Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-map.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Functions related to mapping data to requests
4
*/
5
#include <linux/kernel.h>
6
#include <linux/sched/task_stack.h>
7
#include <linux/module.h>
8
#include <linux/bio.h>
9
#include <linux/blkdev.h>
10
#include <linux/uio.h>
11
12
#include "blk.h"
13
14
struct bio_map_data {
15
bool is_our_pages : 1;
16
bool is_null_mapped : 1;
17
struct iov_iter iter;
18
struct iovec iov[];
19
};
20
21
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22
gfp_t gfp_mask)
23
{
24
struct bio_map_data *bmd;
25
26
if (data->nr_segs > UIO_MAXIOV)
27
return NULL;
28
29
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30
if (!bmd)
31
return NULL;
32
bmd->iter = *data;
33
if (iter_is_iovec(data)) {
34
memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
35
bmd->iter.__iov = bmd->iov;
36
}
37
return bmd;
38
}
39
40
/**
41
* bio_copy_from_iter - copy all pages from iov_iter to bio
42
* @bio: The &struct bio which describes the I/O as destination
43
* @iter: iov_iter as source
44
*
45
* Copy all pages from iov_iter to bio.
46
* Returns 0 on success, or error on failure.
47
*/
48
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
49
{
50
struct bio_vec *bvec;
51
struct bvec_iter_all iter_all;
52
53
bio_for_each_segment_all(bvec, bio, iter_all) {
54
ssize_t ret;
55
56
ret = copy_page_from_iter(bvec->bv_page,
57
bvec->bv_offset,
58
bvec->bv_len,
59
iter);
60
61
if (!iov_iter_count(iter))
62
break;
63
64
if (ret < bvec->bv_len)
65
return -EFAULT;
66
}
67
68
return 0;
69
}
70
71
/**
72
* bio_copy_to_iter - copy all pages from bio to iov_iter
73
* @bio: The &struct bio which describes the I/O as source
74
* @iter: iov_iter as destination
75
*
76
* Copy all pages from bio to iov_iter.
77
* Returns 0 on success, or error on failure.
78
*/
79
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
80
{
81
struct bio_vec *bvec;
82
struct bvec_iter_all iter_all;
83
84
bio_for_each_segment_all(bvec, bio, iter_all) {
85
ssize_t ret;
86
87
ret = copy_page_to_iter(bvec->bv_page,
88
bvec->bv_offset,
89
bvec->bv_len,
90
&iter);
91
92
if (!iov_iter_count(&iter))
93
break;
94
95
if (ret < bvec->bv_len)
96
return -EFAULT;
97
}
98
99
return 0;
100
}
101
102
/**
103
* bio_uncopy_user - finish previously mapped bio
104
* @bio: bio being terminated
105
*
106
* Free pages allocated from bio_copy_user_iov() and write back data
107
* to user space in case of a read.
108
*/
109
static int bio_uncopy_user(struct bio *bio)
110
{
111
struct bio_map_data *bmd = bio->bi_private;
112
int ret = 0;
113
114
if (!bmd->is_null_mapped) {
115
/*
116
* if we're in a workqueue, the request is orphaned, so
117
* don't copy into a random user address space, just free
118
* and return -EINTR so user space doesn't expect any data.
119
*/
120
if (!current->mm)
121
ret = -EINTR;
122
else if (bio_data_dir(bio) == READ)
123
ret = bio_copy_to_iter(bio, bmd->iter);
124
if (bmd->is_our_pages)
125
bio_free_pages(bio);
126
}
127
kfree(bmd);
128
return ret;
129
}
130
131
static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
132
struct iov_iter *iter, gfp_t gfp_mask)
133
{
134
struct bio_map_data *bmd;
135
struct page *page;
136
struct bio *bio;
137
int i = 0, ret;
138
int nr_pages;
139
unsigned int len = iter->count;
140
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
141
142
bmd = bio_alloc_map_data(iter, gfp_mask);
143
if (!bmd)
144
return -ENOMEM;
145
146
/*
147
* We need to do a deep copy of the iov_iter including the iovecs.
148
* The caller provided iov might point to an on-stack or otherwise
149
* shortlived one.
150
*/
151
bmd->is_our_pages = !map_data;
152
bmd->is_null_mapped = (map_data && map_data->null_mapped);
153
154
nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
155
156
ret = -ENOMEM;
157
bio = bio_kmalloc(nr_pages, gfp_mask);
158
if (!bio)
159
goto out_bmd;
160
bio_init_inline(bio, NULL, nr_pages, req_op(rq));
161
162
if (map_data) {
163
nr_pages = 1U << map_data->page_order;
164
i = map_data->offset / PAGE_SIZE;
165
}
166
while (len) {
167
unsigned int bytes = PAGE_SIZE;
168
169
bytes -= offset;
170
171
if (bytes > len)
172
bytes = len;
173
174
if (map_data) {
175
if (i == map_data->nr_entries * nr_pages) {
176
ret = -ENOMEM;
177
goto cleanup;
178
}
179
180
page = map_data->pages[i / nr_pages];
181
page += (i % nr_pages);
182
183
i++;
184
} else {
185
page = alloc_page(GFP_NOIO | gfp_mask);
186
if (!page) {
187
ret = -ENOMEM;
188
goto cleanup;
189
}
190
}
191
192
if (bio_add_page(bio, page, bytes, offset) < bytes) {
193
if (!map_data)
194
__free_page(page);
195
break;
196
}
197
198
len -= bytes;
199
offset = 0;
200
}
201
202
if (map_data)
203
map_data->offset += bio->bi_iter.bi_size;
204
205
/*
206
* success
207
*/
208
if (iov_iter_rw(iter) == WRITE &&
209
(!map_data || !map_data->null_mapped)) {
210
ret = bio_copy_from_iter(bio, iter);
211
if (ret)
212
goto cleanup;
213
} else if (map_data && map_data->from_user) {
214
struct iov_iter iter2 = *iter;
215
216
/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
217
iter2.data_source = ITER_SOURCE;
218
ret = bio_copy_from_iter(bio, &iter2);
219
if (ret)
220
goto cleanup;
221
} else {
222
if (bmd->is_our_pages)
223
zero_fill_bio(bio);
224
iov_iter_advance(iter, bio->bi_iter.bi_size);
225
}
226
227
bio->bi_private = bmd;
228
229
ret = blk_rq_append_bio(rq, bio);
230
if (ret)
231
goto cleanup;
232
return 0;
233
cleanup:
234
if (!map_data)
235
bio_free_pages(bio);
236
bio_uninit(bio);
237
kfree(bio);
238
out_bmd:
239
kfree(bmd);
240
return ret;
241
}
242
243
static void blk_mq_map_bio_put(struct bio *bio)
244
{
245
if (bio->bi_opf & REQ_ALLOC_CACHE) {
246
bio_put(bio);
247
} else {
248
bio_uninit(bio);
249
kfree(bio);
250
}
251
}
252
253
static struct bio *blk_rq_map_bio_alloc(struct request *rq,
254
unsigned int nr_vecs, gfp_t gfp_mask)
255
{
256
struct block_device *bdev = rq->q->disk ? rq->q->disk->part0 : NULL;
257
struct bio *bio;
258
259
if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
260
bio = bio_alloc_bioset(bdev, nr_vecs, rq->cmd_flags, gfp_mask,
261
&fs_bio_set);
262
if (!bio)
263
return NULL;
264
} else {
265
bio = bio_kmalloc(nr_vecs, gfp_mask);
266
if (!bio)
267
return NULL;
268
bio_init_inline(bio, bdev, nr_vecs, req_op(rq));
269
}
270
return bio;
271
}
272
273
static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
274
gfp_t gfp_mask)
275
{
276
unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
277
struct bio *bio;
278
int ret;
279
280
if (!iov_iter_count(iter))
281
return -EINVAL;
282
283
bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
284
if (!bio)
285
return -ENOMEM;
286
ret = bio_iov_iter_get_pages(bio, iter);
287
if (ret)
288
goto out_put;
289
ret = blk_rq_append_bio(rq, bio);
290
if (ret)
291
goto out_release;
292
return 0;
293
294
out_release:
295
bio_release_pages(bio, false);
296
out_put:
297
blk_mq_map_bio_put(bio);
298
return ret;
299
}
300
301
static void bio_invalidate_vmalloc_pages(struct bio *bio)
302
{
303
#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
304
if (bio->bi_private && !op_is_write(bio_op(bio))) {
305
unsigned long i, len = 0;
306
307
for (i = 0; i < bio->bi_vcnt; i++)
308
len += bio->bi_io_vec[i].bv_len;
309
invalidate_kernel_vmap_range(bio->bi_private, len);
310
}
311
#endif
312
}
313
314
static void bio_map_kern_endio(struct bio *bio)
315
{
316
bio_invalidate_vmalloc_pages(bio);
317
bio_uninit(bio);
318
kfree(bio);
319
}
320
321
static struct bio *bio_map_kern(void *data, unsigned int len, enum req_op op,
322
gfp_t gfp_mask)
323
{
324
unsigned int nr_vecs = bio_add_max_vecs(data, len);
325
struct bio *bio;
326
327
bio = bio_kmalloc(nr_vecs, gfp_mask);
328
if (!bio)
329
return ERR_PTR(-ENOMEM);
330
bio_init_inline(bio, NULL, nr_vecs, op);
331
if (is_vmalloc_addr(data)) {
332
bio->bi_private = data;
333
if (!bio_add_vmalloc(bio, data, len)) {
334
bio_uninit(bio);
335
kfree(bio);
336
return ERR_PTR(-EINVAL);
337
}
338
} else {
339
bio_add_virt_nofail(bio, data, len);
340
}
341
bio->bi_end_io = bio_map_kern_endio;
342
return bio;
343
}
344
345
static void bio_copy_kern_endio(struct bio *bio)
346
{
347
bio_free_pages(bio);
348
bio_uninit(bio);
349
kfree(bio);
350
}
351
352
static void bio_copy_kern_endio_read(struct bio *bio)
353
{
354
char *p = bio->bi_private;
355
struct bio_vec *bvec;
356
struct bvec_iter_all iter_all;
357
358
bio_for_each_segment_all(bvec, bio, iter_all) {
359
memcpy_from_bvec(p, bvec);
360
p += bvec->bv_len;
361
}
362
363
bio_copy_kern_endio(bio);
364
}
365
366
/**
367
* bio_copy_kern - copy kernel address into bio
368
* @data: pointer to buffer to copy
369
* @len: length in bytes
370
* @op: bio/request operation
371
* @gfp_mask: allocation flags for bio and page allocation
372
*
373
* copy the kernel address into a bio suitable for io to a block
374
* device. Returns an error pointer in case of error.
375
*/
376
static struct bio *bio_copy_kern(void *data, unsigned int len, enum req_op op,
377
gfp_t gfp_mask)
378
{
379
unsigned long kaddr = (unsigned long)data;
380
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
381
unsigned long start = kaddr >> PAGE_SHIFT;
382
struct bio *bio;
383
void *p = data;
384
int nr_pages = 0;
385
386
/*
387
* Overflow, abort
388
*/
389
if (end < start)
390
return ERR_PTR(-EINVAL);
391
392
nr_pages = end - start;
393
bio = bio_kmalloc(nr_pages, gfp_mask);
394
if (!bio)
395
return ERR_PTR(-ENOMEM);
396
bio_init_inline(bio, NULL, nr_pages, op);
397
398
while (len) {
399
struct page *page;
400
unsigned int bytes = PAGE_SIZE;
401
402
if (bytes > len)
403
bytes = len;
404
405
page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
406
if (!page)
407
goto cleanup;
408
409
if (op_is_write(op))
410
memcpy(page_address(page), p, bytes);
411
412
if (bio_add_page(bio, page, bytes, 0) < bytes)
413
break;
414
415
len -= bytes;
416
p += bytes;
417
}
418
419
if (op_is_write(op)) {
420
bio->bi_end_io = bio_copy_kern_endio;
421
} else {
422
bio->bi_end_io = bio_copy_kern_endio_read;
423
bio->bi_private = data;
424
}
425
426
return bio;
427
428
cleanup:
429
bio_free_pages(bio);
430
bio_uninit(bio);
431
kfree(bio);
432
return ERR_PTR(-ENOMEM);
433
}
434
435
/*
436
* Append a bio to a passthrough request. Only works if the bio can be merged
437
* into the request based on the driver constraints.
438
*/
439
int blk_rq_append_bio(struct request *rq, struct bio *bio)
440
{
441
const struct queue_limits *lim = &rq->q->limits;
442
unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT;
443
unsigned int nr_segs = 0;
444
int ret;
445
446
/* check that the data layout matches the hardware restrictions */
447
ret = bio_split_io_at(bio, lim, &nr_segs, max_bytes, 0);
448
if (ret) {
449
/* if we would have to split the bio, copy instead */
450
if (ret > 0)
451
ret = -EREMOTEIO;
452
return ret;
453
}
454
455
if (rq->bio) {
456
if (!ll_back_merge_fn(rq, bio, nr_segs))
457
return -EINVAL;
458
rq->biotail->bi_next = bio;
459
rq->biotail = bio;
460
rq->__data_len += bio->bi_iter.bi_size;
461
bio_crypt_free_ctx(bio);
462
return 0;
463
}
464
465
rq->nr_phys_segments = nr_segs;
466
rq->bio = rq->biotail = bio;
467
rq->__data_len = bio->bi_iter.bi_size;
468
return 0;
469
}
470
EXPORT_SYMBOL(blk_rq_append_bio);
471
472
/* Prepare bio for passthrough IO given ITER_BVEC iter */
473
static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
474
{
475
unsigned int max_bytes = rq->q->limits.max_hw_sectors << SECTOR_SHIFT;
476
struct bio *bio;
477
int ret;
478
479
if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes)
480
return -EINVAL;
481
482
/* reuse the bvecs from the iterator instead of allocating new ones */
483
bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
484
if (!bio)
485
return -ENOMEM;
486
bio_iov_bvec_set(bio, iter);
487
488
ret = blk_rq_append_bio(rq, bio);
489
if (ret)
490
blk_mq_map_bio_put(bio);
491
return ret;
492
}
493
494
/**
495
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
496
* @q: request queue where request should be inserted
497
* @rq: request to map data to
498
* @map_data: pointer to the rq_map_data holding pages (if necessary)
499
* @iter: iovec iterator
500
* @gfp_mask: memory allocation flags
501
*
502
* Description:
503
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
504
* a kernel bounce buffer is used.
505
*
506
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
507
* still in process context.
508
*/
509
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
510
struct rq_map_data *map_data,
511
const struct iov_iter *iter, gfp_t gfp_mask)
512
{
513
bool copy = false, map_bvec = false;
514
unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits);
515
struct bio *bio = NULL;
516
struct iov_iter i;
517
int ret = -EINVAL;
518
519
if (map_data)
520
copy = true;
521
else if (iov_iter_alignment(iter) & align)
522
copy = true;
523
else if (iov_iter_is_bvec(iter))
524
map_bvec = true;
525
else if (!user_backed_iter(iter))
526
copy = true;
527
else if (queue_virt_boundary(q))
528
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
529
530
if (map_bvec) {
531
ret = blk_rq_map_user_bvec(rq, iter);
532
if (!ret)
533
return 0;
534
if (ret != -EREMOTEIO)
535
goto fail;
536
/* fall back to copying the data on limits mismatches */
537
copy = true;
538
}
539
540
i = *iter;
541
do {
542
if (copy)
543
ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
544
else
545
ret = bio_map_user_iov(rq, &i, gfp_mask);
546
if (ret) {
547
if (ret == -EREMOTEIO)
548
ret = -EINVAL;
549
goto unmap_rq;
550
}
551
if (!bio)
552
bio = rq->bio;
553
} while (iov_iter_count(&i));
554
555
return 0;
556
557
unmap_rq:
558
blk_rq_unmap_user(bio);
559
fail:
560
rq->bio = NULL;
561
return ret;
562
}
563
EXPORT_SYMBOL(blk_rq_map_user_iov);
564
565
int blk_rq_map_user(struct request_queue *q, struct request *rq,
566
struct rq_map_data *map_data, void __user *ubuf,
567
unsigned long len, gfp_t gfp_mask)
568
{
569
struct iov_iter i;
570
int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
571
572
if (unlikely(ret < 0))
573
return ret;
574
575
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
576
}
577
EXPORT_SYMBOL(blk_rq_map_user);
578
579
int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
580
void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
581
bool vec, int iov_count, bool check_iter_count, int rw)
582
{
583
int ret = 0;
584
585
if (vec) {
586
struct iovec fast_iov[UIO_FASTIOV];
587
struct iovec *iov = fast_iov;
588
struct iov_iter iter;
589
590
ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
591
UIO_FASTIOV, &iov, &iter);
592
if (ret < 0)
593
return ret;
594
595
if (iov_count) {
596
/* SG_IO howto says that the shorter of the two wins */
597
iov_iter_truncate(&iter, buf_len);
598
if (check_iter_count && !iov_iter_count(&iter)) {
599
kfree(iov);
600
return -EINVAL;
601
}
602
}
603
604
ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
605
gfp_mask);
606
kfree(iov);
607
} else if (buf_len) {
608
ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
609
gfp_mask);
610
}
611
return ret;
612
}
613
EXPORT_SYMBOL(blk_rq_map_user_io);
614
615
/**
616
* blk_rq_unmap_user - unmap a request with user data
617
* @bio: start of bio list
618
*
619
* Description:
620
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
621
* supply the original rq->bio from the blk_rq_map_user() return, since
622
* the I/O completion may have changed rq->bio.
623
*/
624
int blk_rq_unmap_user(struct bio *bio)
625
{
626
struct bio *next_bio;
627
int ret = 0, ret2;
628
629
while (bio) {
630
if (bio->bi_private) {
631
ret2 = bio_uncopy_user(bio);
632
if (ret2 && !ret)
633
ret = ret2;
634
} else {
635
bio_release_pages(bio, bio_data_dir(bio) == READ);
636
}
637
638
if (bio_integrity(bio))
639
bio_integrity_unmap_user(bio);
640
641
next_bio = bio;
642
bio = bio->bi_next;
643
blk_mq_map_bio_put(next_bio);
644
}
645
646
return ret;
647
}
648
EXPORT_SYMBOL(blk_rq_unmap_user);
649
650
/**
651
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
652
* @rq: request to fill
653
* @kbuf: the kernel buffer
654
* @len: length of user data
655
* @gfp_mask: memory allocation flags
656
*
657
* Description:
658
* Data will be mapped directly if possible. Otherwise a bounce
659
* buffer is used. Can be called multiple times to append multiple
660
* buffers.
661
*/
662
int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
663
gfp_t gfp_mask)
664
{
665
unsigned long addr = (unsigned long) kbuf;
666
struct bio *bio;
667
int ret;
668
669
if (len > (queue_max_hw_sectors(rq->q) << SECTOR_SHIFT))
670
return -EINVAL;
671
if (!len || !kbuf)
672
return -EINVAL;
673
674
if (!blk_rq_aligned(rq->q, addr, len) || object_is_on_stack(kbuf))
675
bio = bio_copy_kern(kbuf, len, req_op(rq), gfp_mask);
676
else
677
bio = bio_map_kern(kbuf, len, req_op(rq), gfp_mask);
678
679
if (IS_ERR(bio))
680
return PTR_ERR(bio);
681
682
ret = blk_rq_append_bio(rq, bio);
683
if (unlikely(ret)) {
684
bio_uninit(bio);
685
kfree(bio);
686
}
687
return ret;
688
}
689
EXPORT_SYMBOL(blk_rq_map_kern);
690
691