Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/block/blk-settings.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Functions related to setting various queue properties from drivers
4
*/
5
#include <linux/kernel.h>
6
#include <linux/module.h>
7
#include <linux/init.h>
8
#include <linux/bio.h>
9
#include <linux/blk-integrity.h>
10
#include <linux/pagemap.h>
11
#include <linux/backing-dev-defs.h>
12
#include <linux/gcd.h>
13
#include <linux/lcm.h>
14
#include <linux/jiffies.h>
15
#include <linux/gfp.h>
16
#include <linux/dma-mapping.h>
17
#include <linux/t10-pi.h>
18
#include <linux/crc64.h>
19
20
#include "blk.h"
21
#include "blk-rq-qos.h"
22
#include "blk-wbt.h"
23
24
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25
{
26
WRITE_ONCE(q->rq_timeout, timeout);
27
}
28
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29
30
/**
31
* blk_set_stacking_limits - set default limits for stacking devices
32
* @lim: the queue_limits structure to reset
33
*
34
* Prepare queue limits for applying limits from underlying devices using
35
* blk_stack_limits().
36
*/
37
void blk_set_stacking_limits(struct queue_limits *lim)
38
{
39
memset(lim, 0, sizeof(*lim));
40
lim->logical_block_size = SECTOR_SIZE;
41
lim->physical_block_size = SECTOR_SIZE;
42
lim->io_min = SECTOR_SIZE;
43
lim->discard_granularity = SECTOR_SIZE;
44
lim->dma_alignment = SECTOR_SIZE - 1;
45
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46
47
/* Inherit limits from component devices */
48
lim->max_segments = USHRT_MAX;
49
lim->max_discard_segments = USHRT_MAX;
50
lim->max_hw_sectors = UINT_MAX;
51
lim->max_segment_size = UINT_MAX;
52
lim->max_sectors = UINT_MAX;
53
lim->max_dev_sectors = UINT_MAX;
54
lim->max_write_zeroes_sectors = UINT_MAX;
55
lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56
lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57
lim->max_hw_zone_append_sectors = UINT_MAX;
58
lim->max_user_discard_sectors = UINT_MAX;
59
lim->atomic_write_hw_max = UINT_MAX;
60
}
61
EXPORT_SYMBOL(blk_set_stacking_limits);
62
63
void blk_apply_bdi_limits(struct backing_dev_info *bdi,
64
struct queue_limits *lim)
65
{
66
u64 io_opt = lim->io_opt;
67
68
/*
69
* For read-ahead of large files to be effective, we need to read ahead
70
* at least twice the optimal I/O size. For rotational devices that do
71
* not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
72
* size to avoid falling back to the (rather inefficient) small default
73
* read-ahead size.
74
*
75
* There is no hardware limitation for the read-ahead size and the user
76
* might have increased the read-ahead size through sysfs, so don't ever
77
* decrease it.
78
*/
79
if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
80
io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
81
82
bdi->ra_pages = max3(bdi->ra_pages,
83
io_opt * 2 >> PAGE_SHIFT,
84
VM_READAHEAD_PAGES);
85
bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
86
}
87
88
static int blk_validate_zoned_limits(struct queue_limits *lim)
89
{
90
if (!(lim->features & BLK_FEAT_ZONED)) {
91
if (WARN_ON_ONCE(lim->max_open_zones) ||
92
WARN_ON_ONCE(lim->max_active_zones) ||
93
WARN_ON_ONCE(lim->zone_write_granularity) ||
94
WARN_ON_ONCE(lim->max_zone_append_sectors))
95
return -EINVAL;
96
return 0;
97
}
98
99
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
100
return -EINVAL;
101
102
/*
103
* Given that active zones include open zones, the maximum number of
104
* open zones cannot be larger than the maximum number of active zones.
105
*/
106
if (lim->max_active_zones &&
107
lim->max_open_zones > lim->max_active_zones)
108
return -EINVAL;
109
110
if (lim->zone_write_granularity < lim->logical_block_size)
111
lim->zone_write_granularity = lim->logical_block_size;
112
113
/*
114
* The Zone Append size is limited by the maximum I/O size and the zone
115
* size given that it can't span zones.
116
*
117
* If no max_hw_zone_append_sectors limit is provided, the block layer
118
* will emulated it, else we're also bound by the hardware limit.
119
*/
120
lim->max_zone_append_sectors =
121
min_not_zero(lim->max_hw_zone_append_sectors,
122
min(lim->chunk_sectors, lim->max_hw_sectors));
123
return 0;
124
}
125
126
static int blk_validate_integrity_limits(struct queue_limits *lim)
127
{
128
struct blk_integrity *bi = &lim->integrity;
129
130
if (!bi->metadata_size) {
131
if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
132
bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
133
pr_warn("invalid PI settings.\n");
134
return -EINVAL;
135
}
136
bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
137
return 0;
138
}
139
140
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
141
pr_warn("integrity support disabled.\n");
142
return -EINVAL;
143
}
144
145
if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
146
(bi->flags & BLK_INTEGRITY_REF_TAG)) {
147
pr_warn("ref tag not support without checksum.\n");
148
return -EINVAL;
149
}
150
151
if (bi->pi_tuple_size > bi->metadata_size) {
152
pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n",
153
bi->pi_tuple_size,
154
bi->metadata_size);
155
return -EINVAL;
156
}
157
158
switch (bi->csum_type) {
159
case BLK_INTEGRITY_CSUM_NONE:
160
if (bi->pi_tuple_size) {
161
pr_warn("pi_tuple_size must be 0 when checksum type is none\n");
162
return -EINVAL;
163
}
164
break;
165
case BLK_INTEGRITY_CSUM_CRC:
166
case BLK_INTEGRITY_CSUM_IP:
167
if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
168
pr_warn("pi_tuple_size mismatch for T10 PI: expected %zu, got %u\n",
169
sizeof(struct t10_pi_tuple),
170
bi->pi_tuple_size);
171
return -EINVAL;
172
}
173
break;
174
case BLK_INTEGRITY_CSUM_CRC64:
175
if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
176
pr_warn("pi_tuple_size mismatch for CRC64 PI: expected %zu, got %u\n",
177
sizeof(struct crc64_pi_tuple),
178
bi->pi_tuple_size);
179
return -EINVAL;
180
}
181
break;
182
}
183
184
if (!bi->interval_exp)
185
bi->interval_exp = ilog2(lim->logical_block_size);
186
187
return 0;
188
}
189
190
/*
191
* Returns max guaranteed bytes which we can fit in a bio.
192
*
193
* We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
194
* so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
195
* the first and last segments.
196
*/
197
static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
198
{
199
unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
200
unsigned int length;
201
202
length = min(max_segments, 2) * lim->logical_block_size;
203
if (max_segments > 2)
204
length += (max_segments - 2) * PAGE_SIZE;
205
206
return length;
207
}
208
209
static void blk_atomic_writes_update_limits(struct queue_limits *lim)
210
{
211
unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
212
blk_queue_max_guaranteed_bio(lim));
213
214
unit_limit = rounddown_pow_of_two(unit_limit);
215
216
lim->atomic_write_max_sectors =
217
min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
218
lim->max_hw_sectors);
219
lim->atomic_write_unit_min =
220
min(lim->atomic_write_hw_unit_min, unit_limit);
221
lim->atomic_write_unit_max =
222
min(lim->atomic_write_hw_unit_max, unit_limit);
223
lim->atomic_write_boundary_sectors =
224
lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
225
}
226
227
/*
228
* Test whether any boundary is aligned with any chunk size. Stacked
229
* devices store any stripe size in t->chunk_sectors.
230
*/
231
static bool blk_valid_atomic_writes_boundary(unsigned int chunk_sectors,
232
unsigned int boundary_sectors)
233
{
234
if (!chunk_sectors || !boundary_sectors)
235
return true;
236
237
if (boundary_sectors > chunk_sectors &&
238
boundary_sectors % chunk_sectors)
239
return false;
240
241
if (chunk_sectors > boundary_sectors &&
242
chunk_sectors % boundary_sectors)
243
return false;
244
245
return true;
246
}
247
248
static void blk_validate_atomic_write_limits(struct queue_limits *lim)
249
{
250
unsigned int boundary_sectors;
251
unsigned int atomic_write_hw_max_sectors =
252
lim->atomic_write_hw_max >> SECTOR_SHIFT;
253
254
if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
255
goto unsupported;
256
257
/* UINT_MAX indicates stacked limits in initial state */
258
if (lim->atomic_write_hw_max == UINT_MAX)
259
goto unsupported;
260
261
if (!lim->atomic_write_hw_max)
262
goto unsupported;
263
264
if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
265
goto unsupported;
266
267
if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
268
goto unsupported;
269
270
if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
271
lim->atomic_write_hw_unit_max))
272
goto unsupported;
273
274
if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
275
lim->atomic_write_hw_max))
276
goto unsupported;
277
278
if (WARN_ON_ONCE(lim->chunk_sectors &&
279
atomic_write_hw_max_sectors > lim->chunk_sectors))
280
goto unsupported;
281
282
boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
283
284
if (boundary_sectors) {
285
if (WARN_ON_ONCE(lim->atomic_write_hw_max >
286
lim->atomic_write_hw_boundary))
287
goto unsupported;
288
289
if (WARN_ON_ONCE(!blk_valid_atomic_writes_boundary(
290
lim->chunk_sectors, boundary_sectors)))
291
goto unsupported;
292
293
/*
294
* The boundary size just needs to be a multiple of unit_max
295
* (and not necessarily a power-of-2), so this following check
296
* could be relaxed in future.
297
* Furthermore, if needed, unit_max could even be reduced so
298
* that it is compliant with a !power-of-2 boundary.
299
*/
300
if (!is_power_of_2(boundary_sectors))
301
goto unsupported;
302
}
303
304
blk_atomic_writes_update_limits(lim);
305
return;
306
307
unsupported:
308
lim->atomic_write_max_sectors = 0;
309
lim->atomic_write_boundary_sectors = 0;
310
lim->atomic_write_unit_min = 0;
311
lim->atomic_write_unit_max = 0;
312
}
313
314
/*
315
* Check that the limits in lim are valid, initialize defaults for unset
316
* values, and cap values based on others where needed.
317
*/
318
int blk_validate_limits(struct queue_limits *lim)
319
{
320
unsigned int max_hw_sectors;
321
unsigned int logical_block_sectors;
322
unsigned long seg_size;
323
int err;
324
325
/*
326
* Unless otherwise specified, default to 512 byte logical blocks and a
327
* physical block size equal to the logical block size.
328
*/
329
if (!lim->logical_block_size)
330
lim->logical_block_size = SECTOR_SIZE;
331
else if (blk_validate_block_size(lim->logical_block_size)) {
332
pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
333
return -EINVAL;
334
}
335
if (lim->physical_block_size < lim->logical_block_size) {
336
lim->physical_block_size = lim->logical_block_size;
337
} else if (!is_power_of_2(lim->physical_block_size)) {
338
pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
339
return -EINVAL;
340
}
341
342
/*
343
* The minimum I/O size defaults to the physical block size unless
344
* explicitly overridden.
345
*/
346
if (lim->io_min < lim->physical_block_size)
347
lim->io_min = lim->physical_block_size;
348
349
/*
350
* The optimal I/O size may not be aligned to physical block size
351
* (because it may be limited by dma engines which have no clue about
352
* block size of the disks attached to them), so we round it down here.
353
*/
354
lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
355
356
/*
357
* max_hw_sectors has a somewhat weird default for historical reason,
358
* but driver really should set their own instead of relying on this
359
* value.
360
*
361
* The block layer relies on the fact that every driver can
362
* handle at lest a page worth of data per I/O, and needs the value
363
* aligned to the logical block size.
364
*/
365
if (!lim->max_hw_sectors)
366
lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
367
if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
368
return -EINVAL;
369
logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
370
if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
371
return -EINVAL;
372
lim->max_hw_sectors = round_down(lim->max_hw_sectors,
373
logical_block_sectors);
374
375
/*
376
* The actual max_sectors value is a complex beast and also takes the
377
* max_dev_sectors value (set by SCSI ULPs) and a user configurable
378
* value into account. The ->max_sectors value is always calculated
379
* from these, so directly setting it won't have any effect.
380
*/
381
max_hw_sectors = min_not_zero(lim->max_hw_sectors,
382
lim->max_dev_sectors);
383
if (lim->max_user_sectors) {
384
if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
385
return -EINVAL;
386
lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
387
} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
388
lim->max_sectors =
389
min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
390
} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
391
lim->max_sectors =
392
min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
393
} else {
394
lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
395
}
396
lim->max_sectors = round_down(lim->max_sectors,
397
logical_block_sectors);
398
399
/*
400
* Random default for the maximum number of segments. Driver should not
401
* rely on this and set their own.
402
*/
403
if (!lim->max_segments)
404
lim->max_segments = BLK_MAX_SEGMENTS;
405
406
if (lim->max_hw_wzeroes_unmap_sectors &&
407
lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
408
return -EINVAL;
409
lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
410
lim->max_user_wzeroes_unmap_sectors);
411
412
lim->max_discard_sectors =
413
min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
414
415
/*
416
* When discard is not supported, discard_granularity should be reported
417
* as 0 to userspace.
418
*/
419
if (lim->max_discard_sectors)
420
lim->discard_granularity =
421
max(lim->discard_granularity, lim->physical_block_size);
422
else
423
lim->discard_granularity = 0;
424
425
if (!lim->max_discard_segments)
426
lim->max_discard_segments = 1;
427
428
/*
429
* By default there is no limit on the segment boundary alignment,
430
* but if there is one it can't be smaller than the page size as
431
* that would break all the normal I/O patterns.
432
*/
433
if (!lim->seg_boundary_mask)
434
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
435
if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
436
return -EINVAL;
437
438
/*
439
* Stacking device may have both virtual boundary and max segment
440
* size limit, so allow this setting now, and long-term the two
441
* might need to move out of stacking limits since we have immutable
442
* bvec and lower layer bio splitting is supposed to handle the two
443
* correctly.
444
*/
445
if (lim->virt_boundary_mask) {
446
if (!lim->max_segment_size)
447
lim->max_segment_size = UINT_MAX;
448
} else {
449
/*
450
* The maximum segment size has an odd historic 64k default that
451
* drivers probably should override. Just like the I/O size we
452
* require drivers to at least handle a full page per segment.
453
*/
454
if (!lim->max_segment_size)
455
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
456
if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
457
return -EINVAL;
458
}
459
460
/* setup min segment size for building new segment in fast path */
461
if (lim->seg_boundary_mask > lim->max_segment_size - 1)
462
seg_size = lim->max_segment_size;
463
else
464
seg_size = lim->seg_boundary_mask + 1;
465
lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
466
467
/*
468
* We require drivers to at least do logical block aligned I/O, but
469
* historically could not check for that due to the separate calls
470
* to set the limits. Once the transition is finished the check
471
* below should be narrowed down to check the logical block size.
472
*/
473
if (!lim->dma_alignment)
474
lim->dma_alignment = SECTOR_SIZE - 1;
475
if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
476
return -EINVAL;
477
478
if (lim->alignment_offset) {
479
lim->alignment_offset &= (lim->physical_block_size - 1);
480
lim->flags &= ~BLK_FLAG_MISALIGNED;
481
}
482
483
if (!(lim->features & BLK_FEAT_WRITE_CACHE))
484
lim->features &= ~BLK_FEAT_FUA;
485
486
blk_validate_atomic_write_limits(lim);
487
488
err = blk_validate_integrity_limits(lim);
489
if (err)
490
return err;
491
return blk_validate_zoned_limits(lim);
492
}
493
EXPORT_SYMBOL_GPL(blk_validate_limits);
494
495
/*
496
* Set the default limits for a newly allocated queue. @lim contains the
497
* initial limits set by the driver, which could be no limit in which case
498
* all fields are cleared to zero.
499
*/
500
int blk_set_default_limits(struct queue_limits *lim)
501
{
502
/*
503
* Most defaults are set by capping the bounds in blk_validate_limits,
504
* but these limits are special and need an explicit initialization to
505
* the max value here.
506
*/
507
lim->max_user_discard_sectors = UINT_MAX;
508
lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
509
return blk_validate_limits(lim);
510
}
511
512
/**
513
* queue_limits_commit_update - commit an atomic update of queue limits
514
* @q: queue to update
515
* @lim: limits to apply
516
*
517
* Apply the limits in @lim that were obtained from queue_limits_start_update()
518
* and updated by the caller to @q. The caller must have frozen the queue or
519
* ensure that there are no outstanding I/Os by other means.
520
*
521
* Returns 0 if successful, else a negative error code.
522
*/
523
int queue_limits_commit_update(struct request_queue *q,
524
struct queue_limits *lim)
525
{
526
int error;
527
528
error = blk_validate_limits(lim);
529
if (error)
530
goto out_unlock;
531
532
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
533
if (q->crypto_profile && lim->integrity.tag_size) {
534
pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
535
error = -EINVAL;
536
goto out_unlock;
537
}
538
#endif
539
540
q->limits = *lim;
541
if (q->disk)
542
blk_apply_bdi_limits(q->disk->bdi, lim);
543
out_unlock:
544
mutex_unlock(&q->limits_lock);
545
return error;
546
}
547
EXPORT_SYMBOL_GPL(queue_limits_commit_update);
548
549
/**
550
* queue_limits_commit_update_frozen - commit an atomic update of queue limits
551
* @q: queue to update
552
* @lim: limits to apply
553
*
554
* Apply the limits in @lim that were obtained from queue_limits_start_update()
555
* and updated with the new values by the caller to @q. Freezes the queue
556
* before the update and unfreezes it after.
557
*
558
* Returns 0 if successful, else a negative error code.
559
*/
560
int queue_limits_commit_update_frozen(struct request_queue *q,
561
struct queue_limits *lim)
562
{
563
unsigned int memflags;
564
int ret;
565
566
memflags = blk_mq_freeze_queue(q);
567
ret = queue_limits_commit_update(q, lim);
568
blk_mq_unfreeze_queue(q, memflags);
569
570
return ret;
571
}
572
EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
573
574
/**
575
* queue_limits_set - apply queue limits to queue
576
* @q: queue to update
577
* @lim: limits to apply
578
*
579
* Apply the limits in @lim that were freshly initialized to @q.
580
* To update existing limits use queue_limits_start_update() and
581
* queue_limits_commit_update() instead.
582
*
583
* Returns 0 if successful, else a negative error code.
584
*/
585
int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
586
{
587
mutex_lock(&q->limits_lock);
588
return queue_limits_commit_update(q, lim);
589
}
590
EXPORT_SYMBOL_GPL(queue_limits_set);
591
592
static int queue_limit_alignment_offset(const struct queue_limits *lim,
593
sector_t sector)
594
{
595
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
596
unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
597
<< SECTOR_SHIFT;
598
599
return (granularity + lim->alignment_offset - alignment) % granularity;
600
}
601
602
static unsigned int queue_limit_discard_alignment(
603
const struct queue_limits *lim, sector_t sector)
604
{
605
unsigned int alignment, granularity, offset;
606
607
if (!lim->max_discard_sectors)
608
return 0;
609
610
/* Why are these in bytes, not sectors? */
611
alignment = lim->discard_alignment >> SECTOR_SHIFT;
612
granularity = lim->discard_granularity >> SECTOR_SHIFT;
613
614
/* Offset of the partition start in 'granularity' sectors */
615
offset = sector_div(sector, granularity);
616
617
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
618
offset = (granularity + alignment - offset) % granularity;
619
620
/* Turn it back into bytes, gaah */
621
return offset << SECTOR_SHIFT;
622
}
623
624
static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
625
{
626
sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
627
if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
628
sectors = PAGE_SIZE >> SECTOR_SHIFT;
629
return sectors;
630
}
631
632
/* Check if second and later bottom devices are compliant */
633
static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
634
struct queue_limits *b)
635
{
636
/* We're not going to support different boundary sizes.. yet */
637
if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
638
return false;
639
640
/* Can't support this */
641
if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
642
return false;
643
644
/* Or this */
645
if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
646
return false;
647
648
t->atomic_write_hw_max = min(t->atomic_write_hw_max,
649
b->atomic_write_hw_max);
650
t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
651
b->atomic_write_hw_unit_min);
652
t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
653
b->atomic_write_hw_unit_max);
654
return true;
655
}
656
657
static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
658
{
659
unsigned int chunk_bytes;
660
661
if (!t->chunk_sectors)
662
return;
663
664
/*
665
* If chunk sectors is so large that its value in bytes overflows
666
* UINT_MAX, then just shift it down so it definitely will fit.
667
* We don't support atomic writes of such a large size anyway.
668
*/
669
if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
670
chunk_bytes = t->chunk_sectors;
671
672
/*
673
* Find values for limits which work for chunk size.
674
* b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
675
* size, as the chunk size is not restricted to a power-of-2.
676
* So we need to find highest power-of-2 which works for the chunk
677
* size.
678
* As an example scenario, we could have t->unit_max = 16K and
679
* t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
680
* value aligned with both limits, i.e. 8K in this example.
681
*/
682
t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
683
max_pow_of_two_factor(chunk_bytes));
684
685
t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
686
t->atomic_write_hw_unit_max);
687
t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
688
}
689
690
/* Check stacking of first bottom device */
691
static bool blk_stack_atomic_writes_head(struct queue_limits *t,
692
struct queue_limits *b)
693
{
694
if (!blk_valid_atomic_writes_boundary(t->chunk_sectors,
695
b->atomic_write_hw_boundary >> SECTOR_SHIFT))
696
return false;
697
698
t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
699
t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
700
t->atomic_write_hw_max = b->atomic_write_hw_max;
701
t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
702
return true;
703
}
704
705
static void blk_stack_atomic_writes_limits(struct queue_limits *t,
706
struct queue_limits *b, sector_t start)
707
{
708
if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
709
goto unsupported;
710
711
if (!b->atomic_write_hw_unit_min)
712
goto unsupported;
713
714
if (!blk_atomic_write_start_sect_aligned(start, b))
715
goto unsupported;
716
717
/* UINT_MAX indicates no stacking of bottom devices yet */
718
if (t->atomic_write_hw_max == UINT_MAX) {
719
if (!blk_stack_atomic_writes_head(t, b))
720
goto unsupported;
721
} else {
722
if (!blk_stack_atomic_writes_tail(t, b))
723
goto unsupported;
724
}
725
blk_stack_atomic_writes_chunk_sectors(t);
726
return;
727
728
unsupported:
729
t->atomic_write_hw_max = 0;
730
t->atomic_write_hw_unit_max = 0;
731
t->atomic_write_hw_unit_min = 0;
732
t->atomic_write_hw_boundary = 0;
733
}
734
735
/**
736
* blk_stack_limits - adjust queue_limits for stacked devices
737
* @t: the stacking driver limits (top device)
738
* @b: the underlying queue limits (bottom, component device)
739
* @start: first data sector within component device
740
*
741
* Description:
742
* This function is used by stacking drivers like MD and DM to ensure
743
* that all component devices have compatible block sizes and
744
* alignments. The stacking driver must provide a queue_limits
745
* struct (top) and then iteratively call the stacking function for
746
* all component (bottom) devices. The stacking function will
747
* attempt to combine the values and ensure proper alignment.
748
*
749
* Returns 0 if the top and bottom queue_limits are compatible. The
750
* top device's block sizes and alignment offsets may be adjusted to
751
* ensure alignment with the bottom device. If no compatible sizes
752
* and alignments exist, -1 is returned and the resulting top
753
* queue_limits will have the misaligned flag set to indicate that
754
* the alignment_offset is undefined.
755
*/
756
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
757
sector_t start)
758
{
759
unsigned int top, bottom, alignment;
760
int ret = 0;
761
762
t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
763
764
/*
765
* Some feaures need to be supported both by the stacking driver and all
766
* underlying devices. The stacking driver sets these flags before
767
* stacking the limits, and this will clear the flags if any of the
768
* underlying devices does not support it.
769
*/
770
if (!(b->features & BLK_FEAT_NOWAIT))
771
t->features &= ~BLK_FEAT_NOWAIT;
772
if (!(b->features & BLK_FEAT_POLL))
773
t->features &= ~BLK_FEAT_POLL;
774
775
t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
776
777
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
778
t->max_user_sectors = min_not_zero(t->max_user_sectors,
779
b->max_user_sectors);
780
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
781
t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
782
t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
783
b->max_write_zeroes_sectors);
784
t->max_user_wzeroes_unmap_sectors =
785
min(t->max_user_wzeroes_unmap_sectors,
786
b->max_user_wzeroes_unmap_sectors);
787
t->max_hw_wzeroes_unmap_sectors =
788
min(t->max_hw_wzeroes_unmap_sectors,
789
b->max_hw_wzeroes_unmap_sectors);
790
791
t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
792
b->max_hw_zone_append_sectors);
793
794
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
795
b->seg_boundary_mask);
796
t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
797
b->virt_boundary_mask);
798
799
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
800
t->max_discard_segments = min_not_zero(t->max_discard_segments,
801
b->max_discard_segments);
802
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
803
b->max_integrity_segments);
804
805
t->max_segment_size = min_not_zero(t->max_segment_size,
806
b->max_segment_size);
807
808
alignment = queue_limit_alignment_offset(b, start);
809
810
/* Bottom device has different alignment. Check that it is
811
* compatible with the current top alignment.
812
*/
813
if (t->alignment_offset != alignment) {
814
815
top = max(t->physical_block_size, t->io_min)
816
+ t->alignment_offset;
817
bottom = max(b->physical_block_size, b->io_min) + alignment;
818
819
/* Verify that top and bottom intervals line up */
820
if (max(top, bottom) % min(top, bottom)) {
821
t->flags |= BLK_FLAG_MISALIGNED;
822
ret = -1;
823
}
824
}
825
826
t->logical_block_size = max(t->logical_block_size,
827
b->logical_block_size);
828
829
t->physical_block_size = max(t->physical_block_size,
830
b->physical_block_size);
831
832
t->io_min = max(t->io_min, b->io_min);
833
t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
834
t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
835
836
/* Set non-power-of-2 compatible chunk_sectors boundary */
837
if (b->chunk_sectors)
838
t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
839
840
/* Physical block size a multiple of the logical block size? */
841
if (t->physical_block_size & (t->logical_block_size - 1)) {
842
t->physical_block_size = t->logical_block_size;
843
t->flags |= BLK_FLAG_MISALIGNED;
844
ret = -1;
845
}
846
847
/* Minimum I/O a multiple of the physical block size? */
848
if (t->io_min & (t->physical_block_size - 1)) {
849
t->io_min = t->physical_block_size;
850
t->flags |= BLK_FLAG_MISALIGNED;
851
ret = -1;
852
}
853
854
/* Optimal I/O a multiple of the physical block size? */
855
if (t->io_opt & (t->physical_block_size - 1)) {
856
t->io_opt = 0;
857
t->flags |= BLK_FLAG_MISALIGNED;
858
ret = -1;
859
}
860
861
/* chunk_sectors a multiple of the physical block size? */
862
if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
863
t->chunk_sectors = 0;
864
t->flags |= BLK_FLAG_MISALIGNED;
865
ret = -1;
866
}
867
868
/* Find lowest common alignment_offset */
869
t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
870
% max(t->physical_block_size, t->io_min);
871
872
/* Verify that new alignment_offset is on a logical block boundary */
873
if (t->alignment_offset & (t->logical_block_size - 1)) {
874
t->flags |= BLK_FLAG_MISALIGNED;
875
ret = -1;
876
}
877
878
t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
879
t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
880
t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
881
882
/* Discard alignment and granularity */
883
if (b->discard_granularity) {
884
alignment = queue_limit_discard_alignment(b, start);
885
886
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
887
b->max_discard_sectors);
888
t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
889
b->max_hw_discard_sectors);
890
t->discard_granularity = max(t->discard_granularity,
891
b->discard_granularity);
892
t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
893
t->discard_granularity;
894
}
895
t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
896
b->max_secure_erase_sectors);
897
t->zone_write_granularity = max(t->zone_write_granularity,
898
b->zone_write_granularity);
899
if (!(t->features & BLK_FEAT_ZONED)) {
900
t->zone_write_granularity = 0;
901
t->max_zone_append_sectors = 0;
902
}
903
blk_stack_atomic_writes_limits(t, b, start);
904
905
return ret;
906
}
907
EXPORT_SYMBOL(blk_stack_limits);
908
909
/**
910
* queue_limits_stack_bdev - adjust queue_limits for stacked devices
911
* @t: the stacking driver limits (top device)
912
* @bdev: the underlying block device (bottom)
913
* @offset: offset to beginning of data within component device
914
* @pfx: prefix to use for warnings logged
915
*
916
* Description:
917
* This function is used by stacking drivers like MD and DM to ensure
918
* that all component devices have compatible block sizes and
919
* alignments. The stacking driver must provide a queue_limits
920
* struct (top) and then iteratively call the stacking function for
921
* all component (bottom) devices. The stacking function will
922
* attempt to combine the values and ensure proper alignment.
923
*/
924
void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
925
sector_t offset, const char *pfx)
926
{
927
if (blk_stack_limits(t, bdev_limits(bdev),
928
get_start_sect(bdev) + offset))
929
pr_notice("%s: Warning: Device %pg is misaligned\n",
930
pfx, bdev);
931
}
932
EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
933
934
/**
935
* queue_limits_stack_integrity - stack integrity profile
936
* @t: target queue limits
937
* @b: base queue limits
938
*
939
* Check if the integrity profile in the @b can be stacked into the
940
* target @t. Stacking is possible if either:
941
*
942
* a) does not have any integrity information stacked into it yet
943
* b) the integrity profile in @b is identical to the one in @t
944
*
945
* If @b can be stacked into @t, return %true. Else return %false and clear the
946
* integrity information in @t.
947
*/
948
bool queue_limits_stack_integrity(struct queue_limits *t,
949
struct queue_limits *b)
950
{
951
struct blk_integrity *ti = &t->integrity;
952
struct blk_integrity *bi = &b->integrity;
953
954
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
955
return true;
956
957
if (ti->flags & BLK_INTEGRITY_STACKED) {
958
if (ti->metadata_size != bi->metadata_size)
959
goto incompatible;
960
if (ti->interval_exp != bi->interval_exp)
961
goto incompatible;
962
if (ti->tag_size != bi->tag_size)
963
goto incompatible;
964
if (ti->csum_type != bi->csum_type)
965
goto incompatible;
966
if (ti->pi_tuple_size != bi->pi_tuple_size)
967
goto incompatible;
968
if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
969
(bi->flags & BLK_INTEGRITY_REF_TAG))
970
goto incompatible;
971
} else {
972
ti->flags = BLK_INTEGRITY_STACKED;
973
ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
974
(bi->flags & BLK_INTEGRITY_REF_TAG);
975
ti->csum_type = bi->csum_type;
976
ti->pi_tuple_size = bi->pi_tuple_size;
977
ti->metadata_size = bi->metadata_size;
978
ti->pi_offset = bi->pi_offset;
979
ti->interval_exp = bi->interval_exp;
980
ti->tag_size = bi->tag_size;
981
}
982
return true;
983
984
incompatible:
985
memset(ti, 0, sizeof(*ti));
986
return false;
987
}
988
EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
989
990
/**
991
* blk_set_queue_depth - tell the block layer about the device queue depth
992
* @q: the request queue for the device
993
* @depth: queue depth
994
*
995
*/
996
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
997
{
998
q->queue_depth = depth;
999
rq_qos_queue_depth_changed(q);
1000
}
1001
EXPORT_SYMBOL(blk_set_queue_depth);
1002
1003
int bdev_alignment_offset(struct block_device *bdev)
1004
{
1005
struct request_queue *q = bdev_get_queue(bdev);
1006
1007
if (q->limits.flags & BLK_FLAG_MISALIGNED)
1008
return -1;
1009
if (bdev_is_partition(bdev))
1010
return queue_limit_alignment_offset(&q->limits,
1011
bdev->bd_start_sect);
1012
return q->limits.alignment_offset;
1013
}
1014
EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1015
1016
unsigned int bdev_discard_alignment(struct block_device *bdev)
1017
{
1018
struct request_queue *q = bdev_get_queue(bdev);
1019
1020
if (bdev_is_partition(bdev))
1021
return queue_limit_discard_alignment(&q->limits,
1022
bdev->bd_start_sect);
1023
return q->limits.discard_alignment;
1024
}
1025
EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1026
1027