {
1028
dst->bytes[i] -= src->bytes[i];
1029
dst->ios[i] -= src->ios[i];
1030
}
1031
}
1032
1033
static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
1034
struct blkg_iostat *last)
1035
{
1036
struct blkg_iostat delta;
1037
unsigned long flags;
1038
1039
/* propagate percpu delta to global */
1040
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1041
blkg_iostat_set(&delta, cur);
1042
blkg_iostat_sub(&delta, last);
1043
blkg_iostat_add(&blkg->iostat.cur, &delta);
1044
blkg_iostat_add(last, &delta);
1045
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1046
}
1047
1048
static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
1049
{
1050
struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1051
struct llist_node *lnode;
1052
struct blkg_iostat_set *bisc, *next_bisc;
1053
unsigned long flags;
1054
1055
rcu_read_lock();
1056
1057
lnode = llist_del_all(lhead);
1058
if (!lnode)
1059
goto out;
1060
1061
/*
1062
* For covering concurrent parent blkg update from blkg_release().
1063
*
1064
* When flushing from cgroup, the subsystem rstat lock is always held,
1065
* so this lock won't cause contention most of time.
1066
*/
1067
raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1068
1069
/*
1070
* Iterate only the iostat_cpu's queued in the lockless list.
1071
*/
1072
llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1073
struct blkcg_gq *blkg = bisc->blkg;
1074
struct blkcg_gq *parent = blkg->parent;
1075
struct blkg_iostat cur;
1076
unsigned int seq;
1077
1078
/*
1079
* Order assignment of `next_bisc` from `bisc->lnode.next` in
1080
* llist_for_each_entry_safe and clearing `bisc->lqueued` for
1081
* avoiding to assign `next_bisc` with new next pointer added
1082
* in blk_cgroup_bio_start() in case of re-ordering.
1083
*
1084
* The pair barrier is implied in llist_add() in blk_cgroup_bio_start().
1085
*/
1086
smp_mb();
1087
1088
WRITE_ONCE(bisc->lqueued, false);
1089
if (bisc == &blkg->iostat)
1090
goto propagate_up; /* propagate up to parent only */
1091
1092
/* fetch the current per-cpu values */
1093
do {
1094
seq = u64_stats_fetch_begin(&bisc->sync);
1095
blkg_iostat_set(&cur, &bisc->cur);
1096
} while (u64_stats_fetch_retry(&bisc->sync, seq));
1097
1098
blkcg_iostat_update(blkg, &cur, &bisc->last);
1099
1100
propagate_up:
1101
/* propagate global delta to parent (unless that's root) */
1102
if (parent && parent->parent) {
1103
blkcg_iostat_update(parent, &blkg->iostat.cur,
1104
&blkg->iostat.last);
1105
/*
1106
* Queue parent->iostat to its blkcg's lockless
1107
* list to propagate up to the grandparent if the
1108
* iostat hasn't been queued yet.
1109
*/
1110
if (!parent->iostat.lqueued) {
1111
struct llist_head *plhead;
1112
1113
plhead = per_cpu_ptr(parent->blkcg->lhead, cpu);
1114
llist_add(&parent->iostat.lnode, plhead);
1115
parent->iostat.lqueued = true;
1116
}
1117
}
1118
}
1119
raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1120
out:
1121
rcu_read_unlock();
1122
}
1123
1124
static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1125
{
1126
/* Root-level stats are sourced from system-wide IO stats */
1127
if (cgroup_parent(css->cgroup))
1128
__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1129
}
1130
1131
/*
1132
* We source root cgroup stats from the system-wide stats to avoid
1133
* tracking the same information twice and incurring overhead when no
1134
* cgroups are defined. For that reason, css_rstat_flush in
1135
* blkcg_print_stat does not actually fill out the iostat in the root
1136
* cgroup's blkcg_gq.
1137
*
1138
* However, we would like to re-use the printing code between the root and
1139
* non-root cgroups to the extent possible. For that reason, we simulate
1140
* flushing the root cgroup's stats by explicitly filling in the iostat
1141
* with disk level statistics.
1142
*/
1143
static void blkcg_fill_root_iostats(void)
1144
{
1145
struct class_dev_iter iter;
1146
struct device *dev;
1147
1148
class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1149
while ((dev = class_dev_iter_next(&iter))) {
1150
struct block_device *bdev = dev_to_bdev(dev);
1151
struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1152
struct blkg_iostat tmp;
1153
int cpu;
1154
unsigned long flags;
1155
1156
memset(&tmp, 0, sizeof(tmp));
1157
for_each_possible_cpu(cpu) {
1158
struct disk_stats *cpu_dkstats;
1159
1160
cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1161
tmp.ios[BLKG_IOSTAT_READ] +=
1162
cpu_dkstats->ios[STAT_READ];
1163
tmp.ios[BLKG_IOSTAT_WRITE] +=
1164
cpu_dkstats->ios[STAT_WRITE];
1165
tmp.ios[BLKG_IOSTAT_DISCARD] +=
1166
cpu_dkstats->ios[STAT_DISCARD];
1167
// convert sectors to bytes
1168
tmp.bytes[BLKG_IOSTAT_READ] +=
1169
cpu_dkstats->sectors[STAT_READ] << 9;
1170
tmp.bytes[BLKG_IOSTAT_WRITE] +=
1171
cpu_dkstats->sectors[STAT_WRITE] << 9;
1172
tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1173
cpu_dkstats->sectors[STAT_DISCARD] << 9;
1174
}
1175
1176
flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1177
blkg_iostat_set(&blkg->iostat.cur, &tmp);
1178
u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1179
}
1180
class_dev_iter_exit(&iter);
1181
}
1182
1183
static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1184
{
1185
struct blkg_iostat_set *bis = &blkg->iostat;
1186
u64 rbytes, wbytes, rios, wios, dbytes, dios;
1187
const char *dname;
1188
unsigned seq;
1189
int i;
1190
1191
if (!blkg->online)
1192
return;
1193
1194
dname = blkg_dev_name(blkg);
1195
if (!dname)
1196
return;
1197
1198
seq_printf(s, "%s ", dname);
1199
1200
do {
1201
seq = u64_stats_fetch_begin(&bis->sync);
1202
1203
rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1204
wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1205
dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1206
rios = bis->cur.ios[BLKG_IOSTAT_READ];
1207
wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1208
dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1209
} while (u64_stats_fetch_retry(&bis->sync, seq));
1210
1211
if (rbytes || wbytes || rios || wios) {
1212
seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1213
rbytes, wbytes, rios, wios,
1214
dbytes, dios);
1215
}
1216
1217
if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1218
seq_printf(s, " use_delay=%d delay_nsec=%llu",
1219
atomic_read(&blkg->use_delay),
1220
atomic64_read(&blkg->delay_nsec));
1221
}
1222
1223
for (i = 0; i < BLKCG_MAX_POLS; i++) {
1224
struct blkcg_policy *pol = blkcg_policy[i];
1225
1226
if (!blkg->pd[i] || !pol->pd_stat_fn)
1227
continue;
1228
1229
pol->pd_stat_fn(blkg->pd[i], s);
1230
}
1231
1232
seq_puts(s, "\n");
1233
}
1234
1235
static int blkcg_print_stat(struct seq_file *sf, void *v)
1236
{
1237
struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1238
struct blkcg_gq *blkg;
1239
1240
if (!seq_css(sf)->parent)
1241
blkcg_fill_root_iostats();
1242
else
1243
css_rstat_flush(&blkcg->css);
1244
1245
rcu_read_lock();
1246
hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1247
spin_lock_irq(&blkg->q->queue_lock);
1248
blkcg_print_one_stat(blkg, sf);
1249
spin_unlock_irq(&blkg->q->queue_lock);
1250
}
1251
rcu_read_unlock();
1252
return 0;
1253
}
1254
1255
static struct cftype blkcg_files[] = {
1256
{
1257
.name = "stat",
1258
.seq_show = blkcg_print_stat,
1259
},
1260
{ } /* terminate */
1261
};
1262
1263
static struct cftype blkcg_legacy_files[] = {
1264
{
1265
.name = "reset_stats",
1266
.write_u64 = blkcg_reset_stats,
1267
},
1268
{ } /* terminate */
1269
};
1270
1271
#ifdef CONFIG_CGROUP_WRITEBACK
1272
struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1273
{
1274
return &css_to_blkcg(css)->cgwb_list;
1275
}
1276
#endif
1277
1278
/*
1279
* blkcg destruction is a three-stage process.
1280
*
1281
* 1. Destruction starts. The blkcg_css_offline() callback is invoked
1282
* which offlines writeback. Here we tie the next stage of blkg destruction
1283
* to the completion of writeback associated with the blkcg. This lets us
1284
* avoid punting potentially large amounts of outstanding writeback to root
1285
* while maintaining any ongoing policies. The next stage is triggered when
1286
* the nr_cgwbs count goes to zero.
1287
*
1288
* 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1289
* and handles the destruction of blkgs. Here the css reference held by
1290
* the blkg is put back eventually allowing blkcg_css_free() to be called.
1291
* This work may occur in cgwb_release_workfn() on the cgwb_release
1292
* workqueue. Any submitted ios that fail to get the blkg ref will be
1293
* punted to the root_blkg.
1294
*
1295
* 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1296
* This finally frees the blkcg.
1297
*/
1298
1299
/**
1300
* blkcg_destroy_blkgs - responsible for shooting down blkgs
1301
* @blkcg: blkcg of interest
1302
*
1303
* blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1304
* is nested inside q lock, this function performs reverse double lock dancing.
1305
* Destroying the blkgs releases the reference held on the blkcg's css allowing
1306
* blkcg_css_free to eventually be called.
1307
*
1308
* This is the blkcg counterpart of ioc_release_fn().
1309
*/
1310
static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1311
{
1312
might_sleep();
1313
1314
spin_lock_irq(&blkcg->lock);
1315
1316
while (!hlist_empty(&blkcg->blkg_list)) {
1317
struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1318
struct blkcg_gq, blkcg_node);
1319
struct request_queue *q = blkg->q;
1320
1321
if (need_resched() || !spin_trylock(&q->queue_lock)) {
1322
/*
1323
* Given that the system can accumulate a huge number
1324
* of blkgs in pathological cases, check to see if we
1325
* need to rescheduling to avoid softlockup.
1326
*/
1327
spin_unlock_irq(&blkcg->lock);
1328
cond_resched();
1329
spin_lock_irq(&blkcg->lock);
1330
continue;
1331
}
1332
1333
blkg_destroy(blkg);
1334
spin_unlock(&q->queue_lock);
1335
}
1336
1337
spin_unlock_irq(&blkcg->lock);
1338
}
1339
1340
/**
1341
* blkcg_pin_online - pin online state
1342
* @blkcg_css: blkcg of interest
1343
*
1344
* While pinned, a blkcg is kept online. This is primarily used to
1345
* impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1346
* while an associated cgwb is still active.
1347
*/
1348
void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1349
{
1350
refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1351
}
1352
1353
/**
1354
* blkcg_unpin_online - unpin online state
1355
* @blkcg_css: blkcg of interest
1356
*
1357
* This is primarily used to impedance-match blkg and cgwb lifetimes so
1358
* that blkg doesn't go offline while an associated cgwb is still active.
1359
* When this count goes to zero, all active cgwbs have finished so the
1360
* blkcg can continue destruction by calling blkcg_destroy_blkgs().
1361
*/
1362
void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1363
{
1364
struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1365
1366
do {
1367
struct blkcg *parent;
1368
1369
if (!refcount_dec_and_test(&blkcg->online_pin))
1370
break;
1371
1372
parent = blkcg_parent(blkcg);
1373
blkcg_destroy_blkgs(blkcg);
1374
blkcg = parent;
1375
} while (blkcg);
1376
}
1377
1378
/**
1379
* blkcg_css_offline - cgroup css_offline callback
1380
* @css: css of interest
1381
*
1382
* This function is called when @css is about to go away. Here the cgwbs are
1383
* offlined first and only once writeback associated with the blkcg has
1384
* finished do we start step 2 (see above).
1385
*/
1386
static void blkcg_css_offline(struct cgroup_subsys_state *css)
1387
{
1388
/* this prevents anyone from attaching or migrating to this blkcg */
1389
wb_blkcg_offline(css);
1390
1391
/* put the base online pin allowing step 2 to be triggered */
1392
blkcg_unpin_online(css);
1393
}
1394
1395
static void blkcg_css_free(struct cgroup_subsys_state *css)
1396
{
1397
struct blkcg *blkcg = css_to_blkcg(css);
1398
int i;
1399
1400
mutex_lock(&blkcg_pol_mutex);
1401
1402
list_del(&blkcg->all_blkcgs_node);
1403
1404
for (i = 0; i < BLKCG_MAX_POLS; i++)
1405
if (blkcg->cpd[i])
1406
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1407
1408
mutex_unlock(&blkcg_pol_mutex);
1409
1410
free_percpu(blkcg->lhead);
1411
kfree(blkcg);
1412
}
1413
1414
static struct cgroup_subsys_state *
1415
blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1416
{
1417
struct blkcg *blkcg;
1418
int i;
1419
1420
mutex_lock(&blkcg_pol_mutex);
1421
1422
if (!parent_css) {
1423
blkcg = &blkcg_root;
1424
} else {
1425
blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1426
if (!blkcg)
1427
goto unlock;
1428
}
1429
1430
if (init_blkcg_llists(blkcg))
1431
goto free_blkcg;
1432
1433
for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1434
struct blkcg_policy *pol = blkcg_policy[i];
1435
struct blkcg_policy_data *cpd;
1436
1437
/*
1438
* If the policy hasn't been attached yet, wait for it
1439
* to be attached before doing anything else. Otherwise,
1440
* check if the policy requires any specific per-cgroup
1441
* data: if it does, allocate and initialize it.
1442
*/
1443
if (!pol || !pol->cpd_alloc_fn)
1444
continue;
1445
1446
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1447
if (!cpd)
1448
goto free_pd_blkcg;
1449
1450
blkcg->cpd[i] = cpd;
1451
cpd->blkcg = blkcg;
1452
cpd->plid = i;
1453
}
1454
1455
spin_lock_init(&blkcg->lock);
1456
refcount_set(&blkcg->online_pin, 1);
1457
INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT);
1458
INIT_HLIST_HEAD(&blkcg->blkg_list);
1459
#ifdef CONFIG_CGROUP_WRITEBACK
1460
INIT_LIST_HEAD(&blkcg->cgwb_list);
1461
#endif
1462
list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1463
1464
mutex_unlock(&blkcg_pol_mutex);
1465
return &blkcg->css;
1466
1467
free_pd_blkcg:
1468
for (i--; i >= 0; i--)
1469
if (blkcg->cpd[i])
1470
blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1471
free_percpu(blkcg->lhead);
1472
free_blkcg:
1473
if (blkcg != &blkcg_root)
1474
kfree(blkcg);
1475
unlock:
1476
mutex_unlock(&blkcg_pol_mutex);
1477
return ERR_PTR(-ENOMEM);
1478
}
1479
1480
static int blkcg_css_online(struct cgroup_subsys_state *css)
1481
{
1482
struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1483
1484
/*
1485
* blkcg_pin_online() is used to delay blkcg offline so that blkgs
1486
* don't go offline while cgwbs are still active on them. Pin the
1487
* parent so that offline always happens towards the root.
1488
*/
1489
if (parent)
1490
blkcg_pin_online(&parent->css);
1491
return 0;
1492
}
1493
1494
void blkg_init_queue(struct request_queue *q)
1495
{
1496
INIT_LIST_HEAD(&q->blkg_list);
1497
mutex_init(&q->blkcg_mutex);
1498
}
1499
1500
int blkcg_init_disk(struct gendisk *disk)
1501
{
1502
struct request_queue *q = disk->queue;
1503
struct blkcg_gq *new_blkg, *blkg;
1504
bool preloaded;
1505
1506
new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1507
if (!new_blkg)
1508
return -ENOMEM;
1509
1510
preloaded = !radix_tree_preload(GFP_KERNEL);
1511
1512
/* Make sure the root blkg exists. */
1513
/* spin_lock_irq can serve as RCU read-side critical section. */
1514
spin_lock_irq(&q->queue_lock);
1515
blkg = blkg_create(&blkcg_root, disk, new_blkg);
1516
if (IS_ERR(blkg))
1517
goto err_unlock;
1518
q->root_blkg = blkg;
1519
spin_unlock_irq(&q->queue_lock);
1520
1521
if (preloaded)
1522
radix_tree_preload_end();
1523
1524
return 0;
1525
1526
err_unlock:
1527
spin_unlock_irq(&q->queue_lock);
1528
if (preloaded)
1529
radix_tree_preload_end();
1530
return PTR_ERR(blkg);
1531
}
1532
1533
void blkcg_exit_disk(struct gendisk *disk)
1534
{
1535
blkg_destroy_all(disk);
1536
blk_throtl_exit(disk);
1537
}
1538
1539
static void blkcg_exit(struct task_struct *tsk)
1540
{
1541
if (tsk->throttle_disk)
1542
put_disk(tsk->throttle_disk);
1543
tsk->throttle_disk = NULL;
1544
}
1545
1546
struct cgroup_subsys io_cgrp_subsys = {
1547
.css_alloc = blkcg_css_alloc,
1548
.css_online = blkcg_css_online,
1549
.css_offline = blkcg_css_offline,
1550
.css_free = blkcg_css_free,
1551
.css_rstat_flush = blkcg_rstat_flush,
1552
.dfl_cftypes = blkcg_files,
1553
.legacy_cftypes = blkcg_legacy_files,
1554
.legacy_name = "blkio",
1555
.exit = blkcg_exit,
1556
#ifdef CONFIG_MEMCG
1557
/*
1558
* This ensures that, if available, memcg is automatically enabled
1559
* together on the default hierarchy so that the owner cgroup can
1560
* be retrieved from writeback pages.
1561
*/
1562
.depends_on = 1 << memory_cgrp_id,
1563
#endif
1564
};
1565
EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1566
1567
/**
1568
* blkcg_activate_policy - activate a blkcg policy on a gendisk
1569
* @disk: gendisk of interest
1570
* @pol: blkcg policy to activate
1571
*
1572
* Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1573
* bypass mode to populate its blkgs with policy_data for @pol.
1574
*
1575
* Activation happens with @disk bypassed, so nobody would be accessing blkgs
1576
* from IO path. Update of each blkg is protected by both queue and blkcg
1577
* locks so that holding either lock and testing blkcg_policy_enabled() is
1578
* always enough for dereferencing policy data.
1579
*
1580
* The caller is responsible for synchronizing [de]activations and policy
1581
* [un]registerations. Returns 0 on success, -errno on failure.
1582
*/
1583
int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1584
{
1585
struct request_queue *q = disk->queue;
1586
struct blkg_policy_data *pd_prealloc = NULL;
1587
struct blkcg_gq *blkg, *pinned_blkg = NULL;
1588
unsigned int memflags;
1589
int ret;
1590
1591
if (blkcg_policy_enabled(q, pol))
1592
return 0;
1593
1594
/*
1595
* Policy is allowed to be registered without pd_alloc_fn/pd_free_fn,
1596
* for example, ioprio. Such policy will work on blkcg level, not disk
1597
* level, and don't need to be activated.
1598
*/
1599
if (WARN_ON_ONCE(!pol->pd_alloc_fn || !pol->pd_free_fn))
1600
return -EINVAL;
1601
1602
if (queue_is_mq(q))
1603
memflags = blk_mq_freeze_queue(q);
1604
retry:
1605
spin_lock_irq(&q->queue_lock);
1606
1607
/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1608
list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1609
struct blkg_policy_data *pd;
1610
1611
if (blkg->pd[pol->plid])
1612
continue;
1613
1614
/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1615
if (blkg == pinned_blkg) {
1616
pd = pd_prealloc;
1617
pd_prealloc = NULL;
1618
} else {
1619
pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1620
GFP_NOWAIT);
1621
}
1622
1623
if (!pd) {
1624
/*
1625
* GFP_NOWAIT failed. Free the existing one and
1626
* prealloc for @blkg w/ GFP_KERNEL.
1627
*/
1628
if (pinned_blkg)
1629
blkg_put(pinned_blkg);
1630
blkg_get(blkg);
1631
pinned_blkg = blkg;
1632
1633
spin_unlock_irq(&q->queue_lock);
1634
1635
if (pd_prealloc)
1636
pol->pd_free_fn(pd_prealloc);
1637
pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1638
GFP_KERNEL);
1639
if (pd_prealloc)
1640
goto retry;
1641
else
1642
goto enomem;
1643
}
1644
1645
spin_lock(&blkg->blkcg->lock);
1646
1647
pd->blkg = blkg;
1648
pd->plid = pol->plid;
1649
blkg->pd[pol->plid] = pd;
1650
1651
if (pol->pd_init_fn)
1652
pol->pd_init_fn(pd);
1653
1654
if (pol->pd_online_fn)
1655
pol->pd_online_fn(pd);
1656
pd->online = true;
1657
1658
spin_unlock(&blkg->blkcg->lock);
1659
}
1660
1661
__set_bit(pol->plid, q->blkcg_pols);
1662
ret = 0;
1663
1664
spin_unlock_irq(&q->queue_lock);
1665
out:
1666
if (queue_is_mq(q))
1667
blk_mq_unfreeze_queue(q, memflags);
1668
if (pinned_blkg)
1669
blkg_put(pinned_blkg);
1670
if (pd_prealloc)
1671
pol->pd_free_fn(pd_prealloc);
1672
return ret;
1673
1674
enomem:
1675
/* alloc failed, take down everything */
1676
spin_lock_irq(&q->queue_lock);
1677
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1678
struct blkcg *blkcg = blkg->blkcg;
1679
struct blkg_policy_data *pd;
1680
1681
spin_lock(&blkcg->lock);
1682
pd = blkg->pd[pol->plid];
1683
if (pd) {
1684
if (pd->online && pol->pd_offline_fn)
1685
pol->pd_offline_fn(pd);
1686
pd->online = false;
1687
pol->pd_free_fn(pd);
1688
blkg->pd[pol->plid] = NULL;
1689
}
1690
spin_unlock(&blkcg->lock);
1691
}
1692
spin_unlock_irq(&q->queue_lock);
1693
ret = -ENOMEM;
1694
goto out;
1695
}
1696
EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1697
1698
/**
1699
* blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1700
* @disk: gendisk of interest
1701
* @pol: blkcg policy to deactivate
1702
*
1703
* Deactivate @pol on @disk. Follows the same synchronization rules as
1704
* blkcg_activate_policy().
1705
*/
1706
void blkcg_deactivate_policy(struct gendisk *disk,
1707
const struct blkcg_policy *pol)
1708
{
1709
struct request_queue *q = disk->queue;
1710
struct blkcg_gq *blkg;
1711
unsigned int memflags;
1712
1713
if (!blkcg_policy_enabled(q, pol))
1714
return;
1715
1716
if (queue_is_mq(q))
1717
memflags = blk_mq_freeze_queue(q);
1718
1719
mutex_lock(&q->blkcg_mutex);
1720
spin_lock_irq(&q->queue_lock);
1721
1722
__clear_bit(pol->plid, q->blkcg_pols);
1723
1724
list_for_each_entry(blkg, &q->blkg_list, q_node) {
1725
struct blkcg *blkcg = blkg->blkcg;
1726
1727
spin_lock(&blkcg->lock);
1728
if (blkg->pd[pol->plid]) {
1729
if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1730
pol->pd_offline_fn(blkg->pd[pol->plid]);
1731
pol->pd_free_fn(blkg->pd[pol->plid]);
1732
blkg->pd[pol->plid] = NULL;
1733
}
1734
spin_unlock(&blkcg->lock);
1735
}
1736
1737
spin_unlock_irq(&q->queue_lock);
1738
mutex_unlock(&q->blkcg_mutex);
1739
1740
if (queue_is_mq(q))
1741
blk_mq_unfreeze_queue(q, memflags);
1742
}
1743
EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1744
1745
static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1746
{
1747
struct blkcg *blkcg;
1748
1749
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1750
if (blkcg->cpd[pol->plid]) {
1751
pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1752
blkcg->cpd[pol->plid] = NULL;
1753
}
1754
}
1755
}
1756
1757
/**
1758
* blkcg_policy_register - register a blkcg policy
1759
* @pol: blkcg policy to register
1760
*
1761
* Register @pol with blkcg core. Might sleep and @pol may be modified on
1762
* successful registration. Returns 0 on success and -errno on failure.
1763
*/
1764
int blkcg_policy_register(struct blkcg_policy *pol)
1765
{
1766
struct blkcg *blkcg;
1767
int i, ret;
1768
1769
/*
1770
* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs, and policy
1771
* without pd_alloc_fn/pd_free_fn can't be activated.
1772
*/
1773
if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1774
(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1775
return -EINVAL;
1776
1777
mutex_lock(&blkcg_pol_register_mutex);
1778
mutex_lock(&blkcg_pol_mutex);
1779
1780
/* find an empty slot */
1781
for (i = 0; i < BLKCG_MAX_POLS; i++)
1782
if (!blkcg_policy[i])
1783
break;
1784
if (i >= BLKCG_MAX_POLS) {
1785
pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1786
ret = -ENOSPC;
1787
goto err_unlock;
1788
}
1789
1790
/* register @pol */
1791
pol->plid = i;
1792
blkcg_policy[pol->plid] = pol;
1793
1794
/* allocate and install cpd's */
1795
if (pol->cpd_alloc_fn) {
1796
list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1797
struct blkcg_policy_data *cpd;
1798
1799
cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1800
if (!cpd) {
1801
ret = -ENOMEM;
1802
goto err_free_cpds;
1803
}
1804
1805
blkcg->cpd[pol->plid] = cpd;
1806
cpd->blkcg = blkcg;
1807
cpd->plid = pol->plid;
1808
}
1809
}
1810
1811
mutex_unlock(&blkcg_pol_mutex);
1812
1813
/* everything is in place, add intf files for the new policy */
1814
if (pol->dfl_cftypes == pol->legacy_cftypes) {
1815
WARN_ON(cgroup_add_cftypes(&io_cgrp_subsys,
1816
pol->dfl_cftypes));
1817
} else {
1818
WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1819
pol->dfl_cftypes));
1820
WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1821
pol->legacy_cftypes));
1822
}
1823
mutex_unlock(&blkcg_pol_register_mutex);
1824
return 0;
1825
1826
err_free_cpds:
1827
if (pol->cpd_free_fn)
1828
blkcg_free_all_cpd(pol);
1829
1830
blkcg_policy[pol->plid] = NULL;
1831
err_unlock:
1832
mutex_unlock(&blkcg_pol_mutex);
1833
mutex_unlock(&blkcg_pol_register_mutex);
1834
return ret;
1835
}
1836
EXPORT_SYMBOL_GPL(blkcg_policy_register);
1837
1838
/**
1839
* blkcg_policy_unregister - unregister a blkcg policy
1840
* @pol: blkcg policy to unregister
1841
*
1842
* Undo blkcg_policy_register(@pol). Might sleep.
1843
*/
1844
void blkcg_policy_unregister(struct blkcg_policy *pol)
1845
{
1846
mutex_lock(&blkcg_pol_register_mutex);
1847
1848
if (WARN_ON(blkcg_policy[pol->plid] != pol))
1849
goto out_unlock;
1850
1851
/* kill the intf files first */
1852
if (pol->dfl_cftypes)
1853
cgroup_rm_cftypes(pol->dfl_cftypes);
1854
if (pol->legacy_cftypes)
1855
cgroup_rm_cftypes(pol->legacy_cftypes);
1856
1857
/* remove cpds and unregister */
1858
mutex_lock(&blkcg_pol_mutex);
1859
1860
if (pol->cpd_free_fn)
1861
blkcg_free_all_cpd(pol);
1862
1863
blkcg_policy[pol->plid] = NULL;
1864
1865
mutex_unlock(&blkcg_pol_mutex);
1866
out_unlock:
1867
mutex_unlock(&blkcg_pol_register_mutex);
1868
}
1869
EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1870
1871
/*
1872
* Scale the accumulated delay based on how long it has been since we updated
1873
* the delay. We only call this when we are adding delay, in case it's been a
1874
* while since we added delay, and when we are checking to see if we need to
1875
* delay a task, to account for any delays that may have occurred.
1876
*/
1877
static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1878
{
1879
u64 old = atomic64_read(&blkg->delay_start);
1880
1881
/* negative use_delay means no scaling, see blkcg_set_delay() */
1882
if (atomic_read(&blkg->use_delay) < 0)
1883
return;
1884
1885
/*
1886
* We only want to scale down every second. The idea here is that we
1887
* want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1888
* time window. We only want to throttle tasks for recent delay that
1889
* has occurred, in 1 second time windows since that's the maximum
1890
* things can be throttled. We save the current delay window in
1891
* blkg->last_delay so we know what amount is still left to be charged
1892
* to the blkg from this point onward. blkg->last_use keeps track of
1893
* the use_delay counter. The idea is if we're unthrottling the blkg we
1894
* are ok with whatever is happening now, and we can take away more of
1895
* the accumulated delay as we've already throttled enough that
1896
* everybody is happy with their IO latencies.
1897
*/
1898
if (time_before64(old + NSEC_PER_SEC, now) &&
1899
atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1900
u64 cur = atomic64_read(&blkg->delay_nsec);
1901
u64 sub = min_t(u64, blkg->last_delay, now - old);
1902
int cur_use = atomic_read(&blkg->use_delay);
1903
1904
/*
1905
* We've been unthrottled, subtract a larger chunk of our
1906
* accumulated delay.
1907
*/
1908
if (cur_use < blkg->last_use)
1909
sub = max_t(u64, sub, blkg->last_delay >> 1);
1910
1911
/*
1912
* This shouldn't happen, but handle it anyway. Our delay_nsec
1913
* should only ever be growing except here where we subtract out
1914
* min(last_delay, 1 second), but lord knows bugs happen and I'd
1915
* rather not end up with negative numbers.
1916
*/
1917
if (unlikely(cur < sub)) {
1918
atomic64_set(&blkg->delay_nsec, 0);
1919
blkg->last_delay = 0;
1920
} else {
1921
atomic64_sub(sub, &blkg->delay_nsec);
1922
blkg->last_delay = cur - sub;
1923
}
1924
blkg->last_use = cur_use;
1925
}
1926
}
1927
1928
/*
1929
* This is called when we want to actually walk up the hierarchy and check to
1930
* see if we need to throttle, and then actually throttle if there is some
1931
* accumulated delay. This should only be called upon return to user space so
1932
* we're not holding some lock that would induce a priority inversion.
1933
*/
1934
static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1935
{
1936
unsigned long pflags;
1937
bool clamp;
1938
u64 now = blk_time_get_ns();
1939
u64 exp;
1940
u64 delay_nsec = 0;
1941
int tok;
1942
1943
while (blkg->parent) {
1944
int use_delay = atomic_read(&blkg->use_delay);
1945
1946
if (use_delay) {
1947
u64 this_delay;
1948
1949
blkcg_scale_delay(blkg, now);
1950
this_delay = atomic64_read(&blkg->delay_nsec);
1951
if (this_delay > delay_nsec) {
1952
delay_nsec = this_delay;
1953
clamp = use_delay > 0;
1954
}
1955
}
1956
blkg = blkg->parent;
1957
}
1958
1959
if (!delay_nsec)
1960
return;
1961
1962
/*
1963
* Let's not sleep for all eternity if we've amassed a huge delay.
1964
* Swapping or metadata IO can accumulate 10's of seconds worth of
1965
* delay, and we want userspace to be able to do _something_ so cap the
1966
* delays at 0.25s. If there's 10's of seconds worth of delay then the
1967
* tasks will be delayed for 0.25 second for every syscall. If
1968
* blkcg_set_delay() was used as indicated by negative use_delay, the
1969
* caller is responsible for regulating the range.
1970
*/
1971
if (clamp)
1972
delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1973
1974
if (use_memdelay)
1975
psi_memstall_enter(&pflags);
1976
1977
exp = ktime_add_ns(now, delay_nsec);
1978
tok = io_schedule_prepare();
1979
do {
1980
__set_current_state(TASK_KILLABLE);
1981
if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1982
break;
1983
} while (!fatal_signal_pending(current));
1984
io_schedule_finish(tok);
1985
1986
if (use_memdelay)
1987
psi_memstall_leave(&pflags);
1988
}
1989
1990
/**
1991
* blkcg_maybe_throttle_current - throttle the current task if it has been marked
1992
*
1993
* This is only called if we've been marked with set_notify_resume(). Obviously
1994
* we can be set_notify_resume() for reasons other than blkcg throttling, so we
1995
* check to see if current->throttle_disk is set and if not this doesn't do
1996
* anything. This should only ever be called by the resume code, it's not meant
1997
* to be called by people willy-nilly as it will actually do the work to
1998
* throttle the task if it is setup for throttling.
1999
*/
2000
void blkcg_maybe_throttle_current(void)
2001
{
2002
struct gendisk *disk = current->throttle_disk;
2003
struct blkcg *blkcg;
2004
struct blkcg_gq *blkg;
2005
bool use_memdelay = current->use_memdelay;
2006
2007
if (!disk)
2008
return;
2009
2010
current->throttle_disk = NULL;
2011
current->use_memdelay = false;
2012
2013
rcu_read_lock();
2014
blkcg = css_to_blkcg(blkcg_css());
2015
if (!blkcg)
2016
goto out;
2017
blkg = blkg_lookup(blkcg, disk->queue);
2018
if (!blkg)
2019
goto out;
2020
if (!blkg_tryget(blkg))
2021
goto out;
2022
rcu_read_unlock();
2023
2024
blkcg_maybe_throttle_blkg(blkg, use_memdelay);
2025
blkg_put(blkg);
2026
put_disk(disk);
2027
return;
2028
out:
2029
rcu_read_unlock();
2030
}
2031
2032
/**
2033
* blkcg_schedule_throttle - this task needs to check for throttling
2034
* @disk: disk to throttle
2035
* @use_memdelay: do we charge this to memory delay for PSI
2036
*
2037
* This is called by the IO controller when we know there's delay accumulated
2038
* for the blkg for this task. We do not pass the blkg because there are places
2039
* we call this that may not have that information, the swapping code for
2040
* instance will only have a block_device at that point. This set's the
2041
* notify_resume for the task to check and see if it requires throttling before
2042
* returning to user space.
2043
*
2044
* We will only schedule once per syscall. You can call this over and over
2045
* again and it will only do the check once upon return to user space, and only
2046
* throttle once. If the task needs to be throttled again it'll need to be
2047
* re-set at the next time we see the task.
2048
*/
2049
void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
2050
{
2051
if (unlikely(current->flags & PF_KTHREAD))
2052
return;
2053
2054
if (current->throttle_disk != disk) {
2055
if (test_bit(GD_DEAD, &disk->state))
2056
return;
2057
get_device(disk_to_dev(disk));
2058
2059
if (current->throttle_disk)
2060
put_disk(current->throttle_disk);
2061
current->throttle_disk = disk;
2062
}
2063
2064
if (use_memdelay)
2065
current->use_memdelay = use_memdelay;
2066
set_notify_resume(current);
2067
}
2068
2069
/**
2070
* blkcg_add_delay - add delay to this blkg
2071
* @blkg: blkg of interest
2072
* @now: the current time in nanoseconds
2073
* @delta: how many nanoseconds of delay to add
2074
*
2075
* Charge @delta to the blkg's current delay accumulation. This is used to
2076
* throttle tasks if an IO controller thinks we need more throttling.
2077
*/
2078
void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
2079
{
2080
if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
2081
return;
2082
blkcg_scale_delay(blkg, now);
2083
atomic64_add(delta, &blkg->delay_nsec);
2084
}
2085
2086
/**
2087
* blkg_tryget_closest - try and get a blkg ref on the closet blkg
2088
* @bio: target bio
2089
* @css: target css
2090
*
2091
* As the failure mode here is to walk up the blkg tree, this ensure that the
2092
* blkg->parent pointers are always valid. This returns the blkg that it ended
2093
* up taking a reference on or %NULL if no reference was taken.
2094
*/
2095
static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2096
struct cgroup_subsys_state *css)
2097
{
2098
struct blkcg_gq *blkg, *ret_blkg = NULL;
2099
2100
rcu_read_lock();
2101
blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2102
while (blkg) {
2103
if (blkg_tryget(blkg)) {
2104
ret_blkg = blkg;
2105
break;
2106
}
2107
blkg = blkg->parent;
2108
}
2109
rcu_read_unlock();
2110
2111
return ret_blkg;
2112
}
2113
2114
/**
2115
* bio_associate_blkg_from_css - associate a bio with a specified css
2116
* @bio: target bio
2117
* @css: target css
2118
*
2119
* Associate @bio with the blkg found by combining the css's blkg and the
2120
* request_queue of the @bio. An association failure is handled by walking up
2121
* the blkg tree. Therefore, the blkg associated can be anything between @blkg
2122
* and q->root_blkg. This situation only happens when a cgroup is dying and
2123
* then the remaining bios will spill to the closest alive blkg.
2124
*
2125
* A reference will be taken on the blkg and will be released when @bio is
2126
* freed.
2127
*/
2128
void bio_associate_blkg_from_css(struct bio *bio,
2129
struct cgroup_subsys_state *css)
2130
{
2131
if (bio->bi_blkg)
2132
blkg_put(bio->bi_blkg);
2133
2134
if (css && css->parent) {
2135
bio->bi_blkg = blkg_tryget_closest(bio, css);
2136
} else {
2137
blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2138
bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2139
}
2140
}
2141
EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2142
2143
/**
2144
* bio_associate_blkg - associate a bio with a blkg
2145
* @bio: target bio
2146
*
2147
* Associate @bio with the blkg found from the bio's css and request_queue.
2148
* If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2149
* already associated, the css is reused and association redone as the
2150
* request_queue may have changed.
2151
*/
2152
void bio_associate_blkg(struct bio *bio)
2153
{
2154
struct cgroup_subsys_state *css;
2155
2156
if (blk_op_is_passthrough(bio->bi_opf))
2157
return;
2158
2159
rcu_read_lock();
2160
2161
if (bio->bi_blkg)
2162
css = bio_blkcg_css(bio);
2163
else
2164
css = blkcg_css();
2165
2166
bio_associate_blkg_from_css(bio, css);
2167
2168
rcu_read_unlock();
2169
}
2170
EXPORT_SYMBOL_GPL(bio_associate_blkg);
2171
2172
/**
2173
* bio_clone_blkg_association - clone blkg association from src to dst bio
2174
* @dst: destination bio
2175
* @src: source bio
2176
*/
2177
void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2178
{
2179
if (src->bi_blkg)
2180
bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2181
}
2182
EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2183
2184
static int blk_cgroup_io_type(struct bio *bio)
2185
{
2186
if (op_is_discard(bio->bi_opf))
2187
return BLKG_IOSTAT_DISCARD;
2188
if (op_is_write(bio->bi_opf))
2189
return BLKG_IOSTAT_WRITE;
2190
return BLKG_IOSTAT_READ;
2191
}
2192
2193
void blk_cgroup_bio_start(struct bio *bio)
2194
{
2195
struct blkcg *blkcg = bio->bi_blkg->blkcg;
2196
int rwd = blk_cgroup_io_type(bio), cpu;
2197
struct blkg_iostat_set *bis;
2198
unsigned long flags;
2199
2200
if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2201
return;
2202
2203
/* Root-level stats are sourced from system-wide IO stats */
2204
if (!cgroup_parent(blkcg->css.cgroup))
2205
return;
2206
2207
cpu = get_cpu();
2208
bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2209
flags = u64_stats_update_begin_irqsave(&bis->sync);
2210
2211
/*
2212
* If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2213
* bio and we would have already accounted for the size of the bio.
2214
*/
2215
if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2216
bio_set_flag(bio, BIO_CGROUP_ACCT);
2217
bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2218
}
2219
bis->cur.ios[rwd]++;
2220
2221
/*
2222
* If the iostat_cpu isn't in a lockless list, put it into the
2223
* list to indicate that a stat update is pending.
2224
*/
2225
if (!READ_ONCE(bis->lqueued)) {
2226
struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2227
2228
llist_add(&bis->lnode, lhead);
2229
WRITE_ONCE(bis->lqueued, true);
2230
}
2231
2232
u64_stats_update_end_irqrestore(&bis->sync, flags);
2233
css_rstat_updated(&blkcg->css, cpu);
2234
put_cpu();
2235
}
2236
2237
bool blk_cgroup_congested(void)
2238
{
2239
struct blkcg *blkcg;
2240
bool ret = false;
2241
2242
rcu_read_lock();
2243
for (blkcg = css_to_blkcg(blkcg_css()); blkcg;
2244
blkcg = blkcg_parent(blkcg)) {
2245
if (atomic_read(&blkcg->congestion_count)) {
2246
ret = true;
2247
break;
2248
}
2249
}
2250
rcu_read_unlock();
2251
return ret;
2252
}
2253
2254
module_param(blkcg_debug_stats, bool, 0644);
2255
MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2256
2257