Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-mq-tag.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Tag allocation using scalable bitmaps. Uses active queue tracking to support
4
* fairer distribution of tags between multiple submitters when a shared tag map
5
* is used.
6
*
7
* Copyright (C) 2013-2014 Jens Axboe
8
*/
9
#include <linux/kernel.h>
10
#include <linux/module.h>
11
#include <linux/slab.h>
12
#include <linux/mm.h>
13
#include <linux/kmemleak.h>
14
15
#include <linux/delay.h>
16
#include "blk.h"
17
#include "blk-mq.h"
18
#include "blk-mq-sched.h"
19
20
/*
21
* Recalculate wakeup batch when tag is shared by hctx.
22
*/
23
static void blk_mq_update_wake_batch(struct blk_mq_tags *tags,
24
unsigned int users)
25
{
26
if (!users)
27
return;
28
29
sbitmap_queue_recalculate_wake_batch(&tags->bitmap_tags,
30
users);
31
sbitmap_queue_recalculate_wake_batch(&tags->breserved_tags,
32
users);
33
}
34
35
/*
36
* If a previously inactive queue goes active, bump the active user count.
37
* We need to do this before try to allocate driver tag, then even if fail
38
* to get tag when first time, the other shared-tag users could reserve
39
* budget for it.
40
*/
41
void __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
42
{
43
unsigned int users;
44
unsigned long flags;
45
struct blk_mq_tags *tags = hctx->tags;
46
47
/*
48
* calling test_bit() prior to test_and_set_bit() is intentional,
49
* it avoids dirtying the cacheline if the queue is already active.
50
*/
51
if (blk_mq_is_shared_tags(hctx->flags)) {
52
struct request_queue *q = hctx->queue;
53
54
if (test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags) ||
55
test_and_set_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
56
return;
57
} else {
58
if (test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) ||
59
test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
60
return;
61
}
62
63
spin_lock_irqsave(&tags->lock, flags);
64
users = tags->active_queues + 1;
65
WRITE_ONCE(tags->active_queues, users);
66
blk_mq_update_wake_batch(tags, users);
67
spin_unlock_irqrestore(&tags->lock, flags);
68
}
69
70
/*
71
* Wakeup all potentially sleeping on tags
72
*/
73
void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
74
{
75
sbitmap_queue_wake_all(&tags->bitmap_tags);
76
if (include_reserve)
77
sbitmap_queue_wake_all(&tags->breserved_tags);
78
}
79
80
/*
81
* If a previously busy queue goes inactive, potential waiters could now
82
* be allowed to queue. Wake them up and check.
83
*/
84
void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
85
{
86
struct blk_mq_tags *tags = hctx->tags;
87
unsigned int users;
88
89
if (blk_mq_is_shared_tags(hctx->flags)) {
90
struct request_queue *q = hctx->queue;
91
92
if (!test_and_clear_bit(QUEUE_FLAG_HCTX_ACTIVE,
93
&q->queue_flags))
94
return;
95
} else {
96
if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
97
return;
98
}
99
100
spin_lock_irq(&tags->lock);
101
users = tags->active_queues - 1;
102
WRITE_ONCE(tags->active_queues, users);
103
blk_mq_update_wake_batch(tags, users);
104
spin_unlock_irq(&tags->lock);
105
106
blk_mq_tag_wakeup_all(tags, false);
107
}
108
109
static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
110
struct sbitmap_queue *bt)
111
{
112
if (!data->q->elevator && !(data->flags & BLK_MQ_REQ_RESERVED) &&
113
!hctx_may_queue(data->hctx, bt))
114
return BLK_MQ_NO_TAG;
115
116
if (data->shallow_depth)
117
return sbitmap_queue_get_shallow(bt, data->shallow_depth);
118
else
119
return __sbitmap_queue_get(bt);
120
}
121
122
unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
123
unsigned int *offset)
124
{
125
struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
126
struct sbitmap_queue *bt = &tags->bitmap_tags;
127
unsigned long ret;
128
129
if (data->shallow_depth ||data->flags & BLK_MQ_REQ_RESERVED ||
130
data->hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
131
return 0;
132
ret = __sbitmap_queue_get_batch(bt, nr_tags, offset);
133
*offset += tags->nr_reserved_tags;
134
return ret;
135
}
136
137
unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
138
{
139
struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
140
struct sbitmap_queue *bt;
141
struct sbq_wait_state *ws;
142
DEFINE_SBQ_WAIT(wait);
143
unsigned int tag_offset;
144
int tag;
145
146
if (data->flags & BLK_MQ_REQ_RESERVED) {
147
if (unlikely(!tags->nr_reserved_tags)) {
148
WARN_ON_ONCE(1);
149
return BLK_MQ_NO_TAG;
150
}
151
bt = &tags->breserved_tags;
152
tag_offset = 0;
153
} else {
154
bt = &tags->bitmap_tags;
155
tag_offset = tags->nr_reserved_tags;
156
}
157
158
tag = __blk_mq_get_tag(data, bt);
159
if (tag != BLK_MQ_NO_TAG)
160
goto found_tag;
161
162
if (data->flags & BLK_MQ_REQ_NOWAIT)
163
return BLK_MQ_NO_TAG;
164
165
ws = bt_wait_ptr(bt, data->hctx);
166
do {
167
struct sbitmap_queue *bt_prev;
168
169
/*
170
* We're out of tags on this hardware queue, kick any
171
* pending IO submits before going to sleep waiting for
172
* some to complete.
173
*/
174
blk_mq_run_hw_queue(data->hctx, false);
175
176
/*
177
* Retry tag allocation after running the hardware queue,
178
* as running the queue may also have found completions.
179
*/
180
tag = __blk_mq_get_tag(data, bt);
181
if (tag != BLK_MQ_NO_TAG)
182
break;
183
184
sbitmap_prepare_to_wait(bt, ws, &wait, TASK_UNINTERRUPTIBLE);
185
186
tag = __blk_mq_get_tag(data, bt);
187
if (tag != BLK_MQ_NO_TAG)
188
break;
189
190
bt_prev = bt;
191
io_schedule();
192
193
sbitmap_finish_wait(bt, ws, &wait);
194
195
data->ctx = blk_mq_get_ctx(data->q);
196
data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
197
tags = blk_mq_tags_from_data(data);
198
if (data->flags & BLK_MQ_REQ_RESERVED)
199
bt = &tags->breserved_tags;
200
else
201
bt = &tags->bitmap_tags;
202
203
/*
204
* If destination hw queue is changed, fake wake up on
205
* previous queue for compensating the wake up miss, so
206
* other allocations on previous queue won't be starved.
207
*/
208
if (bt != bt_prev)
209
sbitmap_queue_wake_up(bt_prev, 1);
210
211
ws = bt_wait_ptr(bt, data->hctx);
212
} while (1);
213
214
sbitmap_finish_wait(bt, ws, &wait);
215
216
found_tag:
217
/*
218
* Give up this allocation if the hctx is inactive. The caller will
219
* retry on an active hctx.
220
*/
221
if (unlikely(test_bit(BLK_MQ_S_INACTIVE, &data->hctx->state))) {
222
blk_mq_put_tag(tags, data->ctx, tag + tag_offset);
223
return BLK_MQ_NO_TAG;
224
}
225
return tag + tag_offset;
226
}
227
228
void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
229
unsigned int tag)
230
{
231
if (!blk_mq_tag_is_reserved(tags, tag)) {
232
const int real_tag = tag - tags->nr_reserved_tags;
233
234
BUG_ON(real_tag >= tags->nr_tags);
235
sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
236
} else {
237
sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
238
}
239
}
240
241
void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags)
242
{
243
sbitmap_queue_clear_batch(&tags->bitmap_tags, tags->nr_reserved_tags,
244
tag_array, nr_tags);
245
}
246
247
struct bt_iter_data {
248
struct blk_mq_hw_ctx *hctx;
249
struct request_queue *q;
250
busy_tag_iter_fn *fn;
251
void *data;
252
bool reserved;
253
};
254
255
static struct request *blk_mq_find_and_get_req(struct blk_mq_tags *tags,
256
unsigned int bitnr)
257
{
258
struct request *rq;
259
260
rq = tags->rqs[bitnr];
261
if (!rq || rq->tag != bitnr || !req_ref_inc_not_zero(rq))
262
rq = NULL;
263
return rq;
264
}
265
266
static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
267
{
268
struct bt_iter_data *iter_data = data;
269
struct blk_mq_hw_ctx *hctx = iter_data->hctx;
270
struct request_queue *q = iter_data->q;
271
struct blk_mq_tag_set *set = q->tag_set;
272
struct blk_mq_tags *tags;
273
struct request *rq;
274
bool ret = true;
275
276
if (blk_mq_is_shared_tags(set->flags))
277
tags = set->shared_tags;
278
else
279
tags = hctx->tags;
280
281
if (!iter_data->reserved)
282
bitnr += tags->nr_reserved_tags;
283
/*
284
* We can hit rq == NULL here, because the tagging functions
285
* test and set the bit before assigning ->rqs[].
286
*/
287
rq = blk_mq_find_and_get_req(tags, bitnr);
288
if (!rq)
289
return true;
290
291
if (rq->q == q && (!hctx || rq->mq_hctx == hctx))
292
ret = iter_data->fn(rq, iter_data->data);
293
blk_mq_put_rq_ref(rq);
294
return ret;
295
}
296
297
/**
298
* bt_for_each - iterate over the requests associated with a hardware queue
299
* @hctx: Hardware queue to examine.
300
* @q: Request queue @hctx is associated with (@hctx->queue).
301
* @bt: sbitmap to examine. This is either the breserved_tags member
302
* or the bitmap_tags member of struct blk_mq_tags.
303
* @fn: Pointer to the function that will be called for each request
304
* associated with @hctx that has been assigned a driver tag.
305
* @fn will be called as follows: @fn(rq, @data) where rq is a
306
* pointer to a request. Return %true to continue iterating tags;
307
* %false to stop.
308
* @data: Will be passed as second argument to @fn.
309
* @reserved: Indicates whether @bt is the breserved_tags member or the
310
* bitmap_tags member of struct blk_mq_tags.
311
*/
312
static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct request_queue *q,
313
struct sbitmap_queue *bt, busy_tag_iter_fn *fn,
314
void *data, bool reserved)
315
{
316
struct bt_iter_data iter_data = {
317
.hctx = hctx,
318
.fn = fn,
319
.data = data,
320
.reserved = reserved,
321
.q = q,
322
};
323
324
sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
325
}
326
327
struct bt_tags_iter_data {
328
struct blk_mq_tags *tags;
329
busy_tag_iter_fn *fn;
330
void *data;
331
unsigned int flags;
332
};
333
334
#define BT_TAG_ITER_RESERVED (1 << 0)
335
#define BT_TAG_ITER_STARTED (1 << 1)
336
#define BT_TAG_ITER_STATIC_RQS (1 << 2)
337
338
static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
339
{
340
struct bt_tags_iter_data *iter_data = data;
341
struct blk_mq_tags *tags = iter_data->tags;
342
struct request *rq;
343
bool ret = true;
344
bool iter_static_rqs = !!(iter_data->flags & BT_TAG_ITER_STATIC_RQS);
345
346
if (!(iter_data->flags & BT_TAG_ITER_RESERVED))
347
bitnr += tags->nr_reserved_tags;
348
349
/*
350
* We can hit rq == NULL here, because the tagging functions
351
* test and set the bit before assigning ->rqs[].
352
*/
353
if (iter_static_rqs)
354
rq = tags->static_rqs[bitnr];
355
else
356
rq = blk_mq_find_and_get_req(tags, bitnr);
357
if (!rq)
358
return true;
359
360
if (!(iter_data->flags & BT_TAG_ITER_STARTED) ||
361
blk_mq_request_started(rq))
362
ret = iter_data->fn(rq, iter_data->data);
363
if (!iter_static_rqs)
364
blk_mq_put_rq_ref(rq);
365
return ret;
366
}
367
368
/**
369
* bt_tags_for_each - iterate over the requests in a tag map
370
* @tags: Tag map to iterate over.
371
* @bt: sbitmap to examine. This is either the breserved_tags member
372
* or the bitmap_tags member of struct blk_mq_tags.
373
* @fn: Pointer to the function that will be called for each started
374
* request. @fn will be called as follows: @fn(rq, @data) where rq
375
* is a pointer to a request. Return %true to continue iterating
376
* tags; %false to stop.
377
* @data: Will be passed as second argument to @fn.
378
* @flags: BT_TAG_ITER_*
379
*/
380
static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
381
busy_tag_iter_fn *fn, void *data, unsigned int flags)
382
{
383
struct bt_tags_iter_data iter_data = {
384
.tags = tags,
385
.fn = fn,
386
.data = data,
387
.flags = flags,
388
};
389
390
if (tags->rqs)
391
sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
392
}
393
394
static void __blk_mq_all_tag_iter(struct blk_mq_tags *tags,
395
busy_tag_iter_fn *fn, void *priv, unsigned int flags)
396
{
397
WARN_ON_ONCE(flags & BT_TAG_ITER_RESERVED);
398
399
if (tags->nr_reserved_tags)
400
bt_tags_for_each(tags, &tags->breserved_tags, fn, priv,
401
flags | BT_TAG_ITER_RESERVED);
402
bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, flags);
403
}
404
405
/**
406
* blk_mq_all_tag_iter - iterate over all requests in a tag map
407
* @tags: Tag map to iterate over.
408
* @fn: Pointer to the function that will be called for each
409
* request. @fn will be called as follows: @fn(rq, @priv) where rq
410
* is a pointer to a request. Return %true to continue iterating
411
* tags; %false to stop.
412
* @priv: Will be passed as second argument to @fn.
413
*
414
* Caller has to pass the tag map from which requests are allocated.
415
*/
416
void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
417
void *priv)
418
{
419
__blk_mq_all_tag_iter(tags, fn, priv, BT_TAG_ITER_STATIC_RQS);
420
}
421
422
/**
423
* blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
424
* @tagset: Tag set to iterate over.
425
* @fn: Pointer to the function that will be called for each started
426
* request. @fn will be called as follows: @fn(rq, @priv) where
427
* rq is a pointer to a request. Return true to continue iterating
428
* tags, false to stop.
429
* @priv: Will be passed as second argument to @fn.
430
*
431
* We grab one request reference before calling @fn and release it after
432
* @fn returns.
433
*/
434
void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
435
busy_tag_iter_fn *fn, void *priv)
436
{
437
unsigned int flags = tagset->flags;
438
int i, nr_tags, srcu_idx;
439
440
srcu_idx = srcu_read_lock(&tagset->tags_srcu);
441
442
nr_tags = blk_mq_is_shared_tags(flags) ? 1 : tagset->nr_hw_queues;
443
444
for (i = 0; i < nr_tags; i++) {
445
if (tagset->tags && tagset->tags[i])
446
__blk_mq_all_tag_iter(tagset->tags[i], fn, priv,
447
BT_TAG_ITER_STARTED);
448
}
449
srcu_read_unlock(&tagset->tags_srcu, srcu_idx);
450
}
451
EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
452
453
static bool blk_mq_tagset_count_completed_rqs(struct request *rq, void *data)
454
{
455
unsigned *count = data;
456
457
if (blk_mq_request_completed(rq))
458
(*count)++;
459
return true;
460
}
461
462
/**
463
* blk_mq_tagset_wait_completed_request - Wait until all scheduled request
464
* completions have finished.
465
* @tagset: Tag set to drain completed request
466
*
467
* Note: This function has to be run after all IO queues are shutdown
468
*/
469
void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset)
470
{
471
while (true) {
472
unsigned count = 0;
473
474
blk_mq_tagset_busy_iter(tagset,
475
blk_mq_tagset_count_completed_rqs, &count);
476
if (!count)
477
break;
478
msleep(5);
479
}
480
}
481
EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request);
482
483
/**
484
* blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
485
* @q: Request queue to examine.
486
* @fn: Pointer to the function that will be called for each request
487
* on @q. @fn will be called as follows: @fn(rq, @priv) where rq
488
* is a pointer to a request and hctx points to the hardware queue
489
* associated with the request.
490
* @priv: Will be passed as second argument to @fn.
491
*
492
* Note: if @q->tag_set is shared with other request queues then @fn will be
493
* called for all requests on all queues that share that tag set and not only
494
* for requests associated with @q.
495
*/
496
void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
497
void *priv)
498
{
499
int srcu_idx;
500
501
/*
502
* __blk_mq_update_nr_hw_queues() updates nr_hw_queues and hctx_table
503
* while the queue is frozen. So we can use q_usage_counter to avoid
504
* racing with it.
505
*/
506
if (!percpu_ref_tryget(&q->q_usage_counter))
507
return;
508
509
srcu_idx = srcu_read_lock(&q->tag_set->tags_srcu);
510
if (blk_mq_is_shared_tags(q->tag_set->flags)) {
511
struct blk_mq_tags *tags = q->tag_set->shared_tags;
512
struct sbitmap_queue *bresv = &tags->breserved_tags;
513
struct sbitmap_queue *btags = &tags->bitmap_tags;
514
515
if (tags->nr_reserved_tags)
516
bt_for_each(NULL, q, bresv, fn, priv, true);
517
bt_for_each(NULL, q, btags, fn, priv, false);
518
} else {
519
struct blk_mq_hw_ctx *hctx;
520
unsigned long i;
521
522
queue_for_each_hw_ctx(q, hctx, i) {
523
struct blk_mq_tags *tags = hctx->tags;
524
struct sbitmap_queue *bresv = &tags->breserved_tags;
525
struct sbitmap_queue *btags = &tags->bitmap_tags;
526
527
/*
528
* If no software queues are currently mapped to this
529
* hardware queue, there's nothing to check
530
*/
531
if (!blk_mq_hw_queue_mapped(hctx))
532
continue;
533
534
if (tags->nr_reserved_tags)
535
bt_for_each(hctx, q, bresv, fn, priv, true);
536
bt_for_each(hctx, q, btags, fn, priv, false);
537
}
538
}
539
srcu_read_unlock(&q->tag_set->tags_srcu, srcu_idx);
540
blk_queue_exit(q);
541
}
542
543
static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
544
bool round_robin, int node)
545
{
546
return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
547
node);
548
}
549
550
struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
551
unsigned int reserved_tags, unsigned int flags, int node)
552
{
553
unsigned int depth = total_tags - reserved_tags;
554
bool round_robin = flags & BLK_MQ_F_TAG_RR;
555
struct blk_mq_tags *tags;
556
557
if (total_tags > BLK_MQ_TAG_MAX) {
558
pr_err("blk-mq: tag depth too large\n");
559
return NULL;
560
}
561
562
tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
563
if (!tags)
564
return NULL;
565
566
tags->nr_tags = total_tags;
567
tags->nr_reserved_tags = reserved_tags;
568
spin_lock_init(&tags->lock);
569
INIT_LIST_HEAD(&tags->page_list);
570
571
if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
572
goto out_free_tags;
573
if (bt_alloc(&tags->breserved_tags, reserved_tags, round_robin, node))
574
goto out_free_bitmap_tags;
575
576
return tags;
577
578
out_free_bitmap_tags:
579
sbitmap_queue_free(&tags->bitmap_tags);
580
out_free_tags:
581
kfree(tags);
582
return NULL;
583
}
584
585
static void blk_mq_free_tags_callback(struct rcu_head *head)
586
{
587
struct blk_mq_tags *tags = container_of(head, struct blk_mq_tags,
588
rcu_head);
589
struct page *page;
590
591
while (!list_empty(&tags->page_list)) {
592
page = list_first_entry(&tags->page_list, struct page, lru);
593
list_del_init(&page->lru);
594
/*
595
* Remove kmemleak object previously allocated in
596
* blk_mq_alloc_rqs().
597
*/
598
kmemleak_free(page_address(page));
599
__free_pages(page, page->private);
600
}
601
kfree(tags);
602
}
603
604
void blk_mq_free_tags(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
605
{
606
sbitmap_queue_free(&tags->bitmap_tags);
607
sbitmap_queue_free(&tags->breserved_tags);
608
609
/* if tags pages is not allocated yet, free tags directly */
610
if (list_empty(&tags->page_list)) {
611
kfree(tags);
612
return;
613
}
614
615
call_srcu(&set->tags_srcu, &tags->rcu_head, blk_mq_free_tags_callback);
616
}
617
618
void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set, unsigned int size)
619
{
620
struct blk_mq_tags *tags = set->shared_tags;
621
622
sbitmap_queue_resize(&tags->bitmap_tags, size - set->reserved_tags);
623
}
624
625
void blk_mq_tag_update_sched_shared_tags(struct request_queue *q)
626
{
627
sbitmap_queue_resize(&q->sched_shared_tags->bitmap_tags,
628
q->nr_requests - q->tag_set->reserved_tags);
629
}
630
631
/**
632
* blk_mq_unique_tag() - return a tag that is unique queue-wide
633
* @rq: request for which to compute a unique tag
634
*
635
* The tag field in struct request is unique per hardware queue but not over
636
* all hardware queues. Hence this function that returns a tag with the
637
* hardware context index in the upper bits and the per hardware queue tag in
638
* the lower bits.
639
*
640
* Note: When called for a request that is queued on a non-multiqueue request
641
* queue, the hardware context index is set to zero.
642
*/
643
u32 blk_mq_unique_tag(struct request *rq)
644
{
645
return (rq->mq_hctx->queue_num << BLK_MQ_UNIQUE_TAG_BITS) |
646
(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
647
}
648
EXPORT_SYMBOL(blk_mq_unique_tag);
649
650