Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-mq.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Block multiqueue core code
4
*
5
* Copyright (C) 2013-2014 Jens Axboe
6
* Copyright (C) 2013-2014 Christoph Hellwig
7
*/
8
#include <linux/kernel.h>
9
#include <linux/module.h>
10
#include <linux/backing-dev.h>
11
#include <linux/bio.h>
12
#include <linux/blkdev.h>
13
#include <linux/blk-integrity.h>
14
#include <linux/kmemleak.h>
15
#include <linux/mm.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/workqueue.h>
19
#include <linux/smp.h>
20
#include <linux/interrupt.h>
21
#include <linux/llist.h>
22
#include <linux/cpu.h>
23
#include <linux/cache.h>
24
#include <linux/sched/topology.h>
25
#include <linux/sched/signal.h>
26
#include <linux/delay.h>
27
#include <linux/crash_dump.h>
28
#include <linux/prefetch.h>
29
#include <linux/blk-crypto.h>
30
#include <linux/part_stat.h>
31
#include <linux/sched/isolation.h>
32
33
#include <trace/events/block.h>
34
35
#include <linux/t10-pi.h>
36
#include "blk.h"
37
#include "blk-mq.h"
38
#include "blk-mq-debugfs.h"
39
#include "blk-pm.h"
40
#include "blk-stat.h"
41
#include "blk-mq-sched.h"
42
#include "blk-rq-qos.h"
43
44
static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45
static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46
static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47
48
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49
static void blk_mq_request_bypass_insert(struct request *rq,
50
blk_insert_t flags);
51
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52
struct list_head *list);
53
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54
struct io_comp_batch *iob, unsigned int flags);
55
56
/*
57
* Check if any of the ctx, dispatch list or elevator
58
* have pending work in this hardware queue.
59
*/
60
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61
{
62
return !list_empty_careful(&hctx->dispatch) ||
63
sbitmap_any_bit_set(&hctx->ctx_map) ||
64
blk_mq_sched_has_work(hctx);
65
}
66
67
/*
68
* Mark this ctx as having pending work in this hardware queue
69
*/
70
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71
struct blk_mq_ctx *ctx)
72
{
73
const int bit = ctx->index_hw[hctx->type];
74
75
if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76
sbitmap_set_bit(&hctx->ctx_map, bit);
77
}
78
79
static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80
struct blk_mq_ctx *ctx)
81
{
82
const int bit = ctx->index_hw[hctx->type];
83
84
sbitmap_clear_bit(&hctx->ctx_map, bit);
85
}
86
87
struct mq_inflight {
88
struct block_device *part;
89
unsigned int inflight[2];
90
};
91
92
static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93
{
94
struct mq_inflight *mi = priv;
95
96
if (rq->rq_flags & RQF_IO_STAT &&
97
(!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98
blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99
mi->inflight[rq_data_dir(rq)]++;
100
101
return true;
102
}
103
104
void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105
{
106
struct mq_inflight mi = { .part = part };
107
108
blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109
&mi);
110
inflight[READ] = mi.inflight[READ];
111
inflight[WRITE] = mi.inflight[WRITE];
112
}
113
114
#ifdef CONFIG_LOCKDEP
115
static bool blk_freeze_set_owner(struct request_queue *q,
116
struct task_struct *owner)
117
{
118
if (!owner)
119
return false;
120
121
if (!q->mq_freeze_depth) {
122
q->mq_freeze_owner = owner;
123
q->mq_freeze_owner_depth = 1;
124
q->mq_freeze_disk_dead = !q->disk ||
125
test_bit(GD_DEAD, &q->disk->state) ||
126
!blk_queue_registered(q);
127
q->mq_freeze_queue_dying = blk_queue_dying(q);
128
return true;
129
}
130
131
if (owner == q->mq_freeze_owner)
132
q->mq_freeze_owner_depth += 1;
133
return false;
134
}
135
136
/* verify the last unfreeze in owner context */
137
static bool blk_unfreeze_check_owner(struct request_queue *q)
138
{
139
if (q->mq_freeze_owner != current)
140
return false;
141
if (--q->mq_freeze_owner_depth == 0) {
142
q->mq_freeze_owner = NULL;
143
return true;
144
}
145
return false;
146
}
147
148
#else
149
150
static bool blk_freeze_set_owner(struct request_queue *q,
151
struct task_struct *owner)
152
{
153
return false;
154
}
155
156
static bool blk_unfreeze_check_owner(struct request_queue *q)
157
{
158
return false;
159
}
160
#endif
161
162
bool __blk_freeze_queue_start(struct request_queue *q,
163
struct task_struct *owner)
164
{
165
bool freeze;
166
167
mutex_lock(&q->mq_freeze_lock);
168
freeze = blk_freeze_set_owner(q, owner);
169
if (++q->mq_freeze_depth == 1) {
170
percpu_ref_kill(&q->q_usage_counter);
171
mutex_unlock(&q->mq_freeze_lock);
172
if (queue_is_mq(q))
173
blk_mq_run_hw_queues(q, false);
174
} else {
175
mutex_unlock(&q->mq_freeze_lock);
176
}
177
178
return freeze;
179
}
180
181
void blk_freeze_queue_start(struct request_queue *q)
182
{
183
if (__blk_freeze_queue_start(q, current))
184
blk_freeze_acquire_lock(q);
185
}
186
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187
188
void blk_mq_freeze_queue_wait(struct request_queue *q)
189
{
190
wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191
}
192
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193
194
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195
unsigned long timeout)
196
{
197
return wait_event_timeout(q->mq_freeze_wq,
198
percpu_ref_is_zero(&q->q_usage_counter),
199
timeout);
200
}
201
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202
203
void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204
{
205
blk_freeze_queue_start(q);
206
blk_mq_freeze_queue_wait(q);
207
}
208
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209
210
bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211
{
212
bool unfreeze;
213
214
mutex_lock(&q->mq_freeze_lock);
215
if (force_atomic)
216
q->q_usage_counter.data->force_atomic = true;
217
q->mq_freeze_depth--;
218
WARN_ON_ONCE(q->mq_freeze_depth < 0);
219
if (!q->mq_freeze_depth) {
220
percpu_ref_resurrect(&q->q_usage_counter);
221
wake_up_all(&q->mq_freeze_wq);
222
}
223
unfreeze = blk_unfreeze_check_owner(q);
224
mutex_unlock(&q->mq_freeze_lock);
225
226
return unfreeze;
227
}
228
229
void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230
{
231
if (__blk_mq_unfreeze_queue(q, false))
232
blk_unfreeze_release_lock(q);
233
}
234
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235
236
/*
237
* non_owner variant of blk_freeze_queue_start
238
*
239
* Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240
* by the same task. This is fragile and should not be used if at all
241
* possible.
242
*/
243
void blk_freeze_queue_start_non_owner(struct request_queue *q)
244
{
245
__blk_freeze_queue_start(q, NULL);
246
}
247
EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248
249
/* non_owner variant of blk_mq_unfreeze_queue */
250
void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251
{
252
__blk_mq_unfreeze_queue(q, false);
253
}
254
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255
256
/*
257
* FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258
* mpt3sas driver such that this function can be removed.
259
*/
260
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261
{
262
unsigned long flags;
263
264
spin_lock_irqsave(&q->queue_lock, flags);
265
if (!q->quiesce_depth++)
266
blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267
spin_unlock_irqrestore(&q->queue_lock, flags);
268
}
269
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270
271
/**
272
* blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273
* @set: tag_set to wait on
274
*
275
* Note: it is driver's responsibility for making sure that quiesce has
276
* been started on or more of the request_queues of the tag_set. This
277
* function only waits for the quiesce on those request_queues that had
278
* the quiesce flag set using blk_mq_quiesce_queue_nowait.
279
*/
280
void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281
{
282
if (set->flags & BLK_MQ_F_BLOCKING)
283
synchronize_srcu(set->srcu);
284
else
285
synchronize_rcu();
286
}
287
EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288
289
/**
290
* blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291
* @q: request queue.
292
*
293
* Note: this function does not prevent that the struct request end_io()
294
* callback function is invoked. Once this function is returned, we make
295
* sure no dispatch can happen until the queue is unquiesced via
296
* blk_mq_unquiesce_queue().
297
*/
298
void blk_mq_quiesce_queue(struct request_queue *q)
299
{
300
blk_mq_quiesce_queue_nowait(q);
301
/* nothing to wait for non-mq queues */
302
if (queue_is_mq(q))
303
blk_mq_wait_quiesce_done(q->tag_set);
304
}
305
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306
307
/*
308
* blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309
* @q: request queue.
310
*
311
* This function recovers queue into the state before quiescing
312
* which is done by blk_mq_quiesce_queue.
313
*/
314
void blk_mq_unquiesce_queue(struct request_queue *q)
315
{
316
unsigned long flags;
317
bool run_queue = false;
318
319
spin_lock_irqsave(&q->queue_lock, flags);
320
if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321
;
322
} else if (!--q->quiesce_depth) {
323
blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324
run_queue = true;
325
}
326
spin_unlock_irqrestore(&q->queue_lock, flags);
327
328
/* dispatch requests which are inserted during quiescing */
329
if (run_queue)
330
blk_mq_run_hw_queues(q, true);
331
}
332
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333
334
void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335
{
336
struct request_queue *q;
337
338
mutex_lock(&set->tag_list_lock);
339
list_for_each_entry(q, &set->tag_list, tag_set_list) {
340
if (!blk_queue_skip_tagset_quiesce(q))
341
blk_mq_quiesce_queue_nowait(q);
342
}
343
mutex_unlock(&set->tag_list_lock);
344
345
blk_mq_wait_quiesce_done(set);
346
}
347
EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348
349
void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350
{
351
struct request_queue *q;
352
353
mutex_lock(&set->tag_list_lock);
354
list_for_each_entry(q, &set->tag_list, tag_set_list) {
355
if (!blk_queue_skip_tagset_quiesce(q))
356
blk_mq_unquiesce_queue(q);
357
}
358
mutex_unlock(&set->tag_list_lock);
359
}
360
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361
362
void blk_mq_wake_waiters(struct request_queue *q)
363
{
364
struct blk_mq_hw_ctx *hctx;
365
unsigned long i;
366
367
queue_for_each_hw_ctx(q, hctx, i)
368
if (blk_mq_hw_queue_mapped(hctx))
369
blk_mq_tag_wakeup_all(hctx->tags, true);
370
}
371
372
void blk_rq_init(struct request_queue *q, struct request *rq)
373
{
374
memset(rq, 0, sizeof(*rq));
375
376
INIT_LIST_HEAD(&rq->queuelist);
377
rq->q = q;
378
rq->__sector = (sector_t) -1;
379
INIT_HLIST_NODE(&rq->hash);
380
RB_CLEAR_NODE(&rq->rb_node);
381
rq->tag = BLK_MQ_NO_TAG;
382
rq->internal_tag = BLK_MQ_NO_TAG;
383
rq->start_time_ns = blk_time_get_ns();
384
blk_crypto_rq_set_defaults(rq);
385
}
386
EXPORT_SYMBOL(blk_rq_init);
387
388
/* Set start and alloc time when the allocated request is actually used */
389
static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
390
{
391
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
392
if (blk_queue_rq_alloc_time(rq->q))
393
rq->alloc_time_ns = alloc_time_ns;
394
else
395
rq->alloc_time_ns = 0;
396
#endif
397
}
398
399
static inline void blk_mq_bio_issue_init(struct request_queue *q,
400
struct bio *bio)
401
{
402
#ifdef CONFIG_BLK_CGROUP
403
if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags))
404
bio->issue_time_ns = blk_time_get_ns();
405
#endif
406
}
407
408
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
409
struct blk_mq_tags *tags, unsigned int tag)
410
{
411
struct blk_mq_ctx *ctx = data->ctx;
412
struct blk_mq_hw_ctx *hctx = data->hctx;
413
struct request_queue *q = data->q;
414
struct request *rq = tags->static_rqs[tag];
415
416
rq->q = q;
417
rq->mq_ctx = ctx;
418
rq->mq_hctx = hctx;
419
rq->cmd_flags = data->cmd_flags;
420
421
if (data->flags & BLK_MQ_REQ_PM)
422
data->rq_flags |= RQF_PM;
423
rq->rq_flags = data->rq_flags;
424
425
if (data->rq_flags & RQF_SCHED_TAGS) {
426
rq->tag = BLK_MQ_NO_TAG;
427
rq->internal_tag = tag;
428
} else {
429
rq->tag = tag;
430
rq->internal_tag = BLK_MQ_NO_TAG;
431
}
432
rq->timeout = 0;
433
434
rq->part = NULL;
435
rq->io_start_time_ns = 0;
436
rq->stats_sectors = 0;
437
rq->nr_phys_segments = 0;
438
rq->nr_integrity_segments = 0;
439
rq->end_io = NULL;
440
rq->end_io_data = NULL;
441
442
blk_crypto_rq_set_defaults(rq);
443
INIT_LIST_HEAD(&rq->queuelist);
444
/* tag was already set */
445
WRITE_ONCE(rq->deadline, 0);
446
req_ref_set(rq, 1);
447
448
if (rq->rq_flags & RQF_USE_SCHED) {
449
struct elevator_queue *e = data->q->elevator;
450
451
INIT_HLIST_NODE(&rq->hash);
452
RB_CLEAR_NODE(&rq->rb_node);
453
454
if (e->type->ops.prepare_request)
455
e->type->ops.prepare_request(rq);
456
}
457
458
return rq;
459
}
460
461
static inline struct request *
462
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
463
{
464
unsigned int tag, tag_offset;
465
struct blk_mq_tags *tags;
466
struct request *rq;
467
unsigned long tag_mask;
468
int i, nr = 0;
469
470
tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
471
if (unlikely(!tag_mask))
472
return NULL;
473
474
tags = blk_mq_tags_from_data(data);
475
for (i = 0; tag_mask; i++) {
476
if (!(tag_mask & (1UL << i)))
477
continue;
478
tag = tag_offset + i;
479
prefetch(tags->static_rqs[tag]);
480
tag_mask &= ~(1UL << i);
481
rq = blk_mq_rq_ctx_init(data, tags, tag);
482
rq_list_add_head(data->cached_rqs, rq);
483
nr++;
484
}
485
if (!(data->rq_flags & RQF_SCHED_TAGS))
486
blk_mq_add_active_requests(data->hctx, nr);
487
/* caller already holds a reference, add for remainder */
488
percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
489
data->nr_tags -= nr;
490
491
return rq_list_pop(data->cached_rqs);
492
}
493
494
static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
495
{
496
struct request_queue *q = data->q;
497
u64 alloc_time_ns = 0;
498
struct request *rq;
499
unsigned int tag;
500
501
/* alloc_time includes depth and tag waits */
502
if (blk_queue_rq_alloc_time(q))
503
alloc_time_ns = blk_time_get_ns();
504
505
if (data->cmd_flags & REQ_NOWAIT)
506
data->flags |= BLK_MQ_REQ_NOWAIT;
507
508
retry:
509
data->ctx = blk_mq_get_ctx(q);
510
data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
511
512
if (q->elevator) {
513
/*
514
* All requests use scheduler tags when an I/O scheduler is
515
* enabled for the queue.
516
*/
517
data->rq_flags |= RQF_SCHED_TAGS;
518
519
/*
520
* Flush/passthrough requests are special and go directly to the
521
* dispatch list.
522
*/
523
if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
524
!blk_op_is_passthrough(data->cmd_flags)) {
525
struct elevator_mq_ops *ops = &q->elevator->type->ops;
526
527
WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
528
529
data->rq_flags |= RQF_USE_SCHED;
530
if (ops->limit_depth)
531
ops->limit_depth(data->cmd_flags, data);
532
}
533
} else {
534
blk_mq_tag_busy(data->hctx);
535
}
536
537
if (data->flags & BLK_MQ_REQ_RESERVED)
538
data->rq_flags |= RQF_RESV;
539
540
/*
541
* Try batched alloc if we want more than 1 tag.
542
*/
543
if (data->nr_tags > 1) {
544
rq = __blk_mq_alloc_requests_batch(data);
545
if (rq) {
546
blk_mq_rq_time_init(rq, alloc_time_ns);
547
return rq;
548
}
549
data->nr_tags = 1;
550
}
551
552
/*
553
* Waiting allocations only fail because of an inactive hctx. In that
554
* case just retry the hctx assignment and tag allocation as CPU hotplug
555
* should have migrated us to an online CPU by now.
556
*/
557
tag = blk_mq_get_tag(data);
558
if (tag == BLK_MQ_NO_TAG) {
559
if (data->flags & BLK_MQ_REQ_NOWAIT)
560
return NULL;
561
/*
562
* Give up the CPU and sleep for a random short time to
563
* ensure that thread using a realtime scheduling class
564
* are migrated off the CPU, and thus off the hctx that
565
* is going away.
566
*/
567
msleep(3);
568
goto retry;
569
}
570
571
if (!(data->rq_flags & RQF_SCHED_TAGS))
572
blk_mq_inc_active_requests(data->hctx);
573
rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
574
blk_mq_rq_time_init(rq, alloc_time_ns);
575
return rq;
576
}
577
578
static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
579
struct blk_plug *plug,
580
blk_opf_t opf,
581
blk_mq_req_flags_t flags)
582
{
583
struct blk_mq_alloc_data data = {
584
.q = q,
585
.flags = flags,
586
.shallow_depth = 0,
587
.cmd_flags = opf,
588
.rq_flags = 0,
589
.nr_tags = plug->nr_ios,
590
.cached_rqs = &plug->cached_rqs,
591
.ctx = NULL,
592
.hctx = NULL
593
};
594
struct request *rq;
595
596
if (blk_queue_enter(q, flags))
597
return NULL;
598
599
plug->nr_ios = 1;
600
601
rq = __blk_mq_alloc_requests(&data);
602
if (unlikely(!rq))
603
blk_queue_exit(q);
604
return rq;
605
}
606
607
static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
608
blk_opf_t opf,
609
blk_mq_req_flags_t flags)
610
{
611
struct blk_plug *plug = current->plug;
612
struct request *rq;
613
614
if (!plug)
615
return NULL;
616
617
if (rq_list_empty(&plug->cached_rqs)) {
618
if (plug->nr_ios == 1)
619
return NULL;
620
rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
621
if (!rq)
622
return NULL;
623
} else {
624
rq = rq_list_peek(&plug->cached_rqs);
625
if (!rq || rq->q != q)
626
return NULL;
627
628
if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
629
return NULL;
630
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
631
return NULL;
632
633
rq_list_pop(&plug->cached_rqs);
634
blk_mq_rq_time_init(rq, blk_time_get_ns());
635
}
636
637
rq->cmd_flags = opf;
638
INIT_LIST_HEAD(&rq->queuelist);
639
return rq;
640
}
641
642
struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
643
blk_mq_req_flags_t flags)
644
{
645
struct request *rq;
646
647
rq = blk_mq_alloc_cached_request(q, opf, flags);
648
if (!rq) {
649
struct blk_mq_alloc_data data = {
650
.q = q,
651
.flags = flags,
652
.shallow_depth = 0,
653
.cmd_flags = opf,
654
.rq_flags = 0,
655
.nr_tags = 1,
656
.cached_rqs = NULL,
657
.ctx = NULL,
658
.hctx = NULL
659
};
660
int ret;
661
662
ret = blk_queue_enter(q, flags);
663
if (ret)
664
return ERR_PTR(ret);
665
666
rq = __blk_mq_alloc_requests(&data);
667
if (!rq)
668
goto out_queue_exit;
669
}
670
rq->__data_len = 0;
671
rq->__sector = (sector_t) -1;
672
rq->bio = rq->biotail = NULL;
673
return rq;
674
out_queue_exit:
675
blk_queue_exit(q);
676
return ERR_PTR(-EWOULDBLOCK);
677
}
678
EXPORT_SYMBOL(blk_mq_alloc_request);
679
680
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
681
blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
682
{
683
struct blk_mq_alloc_data data = {
684
.q = q,
685
.flags = flags,
686
.shallow_depth = 0,
687
.cmd_flags = opf,
688
.rq_flags = 0,
689
.nr_tags = 1,
690
.cached_rqs = NULL,
691
.ctx = NULL,
692
.hctx = NULL
693
};
694
u64 alloc_time_ns = 0;
695
struct request *rq;
696
unsigned int cpu;
697
unsigned int tag;
698
int ret;
699
700
/* alloc_time includes depth and tag waits */
701
if (blk_queue_rq_alloc_time(q))
702
alloc_time_ns = blk_time_get_ns();
703
704
/*
705
* If the tag allocator sleeps we could get an allocation for a
706
* different hardware context. No need to complicate the low level
707
* allocator for this for the rare use case of a command tied to
708
* a specific queue.
709
*/
710
if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
711
WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
712
return ERR_PTR(-EINVAL);
713
714
if (hctx_idx >= q->nr_hw_queues)
715
return ERR_PTR(-EIO);
716
717
ret = blk_queue_enter(q, flags);
718
if (ret)
719
return ERR_PTR(ret);
720
721
/*
722
* Check if the hardware context is actually mapped to anything.
723
* If not tell the caller that it should skip this queue.
724
*/
725
ret = -EXDEV;
726
data.hctx = xa_load(&q->hctx_table, hctx_idx);
727
if (!blk_mq_hw_queue_mapped(data.hctx))
728
goto out_queue_exit;
729
cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
730
if (cpu >= nr_cpu_ids)
731
goto out_queue_exit;
732
data.ctx = __blk_mq_get_ctx(q, cpu);
733
734
if (q->elevator)
735
data.rq_flags |= RQF_SCHED_TAGS;
736
else
737
blk_mq_tag_busy(data.hctx);
738
739
if (flags & BLK_MQ_REQ_RESERVED)
740
data.rq_flags |= RQF_RESV;
741
742
ret = -EWOULDBLOCK;
743
tag = blk_mq_get_tag(&data);
744
if (tag == BLK_MQ_NO_TAG)
745
goto out_queue_exit;
746
if (!(data.rq_flags & RQF_SCHED_TAGS))
747
blk_mq_inc_active_requests(data.hctx);
748
rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
749
blk_mq_rq_time_init(rq, alloc_time_ns);
750
rq->__data_len = 0;
751
rq->__sector = (sector_t) -1;
752
rq->bio = rq->biotail = NULL;
753
return rq;
754
755
out_queue_exit:
756
blk_queue_exit(q);
757
return ERR_PTR(ret);
758
}
759
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
760
761
static void blk_mq_finish_request(struct request *rq)
762
{
763
struct request_queue *q = rq->q;
764
765
blk_zone_finish_request(rq);
766
767
if (rq->rq_flags & RQF_USE_SCHED) {
768
q->elevator->type->ops.finish_request(rq);
769
/*
770
* For postflush request that may need to be
771
* completed twice, we should clear this flag
772
* to avoid double finish_request() on the rq.
773
*/
774
rq->rq_flags &= ~RQF_USE_SCHED;
775
}
776
}
777
778
static void __blk_mq_free_request(struct request *rq)
779
{
780
struct request_queue *q = rq->q;
781
struct blk_mq_ctx *ctx = rq->mq_ctx;
782
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
783
const int sched_tag = rq->internal_tag;
784
785
blk_crypto_free_request(rq);
786
blk_pm_mark_last_busy(rq);
787
rq->mq_hctx = NULL;
788
789
if (rq->tag != BLK_MQ_NO_TAG) {
790
blk_mq_dec_active_requests(hctx);
791
blk_mq_put_tag(hctx->tags, ctx, rq->tag);
792
}
793
if (sched_tag != BLK_MQ_NO_TAG)
794
blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
795
blk_mq_sched_restart(hctx);
796
blk_queue_exit(q);
797
}
798
799
void blk_mq_free_request(struct request *rq)
800
{
801
struct request_queue *q = rq->q;
802
803
blk_mq_finish_request(rq);
804
805
if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
806
laptop_io_completion(q->disk->bdi);
807
808
rq_qos_done(q, rq);
809
810
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
811
if (req_ref_put_and_test(rq))
812
__blk_mq_free_request(rq);
813
}
814
EXPORT_SYMBOL_GPL(blk_mq_free_request);
815
816
void blk_mq_free_plug_rqs(struct blk_plug *plug)
817
{
818
struct request *rq;
819
820
while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
821
blk_mq_free_request(rq);
822
}
823
824
void blk_dump_rq_flags(struct request *rq, char *msg)
825
{
826
printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
827
rq->q->disk ? rq->q->disk->disk_name : "?",
828
(__force unsigned long long) rq->cmd_flags);
829
830
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
831
(unsigned long long)blk_rq_pos(rq),
832
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
833
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
834
rq->bio, rq->biotail, blk_rq_bytes(rq));
835
}
836
EXPORT_SYMBOL(blk_dump_rq_flags);
837
838
static void blk_account_io_completion(struct request *req, unsigned int bytes)
839
{
840
if (req->rq_flags & RQF_IO_STAT) {
841
const int sgrp = op_stat_group(req_op(req));
842
843
part_stat_lock();
844
part_stat_add(req->part, sectors[sgrp], bytes >> 9);
845
part_stat_unlock();
846
}
847
}
848
849
static void blk_print_req_error(struct request *req, blk_status_t status)
850
{
851
printk_ratelimited(KERN_ERR
852
"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
853
"phys_seg %u prio class %u\n",
854
blk_status_to_str(status),
855
req->q->disk ? req->q->disk->disk_name : "?",
856
blk_rq_pos(req), (__force u32)req_op(req),
857
blk_op_str(req_op(req)),
858
(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
859
req->nr_phys_segments,
860
IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
861
}
862
863
/*
864
* Fully end IO on a request. Does not support partial completions, or
865
* errors.
866
*/
867
static void blk_complete_request(struct request *req)
868
{
869
const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
870
int total_bytes = blk_rq_bytes(req);
871
struct bio *bio = req->bio;
872
873
trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
874
875
if (!bio)
876
return;
877
878
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
879
blk_integrity_complete(req, total_bytes);
880
881
/*
882
* Upper layers may call blk_crypto_evict_key() anytime after the last
883
* bio_endio(). Therefore, the keyslot must be released before that.
884
*/
885
blk_crypto_rq_put_keyslot(req);
886
887
blk_account_io_completion(req, total_bytes);
888
889
do {
890
struct bio *next = bio->bi_next;
891
892
/* Completion has already been traced */
893
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
894
895
if (blk_req_bio_is_zone_append(req, bio))
896
blk_zone_append_update_request_bio(req, bio);
897
898
if (!is_flush)
899
bio_endio(bio);
900
bio = next;
901
} while (bio);
902
903
/*
904
* Reset counters so that the request stacking driver
905
* can find how many bytes remain in the request
906
* later.
907
*/
908
if (!req->end_io) {
909
req->bio = NULL;
910
req->__data_len = 0;
911
}
912
}
913
914
/**
915
* blk_update_request - Complete multiple bytes without completing the request
916
* @req: the request being processed
917
* @error: block status code
918
* @nr_bytes: number of bytes to complete for @req
919
*
920
* Description:
921
* Ends I/O on a number of bytes attached to @req, but doesn't complete
922
* the request structure even if @req doesn't have leftover.
923
* If @req has leftover, sets it up for the next range of segments.
924
*
925
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
926
* %false return from this function.
927
*
928
* Note:
929
* The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
930
* except in the consistency check at the end of this function.
931
*
932
* Return:
933
* %false - this request doesn't have any more data
934
* %true - this request has more data
935
**/
936
bool blk_update_request(struct request *req, blk_status_t error,
937
unsigned int nr_bytes)
938
{
939
bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
940
bool quiet = req->rq_flags & RQF_QUIET;
941
int total_bytes;
942
943
trace_block_rq_complete(req, error, nr_bytes);
944
945
if (!req->bio)
946
return false;
947
948
if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
949
error == BLK_STS_OK)
950
blk_integrity_complete(req, nr_bytes);
951
952
/*
953
* Upper layers may call blk_crypto_evict_key() anytime after the last
954
* bio_endio(). Therefore, the keyslot must be released before that.
955
*/
956
if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
957
__blk_crypto_rq_put_keyslot(req);
958
959
if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
960
!test_bit(GD_DEAD, &req->q->disk->state)) {
961
blk_print_req_error(req, error);
962
trace_block_rq_error(req, error, nr_bytes);
963
}
964
965
blk_account_io_completion(req, nr_bytes);
966
967
total_bytes = 0;
968
while (req->bio) {
969
struct bio *bio = req->bio;
970
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
971
972
if (unlikely(error))
973
bio->bi_status = error;
974
975
if (bio_bytes == bio->bi_iter.bi_size) {
976
req->bio = bio->bi_next;
977
} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
978
/*
979
* Partial zone append completions cannot be supported
980
* as the BIO fragments may end up not being written
981
* sequentially.
982
*/
983
bio->bi_status = BLK_STS_IOERR;
984
}
985
986
/* Completion has already been traced */
987
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
988
if (unlikely(quiet))
989
bio_set_flag(bio, BIO_QUIET);
990
991
bio_advance(bio, bio_bytes);
992
993
/* Don't actually finish bio if it's part of flush sequence */
994
if (!bio->bi_iter.bi_size) {
995
if (blk_req_bio_is_zone_append(req, bio))
996
blk_zone_append_update_request_bio(req, bio);
997
if (!is_flush)
998
bio_endio(bio);
999
}
1000
1001
total_bytes += bio_bytes;
1002
nr_bytes -= bio_bytes;
1003
1004
if (!nr_bytes)
1005
break;
1006
}
1007
1008
/*
1009
* completely done
1010
*/
1011
if (!req->bio) {
1012
/*
1013
* Reset counters so that the request stacking driver
1014
* can find how many bytes remain in the request
1015
* later.
1016
*/
1017
req->__data_len = 0;
1018
return false;
1019
}
1020
1021
req->__data_len -= total_bytes;
1022
1023
/* update sector only for requests with clear definition of sector */
1024
if (!blk_rq_is_passthrough(req))
1025
req->__sector += total_bytes >> 9;
1026
1027
/* mixed attributes always follow the first bio */
1028
if (req->rq_flags & RQF_MIXED_MERGE) {
1029
req->cmd_flags &= ~REQ_FAILFAST_MASK;
1030
req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1031
}
1032
1033
if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1034
/*
1035
* If total number of sectors is less than the first segment
1036
* size, something has gone terribly wrong.
1037
*/
1038
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1039
blk_dump_rq_flags(req, "request botched");
1040
req->__data_len = blk_rq_cur_bytes(req);
1041
}
1042
1043
/* recalculate the number of segments */
1044
req->nr_phys_segments = blk_recalc_rq_segments(req);
1045
}
1046
1047
return true;
1048
}
1049
EXPORT_SYMBOL_GPL(blk_update_request);
1050
1051
static inline void blk_account_io_done(struct request *req, u64 now)
1052
{
1053
trace_block_io_done(req);
1054
1055
/*
1056
* Account IO completion. flush_rq isn't accounted as a
1057
* normal IO on queueing nor completion. Accounting the
1058
* containing request is enough.
1059
*/
1060
if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1061
const int sgrp = op_stat_group(req_op(req));
1062
1063
part_stat_lock();
1064
update_io_ticks(req->part, jiffies, true);
1065
part_stat_inc(req->part, ios[sgrp]);
1066
part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1067
part_stat_local_dec(req->part,
1068
in_flight[op_is_write(req_op(req))]);
1069
part_stat_unlock();
1070
}
1071
}
1072
1073
static inline bool blk_rq_passthrough_stats(struct request *req)
1074
{
1075
struct bio *bio = req->bio;
1076
1077
if (!blk_queue_passthrough_stat(req->q))
1078
return false;
1079
1080
/* Requests without a bio do not transfer data. */
1081
if (!bio)
1082
return false;
1083
1084
/*
1085
* Stats are accumulated in the bdev, so must have one attached to a
1086
* bio to track stats. Most drivers do not set the bdev for passthrough
1087
* requests, but nvme is one that will set it.
1088
*/
1089
if (!bio->bi_bdev)
1090
return false;
1091
1092
/*
1093
* We don't know what a passthrough command does, but we know the
1094
* payload size and data direction. Ensuring the size is aligned to the
1095
* block size filters out most commands with payloads that don't
1096
* represent sector access.
1097
*/
1098
if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1099
return false;
1100
return true;
1101
}
1102
1103
static inline void blk_account_io_start(struct request *req)
1104
{
1105
trace_block_io_start(req);
1106
1107
if (!blk_queue_io_stat(req->q))
1108
return;
1109
if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1110
return;
1111
1112
req->rq_flags |= RQF_IO_STAT;
1113
req->start_time_ns = blk_time_get_ns();
1114
1115
/*
1116
* All non-passthrough requests are created from a bio with one
1117
* exception: when a flush command that is part of a flush sequence
1118
* generated by the state machine in blk-flush.c is cloned onto the
1119
* lower device by dm-multipath we can get here without a bio.
1120
*/
1121
if (req->bio)
1122
req->part = req->bio->bi_bdev;
1123
else
1124
req->part = req->q->disk->part0;
1125
1126
part_stat_lock();
1127
update_io_ticks(req->part, jiffies, false);
1128
part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1129
part_stat_unlock();
1130
}
1131
1132
static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1133
{
1134
if (rq->rq_flags & RQF_STATS)
1135
blk_stat_add(rq, now);
1136
1137
blk_mq_sched_completed_request(rq, now);
1138
blk_account_io_done(rq, now);
1139
}
1140
1141
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1142
{
1143
if (blk_mq_need_time_stamp(rq))
1144
__blk_mq_end_request_acct(rq, blk_time_get_ns());
1145
1146
blk_mq_finish_request(rq);
1147
1148
if (rq->end_io) {
1149
rq_qos_done(rq->q, rq);
1150
if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1151
blk_mq_free_request(rq);
1152
} else {
1153
blk_mq_free_request(rq);
1154
}
1155
}
1156
EXPORT_SYMBOL(__blk_mq_end_request);
1157
1158
void blk_mq_end_request(struct request *rq, blk_status_t error)
1159
{
1160
if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1161
BUG();
1162
__blk_mq_end_request(rq, error);
1163
}
1164
EXPORT_SYMBOL(blk_mq_end_request);
1165
1166
#define TAG_COMP_BATCH 32
1167
1168
static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1169
int *tag_array, int nr_tags)
1170
{
1171
struct request_queue *q = hctx->queue;
1172
1173
blk_mq_sub_active_requests(hctx, nr_tags);
1174
1175
blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1176
percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1177
}
1178
1179
void blk_mq_end_request_batch(struct io_comp_batch *iob)
1180
{
1181
int tags[TAG_COMP_BATCH], nr_tags = 0;
1182
struct blk_mq_hw_ctx *cur_hctx = NULL;
1183
struct request *rq;
1184
u64 now = 0;
1185
1186
if (iob->need_ts)
1187
now = blk_time_get_ns();
1188
1189
while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1190
prefetch(rq->bio);
1191
prefetch(rq->rq_next);
1192
1193
blk_complete_request(rq);
1194
if (iob->need_ts)
1195
__blk_mq_end_request_acct(rq, now);
1196
1197
blk_mq_finish_request(rq);
1198
1199
rq_qos_done(rq->q, rq);
1200
1201
/*
1202
* If end_io handler returns NONE, then it still has
1203
* ownership of the request.
1204
*/
1205
if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1206
continue;
1207
1208
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1209
if (!req_ref_put_and_test(rq))
1210
continue;
1211
1212
blk_crypto_free_request(rq);
1213
blk_pm_mark_last_busy(rq);
1214
1215
if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1216
if (cur_hctx)
1217
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1218
nr_tags = 0;
1219
cur_hctx = rq->mq_hctx;
1220
}
1221
tags[nr_tags++] = rq->tag;
1222
}
1223
1224
if (nr_tags)
1225
blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1226
}
1227
EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1228
1229
static void blk_complete_reqs(struct llist_head *list)
1230
{
1231
struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1232
struct request *rq, *next;
1233
1234
llist_for_each_entry_safe(rq, next, entry, ipi_list)
1235
rq->q->mq_ops->complete(rq);
1236
}
1237
1238
static __latent_entropy void blk_done_softirq(void)
1239
{
1240
blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1241
}
1242
1243
static int blk_softirq_cpu_dead(unsigned int cpu)
1244
{
1245
blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1246
return 0;
1247
}
1248
1249
static void __blk_mq_complete_request_remote(void *data)
1250
{
1251
__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1252
}
1253
1254
static inline bool blk_mq_complete_need_ipi(struct request *rq)
1255
{
1256
int cpu = raw_smp_processor_id();
1257
1258
if (!IS_ENABLED(CONFIG_SMP) ||
1259
!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1260
return false;
1261
/*
1262
* With force threaded interrupts enabled, raising softirq from an SMP
1263
* function call will always result in waking the ksoftirqd thread.
1264
* This is probably worse than completing the request on a different
1265
* cache domain.
1266
*/
1267
if (force_irqthreads())
1268
return false;
1269
1270
/* same CPU or cache domain and capacity? Complete locally */
1271
if (cpu == rq->mq_ctx->cpu ||
1272
(!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1273
cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1274
cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1275
return false;
1276
1277
/* don't try to IPI to an offline CPU */
1278
return cpu_online(rq->mq_ctx->cpu);
1279
}
1280
1281
static void blk_mq_complete_send_ipi(struct request *rq)
1282
{
1283
unsigned int cpu;
1284
1285
cpu = rq->mq_ctx->cpu;
1286
if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1287
smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1288
}
1289
1290
static void blk_mq_raise_softirq(struct request *rq)
1291
{
1292
struct llist_head *list;
1293
1294
preempt_disable();
1295
list = this_cpu_ptr(&blk_cpu_done);
1296
if (llist_add(&rq->ipi_list, list))
1297
raise_softirq(BLOCK_SOFTIRQ);
1298
preempt_enable();
1299
}
1300
1301
bool blk_mq_complete_request_remote(struct request *rq)
1302
{
1303
WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1304
1305
/*
1306
* For request which hctx has only one ctx mapping,
1307
* or a polled request, always complete locally,
1308
* it's pointless to redirect the completion.
1309
*/
1310
if ((rq->mq_hctx->nr_ctx == 1 &&
1311
rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1312
rq->cmd_flags & REQ_POLLED)
1313
return false;
1314
1315
if (blk_mq_complete_need_ipi(rq)) {
1316
blk_mq_complete_send_ipi(rq);
1317
return true;
1318
}
1319
1320
if (rq->q->nr_hw_queues == 1) {
1321
blk_mq_raise_softirq(rq);
1322
return true;
1323
}
1324
return false;
1325
}
1326
EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1327
1328
/**
1329
* blk_mq_complete_request - end I/O on a request
1330
* @rq: the request being processed
1331
*
1332
* Description:
1333
* Complete a request by scheduling the ->complete_rq operation.
1334
**/
1335
void blk_mq_complete_request(struct request *rq)
1336
{
1337
if (!blk_mq_complete_request_remote(rq))
1338
rq->q->mq_ops->complete(rq);
1339
}
1340
EXPORT_SYMBOL(blk_mq_complete_request);
1341
1342
/**
1343
* blk_mq_start_request - Start processing a request
1344
* @rq: Pointer to request to be started
1345
*
1346
* Function used by device drivers to notify the block layer that a request
1347
* is going to be processed now, so blk layer can do proper initializations
1348
* such as starting the timeout timer.
1349
*/
1350
void blk_mq_start_request(struct request *rq)
1351
{
1352
struct request_queue *q = rq->q;
1353
1354
trace_block_rq_issue(rq);
1355
1356
if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1357
!blk_rq_is_passthrough(rq)) {
1358
rq->io_start_time_ns = blk_time_get_ns();
1359
rq->stats_sectors = blk_rq_sectors(rq);
1360
rq->rq_flags |= RQF_STATS;
1361
rq_qos_issue(q, rq);
1362
}
1363
1364
WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1365
1366
blk_add_timer(rq);
1367
WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1368
rq->mq_hctx->tags->rqs[rq->tag] = rq;
1369
1370
if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1371
blk_integrity_prepare(rq);
1372
1373
if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1374
WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1375
}
1376
EXPORT_SYMBOL(blk_mq_start_request);
1377
1378
/*
1379
* Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1380
* queues. This is important for md arrays to benefit from merging
1381
* requests.
1382
*/
1383
static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1384
{
1385
if (plug->multiple_queues)
1386
return BLK_MAX_REQUEST_COUNT * 2;
1387
return BLK_MAX_REQUEST_COUNT;
1388
}
1389
1390
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1391
{
1392
struct request *last = rq_list_peek(&plug->mq_list);
1393
1394
if (!plug->rq_count) {
1395
trace_block_plug(rq->q);
1396
} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1397
(!blk_queue_nomerges(rq->q) &&
1398
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1399
blk_mq_flush_plug_list(plug, false);
1400
last = NULL;
1401
trace_block_plug(rq->q);
1402
}
1403
1404
if (!plug->multiple_queues && last && last->q != rq->q)
1405
plug->multiple_queues = true;
1406
/*
1407
* Any request allocated from sched tags can't be issued to
1408
* ->queue_rqs() directly
1409
*/
1410
if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1411
plug->has_elevator = true;
1412
rq_list_add_tail(&plug->mq_list, rq);
1413
plug->rq_count++;
1414
}
1415
1416
/**
1417
* blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1418
* @rq: request to insert
1419
* @at_head: insert request at head or tail of queue
1420
*
1421
* Description:
1422
* Insert a fully prepared request at the back of the I/O scheduler queue
1423
* for execution. Don't wait for completion.
1424
*
1425
* Note:
1426
* This function will invoke @done directly if the queue is dead.
1427
*/
1428
void blk_execute_rq_nowait(struct request *rq, bool at_head)
1429
{
1430
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1431
1432
WARN_ON(irqs_disabled());
1433
WARN_ON(!blk_rq_is_passthrough(rq));
1434
1435
blk_account_io_start(rq);
1436
1437
if (current->plug && !at_head) {
1438
blk_add_rq_to_plug(current->plug, rq);
1439
return;
1440
}
1441
1442
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1443
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1444
}
1445
EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1446
1447
struct blk_rq_wait {
1448
struct completion done;
1449
blk_status_t ret;
1450
};
1451
1452
static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1453
{
1454
struct blk_rq_wait *wait = rq->end_io_data;
1455
1456
wait->ret = ret;
1457
complete(&wait->done);
1458
return RQ_END_IO_NONE;
1459
}
1460
1461
bool blk_rq_is_poll(struct request *rq)
1462
{
1463
if (!rq->mq_hctx)
1464
return false;
1465
if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1466
return false;
1467
return true;
1468
}
1469
EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1470
1471
static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1472
{
1473
do {
1474
blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1475
cond_resched();
1476
} while (!completion_done(wait));
1477
}
1478
1479
/**
1480
* blk_execute_rq - insert a request into queue for execution
1481
* @rq: request to insert
1482
* @at_head: insert request at head or tail of queue
1483
*
1484
* Description:
1485
* Insert a fully prepared request at the back of the I/O scheduler queue
1486
* for execution and wait for completion.
1487
* Return: The blk_status_t result provided to blk_mq_end_request().
1488
*/
1489
blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1490
{
1491
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1492
struct blk_rq_wait wait = {
1493
.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1494
};
1495
1496
WARN_ON(irqs_disabled());
1497
WARN_ON(!blk_rq_is_passthrough(rq));
1498
1499
rq->end_io_data = &wait;
1500
rq->end_io = blk_end_sync_rq;
1501
1502
blk_account_io_start(rq);
1503
blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1504
blk_mq_run_hw_queue(hctx, false);
1505
1506
if (blk_rq_is_poll(rq))
1507
blk_rq_poll_completion(rq, &wait.done);
1508
else
1509
blk_wait_io(&wait.done);
1510
1511
return wait.ret;
1512
}
1513
EXPORT_SYMBOL(blk_execute_rq);
1514
1515
static void __blk_mq_requeue_request(struct request *rq)
1516
{
1517
struct request_queue *q = rq->q;
1518
1519
blk_mq_put_driver_tag(rq);
1520
1521
trace_block_rq_requeue(rq);
1522
rq_qos_requeue(q, rq);
1523
1524
if (blk_mq_request_started(rq)) {
1525
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1526
rq->rq_flags &= ~RQF_TIMED_OUT;
1527
}
1528
}
1529
1530
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1531
{
1532
struct request_queue *q = rq->q;
1533
unsigned long flags;
1534
1535
__blk_mq_requeue_request(rq);
1536
1537
/* this request will be re-inserted to io scheduler queue */
1538
blk_mq_sched_requeue_request(rq);
1539
1540
spin_lock_irqsave(&q->requeue_lock, flags);
1541
list_add_tail(&rq->queuelist, &q->requeue_list);
1542
spin_unlock_irqrestore(&q->requeue_lock, flags);
1543
1544
if (kick_requeue_list)
1545
blk_mq_kick_requeue_list(q);
1546
}
1547
EXPORT_SYMBOL(blk_mq_requeue_request);
1548
1549
static void blk_mq_requeue_work(struct work_struct *work)
1550
{
1551
struct request_queue *q =
1552
container_of(work, struct request_queue, requeue_work.work);
1553
LIST_HEAD(rq_list);
1554
LIST_HEAD(flush_list);
1555
struct request *rq;
1556
1557
spin_lock_irq(&q->requeue_lock);
1558
list_splice_init(&q->requeue_list, &rq_list);
1559
list_splice_init(&q->flush_list, &flush_list);
1560
spin_unlock_irq(&q->requeue_lock);
1561
1562
while (!list_empty(&rq_list)) {
1563
rq = list_entry(rq_list.next, struct request, queuelist);
1564
list_del_init(&rq->queuelist);
1565
/*
1566
* If RQF_DONTPREP is set, the request has been started by the
1567
* driver already and might have driver-specific data allocated
1568
* already. Insert it into the hctx dispatch list to avoid
1569
* block layer merges for the request.
1570
*/
1571
if (rq->rq_flags & RQF_DONTPREP)
1572
blk_mq_request_bypass_insert(rq, 0);
1573
else
1574
blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1575
}
1576
1577
while (!list_empty(&flush_list)) {
1578
rq = list_entry(flush_list.next, struct request, queuelist);
1579
list_del_init(&rq->queuelist);
1580
blk_mq_insert_request(rq, 0);
1581
}
1582
1583
blk_mq_run_hw_queues(q, false);
1584
}
1585
1586
void blk_mq_kick_requeue_list(struct request_queue *q)
1587
{
1588
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1589
}
1590
EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1591
1592
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1593
unsigned long msecs)
1594
{
1595
kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1596
msecs_to_jiffies(msecs));
1597
}
1598
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1599
1600
static bool blk_is_flush_data_rq(struct request *rq)
1601
{
1602
return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1603
}
1604
1605
static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1606
{
1607
/*
1608
* If we find a request that isn't idle we know the queue is busy
1609
* as it's checked in the iter.
1610
* Return false to stop the iteration.
1611
*
1612
* In case of queue quiesce, if one flush data request is completed,
1613
* don't count it as inflight given the flush sequence is suspended,
1614
* and the original flush data request is invisible to driver, just
1615
* like other pending requests because of quiesce
1616
*/
1617
if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1618
blk_is_flush_data_rq(rq) &&
1619
blk_mq_request_completed(rq))) {
1620
bool *busy = priv;
1621
1622
*busy = true;
1623
return false;
1624
}
1625
1626
return true;
1627
}
1628
1629
bool blk_mq_queue_inflight(struct request_queue *q)
1630
{
1631
bool busy = false;
1632
1633
blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1634
return busy;
1635
}
1636
EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1637
1638
static void blk_mq_rq_timed_out(struct request *req)
1639
{
1640
req->rq_flags |= RQF_TIMED_OUT;
1641
if (req->q->mq_ops->timeout) {
1642
enum blk_eh_timer_return ret;
1643
1644
ret = req->q->mq_ops->timeout(req);
1645
if (ret == BLK_EH_DONE)
1646
return;
1647
WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1648
}
1649
1650
blk_add_timer(req);
1651
}
1652
1653
struct blk_expired_data {
1654
bool has_timedout_rq;
1655
unsigned long next;
1656
unsigned long timeout_start;
1657
};
1658
1659
static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1660
{
1661
unsigned long deadline;
1662
1663
if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1664
return false;
1665
if (rq->rq_flags & RQF_TIMED_OUT)
1666
return false;
1667
1668
deadline = READ_ONCE(rq->deadline);
1669
if (time_after_eq(expired->timeout_start, deadline))
1670
return true;
1671
1672
if (expired->next == 0)
1673
expired->next = deadline;
1674
else if (time_after(expired->next, deadline))
1675
expired->next = deadline;
1676
return false;
1677
}
1678
1679
void blk_mq_put_rq_ref(struct request *rq)
1680
{
1681
if (is_flush_rq(rq)) {
1682
if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1683
blk_mq_free_request(rq);
1684
} else if (req_ref_put_and_test(rq)) {
1685
__blk_mq_free_request(rq);
1686
}
1687
}
1688
1689
static bool blk_mq_check_expired(struct request *rq, void *priv)
1690
{
1691
struct blk_expired_data *expired = priv;
1692
1693
/*
1694
* blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1695
* be reallocated underneath the timeout handler's processing, then
1696
* the expire check is reliable. If the request is not expired, then
1697
* it was completed and reallocated as a new request after returning
1698
* from blk_mq_check_expired().
1699
*/
1700
if (blk_mq_req_expired(rq, expired)) {
1701
expired->has_timedout_rq = true;
1702
return false;
1703
}
1704
return true;
1705
}
1706
1707
static bool blk_mq_handle_expired(struct request *rq, void *priv)
1708
{
1709
struct blk_expired_data *expired = priv;
1710
1711
if (blk_mq_req_expired(rq, expired))
1712
blk_mq_rq_timed_out(rq);
1713
return true;
1714
}
1715
1716
static void blk_mq_timeout_work(struct work_struct *work)
1717
{
1718
struct request_queue *q =
1719
container_of(work, struct request_queue, timeout_work);
1720
struct blk_expired_data expired = {
1721
.timeout_start = jiffies,
1722
};
1723
struct blk_mq_hw_ctx *hctx;
1724
unsigned long i;
1725
1726
/* A deadlock might occur if a request is stuck requiring a
1727
* timeout at the same time a queue freeze is waiting
1728
* completion, since the timeout code would not be able to
1729
* acquire the queue reference here.
1730
*
1731
* That's why we don't use blk_queue_enter here; instead, we use
1732
* percpu_ref_tryget directly, because we need to be able to
1733
* obtain a reference even in the short window between the queue
1734
* starting to freeze, by dropping the first reference in
1735
* blk_freeze_queue_start, and the moment the last request is
1736
* consumed, marked by the instant q_usage_counter reaches
1737
* zero.
1738
*/
1739
if (!percpu_ref_tryget(&q->q_usage_counter))
1740
return;
1741
1742
/* check if there is any timed-out request */
1743
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1744
if (expired.has_timedout_rq) {
1745
/*
1746
* Before walking tags, we must ensure any submit started
1747
* before the current time has finished. Since the submit
1748
* uses srcu or rcu, wait for a synchronization point to
1749
* ensure all running submits have finished
1750
*/
1751
blk_mq_wait_quiesce_done(q->tag_set);
1752
1753
expired.next = 0;
1754
blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1755
}
1756
1757
if (expired.next != 0) {
1758
mod_timer(&q->timeout, expired.next);
1759
} else {
1760
/*
1761
* Request timeouts are handled as a forward rolling timer. If
1762
* we end up here it means that no requests are pending and
1763
* also that no request has been pending for a while. Mark
1764
* each hctx as idle.
1765
*/
1766
queue_for_each_hw_ctx(q, hctx, i) {
1767
/* the hctx may be unmapped, so check it here */
1768
if (blk_mq_hw_queue_mapped(hctx))
1769
blk_mq_tag_idle(hctx);
1770
}
1771
}
1772
blk_queue_exit(q);
1773
}
1774
1775
struct flush_busy_ctx_data {
1776
struct blk_mq_hw_ctx *hctx;
1777
struct list_head *list;
1778
};
1779
1780
static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1781
{
1782
struct flush_busy_ctx_data *flush_data = data;
1783
struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1784
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1785
enum hctx_type type = hctx->type;
1786
1787
spin_lock(&ctx->lock);
1788
list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1789
sbitmap_clear_bit(sb, bitnr);
1790
spin_unlock(&ctx->lock);
1791
return true;
1792
}
1793
1794
/*
1795
* Process software queues that have been marked busy, splicing them
1796
* to the for-dispatch
1797
*/
1798
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1799
{
1800
struct flush_busy_ctx_data data = {
1801
.hctx = hctx,
1802
.list = list,
1803
};
1804
1805
sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1806
}
1807
1808
struct dispatch_rq_data {
1809
struct blk_mq_hw_ctx *hctx;
1810
struct request *rq;
1811
};
1812
1813
static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1814
void *data)
1815
{
1816
struct dispatch_rq_data *dispatch_data = data;
1817
struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1818
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1819
enum hctx_type type = hctx->type;
1820
1821
spin_lock(&ctx->lock);
1822
if (!list_empty(&ctx->rq_lists[type])) {
1823
dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1824
list_del_init(&dispatch_data->rq->queuelist);
1825
if (list_empty(&ctx->rq_lists[type]))
1826
sbitmap_clear_bit(sb, bitnr);
1827
}
1828
spin_unlock(&ctx->lock);
1829
1830
return !dispatch_data->rq;
1831
}
1832
1833
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1834
struct blk_mq_ctx *start)
1835
{
1836
unsigned off = start ? start->index_hw[hctx->type] : 0;
1837
struct dispatch_rq_data data = {
1838
.hctx = hctx,
1839
.rq = NULL,
1840
};
1841
1842
__sbitmap_for_each_set(&hctx->ctx_map, off,
1843
dispatch_rq_from_ctx, &data);
1844
1845
return data.rq;
1846
}
1847
1848
bool __blk_mq_alloc_driver_tag(struct request *rq)
1849
{
1850
struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1851
unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1852
int tag;
1853
1854
blk_mq_tag_busy(rq->mq_hctx);
1855
1856
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1857
bt = &rq->mq_hctx->tags->breserved_tags;
1858
tag_offset = 0;
1859
} else {
1860
if (!hctx_may_queue(rq->mq_hctx, bt))
1861
return false;
1862
}
1863
1864
tag = __sbitmap_queue_get(bt);
1865
if (tag == BLK_MQ_NO_TAG)
1866
return false;
1867
1868
rq->tag = tag + tag_offset;
1869
blk_mq_inc_active_requests(rq->mq_hctx);
1870
return true;
1871
}
1872
1873
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1874
int flags, void *key)
1875
{
1876
struct blk_mq_hw_ctx *hctx;
1877
1878
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1879
1880
spin_lock(&hctx->dispatch_wait_lock);
1881
if (!list_empty(&wait->entry)) {
1882
struct sbitmap_queue *sbq;
1883
1884
list_del_init(&wait->entry);
1885
sbq = &hctx->tags->bitmap_tags;
1886
atomic_dec(&sbq->ws_active);
1887
}
1888
spin_unlock(&hctx->dispatch_wait_lock);
1889
1890
blk_mq_run_hw_queue(hctx, true);
1891
return 1;
1892
}
1893
1894
/*
1895
* Mark us waiting for a tag. For shared tags, this involves hooking us into
1896
* the tag wakeups. For non-shared tags, we can simply mark us needing a
1897
* restart. For both cases, take care to check the condition again after
1898
* marking us as waiting.
1899
*/
1900
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1901
struct request *rq)
1902
{
1903
struct sbitmap_queue *sbq;
1904
struct wait_queue_head *wq;
1905
wait_queue_entry_t *wait;
1906
bool ret;
1907
1908
if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1909
!(blk_mq_is_shared_tags(hctx->flags))) {
1910
blk_mq_sched_mark_restart_hctx(hctx);
1911
1912
/*
1913
* It's possible that a tag was freed in the window between the
1914
* allocation failure and adding the hardware queue to the wait
1915
* queue.
1916
*
1917
* Don't clear RESTART here, someone else could have set it.
1918
* At most this will cost an extra queue run.
1919
*/
1920
return blk_mq_get_driver_tag(rq);
1921
}
1922
1923
wait = &hctx->dispatch_wait;
1924
if (!list_empty_careful(&wait->entry))
1925
return false;
1926
1927
if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1928
sbq = &hctx->tags->breserved_tags;
1929
else
1930
sbq = &hctx->tags->bitmap_tags;
1931
wq = &bt_wait_ptr(sbq, hctx)->wait;
1932
1933
spin_lock_irq(&wq->lock);
1934
spin_lock(&hctx->dispatch_wait_lock);
1935
if (!list_empty(&wait->entry)) {
1936
spin_unlock(&hctx->dispatch_wait_lock);
1937
spin_unlock_irq(&wq->lock);
1938
return false;
1939
}
1940
1941
atomic_inc(&sbq->ws_active);
1942
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1943
__add_wait_queue(wq, wait);
1944
1945
/*
1946
* Add one explicit barrier since blk_mq_get_driver_tag() may
1947
* not imply barrier in case of failure.
1948
*
1949
* Order adding us to wait queue and allocating driver tag.
1950
*
1951
* The pair is the one implied in sbitmap_queue_wake_up() which
1952
* orders clearing sbitmap tag bits and waitqueue_active() in
1953
* __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1954
*
1955
* Otherwise, re-order of adding wait queue and getting driver tag
1956
* may cause __sbitmap_queue_wake_up() to wake up nothing because
1957
* the waitqueue_active() may not observe us in wait queue.
1958
*/
1959
smp_mb();
1960
1961
/*
1962
* It's possible that a tag was freed in the window between the
1963
* allocation failure and adding the hardware queue to the wait
1964
* queue.
1965
*/
1966
ret = blk_mq_get_driver_tag(rq);
1967
if (!ret) {
1968
spin_unlock(&hctx->dispatch_wait_lock);
1969
spin_unlock_irq(&wq->lock);
1970
return false;
1971
}
1972
1973
/*
1974
* We got a tag, remove ourselves from the wait queue to ensure
1975
* someone else gets the wakeup.
1976
*/
1977
list_del_init(&wait->entry);
1978
atomic_dec(&sbq->ws_active);
1979
spin_unlock(&hctx->dispatch_wait_lock);
1980
spin_unlock_irq(&wq->lock);
1981
1982
return true;
1983
}
1984
1985
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1986
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1987
/*
1988
* Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1989
* - EWMA is one simple way to compute running average value
1990
* - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1991
* - take 4 as factor for avoiding to get too small(0) result, and this
1992
* factor doesn't matter because EWMA decreases exponentially
1993
*/
1994
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1995
{
1996
unsigned int ewma;
1997
1998
ewma = hctx->dispatch_busy;
1999
2000
if (!ewma && !busy)
2001
return;
2002
2003
ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2004
if (busy)
2005
ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2006
ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2007
2008
hctx->dispatch_busy = ewma;
2009
}
2010
2011
#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
2012
2013
static void blk_mq_handle_dev_resource(struct request *rq,
2014
struct list_head *list)
2015
{
2016
list_add(&rq->queuelist, list);
2017
__blk_mq_requeue_request(rq);
2018
}
2019
2020
enum prep_dispatch {
2021
PREP_DISPATCH_OK,
2022
PREP_DISPATCH_NO_TAG,
2023
PREP_DISPATCH_NO_BUDGET,
2024
};
2025
2026
static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2027
bool need_budget)
2028
{
2029
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2030
int budget_token = -1;
2031
2032
if (need_budget) {
2033
budget_token = blk_mq_get_dispatch_budget(rq->q);
2034
if (budget_token < 0) {
2035
blk_mq_put_driver_tag(rq);
2036
return PREP_DISPATCH_NO_BUDGET;
2037
}
2038
blk_mq_set_rq_budget_token(rq, budget_token);
2039
}
2040
2041
if (!blk_mq_get_driver_tag(rq)) {
2042
/*
2043
* The initial allocation attempt failed, so we need to
2044
* rerun the hardware queue when a tag is freed. The
2045
* waitqueue takes care of that. If the queue is run
2046
* before we add this entry back on the dispatch list,
2047
* we'll re-run it below.
2048
*/
2049
if (!blk_mq_mark_tag_wait(hctx, rq)) {
2050
/*
2051
* All budgets not got from this function will be put
2052
* together during handling partial dispatch
2053
*/
2054
if (need_budget)
2055
blk_mq_put_dispatch_budget(rq->q, budget_token);
2056
return PREP_DISPATCH_NO_TAG;
2057
}
2058
}
2059
2060
return PREP_DISPATCH_OK;
2061
}
2062
2063
/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2064
static void blk_mq_release_budgets(struct request_queue *q,
2065
struct list_head *list)
2066
{
2067
struct request *rq;
2068
2069
list_for_each_entry(rq, list, queuelist) {
2070
int budget_token = blk_mq_get_rq_budget_token(rq);
2071
2072
if (budget_token >= 0)
2073
blk_mq_put_dispatch_budget(q, budget_token);
2074
}
2075
}
2076
2077
/*
2078
* blk_mq_commit_rqs will notify driver using bd->last that there is no
2079
* more requests. (See comment in struct blk_mq_ops for commit_rqs for
2080
* details)
2081
* Attention, we should explicitly call this in unusual cases:
2082
* 1) did not queue everything initially scheduled to queue
2083
* 2) the last attempt to queue a request failed
2084
*/
2085
static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2086
bool from_schedule)
2087
{
2088
if (hctx->queue->mq_ops->commit_rqs && queued) {
2089
trace_block_unplug(hctx->queue, queued, !from_schedule);
2090
hctx->queue->mq_ops->commit_rqs(hctx);
2091
}
2092
}
2093
2094
/*
2095
* Returns true if we did some work AND can potentially do more.
2096
*/
2097
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2098
bool get_budget)
2099
{
2100
enum prep_dispatch prep;
2101
struct request_queue *q = hctx->queue;
2102
struct request *rq;
2103
int queued;
2104
blk_status_t ret = BLK_STS_OK;
2105
bool needs_resource = false;
2106
2107
if (list_empty(list))
2108
return false;
2109
2110
/*
2111
* Now process all the entries, sending them to the driver.
2112
*/
2113
queued = 0;
2114
do {
2115
struct blk_mq_queue_data bd;
2116
2117
rq = list_first_entry(list, struct request, queuelist);
2118
2119
WARN_ON_ONCE(hctx != rq->mq_hctx);
2120
prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2121
if (prep != PREP_DISPATCH_OK)
2122
break;
2123
2124
list_del_init(&rq->queuelist);
2125
2126
bd.rq = rq;
2127
bd.last = list_empty(list);
2128
2129
ret = q->mq_ops->queue_rq(hctx, &bd);
2130
switch (ret) {
2131
case BLK_STS_OK:
2132
queued++;
2133
break;
2134
case BLK_STS_RESOURCE:
2135
needs_resource = true;
2136
fallthrough;
2137
case BLK_STS_DEV_RESOURCE:
2138
blk_mq_handle_dev_resource(rq, list);
2139
goto out;
2140
default:
2141
blk_mq_end_request(rq, ret);
2142
}
2143
} while (!list_empty(list));
2144
out:
2145
/* If we didn't flush the entire list, we could have told the driver
2146
* there was more coming, but that turned out to be a lie.
2147
*/
2148
if (!list_empty(list) || ret != BLK_STS_OK)
2149
blk_mq_commit_rqs(hctx, queued, false);
2150
2151
/*
2152
* Any items that need requeuing? Stuff them into hctx->dispatch,
2153
* that is where we will continue on next queue run.
2154
*/
2155
if (!list_empty(list)) {
2156
bool needs_restart;
2157
/* For non-shared tags, the RESTART check will suffice */
2158
bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2159
((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2160
blk_mq_is_shared_tags(hctx->flags));
2161
2162
/*
2163
* If the caller allocated budgets, free the budgets of the
2164
* requests that have not yet been passed to the block driver.
2165
*/
2166
if (!get_budget)
2167
blk_mq_release_budgets(q, list);
2168
2169
spin_lock(&hctx->lock);
2170
list_splice_tail_init(list, &hctx->dispatch);
2171
spin_unlock(&hctx->lock);
2172
2173
/*
2174
* Order adding requests to hctx->dispatch and checking
2175
* SCHED_RESTART flag. The pair of this smp_mb() is the one
2176
* in blk_mq_sched_restart(). Avoid restart code path to
2177
* miss the new added requests to hctx->dispatch, meantime
2178
* SCHED_RESTART is observed here.
2179
*/
2180
smp_mb();
2181
2182
/*
2183
* If SCHED_RESTART was set by the caller of this function and
2184
* it is no longer set that means that it was cleared by another
2185
* thread and hence that a queue rerun is needed.
2186
*
2187
* If 'no_tag' is set, that means that we failed getting
2188
* a driver tag with an I/O scheduler attached. If our dispatch
2189
* waitqueue is no longer active, ensure that we run the queue
2190
* AFTER adding our entries back to the list.
2191
*
2192
* If no I/O scheduler has been configured it is possible that
2193
* the hardware queue got stopped and restarted before requests
2194
* were pushed back onto the dispatch list. Rerun the queue to
2195
* avoid starvation. Notes:
2196
* - blk_mq_run_hw_queue() checks whether or not a queue has
2197
* been stopped before rerunning a queue.
2198
* - Some but not all block drivers stop a queue before
2199
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2200
* and dm-rq.
2201
*
2202
* If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2203
* bit is set, run queue after a delay to avoid IO stalls
2204
* that could otherwise occur if the queue is idle. We'll do
2205
* similar if we couldn't get budget or couldn't lock a zone
2206
* and SCHED_RESTART is set.
2207
*/
2208
needs_restart = blk_mq_sched_needs_restart(hctx);
2209
if (prep == PREP_DISPATCH_NO_BUDGET)
2210
needs_resource = true;
2211
if (!needs_restart ||
2212
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2213
blk_mq_run_hw_queue(hctx, true);
2214
else if (needs_resource)
2215
blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2216
2217
blk_mq_update_dispatch_busy(hctx, true);
2218
return false;
2219
}
2220
2221
blk_mq_update_dispatch_busy(hctx, false);
2222
return true;
2223
}
2224
2225
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2226
{
2227
int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2228
2229
if (cpu >= nr_cpu_ids)
2230
cpu = cpumask_first(hctx->cpumask);
2231
return cpu;
2232
}
2233
2234
/*
2235
* ->next_cpu is always calculated from hctx->cpumask, so simply use
2236
* it for speeding up the check
2237
*/
2238
static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2239
{
2240
return hctx->next_cpu >= nr_cpu_ids;
2241
}
2242
2243
/*
2244
* It'd be great if the workqueue API had a way to pass
2245
* in a mask and had some smarts for more clever placement.
2246
* For now we just round-robin here, switching for every
2247
* BLK_MQ_CPU_WORK_BATCH queued items.
2248
*/
2249
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2250
{
2251
bool tried = false;
2252
int next_cpu = hctx->next_cpu;
2253
2254
/* Switch to unbound if no allowable CPUs in this hctx */
2255
if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2256
return WORK_CPU_UNBOUND;
2257
2258
if (--hctx->next_cpu_batch <= 0) {
2259
select_cpu:
2260
next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2261
cpu_online_mask);
2262
if (next_cpu >= nr_cpu_ids)
2263
next_cpu = blk_mq_first_mapped_cpu(hctx);
2264
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2265
}
2266
2267
/*
2268
* Do unbound schedule if we can't find a online CPU for this hctx,
2269
* and it should only happen in the path of handling CPU DEAD.
2270
*/
2271
if (!cpu_online(next_cpu)) {
2272
if (!tried) {
2273
tried = true;
2274
goto select_cpu;
2275
}
2276
2277
/*
2278
* Make sure to re-select CPU next time once after CPUs
2279
* in hctx->cpumask become online again.
2280
*/
2281
hctx->next_cpu = next_cpu;
2282
hctx->next_cpu_batch = 1;
2283
return WORK_CPU_UNBOUND;
2284
}
2285
2286
hctx->next_cpu = next_cpu;
2287
return next_cpu;
2288
}
2289
2290
/**
2291
* blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2292
* @hctx: Pointer to the hardware queue to run.
2293
* @msecs: Milliseconds of delay to wait before running the queue.
2294
*
2295
* Run a hardware queue asynchronously with a delay of @msecs.
2296
*/
2297
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2298
{
2299
if (unlikely(blk_mq_hctx_stopped(hctx)))
2300
return;
2301
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2302
msecs_to_jiffies(msecs));
2303
}
2304
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2305
2306
static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2307
{
2308
bool need_run;
2309
2310
/*
2311
* When queue is quiesced, we may be switching io scheduler, or
2312
* updating nr_hw_queues, or other things, and we can't run queue
2313
* any more, even blk_mq_hctx_has_pending() can't be called safely.
2314
*
2315
* And queue will be rerun in blk_mq_unquiesce_queue() if it is
2316
* quiesced.
2317
*/
2318
__blk_mq_run_dispatch_ops(hctx->queue, false,
2319
need_run = !blk_queue_quiesced(hctx->queue) &&
2320
blk_mq_hctx_has_pending(hctx));
2321
return need_run;
2322
}
2323
2324
/**
2325
* blk_mq_run_hw_queue - Start to run a hardware queue.
2326
* @hctx: Pointer to the hardware queue to run.
2327
* @async: If we want to run the queue asynchronously.
2328
*
2329
* Check if the request queue is not in a quiesced state and if there are
2330
* pending requests to be sent. If this is true, run the queue to send requests
2331
* to hardware.
2332
*/
2333
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2334
{
2335
bool need_run;
2336
2337
/*
2338
* We can't run the queue inline with interrupts disabled.
2339
*/
2340
WARN_ON_ONCE(!async && in_interrupt());
2341
2342
might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2343
2344
need_run = blk_mq_hw_queue_need_run(hctx);
2345
if (!need_run) {
2346
unsigned long flags;
2347
2348
/*
2349
* Synchronize with blk_mq_unquiesce_queue(), because we check
2350
* if hw queue is quiesced locklessly above, we need the use
2351
* ->queue_lock to make sure we see the up-to-date status to
2352
* not miss rerunning the hw queue.
2353
*/
2354
spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2355
need_run = blk_mq_hw_queue_need_run(hctx);
2356
spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2357
2358
if (!need_run)
2359
return;
2360
}
2361
2362
if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2363
blk_mq_delay_run_hw_queue(hctx, 0);
2364
return;
2365
}
2366
2367
blk_mq_run_dispatch_ops(hctx->queue,
2368
blk_mq_sched_dispatch_requests(hctx));
2369
}
2370
EXPORT_SYMBOL(blk_mq_run_hw_queue);
2371
2372
/*
2373
* Return prefered queue to dispatch from (if any) for non-mq aware IO
2374
* scheduler.
2375
*/
2376
static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2377
{
2378
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2379
/*
2380
* If the IO scheduler does not respect hardware queues when
2381
* dispatching, we just don't bother with multiple HW queues and
2382
* dispatch from hctx for the current CPU since running multiple queues
2383
* just causes lock contention inside the scheduler and pointless cache
2384
* bouncing.
2385
*/
2386
struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2387
2388
if (!blk_mq_hctx_stopped(hctx))
2389
return hctx;
2390
return NULL;
2391
}
2392
2393
/**
2394
* blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2395
* @q: Pointer to the request queue to run.
2396
* @async: If we want to run the queue asynchronously.
2397
*/
2398
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2399
{
2400
struct blk_mq_hw_ctx *hctx, *sq_hctx;
2401
unsigned long i;
2402
2403
sq_hctx = NULL;
2404
if (blk_queue_sq_sched(q))
2405
sq_hctx = blk_mq_get_sq_hctx(q);
2406
queue_for_each_hw_ctx(q, hctx, i) {
2407
if (blk_mq_hctx_stopped(hctx))
2408
continue;
2409
/*
2410
* Dispatch from this hctx either if there's no hctx preferred
2411
* by IO scheduler or if it has requests that bypass the
2412
* scheduler.
2413
*/
2414
if (!sq_hctx || sq_hctx == hctx ||
2415
!list_empty_careful(&hctx->dispatch))
2416
blk_mq_run_hw_queue(hctx, async);
2417
}
2418
}
2419
EXPORT_SYMBOL(blk_mq_run_hw_queues);
2420
2421
/**
2422
* blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2423
* @q: Pointer to the request queue to run.
2424
* @msecs: Milliseconds of delay to wait before running the queues.
2425
*/
2426
void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2427
{
2428
struct blk_mq_hw_ctx *hctx, *sq_hctx;
2429
unsigned long i;
2430
2431
sq_hctx = NULL;
2432
if (blk_queue_sq_sched(q))
2433
sq_hctx = blk_mq_get_sq_hctx(q);
2434
queue_for_each_hw_ctx(q, hctx, i) {
2435
if (blk_mq_hctx_stopped(hctx))
2436
continue;
2437
/*
2438
* If there is already a run_work pending, leave the
2439
* pending delay untouched. Otherwise, a hctx can stall
2440
* if another hctx is re-delaying the other's work
2441
* before the work executes.
2442
*/
2443
if (delayed_work_pending(&hctx->run_work))
2444
continue;
2445
/*
2446
* Dispatch from this hctx either if there's no hctx preferred
2447
* by IO scheduler or if it has requests that bypass the
2448
* scheduler.
2449
*/
2450
if (!sq_hctx || sq_hctx == hctx ||
2451
!list_empty_careful(&hctx->dispatch))
2452
blk_mq_delay_run_hw_queue(hctx, msecs);
2453
}
2454
}
2455
EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2456
2457
/*
2458
* This function is often used for pausing .queue_rq() by driver when
2459
* there isn't enough resource or some conditions aren't satisfied, and
2460
* BLK_STS_RESOURCE is usually returned.
2461
*
2462
* We do not guarantee that dispatch can be drained or blocked
2463
* after blk_mq_stop_hw_queue() returns. Please use
2464
* blk_mq_quiesce_queue() for that requirement.
2465
*/
2466
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2467
{
2468
cancel_delayed_work(&hctx->run_work);
2469
2470
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2471
}
2472
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2473
2474
/*
2475
* This function is often used for pausing .queue_rq() by driver when
2476
* there isn't enough resource or some conditions aren't satisfied, and
2477
* BLK_STS_RESOURCE is usually returned.
2478
*
2479
* We do not guarantee that dispatch can be drained or blocked
2480
* after blk_mq_stop_hw_queues() returns. Please use
2481
* blk_mq_quiesce_queue() for that requirement.
2482
*/
2483
void blk_mq_stop_hw_queues(struct request_queue *q)
2484
{
2485
struct blk_mq_hw_ctx *hctx;
2486
unsigned long i;
2487
2488
queue_for_each_hw_ctx(q, hctx, i)
2489
blk_mq_stop_hw_queue(hctx);
2490
}
2491
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2492
2493
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2494
{
2495
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2496
2497
blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2498
}
2499
EXPORT_SYMBOL(blk_mq_start_hw_queue);
2500
2501
void blk_mq_start_hw_queues(struct request_queue *q)
2502
{
2503
struct blk_mq_hw_ctx *hctx;
2504
unsigned long i;
2505
2506
queue_for_each_hw_ctx(q, hctx, i)
2507
blk_mq_start_hw_queue(hctx);
2508
}
2509
EXPORT_SYMBOL(blk_mq_start_hw_queues);
2510
2511
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2512
{
2513
if (!blk_mq_hctx_stopped(hctx))
2514
return;
2515
2516
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2517
/*
2518
* Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2519
* clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2520
* list in the subsequent routine.
2521
*/
2522
smp_mb__after_atomic();
2523
blk_mq_run_hw_queue(hctx, async);
2524
}
2525
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2526
2527
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2528
{
2529
struct blk_mq_hw_ctx *hctx;
2530
unsigned long i;
2531
2532
queue_for_each_hw_ctx(q, hctx, i)
2533
blk_mq_start_stopped_hw_queue(hctx, async ||
2534
(hctx->flags & BLK_MQ_F_BLOCKING));
2535
}
2536
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2537
2538
static void blk_mq_run_work_fn(struct work_struct *work)
2539
{
2540
struct blk_mq_hw_ctx *hctx =
2541
container_of(work, struct blk_mq_hw_ctx, run_work.work);
2542
2543
blk_mq_run_dispatch_ops(hctx->queue,
2544
blk_mq_sched_dispatch_requests(hctx));
2545
}
2546
2547
/**
2548
* blk_mq_request_bypass_insert - Insert a request at dispatch list.
2549
* @rq: Pointer to request to be inserted.
2550
* @flags: BLK_MQ_INSERT_*
2551
*
2552
* Should only be used carefully, when the caller knows we want to
2553
* bypass a potential IO scheduler on the target device.
2554
*/
2555
static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2556
{
2557
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2558
2559
spin_lock(&hctx->lock);
2560
if (flags & BLK_MQ_INSERT_AT_HEAD)
2561
list_add(&rq->queuelist, &hctx->dispatch);
2562
else
2563
list_add_tail(&rq->queuelist, &hctx->dispatch);
2564
spin_unlock(&hctx->lock);
2565
}
2566
2567
static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2568
struct blk_mq_ctx *ctx, struct list_head *list,
2569
bool run_queue_async)
2570
{
2571
struct request *rq;
2572
enum hctx_type type = hctx->type;
2573
2574
/*
2575
* Try to issue requests directly if the hw queue isn't busy to save an
2576
* extra enqueue & dequeue to the sw queue.
2577
*/
2578
if (!hctx->dispatch_busy && !run_queue_async) {
2579
blk_mq_run_dispatch_ops(hctx->queue,
2580
blk_mq_try_issue_list_directly(hctx, list));
2581
if (list_empty(list))
2582
goto out;
2583
}
2584
2585
/*
2586
* preemption doesn't flush plug list, so it's possible ctx->cpu is
2587
* offline now
2588
*/
2589
list_for_each_entry(rq, list, queuelist) {
2590
BUG_ON(rq->mq_ctx != ctx);
2591
trace_block_rq_insert(rq);
2592
if (rq->cmd_flags & REQ_NOWAIT)
2593
run_queue_async = true;
2594
}
2595
2596
spin_lock(&ctx->lock);
2597
list_splice_tail_init(list, &ctx->rq_lists[type]);
2598
blk_mq_hctx_mark_pending(hctx, ctx);
2599
spin_unlock(&ctx->lock);
2600
out:
2601
blk_mq_run_hw_queue(hctx, run_queue_async);
2602
}
2603
2604
static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2605
{
2606
struct request_queue *q = rq->q;
2607
struct blk_mq_ctx *ctx = rq->mq_ctx;
2608
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2609
2610
if (blk_rq_is_passthrough(rq)) {
2611
/*
2612
* Passthrough request have to be added to hctx->dispatch
2613
* directly. The device may be in a situation where it can't
2614
* handle FS request, and always returns BLK_STS_RESOURCE for
2615
* them, which gets them added to hctx->dispatch.
2616
*
2617
* If a passthrough request is required to unblock the queues,
2618
* and it is added to the scheduler queue, there is no chance to
2619
* dispatch it given we prioritize requests in hctx->dispatch.
2620
*/
2621
blk_mq_request_bypass_insert(rq, flags);
2622
} else if (req_op(rq) == REQ_OP_FLUSH) {
2623
/*
2624
* Firstly normal IO request is inserted to scheduler queue or
2625
* sw queue, meantime we add flush request to dispatch queue(
2626
* hctx->dispatch) directly and there is at most one in-flight
2627
* flush request for each hw queue, so it doesn't matter to add
2628
* flush request to tail or front of the dispatch queue.
2629
*
2630
* Secondly in case of NCQ, flush request belongs to non-NCQ
2631
* command, and queueing it will fail when there is any
2632
* in-flight normal IO request(NCQ command). When adding flush
2633
* rq to the front of hctx->dispatch, it is easier to introduce
2634
* extra time to flush rq's latency because of S_SCHED_RESTART
2635
* compared with adding to the tail of dispatch queue, then
2636
* chance of flush merge is increased, and less flush requests
2637
* will be issued to controller. It is observed that ~10% time
2638
* is saved in blktests block/004 on disk attached to AHCI/NCQ
2639
* drive when adding flush rq to the front of hctx->dispatch.
2640
*
2641
* Simply queue flush rq to the front of hctx->dispatch so that
2642
* intensive flush workloads can benefit in case of NCQ HW.
2643
*/
2644
blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2645
} else if (q->elevator) {
2646
LIST_HEAD(list);
2647
2648
WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2649
2650
list_add(&rq->queuelist, &list);
2651
q->elevator->type->ops.insert_requests(hctx, &list, flags);
2652
} else {
2653
trace_block_rq_insert(rq);
2654
2655
spin_lock(&ctx->lock);
2656
if (flags & BLK_MQ_INSERT_AT_HEAD)
2657
list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2658
else
2659
list_add_tail(&rq->queuelist,
2660
&ctx->rq_lists[hctx->type]);
2661
blk_mq_hctx_mark_pending(hctx, ctx);
2662
spin_unlock(&ctx->lock);
2663
}
2664
}
2665
2666
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2667
unsigned int nr_segs)
2668
{
2669
int err;
2670
2671
if (bio->bi_opf & REQ_RAHEAD)
2672
rq->cmd_flags |= REQ_FAILFAST_MASK;
2673
2674
rq->bio = rq->biotail = bio;
2675
rq->__sector = bio->bi_iter.bi_sector;
2676
rq->__data_len = bio->bi_iter.bi_size;
2677
rq->nr_phys_segments = nr_segs;
2678
if (bio_integrity(bio))
2679
rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2680
bio);
2681
2682
/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2683
err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2684
WARN_ON_ONCE(err);
2685
2686
blk_account_io_start(rq);
2687
}
2688
2689
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2690
struct request *rq, bool last)
2691
{
2692
struct request_queue *q = rq->q;
2693
struct blk_mq_queue_data bd = {
2694
.rq = rq,
2695
.last = last,
2696
};
2697
blk_status_t ret;
2698
2699
/*
2700
* For OK queue, we are done. For error, caller may kill it.
2701
* Any other error (busy), just add it to our list as we
2702
* previously would have done.
2703
*/
2704
ret = q->mq_ops->queue_rq(hctx, &bd);
2705
switch (ret) {
2706
case BLK_STS_OK:
2707
blk_mq_update_dispatch_busy(hctx, false);
2708
break;
2709
case BLK_STS_RESOURCE:
2710
case BLK_STS_DEV_RESOURCE:
2711
blk_mq_update_dispatch_busy(hctx, true);
2712
__blk_mq_requeue_request(rq);
2713
break;
2714
default:
2715
blk_mq_update_dispatch_busy(hctx, false);
2716
break;
2717
}
2718
2719
return ret;
2720
}
2721
2722
static bool blk_mq_get_budget_and_tag(struct request *rq)
2723
{
2724
int budget_token;
2725
2726
budget_token = blk_mq_get_dispatch_budget(rq->q);
2727
if (budget_token < 0)
2728
return false;
2729
blk_mq_set_rq_budget_token(rq, budget_token);
2730
if (!blk_mq_get_driver_tag(rq)) {
2731
blk_mq_put_dispatch_budget(rq->q, budget_token);
2732
return false;
2733
}
2734
return true;
2735
}
2736
2737
/**
2738
* blk_mq_try_issue_directly - Try to send a request directly to device driver.
2739
* @hctx: Pointer of the associated hardware queue.
2740
* @rq: Pointer to request to be sent.
2741
*
2742
* If the device has enough resources to accept a new request now, send the
2743
* request directly to device driver. Else, insert at hctx->dispatch queue, so
2744
* we can try send it another time in the future. Requests inserted at this
2745
* queue have higher priority.
2746
*/
2747
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2748
struct request *rq)
2749
{
2750
blk_status_t ret;
2751
2752
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2753
blk_mq_insert_request(rq, 0);
2754
blk_mq_run_hw_queue(hctx, false);
2755
return;
2756
}
2757
2758
if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2759
blk_mq_insert_request(rq, 0);
2760
blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2761
return;
2762
}
2763
2764
ret = __blk_mq_issue_directly(hctx, rq, true);
2765
switch (ret) {
2766
case BLK_STS_OK:
2767
break;
2768
case BLK_STS_RESOURCE:
2769
case BLK_STS_DEV_RESOURCE:
2770
blk_mq_request_bypass_insert(rq, 0);
2771
blk_mq_run_hw_queue(hctx, false);
2772
break;
2773
default:
2774
blk_mq_end_request(rq, ret);
2775
break;
2776
}
2777
}
2778
2779
static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2780
{
2781
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2782
2783
if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2784
blk_mq_insert_request(rq, 0);
2785
blk_mq_run_hw_queue(hctx, false);
2786
return BLK_STS_OK;
2787
}
2788
2789
if (!blk_mq_get_budget_and_tag(rq))
2790
return BLK_STS_RESOURCE;
2791
return __blk_mq_issue_directly(hctx, rq, last);
2792
}
2793
2794
static void blk_mq_issue_direct(struct rq_list *rqs)
2795
{
2796
struct blk_mq_hw_ctx *hctx = NULL;
2797
struct request *rq;
2798
int queued = 0;
2799
blk_status_t ret = BLK_STS_OK;
2800
2801
while ((rq = rq_list_pop(rqs))) {
2802
bool last = rq_list_empty(rqs);
2803
2804
if (hctx != rq->mq_hctx) {
2805
if (hctx) {
2806
blk_mq_commit_rqs(hctx, queued, false);
2807
queued = 0;
2808
}
2809
hctx = rq->mq_hctx;
2810
}
2811
2812
ret = blk_mq_request_issue_directly(rq, last);
2813
switch (ret) {
2814
case BLK_STS_OK:
2815
queued++;
2816
break;
2817
case BLK_STS_RESOURCE:
2818
case BLK_STS_DEV_RESOURCE:
2819
blk_mq_request_bypass_insert(rq, 0);
2820
blk_mq_run_hw_queue(hctx, false);
2821
goto out;
2822
default:
2823
blk_mq_end_request(rq, ret);
2824
break;
2825
}
2826
}
2827
2828
out:
2829
if (ret != BLK_STS_OK)
2830
blk_mq_commit_rqs(hctx, queued, false);
2831
}
2832
2833
static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2834
{
2835
if (blk_queue_quiesced(q))
2836
return;
2837
q->mq_ops->queue_rqs(rqs);
2838
}
2839
2840
static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2841
struct rq_list *queue_rqs)
2842
{
2843
struct request *rq = rq_list_pop(rqs);
2844
struct request_queue *this_q = rq->q;
2845
struct request **prev = &rqs->head;
2846
struct rq_list matched_rqs = {};
2847
struct request *last = NULL;
2848
unsigned depth = 1;
2849
2850
rq_list_add_tail(&matched_rqs, rq);
2851
while ((rq = *prev)) {
2852
if (rq->q == this_q) {
2853
/* move rq from rqs to matched_rqs */
2854
*prev = rq->rq_next;
2855
rq_list_add_tail(&matched_rqs, rq);
2856
depth++;
2857
} else {
2858
/* leave rq in rqs */
2859
prev = &rq->rq_next;
2860
last = rq;
2861
}
2862
}
2863
2864
rqs->tail = last;
2865
*queue_rqs = matched_rqs;
2866
return depth;
2867
}
2868
2869
static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2870
{
2871
struct request_queue *q = rq_list_peek(rqs)->q;
2872
2873
trace_block_unplug(q, depth, true);
2874
2875
/*
2876
* Peek first request and see if we have a ->queue_rqs() hook.
2877
* If we do, we can dispatch the whole list in one go.
2878
* We already know at this point that all requests belong to the
2879
* same queue, caller must ensure that's the case.
2880
*/
2881
if (q->mq_ops->queue_rqs) {
2882
blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2883
if (rq_list_empty(rqs))
2884
return;
2885
}
2886
2887
blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2888
}
2889
2890
static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2891
{
2892
struct blk_mq_hw_ctx *this_hctx = NULL;
2893
struct blk_mq_ctx *this_ctx = NULL;
2894
struct rq_list requeue_list = {};
2895
unsigned int depth = 0;
2896
bool is_passthrough = false;
2897
LIST_HEAD(list);
2898
2899
do {
2900
struct request *rq = rq_list_pop(rqs);
2901
2902
if (!this_hctx) {
2903
this_hctx = rq->mq_hctx;
2904
this_ctx = rq->mq_ctx;
2905
is_passthrough = blk_rq_is_passthrough(rq);
2906
} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2907
is_passthrough != blk_rq_is_passthrough(rq)) {
2908
rq_list_add_tail(&requeue_list, rq);
2909
continue;
2910
}
2911
list_add_tail(&rq->queuelist, &list);
2912
depth++;
2913
} while (!rq_list_empty(rqs));
2914
2915
*rqs = requeue_list;
2916
trace_block_unplug(this_hctx->queue, depth, !from_sched);
2917
2918
percpu_ref_get(&this_hctx->queue->q_usage_counter);
2919
/* passthrough requests should never be issued to the I/O scheduler */
2920
if (is_passthrough) {
2921
spin_lock(&this_hctx->lock);
2922
list_splice_tail_init(&list, &this_hctx->dispatch);
2923
spin_unlock(&this_hctx->lock);
2924
blk_mq_run_hw_queue(this_hctx, from_sched);
2925
} else if (this_hctx->queue->elevator) {
2926
this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2927
&list, 0);
2928
blk_mq_run_hw_queue(this_hctx, from_sched);
2929
} else {
2930
blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2931
}
2932
percpu_ref_put(&this_hctx->queue->q_usage_counter);
2933
}
2934
2935
static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2936
{
2937
do {
2938
struct rq_list queue_rqs;
2939
unsigned depth;
2940
2941
depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2942
blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2943
while (!rq_list_empty(&queue_rqs))
2944
blk_mq_dispatch_list(&queue_rqs, false);
2945
} while (!rq_list_empty(rqs));
2946
}
2947
2948
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2949
{
2950
unsigned int depth;
2951
2952
/*
2953
* We may have been called recursively midway through handling
2954
* plug->mq_list via a schedule() in the driver's queue_rq() callback.
2955
* To avoid mq_list changing under our feet, clear rq_count early and
2956
* bail out specifically if rq_count is 0 rather than checking
2957
* whether the mq_list is empty.
2958
*/
2959
if (plug->rq_count == 0)
2960
return;
2961
depth = plug->rq_count;
2962
plug->rq_count = 0;
2963
2964
if (!plug->has_elevator && !from_schedule) {
2965
if (plug->multiple_queues) {
2966
blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2967
return;
2968
}
2969
2970
blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2971
if (rq_list_empty(&plug->mq_list))
2972
return;
2973
}
2974
2975
do {
2976
blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2977
} while (!rq_list_empty(&plug->mq_list));
2978
}
2979
2980
static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2981
struct list_head *list)
2982
{
2983
int queued = 0;
2984
blk_status_t ret = BLK_STS_OK;
2985
2986
while (!list_empty(list)) {
2987
struct request *rq = list_first_entry(list, struct request,
2988
queuelist);
2989
2990
list_del_init(&rq->queuelist);
2991
ret = blk_mq_request_issue_directly(rq, list_empty(list));
2992
switch (ret) {
2993
case BLK_STS_OK:
2994
queued++;
2995
break;
2996
case BLK_STS_RESOURCE:
2997
case BLK_STS_DEV_RESOURCE:
2998
blk_mq_request_bypass_insert(rq, 0);
2999
if (list_empty(list))
3000
blk_mq_run_hw_queue(hctx, false);
3001
goto out;
3002
default:
3003
blk_mq_end_request(rq, ret);
3004
break;
3005
}
3006
}
3007
3008
out:
3009
if (ret != BLK_STS_OK)
3010
blk_mq_commit_rqs(hctx, queued, false);
3011
}
3012
3013
static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3014
struct bio *bio, unsigned int nr_segs)
3015
{
3016
if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3017
if (blk_attempt_plug_merge(q, bio, nr_segs))
3018
return true;
3019
if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3020
return true;
3021
}
3022
return false;
3023
}
3024
3025
static struct request *blk_mq_get_new_requests(struct request_queue *q,
3026
struct blk_plug *plug,
3027
struct bio *bio)
3028
{
3029
struct blk_mq_alloc_data data = {
3030
.q = q,
3031
.flags = 0,
3032
.shallow_depth = 0,
3033
.cmd_flags = bio->bi_opf,
3034
.rq_flags = 0,
3035
.nr_tags = 1,
3036
.cached_rqs = NULL,
3037
.ctx = NULL,
3038
.hctx = NULL
3039
};
3040
struct request *rq;
3041
3042
rq_qos_throttle(q, bio);
3043
3044
if (plug) {
3045
data.nr_tags = plug->nr_ios;
3046
plug->nr_ios = 1;
3047
data.cached_rqs = &plug->cached_rqs;
3048
}
3049
3050
rq = __blk_mq_alloc_requests(&data);
3051
if (unlikely(!rq))
3052
rq_qos_cleanup(q, bio);
3053
return rq;
3054
}
3055
3056
/*
3057
* Check if there is a suitable cached request and return it.
3058
*/
3059
static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3060
struct request_queue *q, blk_opf_t opf)
3061
{
3062
enum hctx_type type = blk_mq_get_hctx_type(opf);
3063
struct request *rq;
3064
3065
if (!plug)
3066
return NULL;
3067
rq = rq_list_peek(&plug->cached_rqs);
3068
if (!rq || rq->q != q)
3069
return NULL;
3070
if (type != rq->mq_hctx->type &&
3071
(type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3072
return NULL;
3073
if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3074
return NULL;
3075
return rq;
3076
}
3077
3078
static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3079
struct bio *bio)
3080
{
3081
if (rq_list_pop(&plug->cached_rqs) != rq)
3082
WARN_ON_ONCE(1);
3083
3084
/*
3085
* If any qos ->throttle() end up blocking, we will have flushed the
3086
* plug and hence killed the cached_rq list as well. Pop this entry
3087
* before we throttle.
3088
*/
3089
rq_qos_throttle(rq->q, bio);
3090
3091
blk_mq_rq_time_init(rq, blk_time_get_ns());
3092
rq->cmd_flags = bio->bi_opf;
3093
INIT_LIST_HEAD(&rq->queuelist);
3094
}
3095
3096
static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3097
{
3098
unsigned int bs_mask = queue_logical_block_size(q) - 1;
3099
3100
/* .bi_sector of any zero sized bio need to be initialized */
3101
if ((bio->bi_iter.bi_size & bs_mask) ||
3102
((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3103
return true;
3104
return false;
3105
}
3106
3107
/**
3108
* blk_mq_submit_bio - Create and send a request to block device.
3109
* @bio: Bio pointer.
3110
*
3111
* Builds up a request structure from @q and @bio and send to the device. The
3112
* request may not be queued directly to hardware if:
3113
* * This request can be merged with another one
3114
* * We want to place request at plug queue for possible future merging
3115
* * There is an IO scheduler active at this queue
3116
*
3117
* It will not queue the request if there is an error with the bio, or at the
3118
* request creation.
3119
*/
3120
void blk_mq_submit_bio(struct bio *bio)
3121
{
3122
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3123
struct blk_plug *plug = current->plug;
3124
const int is_sync = op_is_sync(bio->bi_opf);
3125
struct blk_mq_hw_ctx *hctx;
3126
unsigned int nr_segs;
3127
struct request *rq;
3128
blk_status_t ret;
3129
3130
/*
3131
* If the plug has a cached request for this queue, try to use it.
3132
*/
3133
rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3134
3135
/*
3136
* A BIO that was released from a zone write plug has already been
3137
* through the preparation in this function, already holds a reference
3138
* on the queue usage counter, and is the only write BIO in-flight for
3139
* the target zone. Go straight to preparing a request for it.
3140
*/
3141
if (bio_zone_write_plugging(bio)) {
3142
nr_segs = bio->__bi_nr_segments;
3143
if (rq)
3144
blk_queue_exit(q);
3145
goto new_request;
3146
}
3147
3148
/*
3149
* The cached request already holds a q_usage_counter reference and we
3150
* don't have to acquire a new one if we use it.
3151
*/
3152
if (!rq) {
3153
if (unlikely(bio_queue_enter(bio)))
3154
return;
3155
}
3156
3157
/*
3158
* Device reconfiguration may change logical block size or reduce the
3159
* number of poll queues, so the checks for alignment and poll support
3160
* have to be done with queue usage counter held.
3161
*/
3162
if (unlikely(bio_unaligned(bio, q))) {
3163
bio_io_error(bio);
3164
goto queue_exit;
3165
}
3166
3167
if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3168
bio->bi_status = BLK_STS_NOTSUPP;
3169
bio_endio(bio);
3170
goto queue_exit;
3171
}
3172
3173
bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3174
if (!bio)
3175
goto queue_exit;
3176
3177
if (!bio_integrity_prep(bio))
3178
goto queue_exit;
3179
3180
blk_mq_bio_issue_init(q, bio);
3181
if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3182
goto queue_exit;
3183
3184
if (bio_needs_zone_write_plugging(bio)) {
3185
if (blk_zone_plug_bio(bio, nr_segs))
3186
goto queue_exit;
3187
}
3188
3189
new_request:
3190
if (rq) {
3191
blk_mq_use_cached_rq(rq, plug, bio);
3192
} else {
3193
rq = blk_mq_get_new_requests(q, plug, bio);
3194
if (unlikely(!rq)) {
3195
if (bio->bi_opf & REQ_NOWAIT)
3196
bio_wouldblock_error(bio);
3197
goto queue_exit;
3198
}
3199
}
3200
3201
trace_block_getrq(bio);
3202
3203
rq_qos_track(q, rq, bio);
3204
3205
blk_mq_bio_to_request(rq, bio, nr_segs);
3206
3207
ret = blk_crypto_rq_get_keyslot(rq);
3208
if (ret != BLK_STS_OK) {
3209
bio->bi_status = ret;
3210
bio_endio(bio);
3211
blk_mq_free_request(rq);
3212
return;
3213
}
3214
3215
if (bio_zone_write_plugging(bio))
3216
blk_zone_write_plug_init_request(rq);
3217
3218
if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3219
return;
3220
3221
if (plug) {
3222
blk_add_rq_to_plug(plug, rq);
3223
return;
3224
}
3225
3226
hctx = rq->mq_hctx;
3227
if ((rq->rq_flags & RQF_USE_SCHED) ||
3228
(hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3229
blk_mq_insert_request(rq, 0);
3230
blk_mq_run_hw_queue(hctx, true);
3231
} else {
3232
blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3233
}
3234
return;
3235
3236
queue_exit:
3237
/*
3238
* Don't drop the queue reference if we were trying to use a cached
3239
* request and thus didn't acquire one.
3240
*/
3241
if (!rq)
3242
blk_queue_exit(q);
3243
}
3244
3245
#ifdef CONFIG_BLK_MQ_STACKING
3246
/**
3247
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
3248
* @rq: the request being queued
3249
*/
3250
blk_status_t blk_insert_cloned_request(struct request *rq)
3251
{
3252
struct request_queue *q = rq->q;
3253
unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3254
unsigned int max_segments = blk_rq_get_max_segments(rq);
3255
blk_status_t ret;
3256
3257
if (blk_rq_sectors(rq) > max_sectors) {
3258
/*
3259
* SCSI device does not have a good way to return if
3260
* Write Same/Zero is actually supported. If a device rejects
3261
* a non-read/write command (discard, write same,etc.) the
3262
* low-level device driver will set the relevant queue limit to
3263
* 0 to prevent blk-lib from issuing more of the offending
3264
* operations. Commands queued prior to the queue limit being
3265
* reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3266
* errors being propagated to upper layers.
3267
*/
3268
if (max_sectors == 0)
3269
return BLK_STS_NOTSUPP;
3270
3271
printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3272
__func__, blk_rq_sectors(rq), max_sectors);
3273
return BLK_STS_IOERR;
3274
}
3275
3276
/*
3277
* The queue settings related to segment counting may differ from the
3278
* original queue.
3279
*/
3280
rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3281
if (rq->nr_phys_segments > max_segments) {
3282
printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3283
__func__, rq->nr_phys_segments, max_segments);
3284
return BLK_STS_IOERR;
3285
}
3286
3287
if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3288
return BLK_STS_IOERR;
3289
3290
ret = blk_crypto_rq_get_keyslot(rq);
3291
if (ret != BLK_STS_OK)
3292
return ret;
3293
3294
blk_account_io_start(rq);
3295
3296
/*
3297
* Since we have a scheduler attached on the top device,
3298
* bypass a potential scheduler on the bottom device for
3299
* insert.
3300
*/
3301
blk_mq_run_dispatch_ops(q,
3302
ret = blk_mq_request_issue_directly(rq, true));
3303
if (ret)
3304
blk_account_io_done(rq, blk_time_get_ns());
3305
return ret;
3306
}
3307
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3308
3309
/**
3310
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3311
* @rq: the clone request to be cleaned up
3312
*
3313
* Description:
3314
* Free all bios in @rq for a cloned request.
3315
*/
3316
void blk_rq_unprep_clone(struct request *rq)
3317
{
3318
struct bio *bio;
3319
3320
while ((bio = rq->bio) != NULL) {
3321
rq->bio = bio->bi_next;
3322
3323
bio_put(bio);
3324
}
3325
}
3326
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3327
3328
/**
3329
* blk_rq_prep_clone - Helper function to setup clone request
3330
* @rq: the request to be setup
3331
* @rq_src: original request to be cloned
3332
* @bs: bio_set that bios for clone are allocated from
3333
* @gfp_mask: memory allocation mask for bio
3334
* @bio_ctr: setup function to be called for each clone bio.
3335
* Returns %0 for success, non %0 for failure.
3336
* @data: private data to be passed to @bio_ctr
3337
*
3338
* Description:
3339
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3340
* Also, pages which the original bios are pointing to are not copied
3341
* and the cloned bios just point same pages.
3342
* So cloned bios must be completed before original bios, which means
3343
* the caller must complete @rq before @rq_src.
3344
*/
3345
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3346
struct bio_set *bs, gfp_t gfp_mask,
3347
int (*bio_ctr)(struct bio *, struct bio *, void *),
3348
void *data)
3349
{
3350
struct bio *bio_src;
3351
3352
if (!bs)
3353
bs = &fs_bio_set;
3354
3355
__rq_for_each_bio(bio_src, rq_src) {
3356
struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src,
3357
gfp_mask, bs);
3358
if (!bio)
3359
goto free_and_out;
3360
3361
if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3362
bio_put(bio);
3363
goto free_and_out;
3364
}
3365
3366
if (rq->bio) {
3367
rq->biotail->bi_next = bio;
3368
rq->biotail = bio;
3369
} else {
3370
rq->bio = rq->biotail = bio;
3371
}
3372
}
3373
3374
/* Copy attributes of the original request to the clone request. */
3375
rq->__sector = blk_rq_pos(rq_src);
3376
rq->__data_len = blk_rq_bytes(rq_src);
3377
if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3378
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3379
rq->special_vec = rq_src->special_vec;
3380
}
3381
rq->nr_phys_segments = rq_src->nr_phys_segments;
3382
rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3383
3384
if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3385
goto free_and_out;
3386
3387
return 0;
3388
3389
free_and_out:
3390
blk_rq_unprep_clone(rq);
3391
3392
return -ENOMEM;
3393
}
3394
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3395
#endif /* CONFIG_BLK_MQ_STACKING */
3396
3397
/*
3398
* Steal bios from a request and add them to a bio list.
3399
* The request must not have been partially completed before.
3400
*/
3401
void blk_steal_bios(struct bio_list *list, struct request *rq)
3402
{
3403
if (rq->bio) {
3404
if (list->tail)
3405
list->tail->bi_next = rq->bio;
3406
else
3407
list->head = rq->bio;
3408
list->tail = rq->biotail;
3409
3410
rq->bio = NULL;
3411
rq->biotail = NULL;
3412
}
3413
3414
rq->__data_len = 0;
3415
}
3416
EXPORT_SYMBOL_GPL(blk_steal_bios);
3417
3418
static size_t order_to_size(unsigned int order)
3419
{
3420
return (size_t)PAGE_SIZE << order;
3421
}
3422
3423
/* called before freeing request pool in @tags */
3424
static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3425
struct blk_mq_tags *tags)
3426
{
3427
struct page *page;
3428
3429
/*
3430
* There is no need to clear mapping if driver tags is not initialized
3431
* or the mapping belongs to the driver tags.
3432
*/
3433
if (!drv_tags || drv_tags == tags)
3434
return;
3435
3436
list_for_each_entry(page, &tags->page_list, lru) {
3437
unsigned long start = (unsigned long)page_address(page);
3438
unsigned long end = start + order_to_size(page->private);
3439
int i;
3440
3441
for (i = 0; i < drv_tags->nr_tags; i++) {
3442
struct request *rq = drv_tags->rqs[i];
3443
unsigned long rq_addr = (unsigned long)rq;
3444
3445
if (rq_addr >= start && rq_addr < end) {
3446
WARN_ON_ONCE(req_ref_read(rq) != 0);
3447
cmpxchg(&drv_tags->rqs[i], rq, NULL);
3448
}
3449
}
3450
}
3451
}
3452
3453
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3454
unsigned int hctx_idx)
3455
{
3456
struct blk_mq_tags *drv_tags;
3457
3458
if (list_empty(&tags->page_list))
3459
return;
3460
3461
if (blk_mq_is_shared_tags(set->flags))
3462
drv_tags = set->shared_tags;
3463
else
3464
drv_tags = set->tags[hctx_idx];
3465
3466
if (tags->static_rqs && set->ops->exit_request) {
3467
int i;
3468
3469
for (i = 0; i < tags->nr_tags; i++) {
3470
struct request *rq = tags->static_rqs[i];
3471
3472
if (!rq)
3473
continue;
3474
set->ops->exit_request(set, rq, hctx_idx);
3475
tags->static_rqs[i] = NULL;
3476
}
3477
}
3478
3479
blk_mq_clear_rq_mapping(drv_tags, tags);
3480
/*
3481
* Free request pages in SRCU callback, which is called from
3482
* blk_mq_free_tags().
3483
*/
3484
}
3485
3486
void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
3487
{
3488
kfree(tags->rqs);
3489
tags->rqs = NULL;
3490
kfree(tags->static_rqs);
3491
tags->static_rqs = NULL;
3492
3493
blk_mq_free_tags(set, tags);
3494
}
3495
3496
static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3497
unsigned int hctx_idx)
3498
{
3499
int i;
3500
3501
for (i = 0; i < set->nr_maps; i++) {
3502
unsigned int start = set->map[i].queue_offset;
3503
unsigned int end = start + set->map[i].nr_queues;
3504
3505
if (hctx_idx >= start && hctx_idx < end)
3506
break;
3507
}
3508
3509
if (i >= set->nr_maps)
3510
i = HCTX_TYPE_DEFAULT;
3511
3512
return i;
3513
}
3514
3515
static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3516
unsigned int hctx_idx)
3517
{
3518
enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3519
3520
return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3521
}
3522
3523
static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3524
unsigned int hctx_idx,
3525
unsigned int nr_tags,
3526
unsigned int reserved_tags)
3527
{
3528
int node = blk_mq_get_hctx_node(set, hctx_idx);
3529
struct blk_mq_tags *tags;
3530
3531
if (node == NUMA_NO_NODE)
3532
node = set->numa_node;
3533
3534
tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3535
if (!tags)
3536
return NULL;
3537
3538
tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3539
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3540
node);
3541
if (!tags->rqs)
3542
goto err_free_tags;
3543
3544
tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3545
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3546
node);
3547
if (!tags->static_rqs)
3548
goto err_free_rqs;
3549
3550
return tags;
3551
3552
err_free_rqs:
3553
kfree(tags->rqs);
3554
err_free_tags:
3555
blk_mq_free_tags(set, tags);
3556
return NULL;
3557
}
3558
3559
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3560
unsigned int hctx_idx, int node)
3561
{
3562
int ret;
3563
3564
if (set->ops->init_request) {
3565
ret = set->ops->init_request(set, rq, hctx_idx, node);
3566
if (ret)
3567
return ret;
3568
}
3569
3570
WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3571
return 0;
3572
}
3573
3574
static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3575
struct blk_mq_tags *tags,
3576
unsigned int hctx_idx, unsigned int depth)
3577
{
3578
unsigned int i, j, entries_per_page, max_order = 4;
3579
int node = blk_mq_get_hctx_node(set, hctx_idx);
3580
size_t rq_size, left;
3581
3582
if (node == NUMA_NO_NODE)
3583
node = set->numa_node;
3584
3585
/*
3586
* rq_size is the size of the request plus driver payload, rounded
3587
* to the cacheline size
3588
*/
3589
rq_size = round_up(sizeof(struct request) + set->cmd_size,
3590
cache_line_size());
3591
left = rq_size * depth;
3592
3593
for (i = 0; i < depth; ) {
3594
int this_order = max_order;
3595
struct page *page;
3596
int to_do;
3597
void *p;
3598
3599
while (this_order && left < order_to_size(this_order - 1))
3600
this_order--;
3601
3602
do {
3603
page = alloc_pages_node(node,
3604
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3605
this_order);
3606
if (page)
3607
break;
3608
if (!this_order--)
3609
break;
3610
if (order_to_size(this_order) < rq_size)
3611
break;
3612
} while (1);
3613
3614
if (!page)
3615
goto fail;
3616
3617
page->private = this_order;
3618
list_add_tail(&page->lru, &tags->page_list);
3619
3620
p = page_address(page);
3621
/*
3622
* Allow kmemleak to scan these pages as they contain pointers
3623
* to additional allocations like via ops->init_request().
3624
*/
3625
kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3626
entries_per_page = order_to_size(this_order) / rq_size;
3627
to_do = min(entries_per_page, depth - i);
3628
left -= to_do * rq_size;
3629
for (j = 0; j < to_do; j++) {
3630
struct request *rq = p;
3631
3632
tags->static_rqs[i] = rq;
3633
if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3634
tags->static_rqs[i] = NULL;
3635
goto fail;
3636
}
3637
3638
p += rq_size;
3639
i++;
3640
}
3641
}
3642
return 0;
3643
3644
fail:
3645
blk_mq_free_rqs(set, tags, hctx_idx);
3646
return -ENOMEM;
3647
}
3648
3649
struct rq_iter_data {
3650
struct blk_mq_hw_ctx *hctx;
3651
bool has_rq;
3652
};
3653
3654
static bool blk_mq_has_request(struct request *rq, void *data)
3655
{
3656
struct rq_iter_data *iter_data = data;
3657
3658
if (rq->mq_hctx != iter_data->hctx)
3659
return true;
3660
iter_data->has_rq = true;
3661
return false;
3662
}
3663
3664
static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3665
{
3666
struct blk_mq_tags *tags = hctx->sched_tags ?
3667
hctx->sched_tags : hctx->tags;
3668
struct rq_iter_data data = {
3669
.hctx = hctx,
3670
};
3671
int srcu_idx;
3672
3673
srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu);
3674
blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3675
srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx);
3676
3677
return data.has_rq;
3678
}
3679
3680
static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3681
unsigned int this_cpu)
3682
{
3683
enum hctx_type type = hctx->type;
3684
int cpu;
3685
3686
/*
3687
* hctx->cpumask has to rule out isolated CPUs, but userspace still
3688
* might submit IOs on these isolated CPUs, so use the queue map to
3689
* check if all CPUs mapped to this hctx are offline
3690
*/
3691
for_each_online_cpu(cpu) {
3692
struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3693
type, cpu);
3694
3695
if (h != hctx)
3696
continue;
3697
3698
/* this hctx has at least one online CPU */
3699
if (this_cpu != cpu)
3700
return true;
3701
}
3702
3703
return false;
3704
}
3705
3706
static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3707
{
3708
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3709
struct blk_mq_hw_ctx, cpuhp_online);
3710
3711
if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3712
return 0;
3713
3714
/*
3715
* Prevent new request from being allocated on the current hctx.
3716
*
3717
* The smp_mb__after_atomic() Pairs with the implied barrier in
3718
* test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3719
* seen once we return from the tag allocator.
3720
*/
3721
set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3722
smp_mb__after_atomic();
3723
3724
/*
3725
* Try to grab a reference to the queue and wait for any outstanding
3726
* requests. If we could not grab a reference the queue has been
3727
* frozen and there are no requests.
3728
*/
3729
if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3730
while (blk_mq_hctx_has_requests(hctx))
3731
msleep(5);
3732
percpu_ref_put(&hctx->queue->q_usage_counter);
3733
}
3734
3735
return 0;
3736
}
3737
3738
/*
3739
* Check if one CPU is mapped to the specified hctx
3740
*
3741
* Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3742
* to be used for scheduling kworker only. For other usage, please call this
3743
* helper for checking if one CPU belongs to the specified hctx
3744
*/
3745
static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3746
const struct blk_mq_hw_ctx *hctx)
3747
{
3748
struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3749
hctx->type, cpu);
3750
3751
return mapped_hctx == hctx;
3752
}
3753
3754
static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3755
{
3756
struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3757
struct blk_mq_hw_ctx, cpuhp_online);
3758
3759
if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3760
clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3761
return 0;
3762
}
3763
3764
/*
3765
* 'cpu' is going away. splice any existing rq_list entries from this
3766
* software queue to the hw queue dispatch list, and ensure that it
3767
* gets run.
3768
*/
3769
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3770
{
3771
struct blk_mq_hw_ctx *hctx;
3772
struct blk_mq_ctx *ctx;
3773
LIST_HEAD(tmp);
3774
enum hctx_type type;
3775
3776
hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3777
if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3778
return 0;
3779
3780
ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3781
type = hctx->type;
3782
3783
spin_lock(&ctx->lock);
3784
if (!list_empty(&ctx->rq_lists[type])) {
3785
list_splice_init(&ctx->rq_lists[type], &tmp);
3786
blk_mq_hctx_clear_pending(hctx, ctx);
3787
}
3788
spin_unlock(&ctx->lock);
3789
3790
if (list_empty(&tmp))
3791
return 0;
3792
3793
spin_lock(&hctx->lock);
3794
list_splice_tail_init(&tmp, &hctx->dispatch);
3795
spin_unlock(&hctx->lock);
3796
3797
blk_mq_run_hw_queue(hctx, true);
3798
return 0;
3799
}
3800
3801
static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3802
{
3803
lockdep_assert_held(&blk_mq_cpuhp_lock);
3804
3805
if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3806
!hlist_unhashed(&hctx->cpuhp_online)) {
3807
cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3808
&hctx->cpuhp_online);
3809
INIT_HLIST_NODE(&hctx->cpuhp_online);
3810
}
3811
3812
if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3813
cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3814
&hctx->cpuhp_dead);
3815
INIT_HLIST_NODE(&hctx->cpuhp_dead);
3816
}
3817
}
3818
3819
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3820
{
3821
mutex_lock(&blk_mq_cpuhp_lock);
3822
__blk_mq_remove_cpuhp(hctx);
3823
mutex_unlock(&blk_mq_cpuhp_lock);
3824
}
3825
3826
static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3827
{
3828
lockdep_assert_held(&blk_mq_cpuhp_lock);
3829
3830
if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3831
hlist_unhashed(&hctx->cpuhp_online))
3832
cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3833
&hctx->cpuhp_online);
3834
3835
if (hlist_unhashed(&hctx->cpuhp_dead))
3836
cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3837
&hctx->cpuhp_dead);
3838
}
3839
3840
static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3841
{
3842
struct blk_mq_hw_ctx *hctx;
3843
3844
lockdep_assert_held(&blk_mq_cpuhp_lock);
3845
3846
list_for_each_entry(hctx, head, hctx_list)
3847
__blk_mq_remove_cpuhp(hctx);
3848
}
3849
3850
/*
3851
* Unregister cpuhp callbacks from exited hw queues
3852
*
3853
* Safe to call if this `request_queue` is live
3854
*/
3855
static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3856
{
3857
LIST_HEAD(hctx_list);
3858
3859
spin_lock(&q->unused_hctx_lock);
3860
list_splice_init(&q->unused_hctx_list, &hctx_list);
3861
spin_unlock(&q->unused_hctx_lock);
3862
3863
mutex_lock(&blk_mq_cpuhp_lock);
3864
__blk_mq_remove_cpuhp_list(&hctx_list);
3865
mutex_unlock(&blk_mq_cpuhp_lock);
3866
3867
spin_lock(&q->unused_hctx_lock);
3868
list_splice(&hctx_list, &q->unused_hctx_list);
3869
spin_unlock(&q->unused_hctx_lock);
3870
}
3871
3872
/*
3873
* Register cpuhp callbacks from all hw queues
3874
*
3875
* Safe to call if this `request_queue` is live
3876
*/
3877
static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3878
{
3879
struct blk_mq_hw_ctx *hctx;
3880
unsigned long i;
3881
3882
mutex_lock(&blk_mq_cpuhp_lock);
3883
queue_for_each_hw_ctx(q, hctx, i)
3884
__blk_mq_add_cpuhp(hctx);
3885
mutex_unlock(&blk_mq_cpuhp_lock);
3886
}
3887
3888
/*
3889
* Before freeing hw queue, clearing the flush request reference in
3890
* tags->rqs[] for avoiding potential UAF.
3891
*/
3892
static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3893
unsigned int queue_depth, struct request *flush_rq)
3894
{
3895
int i;
3896
3897
/* The hw queue may not be mapped yet */
3898
if (!tags)
3899
return;
3900
3901
WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3902
3903
for (i = 0; i < queue_depth; i++)
3904
cmpxchg(&tags->rqs[i], flush_rq, NULL);
3905
}
3906
3907
static void blk_free_flush_queue_callback(struct rcu_head *head)
3908
{
3909
struct blk_flush_queue *fq =
3910
container_of(head, struct blk_flush_queue, rcu_head);
3911
3912
blk_free_flush_queue(fq);
3913
}
3914
3915
/* hctx->ctxs will be freed in queue's release handler */
3916
static void blk_mq_exit_hctx(struct request_queue *q,
3917
struct blk_mq_tag_set *set,
3918
struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3919
{
3920
struct request *flush_rq = hctx->fq->flush_rq;
3921
3922
if (blk_mq_hw_queue_mapped(hctx))
3923
blk_mq_tag_idle(hctx);
3924
3925
if (blk_queue_init_done(q))
3926
blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3927
set->queue_depth, flush_rq);
3928
if (set->ops->exit_request)
3929
set->ops->exit_request(set, flush_rq, hctx_idx);
3930
3931
if (set->ops->exit_hctx)
3932
set->ops->exit_hctx(hctx, hctx_idx);
3933
3934
call_srcu(&set->tags_srcu, &hctx->fq->rcu_head,
3935
blk_free_flush_queue_callback);
3936
hctx->fq = NULL;
3937
3938
xa_erase(&q->hctx_table, hctx_idx);
3939
3940
spin_lock(&q->unused_hctx_lock);
3941
list_add(&hctx->hctx_list, &q->unused_hctx_list);
3942
spin_unlock(&q->unused_hctx_lock);
3943
}
3944
3945
static void blk_mq_exit_hw_queues(struct request_queue *q,
3946
struct blk_mq_tag_set *set, int nr_queue)
3947
{
3948
struct blk_mq_hw_ctx *hctx;
3949
unsigned long i;
3950
3951
queue_for_each_hw_ctx(q, hctx, i) {
3952
if (i == nr_queue)
3953
break;
3954
blk_mq_remove_cpuhp(hctx);
3955
blk_mq_exit_hctx(q, set, hctx, i);
3956
}
3957
}
3958
3959
static int blk_mq_init_hctx(struct request_queue *q,
3960
struct blk_mq_tag_set *set,
3961
struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3962
{
3963
gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3964
3965
hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3966
if (!hctx->fq)
3967
goto fail;
3968
3969
hctx->queue_num = hctx_idx;
3970
3971
hctx->tags = set->tags[hctx_idx];
3972
3973
if (set->ops->init_hctx &&
3974
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3975
goto fail_free_fq;
3976
3977
if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3978
hctx->numa_node))
3979
goto exit_hctx;
3980
3981
if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3982
goto exit_flush_rq;
3983
3984
return 0;
3985
3986
exit_flush_rq:
3987
if (set->ops->exit_request)
3988
set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3989
exit_hctx:
3990
if (set->ops->exit_hctx)
3991
set->ops->exit_hctx(hctx, hctx_idx);
3992
fail_free_fq:
3993
blk_free_flush_queue(hctx->fq);
3994
hctx->fq = NULL;
3995
fail:
3996
return -1;
3997
}
3998
3999
static struct blk_mq_hw_ctx *
4000
blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
4001
int node)
4002
{
4003
struct blk_mq_hw_ctx *hctx;
4004
gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4005
4006
hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4007
if (!hctx)
4008
goto fail_alloc_hctx;
4009
4010
if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4011
goto free_hctx;
4012
4013
atomic_set(&hctx->nr_active, 0);
4014
if (node == NUMA_NO_NODE)
4015
node = set->numa_node;
4016
hctx->numa_node = node;
4017
4018
INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4019
spin_lock_init(&hctx->lock);
4020
INIT_LIST_HEAD(&hctx->dispatch);
4021
INIT_HLIST_NODE(&hctx->cpuhp_dead);
4022
INIT_HLIST_NODE(&hctx->cpuhp_online);
4023
hctx->queue = q;
4024
hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4025
4026
INIT_LIST_HEAD(&hctx->hctx_list);
4027
4028
/*
4029
* Allocate space for all possible cpus to avoid allocation at
4030
* runtime
4031
*/
4032
hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4033
gfp, node);
4034
if (!hctx->ctxs)
4035
goto free_cpumask;
4036
4037
if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4038
gfp, node, false, false))
4039
goto free_ctxs;
4040
hctx->nr_ctx = 0;
4041
4042
spin_lock_init(&hctx->dispatch_wait_lock);
4043
init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4044
INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4045
4046
blk_mq_hctx_kobj_init(hctx);
4047
4048
return hctx;
4049
4050
free_ctxs:
4051
kfree(hctx->ctxs);
4052
free_cpumask:
4053
free_cpumask_var(hctx->cpumask);
4054
free_hctx:
4055
kfree(hctx);
4056
fail_alloc_hctx:
4057
return NULL;
4058
}
4059
4060
static void blk_mq_init_cpu_queues(struct request_queue *q,
4061
unsigned int nr_hw_queues)
4062
{
4063
struct blk_mq_tag_set *set = q->tag_set;
4064
unsigned int i, j;
4065
4066
for_each_possible_cpu(i) {
4067
struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4068
struct blk_mq_hw_ctx *hctx;
4069
int k;
4070
4071
__ctx->cpu = i;
4072
spin_lock_init(&__ctx->lock);
4073
for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4074
INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4075
4076
__ctx->queue = q;
4077
4078
/*
4079
* Set local node, IFF we have more than one hw queue. If
4080
* not, we remain on the home node of the device
4081
*/
4082
for (j = 0; j < set->nr_maps; j++) {
4083
hctx = blk_mq_map_queue_type(q, j, i);
4084
if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4085
hctx->numa_node = cpu_to_node(i);
4086
}
4087
}
4088
}
4089
4090
struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4091
unsigned int hctx_idx,
4092
unsigned int depth)
4093
{
4094
struct blk_mq_tags *tags;
4095
int ret;
4096
4097
tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4098
if (!tags)
4099
return NULL;
4100
4101
ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4102
if (ret) {
4103
blk_mq_free_rq_map(set, tags);
4104
return NULL;
4105
}
4106
4107
return tags;
4108
}
4109
4110
static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4111
int hctx_idx)
4112
{
4113
if (blk_mq_is_shared_tags(set->flags)) {
4114
set->tags[hctx_idx] = set->shared_tags;
4115
4116
return true;
4117
}
4118
4119
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4120
set->queue_depth);
4121
4122
return set->tags[hctx_idx];
4123
}
4124
4125
void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4126
struct blk_mq_tags *tags,
4127
unsigned int hctx_idx)
4128
{
4129
if (tags) {
4130
blk_mq_free_rqs(set, tags, hctx_idx);
4131
blk_mq_free_rq_map(set, tags);
4132
}
4133
}
4134
4135
static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4136
unsigned int hctx_idx)
4137
{
4138
if (!blk_mq_is_shared_tags(set->flags))
4139
blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4140
4141
set->tags[hctx_idx] = NULL;
4142
}
4143
4144
static void blk_mq_map_swqueue(struct request_queue *q)
4145
{
4146
unsigned int j, hctx_idx;
4147
unsigned long i;
4148
struct blk_mq_hw_ctx *hctx;
4149
struct blk_mq_ctx *ctx;
4150
struct blk_mq_tag_set *set = q->tag_set;
4151
4152
queue_for_each_hw_ctx(q, hctx, i) {
4153
cpumask_clear(hctx->cpumask);
4154
hctx->nr_ctx = 0;
4155
hctx->dispatch_from = NULL;
4156
}
4157
4158
/*
4159
* Map software to hardware queues.
4160
*
4161
* If the cpu isn't present, the cpu is mapped to first hctx.
4162
*/
4163
for_each_possible_cpu(i) {
4164
4165
ctx = per_cpu_ptr(q->queue_ctx, i);
4166
for (j = 0; j < set->nr_maps; j++) {
4167
if (!set->map[j].nr_queues) {
4168
ctx->hctxs[j] = blk_mq_map_queue_type(q,
4169
HCTX_TYPE_DEFAULT, i);
4170
continue;
4171
}
4172
hctx_idx = set->map[j].mq_map[i];
4173
/* unmapped hw queue can be remapped after CPU topo changed */
4174
if (!set->tags[hctx_idx] &&
4175
!__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4176
/*
4177
* If tags initialization fail for some hctx,
4178
* that hctx won't be brought online. In this
4179
* case, remap the current ctx to hctx[0] which
4180
* is guaranteed to always have tags allocated
4181
*/
4182
set->map[j].mq_map[i] = 0;
4183
}
4184
4185
hctx = blk_mq_map_queue_type(q, j, i);
4186
ctx->hctxs[j] = hctx;
4187
/*
4188
* If the CPU is already set in the mask, then we've
4189
* mapped this one already. This can happen if
4190
* devices share queues across queue maps.
4191
*/
4192
if (cpumask_test_cpu(i, hctx->cpumask))
4193
continue;
4194
4195
cpumask_set_cpu(i, hctx->cpumask);
4196
hctx->type = j;
4197
ctx->index_hw[hctx->type] = hctx->nr_ctx;
4198
hctx->ctxs[hctx->nr_ctx++] = ctx;
4199
4200
/*
4201
* If the nr_ctx type overflows, we have exceeded the
4202
* amount of sw queues we can support.
4203
*/
4204
BUG_ON(!hctx->nr_ctx);
4205
}
4206
4207
for (; j < HCTX_MAX_TYPES; j++)
4208
ctx->hctxs[j] = blk_mq_map_queue_type(q,
4209
HCTX_TYPE_DEFAULT, i);
4210
}
4211
4212
queue_for_each_hw_ctx(q, hctx, i) {
4213
int cpu;
4214
4215
/*
4216
* If no software queues are mapped to this hardware queue,
4217
* disable it and free the request entries.
4218
*/
4219
if (!hctx->nr_ctx) {
4220
/* Never unmap queue 0. We need it as a
4221
* fallback in case of a new remap fails
4222
* allocation
4223
*/
4224
if (i)
4225
__blk_mq_free_map_and_rqs(set, i);
4226
4227
hctx->tags = NULL;
4228
continue;
4229
}
4230
4231
hctx->tags = set->tags[i];
4232
WARN_ON(!hctx->tags);
4233
4234
/*
4235
* Set the map size to the number of mapped software queues.
4236
* This is more accurate and more efficient than looping
4237
* over all possibly mapped software queues.
4238
*/
4239
sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4240
4241
/*
4242
* Rule out isolated CPUs from hctx->cpumask to avoid
4243
* running block kworker on isolated CPUs
4244
*/
4245
for_each_cpu(cpu, hctx->cpumask) {
4246
if (cpu_is_isolated(cpu))
4247
cpumask_clear_cpu(cpu, hctx->cpumask);
4248
}
4249
4250
/*
4251
* Initialize batch roundrobin counts
4252
*/
4253
hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4254
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4255
}
4256
}
4257
4258
/*
4259
* Caller needs to ensure that we're either frozen/quiesced, or that
4260
* the queue isn't live yet.
4261
*/
4262
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4263
{
4264
struct blk_mq_hw_ctx *hctx;
4265
unsigned long i;
4266
4267
queue_for_each_hw_ctx(q, hctx, i) {
4268
if (shared) {
4269
hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4270
} else {
4271
blk_mq_tag_idle(hctx);
4272
hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4273
}
4274
}
4275
}
4276
4277
static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4278
bool shared)
4279
{
4280
struct request_queue *q;
4281
unsigned int memflags;
4282
4283
lockdep_assert_held(&set->tag_list_lock);
4284
4285
list_for_each_entry(q, &set->tag_list, tag_set_list) {
4286
memflags = blk_mq_freeze_queue(q);
4287
queue_set_hctx_shared(q, shared);
4288
blk_mq_unfreeze_queue(q, memflags);
4289
}
4290
}
4291
4292
static void blk_mq_del_queue_tag_set(struct request_queue *q)
4293
{
4294
struct blk_mq_tag_set *set = q->tag_set;
4295
4296
mutex_lock(&set->tag_list_lock);
4297
list_del(&q->tag_set_list);
4298
if (list_is_singular(&set->tag_list)) {
4299
/* just transitioned to unshared */
4300
set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4301
/* update existing queue */
4302
blk_mq_update_tag_set_shared(set, false);
4303
}
4304
mutex_unlock(&set->tag_list_lock);
4305
INIT_LIST_HEAD(&q->tag_set_list);
4306
}
4307
4308
static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4309
struct request_queue *q)
4310
{
4311
mutex_lock(&set->tag_list_lock);
4312
4313
/*
4314
* Check to see if we're transitioning to shared (from 1 to 2 queues).
4315
*/
4316
if (!list_empty(&set->tag_list) &&
4317
!(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4318
set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4319
/* update existing queue */
4320
blk_mq_update_tag_set_shared(set, true);
4321
}
4322
if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4323
queue_set_hctx_shared(q, true);
4324
list_add_tail(&q->tag_set_list, &set->tag_list);
4325
4326
mutex_unlock(&set->tag_list_lock);
4327
}
4328
4329
/* All allocations will be freed in release handler of q->mq_kobj */
4330
static int blk_mq_alloc_ctxs(struct request_queue *q)
4331
{
4332
struct blk_mq_ctxs *ctxs;
4333
int cpu;
4334
4335
ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4336
if (!ctxs)
4337
return -ENOMEM;
4338
4339
ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4340
if (!ctxs->queue_ctx)
4341
goto fail;
4342
4343
for_each_possible_cpu(cpu) {
4344
struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4345
ctx->ctxs = ctxs;
4346
}
4347
4348
q->mq_kobj = &ctxs->kobj;
4349
q->queue_ctx = ctxs->queue_ctx;
4350
4351
return 0;
4352
fail:
4353
kfree(ctxs);
4354
return -ENOMEM;
4355
}
4356
4357
/*
4358
* It is the actual release handler for mq, but we do it from
4359
* request queue's release handler for avoiding use-after-free
4360
* and headache because q->mq_kobj shouldn't have been introduced,
4361
* but we can't group ctx/kctx kobj without it.
4362
*/
4363
void blk_mq_release(struct request_queue *q)
4364
{
4365
struct blk_mq_hw_ctx *hctx, *next;
4366
unsigned long i;
4367
4368
queue_for_each_hw_ctx(q, hctx, i)
4369
WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4370
4371
/* all hctx are in .unused_hctx_list now */
4372
list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4373
list_del_init(&hctx->hctx_list);
4374
kobject_put(&hctx->kobj);
4375
}
4376
4377
xa_destroy(&q->hctx_table);
4378
4379
/*
4380
* release .mq_kobj and sw queue's kobject now because
4381
* both share lifetime with request queue.
4382
*/
4383
blk_mq_sysfs_deinit(q);
4384
}
4385
4386
struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4387
struct queue_limits *lim, void *queuedata)
4388
{
4389
struct queue_limits default_lim = { };
4390
struct request_queue *q;
4391
int ret;
4392
4393
if (!lim)
4394
lim = &default_lim;
4395
lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4396
if (set->nr_maps > HCTX_TYPE_POLL)
4397
lim->features |= BLK_FEAT_POLL;
4398
4399
q = blk_alloc_queue(lim, set->numa_node);
4400
if (IS_ERR(q))
4401
return q;
4402
q->queuedata = queuedata;
4403
ret = blk_mq_init_allocated_queue(set, q);
4404
if (ret) {
4405
blk_put_queue(q);
4406
return ERR_PTR(ret);
4407
}
4408
return q;
4409
}
4410
EXPORT_SYMBOL(blk_mq_alloc_queue);
4411
4412
/**
4413
* blk_mq_destroy_queue - shutdown a request queue
4414
* @q: request queue to shutdown
4415
*
4416
* This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4417
* requests will be failed with -ENODEV. The caller is responsible for dropping
4418
* the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4419
*
4420
* Context: can sleep
4421
*/
4422
void blk_mq_destroy_queue(struct request_queue *q)
4423
{
4424
WARN_ON_ONCE(!queue_is_mq(q));
4425
WARN_ON_ONCE(blk_queue_registered(q));
4426
4427
might_sleep();
4428
4429
blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4430
blk_queue_start_drain(q);
4431
blk_mq_freeze_queue_wait(q);
4432
4433
blk_sync_queue(q);
4434
blk_mq_cancel_work_sync(q);
4435
blk_mq_exit_queue(q);
4436
}
4437
EXPORT_SYMBOL(blk_mq_destroy_queue);
4438
4439
struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4440
struct queue_limits *lim, void *queuedata,
4441
struct lock_class_key *lkclass)
4442
{
4443
struct request_queue *q;
4444
struct gendisk *disk;
4445
4446
q = blk_mq_alloc_queue(set, lim, queuedata);
4447
if (IS_ERR(q))
4448
return ERR_CAST(q);
4449
4450
disk = __alloc_disk_node(q, set->numa_node, lkclass);
4451
if (!disk) {
4452
blk_mq_destroy_queue(q);
4453
blk_put_queue(q);
4454
return ERR_PTR(-ENOMEM);
4455
}
4456
set_bit(GD_OWNS_QUEUE, &disk->state);
4457
return disk;
4458
}
4459
EXPORT_SYMBOL(__blk_mq_alloc_disk);
4460
4461
struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4462
struct lock_class_key *lkclass)
4463
{
4464
struct gendisk *disk;
4465
4466
if (!blk_get_queue(q))
4467
return NULL;
4468
disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4469
if (!disk)
4470
blk_put_queue(q);
4471
return disk;
4472
}
4473
EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4474
4475
/*
4476
* Only hctx removed from cpuhp list can be reused
4477
*/
4478
static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4479
{
4480
return hlist_unhashed(&hctx->cpuhp_online) &&
4481
hlist_unhashed(&hctx->cpuhp_dead);
4482
}
4483
4484
static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4485
struct blk_mq_tag_set *set, struct request_queue *q,
4486
int hctx_idx, int node)
4487
{
4488
struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4489
4490
/* reuse dead hctx first */
4491
spin_lock(&q->unused_hctx_lock);
4492
list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4493
if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4494
hctx = tmp;
4495
break;
4496
}
4497
}
4498
if (hctx)
4499
list_del_init(&hctx->hctx_list);
4500
spin_unlock(&q->unused_hctx_lock);
4501
4502
if (!hctx)
4503
hctx = blk_mq_alloc_hctx(q, set, node);
4504
if (!hctx)
4505
goto fail;
4506
4507
if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4508
goto free_hctx;
4509
4510
return hctx;
4511
4512
free_hctx:
4513
kobject_put(&hctx->kobj);
4514
fail:
4515
return NULL;
4516
}
4517
4518
static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4519
struct request_queue *q)
4520
{
4521
struct blk_mq_hw_ctx *hctx;
4522
unsigned long i, j;
4523
4524
for (i = 0; i < set->nr_hw_queues; i++) {
4525
int old_node;
4526
int node = blk_mq_get_hctx_node(set, i);
4527
struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4528
4529
if (old_hctx) {
4530
old_node = old_hctx->numa_node;
4531
blk_mq_exit_hctx(q, set, old_hctx, i);
4532
}
4533
4534
if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4535
if (!old_hctx)
4536
break;
4537
pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4538
node, old_node);
4539
hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4540
WARN_ON_ONCE(!hctx);
4541
}
4542
}
4543
/*
4544
* Increasing nr_hw_queues fails. Free the newly allocated
4545
* hctxs and keep the previous q->nr_hw_queues.
4546
*/
4547
if (i != set->nr_hw_queues) {
4548
j = q->nr_hw_queues;
4549
} else {
4550
j = i;
4551
q->nr_hw_queues = set->nr_hw_queues;
4552
}
4553
4554
xa_for_each_start(&q->hctx_table, j, hctx, j)
4555
blk_mq_exit_hctx(q, set, hctx, j);
4556
}
4557
4558
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4559
struct request_queue *q)
4560
{
4561
__blk_mq_realloc_hw_ctxs(set, q);
4562
4563
/* unregister cpuhp callbacks for exited hctxs */
4564
blk_mq_remove_hw_queues_cpuhp(q);
4565
4566
/* register cpuhp for new initialized hctxs */
4567
blk_mq_add_hw_queues_cpuhp(q);
4568
}
4569
4570
int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4571
struct request_queue *q)
4572
{
4573
/* mark the queue as mq asap */
4574
q->mq_ops = set->ops;
4575
4576
/*
4577
* ->tag_set has to be setup before initialize hctx, which cpuphp
4578
* handler needs it for checking queue mapping
4579
*/
4580
q->tag_set = set;
4581
4582
if (blk_mq_alloc_ctxs(q))
4583
goto err_exit;
4584
4585
/* init q->mq_kobj and sw queues' kobjects */
4586
blk_mq_sysfs_init(q);
4587
4588
INIT_LIST_HEAD(&q->unused_hctx_list);
4589
spin_lock_init(&q->unused_hctx_lock);
4590
4591
xa_init(&q->hctx_table);
4592
4593
blk_mq_realloc_hw_ctxs(set, q);
4594
if (!q->nr_hw_queues)
4595
goto err_hctxs;
4596
4597
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4598
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4599
4600
q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4601
4602
INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4603
INIT_LIST_HEAD(&q->flush_list);
4604
INIT_LIST_HEAD(&q->requeue_list);
4605
spin_lock_init(&q->requeue_lock);
4606
4607
q->nr_requests = set->queue_depth;
4608
4609
blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4610
blk_mq_map_swqueue(q);
4611
blk_mq_add_queue_tag_set(set, q);
4612
return 0;
4613
4614
err_hctxs:
4615
blk_mq_release(q);
4616
err_exit:
4617
q->mq_ops = NULL;
4618
return -ENOMEM;
4619
}
4620
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4621
4622
/* tags can _not_ be used after returning from blk_mq_exit_queue */
4623
void blk_mq_exit_queue(struct request_queue *q)
4624
{
4625
struct blk_mq_tag_set *set = q->tag_set;
4626
4627
/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4628
blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4629
/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4630
blk_mq_del_queue_tag_set(q);
4631
}
4632
4633
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4634
{
4635
int i;
4636
4637
if (blk_mq_is_shared_tags(set->flags)) {
4638
set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4639
BLK_MQ_NO_HCTX_IDX,
4640
set->queue_depth);
4641
if (!set->shared_tags)
4642
return -ENOMEM;
4643
}
4644
4645
for (i = 0; i < set->nr_hw_queues; i++) {
4646
if (!__blk_mq_alloc_map_and_rqs(set, i))
4647
goto out_unwind;
4648
cond_resched();
4649
}
4650
4651
return 0;
4652
4653
out_unwind:
4654
while (--i >= 0)
4655
__blk_mq_free_map_and_rqs(set, i);
4656
4657
if (blk_mq_is_shared_tags(set->flags)) {
4658
blk_mq_free_map_and_rqs(set, set->shared_tags,
4659
BLK_MQ_NO_HCTX_IDX);
4660
}
4661
4662
return -ENOMEM;
4663
}
4664
4665
/*
4666
* Allocate the request maps associated with this tag_set. Note that this
4667
* may reduce the depth asked for, if memory is tight. set->queue_depth
4668
* will be updated to reflect the allocated depth.
4669
*/
4670
static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4671
{
4672
unsigned int depth;
4673
int err;
4674
4675
depth = set->queue_depth;
4676
do {
4677
err = __blk_mq_alloc_rq_maps(set);
4678
if (!err)
4679
break;
4680
4681
set->queue_depth >>= 1;
4682
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4683
err = -ENOMEM;
4684
break;
4685
}
4686
} while (set->queue_depth);
4687
4688
if (!set->queue_depth || err) {
4689
pr_err("blk-mq: failed to allocate request map\n");
4690
return -ENOMEM;
4691
}
4692
4693
if (depth != set->queue_depth)
4694
pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4695
depth, set->queue_depth);
4696
4697
return 0;
4698
}
4699
4700
static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4701
{
4702
/*
4703
* blk_mq_map_queues() and multiple .map_queues() implementations
4704
* expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4705
* number of hardware queues.
4706
*/
4707
if (set->nr_maps == 1)
4708
set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4709
4710
if (set->ops->map_queues) {
4711
int i;
4712
4713
/*
4714
* transport .map_queues is usually done in the following
4715
* way:
4716
*
4717
* for (queue = 0; queue < set->nr_hw_queues; queue++) {
4718
* mask = get_cpu_mask(queue)
4719
* for_each_cpu(cpu, mask)
4720
* set->map[x].mq_map[cpu] = queue;
4721
* }
4722
*
4723
* When we need to remap, the table has to be cleared for
4724
* killing stale mapping since one CPU may not be mapped
4725
* to any hw queue.
4726
*/
4727
for (i = 0; i < set->nr_maps; i++)
4728
blk_mq_clear_mq_map(&set->map[i]);
4729
4730
set->ops->map_queues(set);
4731
} else {
4732
BUG_ON(set->nr_maps > 1);
4733
blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4734
}
4735
}
4736
4737
static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4738
int new_nr_hw_queues)
4739
{
4740
struct blk_mq_tags **new_tags;
4741
int i;
4742
4743
if (set->nr_hw_queues >= new_nr_hw_queues)
4744
goto done;
4745
4746
new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4747
GFP_KERNEL, set->numa_node);
4748
if (!new_tags)
4749
return -ENOMEM;
4750
4751
if (set->tags)
4752
memcpy(new_tags, set->tags, set->nr_hw_queues *
4753
sizeof(*set->tags));
4754
kfree(set->tags);
4755
set->tags = new_tags;
4756
4757
for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4758
if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4759
while (--i >= set->nr_hw_queues)
4760
__blk_mq_free_map_and_rqs(set, i);
4761
return -ENOMEM;
4762
}
4763
cond_resched();
4764
}
4765
4766
done:
4767
set->nr_hw_queues = new_nr_hw_queues;
4768
return 0;
4769
}
4770
4771
/*
4772
* Alloc a tag set to be associated with one or more request queues.
4773
* May fail with EINVAL for various error conditions. May adjust the
4774
* requested depth down, if it's too large. In that case, the set
4775
* value will be stored in set->queue_depth.
4776
*/
4777
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4778
{
4779
int i, ret;
4780
4781
BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4782
4783
if (!set->nr_hw_queues)
4784
return -EINVAL;
4785
if (!set->queue_depth)
4786
return -EINVAL;
4787
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4788
return -EINVAL;
4789
4790
if (!set->ops->queue_rq)
4791
return -EINVAL;
4792
4793
if (!set->ops->get_budget ^ !set->ops->put_budget)
4794
return -EINVAL;
4795
4796
if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4797
pr_info("blk-mq: reduced tag depth to %u\n",
4798
BLK_MQ_MAX_DEPTH);
4799
set->queue_depth = BLK_MQ_MAX_DEPTH;
4800
}
4801
4802
if (!set->nr_maps)
4803
set->nr_maps = 1;
4804
else if (set->nr_maps > HCTX_MAX_TYPES)
4805
return -EINVAL;
4806
4807
/*
4808
* If a crashdump is active, then we are potentially in a very
4809
* memory constrained environment. Limit us to 64 tags to prevent
4810
* using too much memory.
4811
*/
4812
if (is_kdump_kernel())
4813
set->queue_depth = min(64U, set->queue_depth);
4814
4815
/*
4816
* There is no use for more h/w queues than cpus if we just have
4817
* a single map
4818
*/
4819
if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4820
set->nr_hw_queues = nr_cpu_ids;
4821
4822
if (set->flags & BLK_MQ_F_BLOCKING) {
4823
set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4824
if (!set->srcu)
4825
return -ENOMEM;
4826
ret = init_srcu_struct(set->srcu);
4827
if (ret)
4828
goto out_free_srcu;
4829
}
4830
ret = init_srcu_struct(&set->tags_srcu);
4831
if (ret)
4832
goto out_cleanup_srcu;
4833
4834
init_rwsem(&set->update_nr_hwq_lock);
4835
4836
ret = -ENOMEM;
4837
set->tags = kcalloc_node(set->nr_hw_queues,
4838
sizeof(struct blk_mq_tags *), GFP_KERNEL,
4839
set->numa_node);
4840
if (!set->tags)
4841
goto out_cleanup_tags_srcu;
4842
4843
for (i = 0; i < set->nr_maps; i++) {
4844
set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4845
sizeof(set->map[i].mq_map[0]),
4846
GFP_KERNEL, set->numa_node);
4847
if (!set->map[i].mq_map)
4848
goto out_free_mq_map;
4849
set->map[i].nr_queues = set->nr_hw_queues;
4850
}
4851
4852
blk_mq_update_queue_map(set);
4853
4854
ret = blk_mq_alloc_set_map_and_rqs(set);
4855
if (ret)
4856
goto out_free_mq_map;
4857
4858
mutex_init(&set->tag_list_lock);
4859
INIT_LIST_HEAD(&set->tag_list);
4860
4861
return 0;
4862
4863
out_free_mq_map:
4864
for (i = 0; i < set->nr_maps; i++) {
4865
kfree(set->map[i].mq_map);
4866
set->map[i].mq_map = NULL;
4867
}
4868
kfree(set->tags);
4869
set->tags = NULL;
4870
out_cleanup_tags_srcu:
4871
cleanup_srcu_struct(&set->tags_srcu);
4872
out_cleanup_srcu:
4873
if (set->flags & BLK_MQ_F_BLOCKING)
4874
cleanup_srcu_struct(set->srcu);
4875
out_free_srcu:
4876
if (set->flags & BLK_MQ_F_BLOCKING)
4877
kfree(set->srcu);
4878
return ret;
4879
}
4880
EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4881
4882
/* allocate and initialize a tagset for a simple single-queue device */
4883
int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4884
const struct blk_mq_ops *ops, unsigned int queue_depth,
4885
unsigned int set_flags)
4886
{
4887
memset(set, 0, sizeof(*set));
4888
set->ops = ops;
4889
set->nr_hw_queues = 1;
4890
set->nr_maps = 1;
4891
set->queue_depth = queue_depth;
4892
set->numa_node = NUMA_NO_NODE;
4893
set->flags = set_flags;
4894
return blk_mq_alloc_tag_set(set);
4895
}
4896
EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4897
4898
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4899
{
4900
int i, j;
4901
4902
for (i = 0; i < set->nr_hw_queues; i++)
4903
__blk_mq_free_map_and_rqs(set, i);
4904
4905
if (blk_mq_is_shared_tags(set->flags)) {
4906
blk_mq_free_map_and_rqs(set, set->shared_tags,
4907
BLK_MQ_NO_HCTX_IDX);
4908
}
4909
4910
for (j = 0; j < set->nr_maps; j++) {
4911
kfree(set->map[j].mq_map);
4912
set->map[j].mq_map = NULL;
4913
}
4914
4915
kfree(set->tags);
4916
set->tags = NULL;
4917
4918
srcu_barrier(&set->tags_srcu);
4919
cleanup_srcu_struct(&set->tags_srcu);
4920
if (set->flags & BLK_MQ_F_BLOCKING) {
4921
cleanup_srcu_struct(set->srcu);
4922
kfree(set->srcu);
4923
}
4924
}
4925
EXPORT_SYMBOL(blk_mq_free_tag_set);
4926
4927
struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q,
4928
struct elevator_tags *et,
4929
unsigned int nr)
4930
{
4931
struct blk_mq_tag_set *set = q->tag_set;
4932
struct elevator_tags *old_et = NULL;
4933
struct blk_mq_hw_ctx *hctx;
4934
unsigned long i;
4935
4936
blk_mq_quiesce_queue(q);
4937
4938
if (blk_mq_is_shared_tags(set->flags)) {
4939
/*
4940
* Shared tags, for sched tags, we allocate max initially hence
4941
* tags can't grow, see blk_mq_alloc_sched_tags().
4942
*/
4943
if (q->elevator)
4944
blk_mq_tag_update_sched_shared_tags(q);
4945
else
4946
blk_mq_tag_resize_shared_tags(set, nr);
4947
} else if (!q->elevator) {
4948
/*
4949
* Non-shared hardware tags, nr is already checked from
4950
* queue_requests_store() and tags can't grow.
4951
*/
4952
queue_for_each_hw_ctx(q, hctx, i) {
4953
if (!hctx->tags)
4954
continue;
4955
sbitmap_queue_resize(&hctx->tags->bitmap_tags,
4956
nr - hctx->tags->nr_reserved_tags);
4957
}
4958
} else if (nr <= q->elevator->et->nr_requests) {
4959
/* Non-shared sched tags, and tags don't grow. */
4960
queue_for_each_hw_ctx(q, hctx, i) {
4961
if (!hctx->sched_tags)
4962
continue;
4963
sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags,
4964
nr - hctx->sched_tags->nr_reserved_tags);
4965
}
4966
} else {
4967
/* Non-shared sched tags, and tags grow */
4968
queue_for_each_hw_ctx(q, hctx, i)
4969
hctx->sched_tags = et->tags[i];
4970
old_et = q->elevator->et;
4971
q->elevator->et = et;
4972
}
4973
4974
q->nr_requests = nr;
4975
if (q->elevator && q->elevator->type->ops.depth_updated)
4976
q->elevator->type->ops.depth_updated(q);
4977
4978
blk_mq_unquiesce_queue(q);
4979
return old_et;
4980
}
4981
4982
/*
4983
* Switch back to the elevator type stored in the xarray.
4984
*/
4985
static void blk_mq_elv_switch_back(struct request_queue *q,
4986
struct xarray *elv_tbl, struct xarray *et_tbl)
4987
{
4988
struct elevator_type *e = xa_load(elv_tbl, q->id);
4989
struct elevator_tags *t = xa_load(et_tbl, q->id);
4990
4991
/* The elv_update_nr_hw_queues unfreezes the queue. */
4992
elv_update_nr_hw_queues(q, e, t);
4993
4994
/* Drop the reference acquired in blk_mq_elv_switch_none. */
4995
if (e)
4996
elevator_put(e);
4997
}
4998
4999
/*
5000
* Stores elevator type in xarray and set current elevator to none. It uses
5001
* q->id as an index to store the elevator type into the xarray.
5002
*/
5003
static int blk_mq_elv_switch_none(struct request_queue *q,
5004
struct xarray *elv_tbl)
5005
{
5006
int ret = 0;
5007
5008
lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5009
5010
/*
5011
* Accessing q->elevator without holding q->elevator_lock is safe here
5012
* because we're called from nr_hw_queue update which is protected by
5013
* set->update_nr_hwq_lock in the writer context. So, scheduler update/
5014
* switch code (which acquires the same lock in the reader context)
5015
* can't run concurrently.
5016
*/
5017
if (q->elevator) {
5018
5019
ret = xa_insert(elv_tbl, q->id, q->elevator->type, GFP_KERNEL);
5020
if (WARN_ON_ONCE(ret))
5021
return ret;
5022
5023
/*
5024
* Before we switch elevator to 'none', take a reference to
5025
* the elevator module so that while nr_hw_queue update is
5026
* running, no one can remove elevator module. We'd put the
5027
* reference to elevator module later when we switch back
5028
* elevator.
5029
*/
5030
__elevator_get(q->elevator->type);
5031
5032
elevator_set_none(q);
5033
}
5034
return ret;
5035
}
5036
5037
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5038
int nr_hw_queues)
5039
{
5040
struct request_queue *q;
5041
int prev_nr_hw_queues = set->nr_hw_queues;
5042
unsigned int memflags;
5043
int i;
5044
struct xarray elv_tbl, et_tbl;
5045
bool queues_frozen = false;
5046
5047
lockdep_assert_held(&set->tag_list_lock);
5048
5049
if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5050
nr_hw_queues = nr_cpu_ids;
5051
if (nr_hw_queues < 1)
5052
return;
5053
if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5054
return;
5055
5056
memflags = memalloc_noio_save();
5057
5058
xa_init(&et_tbl);
5059
if (blk_mq_alloc_sched_tags_batch(&et_tbl, set, nr_hw_queues) < 0)
5060
goto out_memalloc_restore;
5061
5062
xa_init(&elv_tbl);
5063
5064
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5065
blk_mq_debugfs_unregister_hctxs(q);
5066
blk_mq_sysfs_unregister_hctxs(q);
5067
}
5068
5069
/*
5070
* Switch IO scheduler to 'none', cleaning up the data associated
5071
* with the previous scheduler. We will switch back once we are done
5072
* updating the new sw to hw queue mappings.
5073
*/
5074
list_for_each_entry(q, &set->tag_list, tag_set_list)
5075
if (blk_mq_elv_switch_none(q, &elv_tbl))
5076
goto switch_back;
5077
5078
list_for_each_entry(q, &set->tag_list, tag_set_list)
5079
blk_mq_freeze_queue_nomemsave(q);
5080
queues_frozen = true;
5081
if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5082
goto switch_back;
5083
5084
fallback:
5085
blk_mq_update_queue_map(set);
5086
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5087
__blk_mq_realloc_hw_ctxs(set, q);
5088
5089
if (q->nr_hw_queues != set->nr_hw_queues) {
5090
int i = prev_nr_hw_queues;
5091
5092
pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5093
nr_hw_queues, prev_nr_hw_queues);
5094
for (; i < set->nr_hw_queues; i++)
5095
__blk_mq_free_map_and_rqs(set, i);
5096
5097
set->nr_hw_queues = prev_nr_hw_queues;
5098
goto fallback;
5099
}
5100
blk_mq_map_swqueue(q);
5101
}
5102
switch_back:
5103
/* The blk_mq_elv_switch_back unfreezes queue for us. */
5104
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5105
/* switch_back expects queue to be frozen */
5106
if (!queues_frozen)
5107
blk_mq_freeze_queue_nomemsave(q);
5108
blk_mq_elv_switch_back(q, &elv_tbl, &et_tbl);
5109
}
5110
5111
list_for_each_entry(q, &set->tag_list, tag_set_list) {
5112
blk_mq_sysfs_register_hctxs(q);
5113
blk_mq_debugfs_register_hctxs(q);
5114
5115
blk_mq_remove_hw_queues_cpuhp(q);
5116
blk_mq_add_hw_queues_cpuhp(q);
5117
}
5118
5119
xa_destroy(&elv_tbl);
5120
xa_destroy(&et_tbl);
5121
out_memalloc_restore:
5122
memalloc_noio_restore(memflags);
5123
5124
/* Free the excess tags when nr_hw_queues shrink. */
5125
for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5126
__blk_mq_free_map_and_rqs(set, i);
5127
}
5128
5129
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5130
{
5131
down_write(&set->update_nr_hwq_lock);
5132
mutex_lock(&set->tag_list_lock);
5133
__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5134
mutex_unlock(&set->tag_list_lock);
5135
up_write(&set->update_nr_hwq_lock);
5136
}
5137
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5138
5139
static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5140
struct io_comp_batch *iob, unsigned int flags)
5141
{
5142
long state = get_current_state();
5143
int ret;
5144
5145
do {
5146
ret = q->mq_ops->poll(hctx, iob);
5147
if (ret > 0) {
5148
__set_current_state(TASK_RUNNING);
5149
return ret;
5150
}
5151
5152
if (signal_pending_state(state, current))
5153
__set_current_state(TASK_RUNNING);
5154
if (task_is_running(current))
5155
return 1;
5156
5157
if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5158
break;
5159
cpu_relax();
5160
} while (!need_resched());
5161
5162
__set_current_state(TASK_RUNNING);
5163
return 0;
5164
}
5165
5166
int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5167
struct io_comp_batch *iob, unsigned int flags)
5168
{
5169
if (!blk_mq_can_poll(q))
5170
return 0;
5171
return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5172
}
5173
5174
int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5175
unsigned int poll_flags)
5176
{
5177
struct request_queue *q = rq->q;
5178
int ret;
5179
5180
if (!blk_rq_is_poll(rq))
5181
return 0;
5182
if (!percpu_ref_tryget(&q->q_usage_counter))
5183
return 0;
5184
5185
ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5186
blk_queue_exit(q);
5187
5188
return ret;
5189
}
5190
EXPORT_SYMBOL_GPL(blk_rq_poll);
5191
5192
unsigned int blk_mq_rq_cpu(struct request *rq)
5193
{
5194
return rq->mq_ctx->cpu;
5195
}
5196
EXPORT_SYMBOL(blk_mq_rq_cpu);
5197
5198
void blk_mq_cancel_work_sync(struct request_queue *q)
5199
{
5200
struct blk_mq_hw_ctx *hctx;
5201
unsigned long i;
5202
5203
cancel_delayed_work_sync(&q->requeue_work);
5204
5205
queue_for_each_hw_ctx(q, hctx, i)
5206
cancel_delayed_work_sync(&hctx->run_work);
5207
}
5208
5209
static int __init blk_mq_init(void)
5210
{
5211
int i;
5212
5213
for_each_possible_cpu(i)
5214
init_llist_head(&per_cpu(blk_cpu_done, i));
5215
for_each_possible_cpu(i)
5216
INIT_CSD(&per_cpu(blk_cpu_csd, i),
5217
__blk_mq_complete_request_remote, NULL);
5218
open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5219
5220
cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5221
"block/softirq:dead", NULL,
5222
blk_softirq_cpu_dead);
5223
cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5224
blk_mq_hctx_notify_dead);
5225
cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5226
blk_mq_hctx_notify_online,
5227
blk_mq_hctx_notify_offline);
5228
return 0;
5229
}
5230
subsys_initcall(blk_mq_init);
5231
5232