Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/accel/habanalabs/common/habanalabs.h
29282 views
1
/* SPDX-License-Identifier: GPL-2.0
2
*
3
* Copyright 2016-2023 HabanaLabs, Ltd.
4
* All Rights Reserved.
5
*
6
*/
7
8
#ifndef HABANALABSP_H_
9
#define HABANALABSP_H_
10
11
#include <linux/habanalabs/cpucp_if.h>
12
#include "../include/common/qman_if.h"
13
#include "../include/hw_ip/mmu/mmu_general.h"
14
#include <uapi/drm/habanalabs_accel.h>
15
16
#include <linux/cdev.h>
17
#include <linux/iopoll.h>
18
#include <linux/irqreturn.h>
19
#include <linux/dma-direction.h>
20
#include <linux/scatterlist.h>
21
#include <linux/hashtable.h>
22
#include <linux/debugfs.h>
23
#include <linux/rwsem.h>
24
#include <linux/eventfd.h>
25
#include <linux/bitfield.h>
26
#include <linux/genalloc.h>
27
#include <linux/sched/signal.h>
28
#include <linux/io-64-nonatomic-lo-hi.h>
29
#include <linux/coresight.h>
30
#include <linux/dma-buf.h>
31
32
#include <drm/drm_device.h>
33
#include <drm/drm_file.h>
34
35
#include "security.h"
36
37
#define HL_NAME "habanalabs"
38
39
struct hl_device;
40
struct hl_fpriv;
41
42
#define PCI_VENDOR_ID_HABANALABS 0x1da3
43
44
/* Use upper bits of mmap offset to store habana driver specific information.
45
* bits[63:59] - Encode mmap type
46
* bits[45:0] - mmap offset value
47
*
48
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
49
* defines are w.r.t to PAGE_SIZE
50
*/
51
#define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
52
#define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
53
#define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
54
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
55
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
56
57
#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
58
#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
59
60
#define HL_PENDING_RESET_PER_SEC 10
61
#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
62
#define HL_PENDING_RESET_LONG_SEC 60
63
/*
64
* In device fini, wait 10 minutes for user processes to be terminated after we kill them.
65
* This is needed to prevent situation of clearing resources while user processes are still alive.
66
*/
67
#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
68
69
#define HL_HARD_RESET_MAX_TIMEOUT 120
70
#define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
71
72
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
73
74
#define HL_HEARTBEAT_PER_USEC 10000000 /* 10 s */
75
76
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
77
78
#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
79
#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
80
#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
81
#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
82
83
#define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
84
#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
85
86
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
87
88
#define HL_INVALID_QUEUE UINT_MAX
89
90
#define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
91
#define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
92
93
#define HL_STATE_DUMP_HIST_LEN 5
94
#define HL_DBGFS_CFG_ACCESS_HIST_LEN 20
95
#define HL_DBGFS_CFG_ACCESS_HIST_TIMEOUT_SEC 2 /* 2s */
96
97
/* Default value for device reset trigger , an invalid value */
98
#define HL_RESET_TRIGGER_DEFAULT 0xFF
99
100
#define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
101
#define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
102
103
/* Memory */
104
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
105
106
/* MMU */
107
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
108
109
#define TIMESTAMP_FREE_NODES_NUM 512
110
111
/**
112
* enum hl_mmu_page_table_location - mmu page table location
113
* @MMU_DR_PGT: page-table is located on device DRAM.
114
* @MMU_HR_PGT: page-table is located on host memory.
115
* @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
116
*/
117
enum hl_mmu_page_table_location {
118
MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
119
MMU_HR_PGT, /* host resident MMU PGT */
120
MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
121
};
122
123
/*
124
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
125
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
126
*/
127
#define HL_RSVD_SOBS 2
128
#define HL_RSVD_MONS 1
129
130
/*
131
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
132
*/
133
#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
134
135
#define HL_MAX_SOB_VAL (1 << 15)
136
137
#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
138
#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
139
140
#define HL_PCI_NUM_BARS 6
141
142
/* Completion queue entry relates to completed job */
143
#define HL_COMPLETION_MODE_JOB 0
144
/* Completion queue entry relates to completed command submission */
145
#define HL_COMPLETION_MODE_CS 1
146
147
#define HL_MAX_DCORES 8
148
149
/* DMA alloc/free wrappers */
150
#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
151
hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
152
153
#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
154
hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
155
156
#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
157
hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
158
159
#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
160
hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
161
162
#define hl_dma_map_sgtable(hdev, sgt, dir) \
163
hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__)
164
#define hl_dma_unmap_sgtable(hdev, sgt, dir) \
165
hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__)
166
167
/*
168
* Reset Flags
169
*
170
* - HL_DRV_RESET_HARD
171
* If set do hard reset to all engines. If not set reset just
172
* compute/DMA engines.
173
*
174
* - HL_DRV_RESET_FROM_RESET_THR
175
* Set if the caller is the hard-reset thread
176
*
177
* - HL_DRV_RESET_HEARTBEAT
178
* Set if reset is due to heartbeat
179
*
180
* - HL_DRV_RESET_TDR
181
* Set if reset is due to TDR
182
*
183
* - HL_DRV_RESET_DEV_RELEASE
184
* Set if reset is due to device release
185
*
186
* - HL_DRV_RESET_BYPASS_REQ_TO_FW
187
* F/W will perform the reset. No need to ask it to reset the device. This is relevant
188
* only when running with secured f/w
189
*
190
* - HL_DRV_RESET_FW_FATAL_ERR
191
* Set if reset is due to a fatal error from FW
192
*
193
* - HL_DRV_RESET_DELAY
194
* Set if a delay should be added before the reset
195
*
196
* - HL_DRV_RESET_FROM_WD_THR
197
* Set if the caller is the device release watchdog thread
198
*/
199
200
#define HL_DRV_RESET_HARD (1 << 0)
201
#define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
202
#define HL_DRV_RESET_HEARTBEAT (1 << 2)
203
#define HL_DRV_RESET_TDR (1 << 3)
204
#define HL_DRV_RESET_DEV_RELEASE (1 << 4)
205
#define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
206
#define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
207
#define HL_DRV_RESET_DELAY (1 << 7)
208
#define HL_DRV_RESET_FROM_WD_THR (1 << 8)
209
210
/*
211
* Security
212
*/
213
214
#define HL_PB_SHARED 1
215
#define HL_PB_NA 0
216
#define HL_PB_SINGLE_INSTANCE 1
217
#define HL_BLOCK_SIZE 0x1000
218
#define HL_BLOCK_GLBL_ERR_MASK 0xF40
219
#define HL_BLOCK_GLBL_ERR_ADDR 0xF44
220
#define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
221
#define HL_BLOCK_GLBL_SEC_OFFS 0xF80
222
#define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
223
#define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
224
#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
225
226
enum hl_protection_levels {
227
SECURED_LVL,
228
PRIVILEGED_LVL,
229
NON_SECURED_LVL
230
};
231
232
/**
233
* struct iterate_module_ctx - HW module iterator
234
* @fn: function to apply to each HW module instance
235
* @data: optional internal data to the function iterator
236
* @rc: return code for optional use of iterator/iterator-caller
237
*/
238
struct iterate_module_ctx {
239
/*
240
* callback for the HW module iterator
241
* @hdev: pointer to the habanalabs device structure
242
* @block: block (ASIC specific definition can be dcore/hdcore)
243
* @inst: HW module instance within the block
244
* @offset: current HW module instance offset from the 1-st HW module instance
245
* in the 1-st block
246
* @ctx: the iterator context.
247
*/
248
void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
249
struct iterate_module_ctx *ctx);
250
void *data;
251
int rc;
252
};
253
254
struct hl_block_glbl_sec {
255
u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
256
};
257
258
#define HL_MAX_SOBS_PER_MONITOR 8
259
260
/**
261
* struct hl_gen_wait_properties - properties for generating a wait CB
262
* @data: command buffer
263
* @q_idx: queue id is used to extract fence register address
264
* @size: offset in command buffer
265
* @sob_base: SOB base to use in this wait CB
266
* @sob_val: SOB value to wait for
267
* @mon_id: monitor to use in this wait CB
268
* @sob_mask: each bit represents a SOB offset from sob_base to be used
269
*/
270
struct hl_gen_wait_properties {
271
void *data;
272
u32 q_idx;
273
u32 size;
274
u16 sob_base;
275
u16 sob_val;
276
u16 mon_id;
277
u8 sob_mask;
278
};
279
280
/**
281
* struct pgt_info - MMU hop page info.
282
* @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
283
* actual pgts for host resident MMU).
284
* @phys_addr: physical address of the pgt.
285
* @virt_addr: host virtual address of the pgt (see above device/host resident).
286
* @shadow_addr: shadow hop in the host for device resident MMU.
287
* @ctx: pointer to the owner ctx.
288
* @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
289
* allocated HOPs (all HOPs but HOP0)
290
*
291
* The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
292
* pgts will be stored on host memory) or on host memory (in which case no shadow is required).
293
*
294
* When a new level (hop) is needed during mapping this structure will be used to describe
295
* the newly allocated hop as well as to track number of PTEs in it.
296
* During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
297
* freed with its pgt_info structure.
298
*/
299
struct pgt_info {
300
struct hlist_node node;
301
u64 phys_addr;
302
u64 virt_addr;
303
u64 shadow_addr;
304
struct hl_ctx *ctx;
305
int num_of_ptes;
306
};
307
308
/**
309
* enum hl_pci_match_mode - pci match mode per region
310
* @PCI_ADDRESS_MATCH_MODE: address match mode
311
* @PCI_BAR_MATCH_MODE: bar match mode
312
*/
313
enum hl_pci_match_mode {
314
PCI_ADDRESS_MATCH_MODE,
315
PCI_BAR_MATCH_MODE
316
};
317
318
/**
319
* enum hl_fw_component - F/W components to read version through registers.
320
* @FW_COMP_BOOT_FIT: boot fit.
321
* @FW_COMP_PREBOOT: preboot.
322
* @FW_COMP_LINUX: linux.
323
*/
324
enum hl_fw_component {
325
FW_COMP_BOOT_FIT,
326
FW_COMP_PREBOOT,
327
FW_COMP_LINUX,
328
};
329
330
/**
331
* enum hl_fw_types - F/W types present in the system
332
* @FW_TYPE_NONE: no FW component indication
333
* @FW_TYPE_LINUX: Linux image for device CPU
334
* @FW_TYPE_BOOT_CPU: Boot image for device CPU
335
* @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
336
* (preboot, ppboot etc...)
337
* @FW_TYPE_ALL_TYPES: Mask for all types
338
*/
339
enum hl_fw_types {
340
FW_TYPE_NONE = 0x0,
341
FW_TYPE_LINUX = 0x1,
342
FW_TYPE_BOOT_CPU = 0x2,
343
FW_TYPE_PREBOOT_CPU = 0x4,
344
FW_TYPE_ALL_TYPES =
345
(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
346
};
347
348
/**
349
* enum hl_queue_type - Supported QUEUE types.
350
* @QUEUE_TYPE_NA: queue is not available.
351
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
352
* host.
353
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
354
* memories and/or operates the compute engines.
355
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
356
* @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
357
* notifications are sent by H/W.
358
*/
359
enum hl_queue_type {
360
QUEUE_TYPE_NA,
361
QUEUE_TYPE_EXT,
362
QUEUE_TYPE_INT,
363
QUEUE_TYPE_CPU,
364
QUEUE_TYPE_HW
365
};
366
367
enum hl_cs_type {
368
CS_TYPE_DEFAULT,
369
CS_TYPE_SIGNAL,
370
CS_TYPE_WAIT,
371
CS_TYPE_COLLECTIVE_WAIT,
372
CS_RESERVE_SIGNALS,
373
CS_UNRESERVE_SIGNALS,
374
CS_TYPE_ENGINE_CORE,
375
CS_TYPE_ENGINES,
376
CS_TYPE_FLUSH_PCI_HBW_WRITES,
377
};
378
379
/*
380
* struct hl_inbound_pci_region - inbound region descriptor
381
* @mode: pci match mode for this region
382
* @addr: region target address
383
* @size: region size in bytes
384
* @offset_in_bar: offset within bar (address match mode)
385
* @bar: bar id
386
*/
387
struct hl_inbound_pci_region {
388
enum hl_pci_match_mode mode;
389
u64 addr;
390
u64 size;
391
u64 offset_in_bar;
392
u8 bar;
393
};
394
395
/*
396
* struct hl_outbound_pci_region - outbound region descriptor
397
* @addr: region target address
398
* @size: region size in bytes
399
*/
400
struct hl_outbound_pci_region {
401
u64 addr;
402
u64 size;
403
};
404
405
/*
406
* enum queue_cb_alloc_flags - Indicates queue support for CBs that
407
* allocated by Kernel or by User
408
* @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
409
* @CB_ALLOC_USER: support only CBs that allocated by User
410
*/
411
enum queue_cb_alloc_flags {
412
CB_ALLOC_KERNEL = 0x1,
413
CB_ALLOC_USER = 0x2
414
};
415
416
/*
417
* struct hl_hw_sob - H/W SOB info.
418
* @hdev: habanalabs device structure.
419
* @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
420
* @sob_id: id of this SOB.
421
* @sob_addr: the sob offset from the base address.
422
* @q_idx: the H/W queue that uses this SOB.
423
* @need_reset: reset indication set when switching to the other sob.
424
*/
425
struct hl_hw_sob {
426
struct hl_device *hdev;
427
struct kref kref;
428
u32 sob_id;
429
u32 sob_addr;
430
u32 q_idx;
431
bool need_reset;
432
};
433
434
enum hl_collective_mode {
435
HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
436
HL_COLLECTIVE_MASTER = 0x1,
437
HL_COLLECTIVE_SLAVE = 0x2
438
};
439
440
/**
441
* struct hw_queue_properties - queue information.
442
* @type: queue type.
443
* @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
444
* that allocated by the Kernel driver and therefore,
445
* a CB handle can be provided for jobs on this queue.
446
* Otherwise, a CB address must be provided.
447
* @collective_mode: collective mode of current queue
448
* @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM.
449
* @driver_only: true if only the driver is allowed to send a job to this queue,
450
* false otherwise.
451
* @binned: True if the queue is binned out and should not be used
452
* @supports_sync_stream: True if queue supports sync stream
453
* @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
454
*/
455
struct hw_queue_properties {
456
enum hl_queue_type type;
457
enum queue_cb_alloc_flags cb_alloc_flags;
458
enum hl_collective_mode collective_mode;
459
u64 q_dram_bd_address;
460
u8 driver_only;
461
u8 binned;
462
u8 supports_sync_stream;
463
u8 dram_bd;
464
};
465
466
/**
467
* enum vm_type - virtual memory mapping request information.
468
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
469
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
470
*/
471
enum vm_type {
472
VM_TYPE_USERPTR = 0x1,
473
VM_TYPE_PHYS_PACK = 0x2
474
};
475
476
/**
477
* enum mmu_op_flags - mmu operation relevant information.
478
* @MMU_OP_USERPTR: operation on user memory (host resident).
479
* @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
480
* @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
481
* @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
482
*/
483
enum mmu_op_flags {
484
MMU_OP_USERPTR = 0x1,
485
MMU_OP_PHYS_PACK = 0x2,
486
MMU_OP_CLEAR_MEMCACHE = 0x4,
487
MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
488
};
489
490
491
/**
492
* enum hl_device_hw_state - H/W device state. use this to understand whether
493
* to do reset before hw_init or not
494
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
495
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
496
* hw_init
497
*/
498
enum hl_device_hw_state {
499
HL_DEVICE_HW_STATE_CLEAN = 0,
500
HL_DEVICE_HW_STATE_DIRTY
501
};
502
503
#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
504
505
/**
506
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
507
* @start_addr: virtual start address of the memory region.
508
* @end_addr: virtual end address of the memory region.
509
* @hop_shifts: array holds HOPs shifts.
510
* @hop_masks: array holds HOPs masks.
511
* @last_mask: mask to get the bit indicating this is the last hop.
512
* @pgt_size: size for page tables.
513
* @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
514
* supporting multiple page size).
515
* @page_size: default page size used to allocate memory.
516
* @num_hops: The amount of hops supported by the translation table.
517
* @hop_table_size: HOP table size.
518
* @hop0_tables_total_size: total size for all HOP0 tables.
519
* @host_resident: Should the MMU page table reside in host memory or in the
520
* device DRAM.
521
*/
522
struct hl_mmu_properties {
523
u64 start_addr;
524
u64 end_addr;
525
u64 hop_shifts[MMU_HOP_MAX];
526
u64 hop_masks[MMU_HOP_MAX];
527
u64 last_mask;
528
u64 pgt_size;
529
u64 supported_pages_mask;
530
u32 page_size;
531
u32 num_hops;
532
u32 hop_table_size;
533
u32 hop0_tables_total_size;
534
u8 host_resident;
535
};
536
537
/**
538
* struct hl_hints_range - hint addresses reserved va range.
539
* @start_addr: start address of the va range.
540
* @end_addr: end address of the va range.
541
*/
542
struct hl_hints_range {
543
u64 start_addr;
544
u64 end_addr;
545
};
546
547
/**
548
* struct asic_fixed_properties - ASIC specific immutable properties.
549
* @hw_queues_props: H/W queues properties.
550
* @special_blocks: points to an array containing special blocks info.
551
* @skip_special_blocks_cfg: special blocks skip configs.
552
* @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
553
* available sensors.
554
* @uboot_ver: F/W U-boot version.
555
* @preboot_ver: F/W Preboot version.
556
* @dmmu: DRAM MMU address translation properties.
557
* @pmmu: PCI (host) MMU address translation properties.
558
* @pmmu_huge: PCI (host) MMU address translation properties for memory
559
* allocated with huge pages.
560
* @hints_dram_reserved_va_range: dram hint addresses reserved range.
561
* @hints_host_reserved_va_range: host hint addresses reserved range.
562
* @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range.
563
* @sram_base_address: SRAM physical start address.
564
* @sram_end_address: SRAM physical end address.
565
* @sram_user_base_address - SRAM physical start address for user access.
566
* @dram_base_address: DRAM physical start address.
567
* @dram_end_address: DRAM physical end address.
568
* @dram_user_base_address: DRAM physical start address for user access.
569
* @dram_size: DRAM total size.
570
* @dram_pci_bar_size: size of PCI bar towards DRAM.
571
* @max_power_default: max power of the device after reset.
572
* @dc_power_default: power consumed by the device in mode idle.
573
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
574
* fault.
575
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
576
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
577
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
578
* @mmu_dram_default_page_addr: DRAM default page physical address.
579
* @tpc_enabled_mask: which TPCs are enabled.
580
* @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
581
* @dram_enabled_mask: which DRAMs are enabled.
582
* @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
583
* @dram_hints_align_mask: dram va hint addresses alignment mask which is used
584
* for hints validity check.
585
* @cfg_base_address: config space base address.
586
* @mmu_cache_mng_addr: address of the MMU cache.
587
* @mmu_cache_mng_size: size of the MMU cache.
588
* @device_dma_offset_for_host_access: the offset to add to host DMA addresses
589
* to enable the device to access them.
590
* @host_base_address: host physical start address for host DMA from device
591
* @host_end_address: host physical end address for host DMA from device
592
* @max_freq_value: current max clk frequency.
593
* @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
594
* in order to raise events toward FW.
595
* @clk_pll_index: clock PLL index that specify which PLL determines the clock
596
* we display to the user
597
* @mmu_pgt_size: MMU page tables total size.
598
* @mmu_pte_size: PTE size in MMU page tables.
599
* @dram_page_size: The DRAM physical page size.
600
* @cfg_size: configuration space size on SRAM.
601
* @sram_size: total size of SRAM.
602
* @max_asid: maximum number of open contexts (ASIDs).
603
* @num_of_events: number of possible internal H/W IRQs.
604
* @psoc_pci_pll_nr: PCI PLL NR value.
605
* @psoc_pci_pll_nf: PCI PLL NF value.
606
* @psoc_pci_pll_od: PCI PLL OD value.
607
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
608
* @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
609
* @high_pll: high PLL frequency used by the device.
610
* @cb_pool_cb_cnt: number of CBs in the CB pool.
611
* @cb_pool_cb_size: size of each CB in the CB pool.
612
* @decoder_enabled_mask: which decoders are enabled.
613
* @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
614
* @rotator_enabled_mask: which rotators are enabled.
615
* @edma_enabled_mask: which EDMAs are enabled.
616
* @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
617
* binned (at most one binned DMA).
618
* @max_pending_cs: maximum of concurrent pending command submissions
619
* @max_queues: maximum amount of queues in the system
620
* @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
621
* capabilities reported by FW, bit description
622
* can be found in CPU_BOOT_DEV_STS0
623
* @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
624
* capabilities reported by FW, bit description
625
* can be found in CPU_BOOT_DEV_STS1
626
* @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
627
* status reported by FW, bit description can be
628
* found in CPU_BOOT_DEV_STS0
629
* @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
630
* status reported by FW, bit description can be
631
* found in CPU_BOOT_DEV_STS1
632
* @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
633
* status reported by FW, bit description can be
634
* found in CPU_BOOT_DEV_STS0
635
* @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
636
* status reported by FW, bit description can be
637
* found in CPU_BOOT_DEV_STS1
638
* @max_dec: maximum number of decoders
639
* @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
640
* 1- enabled, 0- isolated.
641
* @faulty_dram_cluster_map: mask of faulty DRAM cluster.
642
* 1- faulty cluster, 0- good cluster.
643
* @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
644
* 1- enabled, 0- isolated.
645
* @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
646
* which the property supports_user_set_page_size is true
647
* (i.e. the DRAM supports multiple page sizes), otherwise
648
* it will shall be equal to dram_page_size.
649
* @num_engine_cores: number of engine cpu cores.
650
* @max_num_of_engines: maximum number of all engines in the ASIC.
651
* @num_of_special_blocks: special_blocks array size.
652
* @glbl_err_max_cause_num: global err max cause number.
653
* @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
654
* not supported.
655
* @reserved_fw_mem_size: size of dram memory reserved for FW.
656
* @fw_event_queue_size: queue size for events from CPU-CP.
657
* A value of 0 means using the default HL_EQ_SIZE_IN_BYTES value.
658
* @collective_first_sob: first sync object available for collective use
659
* @collective_first_mon: first monitor available for collective use
660
* @sync_stream_first_sob: first sync object available for sync stream use
661
* @sync_stream_first_mon: first monitor available for sync stream use
662
* @first_available_user_sob: first sob available for the user
663
* @first_available_user_mon: first monitor available for the user
664
* @first_available_user_interrupt: first available interrupt reserved for the user
665
* @first_available_cq: first available CQ for the user.
666
* @user_interrupt_count: number of user interrupts.
667
* @user_dec_intr_count: number of decoder interrupts exposed to user.
668
* @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
669
* @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
670
* @cache_line_size: device cache line size.
671
* @server_type: Server type that the ASIC is currently installed in.
672
* The value is according to enum hl_server_type in uapi file.
673
* @completion_queues_count: number of completion queues.
674
* @completion_mode: 0 - job based completion, 1 - cs based completion
675
* @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
676
* in Master/Slave mode
677
* @fw_security_enabled: true if security measures are enabled in firmware,
678
* false otherwise
679
* @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
680
* BOOT_DEV_STS0
681
* @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
682
* BOOT_DEV_STS1
683
* @dram_supports_virtual_memory: is there an MMU towards the DRAM
684
* @hard_reset_done_by_fw: true if firmware is handling hard reset flow
685
* @num_functional_hbms: number of functional HBMs in each DCORE.
686
* @hints_range_reservation: device support hint addresses range reservation.
687
* @iatu_done_by_fw: true if iATU configuration is being done by FW.
688
* @dynamic_fw_load: is dynamic FW load is supported.
689
* @gic_interrupts_enable: true if FW is not blocking GIC controller,
690
* false otherwise.
691
* @use_get_power_for_reset_history: To support backward compatibility for Goya
692
* and Gaudi
693
* @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
694
* @allow_inference_soft_reset: true if the ASIC supports soft reset that is
695
* initiated by user or TDR. This is only true
696
* in inference ASICs, as there is no real-world
697
* use-case of doing soft-reset in training (due
698
* to the fact that training runs on multiple
699
* devices)
700
* @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
701
* @set_max_power_on_device_init: true if need to set max power in F/W on device init.
702
* @supports_user_set_page_size: true if user can set the allocation page size.
703
* @dma_mask: the dma mask to be set for this device.
704
* @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
705
* @supports_engine_modes: true if changing engines/engine_cores modes is supported.
706
* @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw.
707
* @supports_nvme: indicates whether the asic supports NVMe P2P DMA.
708
*/
709
struct asic_fixed_properties {
710
struct hw_queue_properties *hw_queues_props;
711
struct hl_special_block_info *special_blocks;
712
struct hl_skip_blocks_cfg skip_special_blocks_cfg;
713
struct cpucp_info cpucp_info;
714
char uboot_ver[VERSION_MAX_LEN];
715
char preboot_ver[VERSION_MAX_LEN];
716
struct hl_mmu_properties dmmu;
717
struct hl_mmu_properties pmmu;
718
struct hl_mmu_properties pmmu_huge;
719
struct hl_hints_range hints_dram_reserved_va_range;
720
struct hl_hints_range hints_host_reserved_va_range;
721
struct hl_hints_range hints_host_hpage_reserved_va_range;
722
u64 sram_base_address;
723
u64 sram_end_address;
724
u64 sram_user_base_address;
725
u64 dram_base_address;
726
u64 dram_end_address;
727
u64 dram_user_base_address;
728
u64 dram_size;
729
u64 dram_pci_bar_size;
730
u64 max_power_default;
731
u64 dc_power_default;
732
u64 dram_size_for_default_page_mapping;
733
u64 pcie_dbi_base_address;
734
u64 pcie_aux_dbi_reg_addr;
735
u64 mmu_pgt_addr;
736
u64 mmu_dram_default_page_addr;
737
u64 tpc_enabled_mask;
738
u64 tpc_binning_mask;
739
u64 dram_enabled_mask;
740
u64 dram_binning_mask;
741
u64 dram_hints_align_mask;
742
u64 cfg_base_address;
743
u64 mmu_cache_mng_addr;
744
u64 mmu_cache_mng_size;
745
u64 device_dma_offset_for_host_access;
746
u64 host_base_address;
747
u64 host_end_address;
748
u64 max_freq_value;
749
u64 engine_core_interrupt_reg_addr;
750
u32 clk_pll_index;
751
u32 mmu_pgt_size;
752
u32 mmu_pte_size;
753
u32 dram_page_size;
754
u32 cfg_size;
755
u32 sram_size;
756
u32 max_asid;
757
u32 num_of_events;
758
u32 psoc_pci_pll_nr;
759
u32 psoc_pci_pll_nf;
760
u32 psoc_pci_pll_od;
761
u32 psoc_pci_pll_div_factor;
762
u32 psoc_timestamp_frequency;
763
u32 high_pll;
764
u32 cb_pool_cb_cnt;
765
u32 cb_pool_cb_size;
766
u32 decoder_enabled_mask;
767
u32 decoder_binning_mask;
768
u32 rotator_enabled_mask;
769
u32 edma_enabled_mask;
770
u32 edma_binning_mask;
771
u32 max_pending_cs;
772
u32 max_queues;
773
u32 fw_preboot_cpu_boot_dev_sts0;
774
u32 fw_preboot_cpu_boot_dev_sts1;
775
u32 fw_bootfit_cpu_boot_dev_sts0;
776
u32 fw_bootfit_cpu_boot_dev_sts1;
777
u32 fw_app_cpu_boot_dev_sts0;
778
u32 fw_app_cpu_boot_dev_sts1;
779
u32 max_dec;
780
u32 hmmu_hif_enabled_mask;
781
u32 faulty_dram_cluster_map;
782
u32 xbar_edge_enabled_mask;
783
u32 device_mem_alloc_default_page_size;
784
u32 num_engine_cores;
785
u32 max_num_of_engines;
786
u32 num_of_special_blocks;
787
u32 glbl_err_max_cause_num;
788
u32 hbw_flush_reg;
789
u32 reserved_fw_mem_size;
790
u32 fw_event_queue_size;
791
u16 collective_first_sob;
792
u16 collective_first_mon;
793
u16 sync_stream_first_sob;
794
u16 sync_stream_first_mon;
795
u16 first_available_user_sob[HL_MAX_DCORES];
796
u16 first_available_user_mon[HL_MAX_DCORES];
797
u16 first_available_user_interrupt;
798
u16 first_available_cq[HL_MAX_DCORES];
799
u16 user_interrupt_count;
800
u16 user_dec_intr_count;
801
u16 tpc_interrupt_id;
802
u16 eq_interrupt_id;
803
u16 cache_line_size;
804
u16 server_type;
805
u8 completion_queues_count;
806
u8 completion_mode;
807
u8 mme_master_slave_mode;
808
u8 fw_security_enabled;
809
u8 fw_cpu_boot_dev_sts0_valid;
810
u8 fw_cpu_boot_dev_sts1_valid;
811
u8 dram_supports_virtual_memory;
812
u8 hard_reset_done_by_fw;
813
u8 num_functional_hbms;
814
u8 hints_range_reservation;
815
u8 iatu_done_by_fw;
816
u8 dynamic_fw_load;
817
u8 gic_interrupts_enable;
818
u8 use_get_power_for_reset_history;
819
u8 supports_compute_reset;
820
u8 allow_inference_soft_reset;
821
u8 configurable_stop_on_err;
822
u8 set_max_power_on_device_init;
823
u8 supports_user_set_page_size;
824
u8 dma_mask;
825
u8 supports_advanced_cpucp_rc;
826
u8 supports_engine_modes;
827
u8 support_dynamic_resereved_fw_size;
828
u8 supports_nvme;
829
};
830
831
/**
832
* struct hl_fence - software synchronization primitive
833
* @completion: fence is implemented using completion
834
* @refcount: refcount for this fence
835
* @cs_sequence: sequence of the corresponding command submission
836
* @stream_master_qid_map: streams masters QID bitmap to represent all streams
837
* masters QIDs that multi cs is waiting on
838
* @error: mark this fence with error
839
* @timestamp: timestamp upon completion
840
* @mcs_handling_done: indicates that corresponding command submission has
841
* finished msc handling, this does not mean it was part
842
* of the mcs
843
*/
844
struct hl_fence {
845
struct completion completion;
846
struct kref refcount;
847
u64 cs_sequence;
848
u32 stream_master_qid_map;
849
int error;
850
ktime_t timestamp;
851
u8 mcs_handling_done;
852
};
853
854
/**
855
* struct hl_cs_compl - command submission completion object.
856
* @base_fence: hl fence object.
857
* @lock: spinlock to protect fence.
858
* @hdev: habanalabs device structure.
859
* @hw_sob: the H/W SOB used in this signal/wait CS.
860
* @encaps_sig_hdl: encaps signals handler.
861
* @cs_seq: command submission sequence number.
862
* @type: type of the CS - signal/wait.
863
* @sob_val: the SOB value that is used in this signal/wait CS.
864
* @sob_group: the SOB group that is used in this collective wait CS.
865
* @encaps_signals: indication whether it's a completion object of cs with
866
* encaps signals or not.
867
*/
868
struct hl_cs_compl {
869
struct hl_fence base_fence;
870
spinlock_t lock;
871
struct hl_device *hdev;
872
struct hl_hw_sob *hw_sob;
873
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
874
u64 cs_seq;
875
enum hl_cs_type type;
876
u16 sob_val;
877
u16 sob_group;
878
bool encaps_signals;
879
};
880
881
/*
882
* Command Buffers
883
*/
884
885
/**
886
* struct hl_ts_buff - describes a timestamp buffer.
887
* @kernel_buff_address: Holds the internal buffer's kernel virtual address.
888
* @user_buff_address: Holds the user buffer's kernel virtual address.
889
* @kernel_buff_size: Holds the internal kernel buffer size.
890
*/
891
struct hl_ts_buff {
892
void *kernel_buff_address;
893
void *user_buff_address;
894
u32 kernel_buff_size;
895
};
896
897
struct hl_mmap_mem_buf;
898
899
/**
900
* struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
901
* @dev: back pointer to the owning device
902
* @lock: protects handles
903
* @handles: an idr holding all active handles to the memory buffers in the system.
904
*/
905
struct hl_mem_mgr {
906
struct device *dev;
907
spinlock_t lock;
908
struct idr handles;
909
};
910
911
/**
912
* struct hl_mem_mgr_fini_stats - describes statistics returned during memory manager teardown.
913
* @n_busy_cb: the amount of CB handles that could not be removed
914
* @n_busy_ts: the amount of TS handles that could not be removed
915
* @n_busy_other: the amount of any other type of handles that could not be removed
916
*/
917
struct hl_mem_mgr_fini_stats {
918
u32 n_busy_cb;
919
u32 n_busy_ts;
920
u32 n_busy_other;
921
};
922
923
/**
924
* struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
925
* @topic: string identifier used for logging
926
* @mem_id: memory type identifier, embedded in the handle and used to identify
927
* the memory type by handle.
928
* @alloc: callback executed on buffer allocation, shall allocate the memory,
929
* set it under buffer private, and set mappable size.
930
* @mmap: callback executed on mmap, must map the buffer to vma
931
* @release: callback executed on release, must free the resources used by the buffer
932
*/
933
struct hl_mmap_mem_buf_behavior {
934
const char *topic;
935
u64 mem_id;
936
937
int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
938
int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
939
void (*release)(struct hl_mmap_mem_buf *buf);
940
};
941
942
/**
943
* struct hl_mmap_mem_buf - describes a single unified memory buffer
944
* @behavior: buffer behavior
945
* @mmg: back pointer to the unified memory manager
946
* @refcount: reference counter for buffer users
947
* @private: pointer to buffer behavior private data
948
* @mmap: atomic boolean indicating whether or not the buffer is mapped right now
949
* @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
950
* may change at runtime.
951
* @mappable_size: the original mappable size of the buffer, does not change after
952
* the allocation.
953
* @handle: the buffer id in mmg handles store
954
*/
955
struct hl_mmap_mem_buf {
956
struct hl_mmap_mem_buf_behavior *behavior;
957
struct hl_mem_mgr *mmg;
958
struct kref refcount;
959
void *private;
960
atomic_t mmap;
961
u64 real_mapped_size;
962
u64 mappable_size;
963
u64 handle;
964
};
965
966
/**
967
* struct hl_cb - describes a Command Buffer.
968
* @hdev: pointer to device this CB belongs to.
969
* @ctx: pointer to the CB owner's context.
970
* @buf: back pointer to the parent mappable memory buffer
971
* @debugfs_list: node in debugfs list of command buffers.
972
* @pool_list: node in pool list of command buffers.
973
* @kernel_address: Holds the CB's kernel virtual address.
974
* @virtual_addr: Holds the CB's virtual address.
975
* @bus_address: Holds the CB's DMA address.
976
* @size: holds the CB's size.
977
* @roundup_size: holds the cb size after roundup to page size.
978
* @cs_cnt: holds number of CS that this CB participates in.
979
* @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
980
* @is_pool: true if CB was acquired from the pool, false otherwise.
981
* @is_internal: internally allocated
982
* @is_mmu_mapped: true if the CB is mapped to the device's MMU.
983
*/
984
struct hl_cb {
985
struct hl_device *hdev;
986
struct hl_ctx *ctx;
987
struct hl_mmap_mem_buf *buf;
988
struct list_head debugfs_list;
989
struct list_head pool_list;
990
void *kernel_address;
991
u64 virtual_addr;
992
dma_addr_t bus_address;
993
u32 size;
994
u32 roundup_size;
995
atomic_t cs_cnt;
996
atomic_t is_handle_destroyed;
997
u8 is_pool;
998
u8 is_internal;
999
u8 is_mmu_mapped;
1000
};
1001
1002
1003
/*
1004
* QUEUES
1005
*/
1006
1007
struct hl_cs_job;
1008
1009
/* Queue length of external and HW queues */
1010
#define HL_QUEUE_LENGTH 4096
1011
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
1012
1013
#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
1014
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
1015
#endif
1016
1017
/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
1018
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
1019
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
1020
1021
/* Must be power of 2 */
1022
#define HL_EQ_LENGTH 64
1023
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
1024
1025
/* Host <-> CPU-CP shared memory size */
1026
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
1027
1028
/**
1029
* struct hl_sync_stream_properties -
1030
* describes a H/W queue sync stream properties
1031
* @hw_sob: array of the used H/W SOBs by this H/W queue.
1032
* @next_sob_val: the next value to use for the currently used SOB.
1033
* @base_sob_id: the base SOB id of the SOBs used by this queue.
1034
* @base_mon_id: the base MON id of the MONs used by this queue.
1035
* @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1036
* in order to sync with all slave queues.
1037
* @collective_slave_mon_id: the MON id used by this slave queue in order to
1038
* sync with its master queue.
1039
* @collective_sob_id: current SOB id used by this collective slave queue
1040
* to signal its collective master queue upon completion.
1041
* @curr_sob_offset: the id offset to the currently used SOB from the
1042
* HL_RSVD_SOBS that are being used by this queue.
1043
*/
1044
struct hl_sync_stream_properties {
1045
struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1046
u16 next_sob_val;
1047
u16 base_sob_id;
1048
u16 base_mon_id;
1049
u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1050
u16 collective_slave_mon_id;
1051
u16 collective_sob_id;
1052
u8 curr_sob_offset;
1053
};
1054
1055
/**
1056
* struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1057
* handlers manager
1058
* @lock: protects handles.
1059
* @handles: an idr to hold all encapsulated signals handles.
1060
*/
1061
struct hl_encaps_signals_mgr {
1062
spinlock_t lock;
1063
struct idr handles;
1064
};
1065
1066
/**
1067
* struct hl_hw_queue - describes a H/W transport queue.
1068
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1069
* @sync_stream_prop: sync stream queue properties
1070
* @queue_type: type of queue.
1071
* @collective_mode: collective mode of current queue
1072
* @kernel_address: holds the queue's kernel virtual address.
1073
* @bus_address: holds the queue's DMA address.
1074
* @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in
1075
* queue properites.
1076
* @pi: holds the queue's pi value.
1077
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1078
* @hw_queue_id: the id of the H/W queue.
1079
* @cq_id: the id for the corresponding CQ for this H/W queue.
1080
* @msi_vec: the IRQ number of the H/W queue.
1081
* @int_queue_len: length of internal queue (number of entries).
1082
* @valid: is the queue valid (we have array of 32 queues, not all of them
1083
* exist).
1084
* @supports_sync_stream: True if queue supports sync stream
1085
* @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
1086
*/
1087
struct hl_hw_queue {
1088
struct hl_cs_job **shadow_queue;
1089
struct hl_sync_stream_properties sync_stream_prop;
1090
enum hl_queue_type queue_type;
1091
enum hl_collective_mode collective_mode;
1092
void *kernel_address;
1093
dma_addr_t bus_address;
1094
u64 pq_dram_address;
1095
u32 pi;
1096
atomic_t ci;
1097
u32 hw_queue_id;
1098
u32 cq_id;
1099
u32 msi_vec;
1100
u16 int_queue_len;
1101
u8 valid;
1102
u8 supports_sync_stream;
1103
u8 dram_bd;
1104
};
1105
1106
/**
1107
* struct hl_cq - describes a completion queue
1108
* @hdev: pointer to the device structure
1109
* @kernel_address: holds the queue's kernel virtual address
1110
* @bus_address: holds the queue's DMA address
1111
* @cq_idx: completion queue index in array
1112
* @hw_queue_id: the id of the matching H/W queue
1113
* @ci: ci inside the queue
1114
* @pi: pi inside the queue
1115
* @free_slots_cnt: counter of free slots in queue
1116
*/
1117
struct hl_cq {
1118
struct hl_device *hdev;
1119
void *kernel_address;
1120
dma_addr_t bus_address;
1121
u32 cq_idx;
1122
u32 hw_queue_id;
1123
u32 ci;
1124
u32 pi;
1125
atomic_t free_slots_cnt;
1126
};
1127
1128
enum hl_user_interrupt_type {
1129
HL_USR_INTERRUPT_CQ = 0,
1130
HL_USR_INTERRUPT_DECODER,
1131
HL_USR_INTERRUPT_TPC,
1132
HL_USR_INTERRUPT_UNEXPECTED
1133
};
1134
1135
/**
1136
* struct hl_ts_free_jobs - holds user interrupt ts free nodes related data
1137
* @free_nodes_pool: pool of nodes to be used for free timestamp jobs
1138
* @free_nodes_length: number of nodes in free_nodes_pool
1139
* @next_avail_free_node_idx: index of the next free node in the pool
1140
*
1141
* the free nodes pool must be protected by the user interrupt lock
1142
* to avoid race between different interrupts which are using the same
1143
* ts buffer with different offsets.
1144
*/
1145
struct hl_ts_free_jobs {
1146
struct timestamp_reg_free_node *free_nodes_pool;
1147
u32 free_nodes_length;
1148
u32 next_avail_free_node_idx;
1149
};
1150
1151
/**
1152
* struct hl_user_interrupt - holds user interrupt information
1153
* @hdev: pointer to the device structure
1154
* @ts_free_jobs_data: timestamp free jobs related data
1155
* @type: user interrupt type
1156
* @wait_list_head: head to the list of user threads pending on this interrupt
1157
* @ts_list_head: head to the list of timestamp records
1158
* @wait_list_lock: protects wait_list_head
1159
* @ts_list_lock: protects ts_list_head
1160
* @timestamp: last timestamp taken upon interrupt
1161
* @interrupt_id: msix interrupt id
1162
*/
1163
struct hl_user_interrupt {
1164
struct hl_device *hdev;
1165
struct hl_ts_free_jobs ts_free_jobs_data;
1166
enum hl_user_interrupt_type type;
1167
struct list_head wait_list_head;
1168
struct list_head ts_list_head;
1169
spinlock_t wait_list_lock;
1170
spinlock_t ts_list_lock;
1171
ktime_t timestamp;
1172
u32 interrupt_id;
1173
};
1174
1175
/**
1176
* struct timestamp_reg_free_node - holds the timestamp registration free objects node
1177
* @free_objects_node: node in the list free_obj_jobs
1178
* @cq_cb: pointer to cq command buffer to be freed
1179
* @buf: pointer to timestamp buffer to be freed
1180
* @in_use: indicates whether the node still in use in workqueue thread.
1181
* @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler
1182
*/
1183
struct timestamp_reg_free_node {
1184
struct list_head free_objects_node;
1185
struct hl_cb *cq_cb;
1186
struct hl_mmap_mem_buf *buf;
1187
atomic_t in_use;
1188
u8 dynamic_alloc;
1189
};
1190
1191
/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1192
* the job will be to pass over the free_obj_jobs list and put refcount to objects
1193
* in each node of the list
1194
* @free_obj: workqueue object to free timestamp registration node objects
1195
* @hdev: pointer to the device structure
1196
* @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1197
* @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the
1198
* interrupt handler.
1199
*/
1200
struct timestamp_reg_work_obj {
1201
struct work_struct free_obj;
1202
struct hl_device *hdev;
1203
struct list_head *free_obj_head;
1204
struct list_head *dynamic_alloc_free_obj_head;
1205
};
1206
1207
/* struct timestamp_reg_info - holds the timestamp registration related data.
1208
* @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1209
* relevant only when doing timestamps records registration.
1210
* @cq_cb: pointer to CQ counter CB.
1211
* @interrupt: interrupt that the node hanged on it's wait list.
1212
* @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1213
* relevant only when doing timestamps records
1214
* registration.
1215
* @in_use: indicates if the node already in use. relevant only when doing
1216
* timestamps records registration, since in this case the driver
1217
* will have it's own buffer which serve as a records pool instead of
1218
* allocating records dynamically.
1219
*/
1220
struct timestamp_reg_info {
1221
struct hl_mmap_mem_buf *buf;
1222
struct hl_cb *cq_cb;
1223
struct hl_user_interrupt *interrupt;
1224
u64 *timestamp_kernel_addr;
1225
bool in_use;
1226
};
1227
1228
/**
1229
* struct hl_user_pending_interrupt - holds a context to a user thread
1230
* pending on an interrupt
1231
* @ts_reg_info: holds the timestamps registration nodes info
1232
* @list_node: node in the list of user threads pending on an interrupt or timestamp
1233
* @fence: hl fence object for interrupt completion
1234
* @cq_target_value: CQ target value
1235
* @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1236
* handler for target value comparison
1237
*/
1238
struct hl_user_pending_interrupt {
1239
struct timestamp_reg_info ts_reg_info;
1240
struct list_head list_node;
1241
struct hl_fence fence;
1242
u64 cq_target_value;
1243
u64 *cq_kernel_addr;
1244
};
1245
1246
/**
1247
* struct hl_eq - describes the event queue (single one per device)
1248
* @hdev: pointer to the device structure
1249
* @kernel_address: holds the queue's kernel virtual address
1250
* @bus_address: holds the queue's DMA address
1251
* @size: the event queue size
1252
* @ci: ci inside the queue
1253
* @prev_eqe_index: the index of the previous event queue entry. The index of
1254
* the current entry's index must be +1 of the previous one.
1255
* @check_eqe_index: do we need to check the index of the current entry vs. the
1256
* previous one. This is for backward compatibility with older
1257
* firmwares
1258
*/
1259
struct hl_eq {
1260
struct hl_device *hdev;
1261
void *kernel_address;
1262
dma_addr_t bus_address;
1263
u32 size;
1264
u32 ci;
1265
u32 prev_eqe_index;
1266
bool check_eqe_index;
1267
};
1268
1269
/**
1270
* struct hl_dec - describes a decoder sw instance.
1271
* @hdev: pointer to the device structure.
1272
* @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1273
* @core_id: ID of the decoder.
1274
* @base_addr: base address of the decoder.
1275
*/
1276
struct hl_dec {
1277
struct hl_device *hdev;
1278
struct work_struct abnrm_intr_work;
1279
u32 core_id;
1280
u32 base_addr;
1281
};
1282
1283
/**
1284
* enum hl_asic_type - supported ASIC types.
1285
* @ASIC_INVALID: Invalid ASIC type.
1286
* @ASIC_GOYA: Goya device (HL-1000).
1287
* @ASIC_GAUDI: Gaudi device (HL-2000).
1288
* @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1289
* @ASIC_GAUDI2: Gaudi2 device.
1290
* @ASIC_GAUDI2B: Gaudi2B device.
1291
* @ASIC_GAUDI2C: Gaudi2C device.
1292
* @ASIC_GAUDI2D: Gaudi2D device.
1293
*/
1294
enum hl_asic_type {
1295
ASIC_INVALID,
1296
1297
ASIC_GOYA,
1298
ASIC_GAUDI,
1299
ASIC_GAUDI_SEC,
1300
ASIC_GAUDI2,
1301
ASIC_GAUDI2B,
1302
ASIC_GAUDI2C,
1303
ASIC_GAUDI2D,
1304
};
1305
1306
struct hl_cs_parser;
1307
1308
/**
1309
* enum hl_pm_mng_profile - power management profile.
1310
* @PM_AUTO: internal clock is set by the Linux driver.
1311
* @PM_MANUAL: internal clock is set by the user.
1312
* @PM_LAST: last power management type.
1313
*/
1314
enum hl_pm_mng_profile {
1315
PM_AUTO = 1,
1316
PM_MANUAL,
1317
PM_LAST
1318
};
1319
1320
/**
1321
* enum hl_pll_frequency - PLL frequency.
1322
* @PLL_HIGH: high frequency.
1323
* @PLL_LOW: low frequency.
1324
* @PLL_LAST: last frequency values that were configured by the user.
1325
*/
1326
enum hl_pll_frequency {
1327
PLL_HIGH = 1,
1328
PLL_LOW,
1329
PLL_LAST
1330
};
1331
1332
#define PLL_REF_CLK 50
1333
1334
enum div_select_defs {
1335
DIV_SEL_REF_CLK = 0,
1336
DIV_SEL_PLL_CLK = 1,
1337
DIV_SEL_DIVIDED_REF = 2,
1338
DIV_SEL_DIVIDED_PLL = 3,
1339
};
1340
1341
enum debugfs_access_type {
1342
DEBUGFS_READ8,
1343
DEBUGFS_WRITE8,
1344
DEBUGFS_READ32,
1345
DEBUGFS_WRITE32,
1346
DEBUGFS_READ64,
1347
DEBUGFS_WRITE64,
1348
};
1349
1350
enum pci_region {
1351
PCI_REGION_CFG,
1352
PCI_REGION_SRAM,
1353
PCI_REGION_DRAM,
1354
PCI_REGION_SP_SRAM,
1355
PCI_REGION_NUMBER,
1356
};
1357
1358
/**
1359
* struct pci_mem_region - describe memory region in a PCI bar
1360
* @region_base: region base address
1361
* @region_size: region size
1362
* @bar_size: size of the BAR
1363
* @offset_in_bar: region offset into the bar
1364
* @bar_id: bar ID of the region
1365
* @used: if used 1, otherwise 0
1366
*/
1367
struct pci_mem_region {
1368
u64 region_base;
1369
u64 region_size;
1370
u64 bar_size;
1371
u64 offset_in_bar;
1372
u8 bar_id;
1373
u8 used;
1374
};
1375
1376
/**
1377
* struct static_fw_load_mgr - static FW load manager
1378
* @preboot_version_max_off: max offset to preboot version
1379
* @boot_fit_version_max_off: max offset to boot fit version
1380
* @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1381
* @cpu_cmd_status_to_host_reg: register address for CPU command status response
1382
* @cpu_boot_status_reg: boot status register
1383
* @cpu_boot_dev_status0_reg: boot device status register 0
1384
* @cpu_boot_dev_status1_reg: boot device status register 1
1385
* @boot_err0_reg: boot error register 0
1386
* @boot_err1_reg: boot error register 1
1387
* @preboot_version_offset_reg: SRAM offset to preboot version register
1388
* @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1389
* @sram_offset_mask: mask for getting offset into the SRAM
1390
* @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1391
*/
1392
struct static_fw_load_mgr {
1393
u64 preboot_version_max_off;
1394
u64 boot_fit_version_max_off;
1395
u32 kmd_msg_to_cpu_reg;
1396
u32 cpu_cmd_status_to_host_reg;
1397
u32 cpu_boot_status_reg;
1398
u32 cpu_boot_dev_status0_reg;
1399
u32 cpu_boot_dev_status1_reg;
1400
u32 boot_err0_reg;
1401
u32 boot_err1_reg;
1402
u32 preboot_version_offset_reg;
1403
u32 boot_fit_version_offset_reg;
1404
u32 sram_offset_mask;
1405
u32 cpu_reset_wait_msec;
1406
};
1407
1408
/**
1409
* struct fw_response - FW response to LKD command
1410
* @ram_offset: descriptor offset into the RAM
1411
* @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1412
* @status: command status
1413
*/
1414
struct fw_response {
1415
u32 ram_offset;
1416
u8 ram_type;
1417
u8 status;
1418
};
1419
1420
/**
1421
* struct dynamic_fw_load_mgr - dynamic FW load manager
1422
* @response: FW to LKD response
1423
* @comm_desc: the communication descriptor with FW
1424
* @image_region: region to copy the FW image to
1425
* @fw_image_size: size of FW image to load
1426
* @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1427
* @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1428
*/
1429
struct dynamic_fw_load_mgr {
1430
struct fw_response response;
1431
struct lkd_fw_comms_desc comm_desc;
1432
struct pci_mem_region *image_region;
1433
size_t fw_image_size;
1434
u32 wait_for_bl_timeout;
1435
bool fw_desc_valid;
1436
};
1437
1438
/**
1439
* struct pre_fw_load_props - needed properties for pre-FW load
1440
* @cpu_boot_status_reg: cpu_boot_status register address
1441
* @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1442
* @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1443
* @boot_err0_reg: boot_err0 register address
1444
* @boot_err1_reg: boot_err1 register address
1445
* @wait_for_preboot_timeout: timeout to poll for preboot ready
1446
* @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know
1447
* preboot needs longer time.
1448
*/
1449
struct pre_fw_load_props {
1450
u32 cpu_boot_status_reg;
1451
u32 sts_boot_dev_sts0_reg;
1452
u32 sts_boot_dev_sts1_reg;
1453
u32 boot_err0_reg;
1454
u32 boot_err1_reg;
1455
u32 wait_for_preboot_timeout;
1456
u32 wait_for_preboot_extended_timeout;
1457
};
1458
1459
/**
1460
* struct fw_image_props - properties of FW image
1461
* @image_name: name of the image
1462
* @src_off: offset in src FW to copy from
1463
* @copy_size: amount of bytes to copy (0 to copy the whole binary)
1464
*/
1465
struct fw_image_props {
1466
char *image_name;
1467
u32 src_off;
1468
u32 copy_size;
1469
};
1470
1471
/**
1472
* struct fw_load_mgr - manager FW loading process
1473
* @dynamic_loader: specific structure for dynamic load
1474
* @static_loader: specific structure for static load
1475
* @pre_fw_load_props: parameter for pre FW load
1476
* @boot_fit_img: boot fit image properties
1477
* @linux_img: linux image properties
1478
* @cpu_timeout: CPU response timeout in usec
1479
* @boot_fit_timeout: Boot fit load timeout in usec
1480
* @skip_bmc: should BMC be skipped
1481
* @sram_bar_id: SRAM bar ID
1482
* @dram_bar_id: DRAM bar ID
1483
* @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1484
* component. values are set according to enum hl_fw_types.
1485
*/
1486
struct fw_load_mgr {
1487
union {
1488
struct dynamic_fw_load_mgr dynamic_loader;
1489
struct static_fw_load_mgr static_loader;
1490
};
1491
struct pre_fw_load_props pre_fw_load;
1492
struct fw_image_props boot_fit_img;
1493
struct fw_image_props linux_img;
1494
u32 cpu_timeout;
1495
u32 boot_fit_timeout;
1496
u8 skip_bmc;
1497
u8 sram_bar_id;
1498
u8 dram_bar_id;
1499
u8 fw_comp_loaded;
1500
};
1501
1502
struct hl_cs;
1503
1504
/**
1505
* struct engines_data - asic engines data
1506
* @buf: buffer for engines data in ascii
1507
* @actual_size: actual size of data that was written by the driver to the allocated buffer
1508
* @allocated_buf_size: total size of allocated buffer
1509
*/
1510
struct engines_data {
1511
char *buf;
1512
int actual_size;
1513
u32 allocated_buf_size;
1514
};
1515
1516
/**
1517
* struct hl_asic_funcs - ASIC specific functions that are can be called from
1518
* common code.
1519
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1520
* @early_fini: tears down what was done in early_init.
1521
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
1522
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1523
* @sw_init: sets up driver state, does not configure H/W.
1524
* @sw_fini: tears down driver state, does not configure H/W.
1525
* @hw_init: sets up the H/W state.
1526
* @hw_fini: tears down the H/W state.
1527
* @halt_engines: halt engines, needed for reset sequence. This also disables
1528
* interrupts from the device. Should be called before
1529
* hw_fini and before CS rollback.
1530
* @suspend: handles IP specific H/W or SW changes for suspend.
1531
* @resume: handles IP specific H/W or SW changes for resume.
1532
* @mmap: maps a memory.
1533
* @ring_doorbell: increment PI on a given QMAN.
1534
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1535
* function because the PQs are located in different memory areas
1536
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1537
* writing the PQE must match the destination memory area
1538
* properties.
1539
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1540
* dma_alloc_coherent(). This is ASIC function because
1541
* its implementation is not trivial when the driver
1542
* is loaded in simulation mode (not upstreamed).
1543
* @asic_dma_free_coherent: Free coherent DMA memory by calling
1544
* dma_free_coherent(). This is ASIC function because
1545
* its implementation is not trivial when the driver
1546
* is loaded in simulation mode (not upstreamed).
1547
* @scrub_device_mem: Scrub the entire SRAM and DRAM.
1548
* @scrub_device_dram: Scrub the dram memory of the device.
1549
* @get_int_queue_base: get the internal queue base address.
1550
* @test_queues: run simple test on all queues for sanity check.
1551
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1552
* size of allocation is HL_DMA_POOL_BLK_SIZE.
1553
* @asic_dma_pool_free: free small DMA allocation from pool.
1554
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1555
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1556
* @dma_unmap_sgtable: DMA unmap scatter-gather table.
1557
* @dma_map_sgtable: DMA map scatter-gather table.
1558
* @cs_parser: parse Command Submission.
1559
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1560
* @update_eq_ci: update event queue CI.
1561
* @context_switch: called upon ASID context switch.
1562
* @restore_phase_topology: clear all SOBs amd MONs.
1563
* @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1564
* internal memory via DMA engine.
1565
* @add_device_attr: add ASIC specific device attributes.
1566
* @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1567
* @get_events_stat: retrieve event queue entries histogram.
1568
* @read_pte: read MMU page table entry from DRAM.
1569
* @write_pte: write MMU page table entry to DRAM.
1570
* @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1571
* (L1 only) or hard (L0 & L1) flush.
1572
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1573
* @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1574
* @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1575
* @debug_coresight: perform certain actions on Coresight for debugging.
1576
* @is_device_idle: return true if device is idle, false otherwise.
1577
* @compute_reset_late_init: perform certain actions needed after a compute reset
1578
* @hw_queues_lock: acquire H/W queues lock.
1579
* @hw_queues_unlock: release H/W queues lock.
1580
* @get_pci_id: retrieve PCI ID.
1581
* @get_eeprom_data: retrieve EEPROM data from F/W.
1582
* @get_monitor_dump: retrieve monitor registers dump from F/W.
1583
* @send_cpu_message: send message to F/W. If the message is timedout, the
1584
* driver will eventually reset the device. The timeout can
1585
* be determined by the calling function or it can be 0 and
1586
* then the timeout is the default timeout for the specific
1587
* ASIC
1588
* @get_hw_state: retrieve the H/W state
1589
* @pci_bars_map: Map PCI BARs.
1590
* @init_iatu: Initialize the iATU unit inside the PCI controller.
1591
* @rreg: Read a register. Needed for simulator support.
1592
* @wreg: Write a register. Needed for simulator support.
1593
* @halt_coresight: stop the ETF and ETR traces.
1594
* @ctx_init: context dependent initialization.
1595
* @ctx_fini: context dependent cleanup.
1596
* @pre_schedule_cs: Perform pre-CS-scheduling operations.
1597
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1598
* @load_firmware_to_device: load the firmware to the device's memory
1599
* @load_boot_fit_to_device: load boot fit to device's memory
1600
* @get_signal_cb_size: Get signal CB size.
1601
* @get_wait_cb_size: Get wait CB size.
1602
* @gen_signal_cb: Generate a signal CB.
1603
* @gen_wait_cb: Generate a wait CB.
1604
* @reset_sob: Reset a SOB.
1605
* @reset_sob_group: Reset SOB group
1606
* @get_device_time: Get the device time.
1607
* @pb_print_security_errors: print security errors according block and cause
1608
* @collective_wait_init_cs: Generate collective master/slave packets
1609
* and place them in the relevant cs jobs
1610
* @collective_wait_create_jobs: allocate collective wait cs jobs
1611
* @get_dec_base_addr: get the base address of a given decoder.
1612
* @scramble_addr: Routine to scramble the address prior of mapping it
1613
* in the MMU.
1614
* @descramble_addr: Routine to de-scramble the address prior of
1615
* showing it to users.
1616
* @ack_protection_bits_errors: ack and dump all security violations
1617
* @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1618
* also returns the size of the block if caller supplies
1619
* a valid pointer for it
1620
* @hw_block_mmap: mmap a HW block with a given id.
1621
* @enable_events_from_fw: send interrupt to firmware to notify them the
1622
* driver is ready to receive asynchronous events. This
1623
* function should be called during the first init and
1624
* after every hard-reset of the device
1625
* @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1626
* @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1627
* @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1628
* generic f/w compatible PLL Indexes
1629
* @init_firmware_preload_params: initialize pre FW-load parameters.
1630
* @init_firmware_loader: initialize data for FW loader.
1631
* @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1632
* @state_dump_init: initialize constants required for state dump
1633
* @get_sob_addr: get SOB base address offset.
1634
* @set_pci_memory_regions: setting properties of PCI memory regions
1635
* @get_stream_master_qid_arr: get pointer to stream masters QID array
1636
* @check_if_razwi_happened: check if there was a razwi due to RR violation.
1637
* @access_dev_mem: access device memory
1638
* @set_dram_bar_base: set the base of the DRAM BAR
1639
* @set_engine_cores: set a config command to engine cores
1640
* @set_engines: set a config command to user engines
1641
* @send_device_activity: indication to FW about device availability
1642
* @set_dram_properties: set DRAM related properties.
1643
* @set_binning_masks: set binning/enable masks for all relevant components.
1644
*/
1645
struct hl_asic_funcs {
1646
int (*early_init)(struct hl_device *hdev);
1647
int (*early_fini)(struct hl_device *hdev);
1648
int (*late_init)(struct hl_device *hdev);
1649
void (*late_fini)(struct hl_device *hdev);
1650
int (*sw_init)(struct hl_device *hdev);
1651
int (*sw_fini)(struct hl_device *hdev);
1652
int (*hw_init)(struct hl_device *hdev);
1653
int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1654
void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1655
int (*suspend)(struct hl_device *hdev);
1656
int (*resume)(struct hl_device *hdev);
1657
int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1658
void *cpu_addr, dma_addr_t dma_addr, size_t size);
1659
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1660
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1661
struct hl_bd *bd);
1662
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1663
dma_addr_t *dma_handle, gfp_t flag);
1664
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1665
void *cpu_addr, dma_addr_t dma_handle);
1666
int (*scrub_device_mem)(struct hl_device *hdev);
1667
int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1668
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1669
dma_addr_t *dma_handle, u16 *queue_len);
1670
int (*test_queues)(struct hl_device *hdev);
1671
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1672
gfp_t mem_flags, dma_addr_t *dma_handle);
1673
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1674
dma_addr_t dma_addr);
1675
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1676
size_t size, dma_addr_t *dma_handle);
1677
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1678
size_t size, void *vaddr);
1679
void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1680
enum dma_data_direction dir);
1681
int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1682
enum dma_data_direction dir);
1683
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1684
void (*add_end_of_cb_packets)(struct hl_device *hdev,
1685
void *kernel_address, u32 len,
1686
u32 original_len,
1687
u64 cq_addr, u32 cq_val, u32 msix_num,
1688
bool eb);
1689
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1690
int (*context_switch)(struct hl_device *hdev, u32 asid);
1691
void (*restore_phase_topology)(struct hl_device *hdev);
1692
int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1693
void *blob_addr);
1694
void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1695
struct attribute_group *dev_vrm_attr_grp);
1696
void (*handle_eqe)(struct hl_device *hdev,
1697
struct hl_eq_entry *eq_entry);
1698
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1699
u32 *size);
1700
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1701
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1702
int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1703
u32 flags);
1704
int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1705
u32 flags, u32 asid, u64 va, u64 size);
1706
int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1707
int (*send_heartbeat)(struct hl_device *hdev);
1708
int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1709
bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1710
struct engines_data *e);
1711
int (*compute_reset_late_init)(struct hl_device *hdev);
1712
void (*hw_queues_lock)(struct hl_device *hdev);
1713
void (*hw_queues_unlock)(struct hl_device *hdev);
1714
u32 (*get_pci_id)(struct hl_device *hdev);
1715
int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1716
int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1717
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1718
u16 len, u32 timeout, u64 *result);
1719
int (*pci_bars_map)(struct hl_device *hdev);
1720
int (*init_iatu)(struct hl_device *hdev);
1721
u32 (*rreg)(struct hl_device *hdev, u32 reg);
1722
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1723
void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1724
int (*ctx_init)(struct hl_ctx *ctx);
1725
void (*ctx_fini)(struct hl_ctx *ctx);
1726
int (*pre_schedule_cs)(struct hl_cs *cs);
1727
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1728
int (*load_firmware_to_device)(struct hl_device *hdev);
1729
int (*load_boot_fit_to_device)(struct hl_device *hdev);
1730
u32 (*get_signal_cb_size)(struct hl_device *hdev);
1731
u32 (*get_wait_cb_size)(struct hl_device *hdev);
1732
u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1733
u32 size, bool eb);
1734
u32 (*gen_wait_cb)(struct hl_device *hdev,
1735
struct hl_gen_wait_properties *prop);
1736
void (*reset_sob)(struct hl_device *hdev, void *data);
1737
void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1738
u64 (*get_device_time)(struct hl_device *hdev);
1739
void (*pb_print_security_errors)(struct hl_device *hdev,
1740
u32 block_addr, u32 cause, u32 offended_addr);
1741
int (*collective_wait_init_cs)(struct hl_cs *cs);
1742
int (*collective_wait_create_jobs)(struct hl_device *hdev,
1743
struct hl_ctx *ctx, struct hl_cs *cs,
1744
u32 wait_queue_id, u32 collective_engine_id,
1745
u32 encaps_signal_offset);
1746
u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1747
u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1748
u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1749
void (*ack_protection_bits_errors)(struct hl_device *hdev);
1750
int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1751
u32 *block_size, u32 *block_id);
1752
int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1753
u32 block_id, u32 block_size);
1754
void (*enable_events_from_fw)(struct hl_device *hdev);
1755
int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1756
void (*get_msi_info)(__le32 *table);
1757
int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1758
void (*init_firmware_preload_params)(struct hl_device *hdev);
1759
void (*init_firmware_loader)(struct hl_device *hdev);
1760
void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1761
void (*state_dump_init)(struct hl_device *hdev);
1762
u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1763
void (*set_pci_memory_regions)(struct hl_device *hdev);
1764
u32* (*get_stream_master_qid_arr)(void);
1765
void (*check_if_razwi_happened)(struct hl_device *hdev);
1766
int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1767
u32 page_size, u32 *real_page_size, bool is_dram_addr);
1768
int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1769
u64 addr, u64 *val, enum debugfs_access_type acc_type);
1770
u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1771
int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1772
u32 num_cores, u32 core_command);
1773
int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1774
u32 num_engines, u32 engine_command);
1775
int (*send_device_activity)(struct hl_device *hdev, bool open);
1776
int (*set_dram_properties)(struct hl_device *hdev);
1777
int (*set_binning_masks)(struct hl_device *hdev);
1778
};
1779
1780
1781
/*
1782
* CONTEXTS
1783
*/
1784
1785
#define HL_KERNEL_ASID_ID 0
1786
1787
/**
1788
* enum hl_va_range_type - virtual address range type.
1789
* @HL_VA_RANGE_TYPE_HOST: range type of host pages
1790
* @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1791
* @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1792
*/
1793
enum hl_va_range_type {
1794
HL_VA_RANGE_TYPE_HOST,
1795
HL_VA_RANGE_TYPE_HOST_HUGE,
1796
HL_VA_RANGE_TYPE_DRAM,
1797
HL_VA_RANGE_TYPE_MAX
1798
};
1799
1800
/**
1801
* struct hl_va_range - virtual addresses range.
1802
* @lock: protects the virtual addresses list.
1803
* @list: list of virtual addresses blocks available for mappings.
1804
* @start_addr: range start address.
1805
* @end_addr: range end address.
1806
* @page_size: page size of this va range.
1807
*/
1808
struct hl_va_range {
1809
struct mutex lock;
1810
struct list_head list;
1811
u64 start_addr;
1812
u64 end_addr;
1813
u32 page_size;
1814
};
1815
1816
/**
1817
* struct hl_cs_counters_atomic - command submission counters
1818
* @out_of_mem_drop_cnt: dropped due to memory allocation issue
1819
* @parsing_drop_cnt: dropped due to error in packet parsing
1820
* @queue_full_drop_cnt: dropped due to queue full
1821
* @device_in_reset_drop_cnt: dropped due to device in reset
1822
* @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1823
* @validation_drop_cnt: dropped due to error in validation
1824
*/
1825
struct hl_cs_counters_atomic {
1826
atomic64_t out_of_mem_drop_cnt;
1827
atomic64_t parsing_drop_cnt;
1828
atomic64_t queue_full_drop_cnt;
1829
atomic64_t device_in_reset_drop_cnt;
1830
atomic64_t max_cs_in_flight_drop_cnt;
1831
atomic64_t validation_drop_cnt;
1832
};
1833
1834
/**
1835
* struct hl_dmabuf_priv - a dma-buf private object.
1836
* @dmabuf: pointer to dma-buf object.
1837
* @ctx: pointer to the dma-buf owner's context.
1838
* @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1839
* where virtual memory is supported.
1840
* @memhash_hnode: pointer to the memhash node. this object holds the export count.
1841
* @offset: the offset into the buffer from which the memory is exported.
1842
* Relevant only if virtual memory is supported and phys_pg_pack is being used.
1843
* device_phys_addr: physical address of the device's memory. Relevant only
1844
* if phys_pg_pack is NULL (dma-buf was exported from address).
1845
* The total size can be taken from the dmabuf object.
1846
*/
1847
struct hl_dmabuf_priv {
1848
struct dma_buf *dmabuf;
1849
struct hl_ctx *ctx;
1850
struct hl_vm_phys_pg_pack *phys_pg_pack;
1851
struct hl_vm_hash_node *memhash_hnode;
1852
u64 offset;
1853
u64 device_phys_addr;
1854
};
1855
1856
#define HL_CS_OUTCOME_HISTORY_LEN 256
1857
1858
/**
1859
* struct hl_cs_outcome - represents a single completed CS outcome
1860
* @list_link: link to either container's used list or free list
1861
* @map_link: list to the container hash map
1862
* @ts: completion ts
1863
* @seq: the original cs sequence
1864
* @error: error code cs completed with, if any
1865
*/
1866
struct hl_cs_outcome {
1867
struct list_head list_link;
1868
struct hlist_node map_link;
1869
ktime_t ts;
1870
u64 seq;
1871
int error;
1872
};
1873
1874
/**
1875
* struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1876
* @outcome_map: index of completed CS searchable by sequence number
1877
* @used_list: list of outcome objects currently in use
1878
* @free_list: list of outcome objects currently not in use
1879
* @nodes_pool: a static pool of pre-allocated outcome objects
1880
* @db_lock: any operation on the store must take this lock
1881
*/
1882
struct hl_cs_outcome_store {
1883
DECLARE_HASHTABLE(outcome_map, 8);
1884
struct list_head used_list;
1885
struct list_head free_list;
1886
struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1887
spinlock_t db_lock;
1888
};
1889
1890
/**
1891
* struct hl_ctx - user/kernel context.
1892
* @mem_hash: holds mapping from virtual address to virtual memory area
1893
* descriptor (hl_vm_phys_pg_list or hl_userptr).
1894
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1895
* @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1896
* MMU-hop-page physical address to its host-resident
1897
* pgt_info structure.
1898
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1899
* @hdev: pointer to the device structure.
1900
* @refcount: reference counter for the context. Context is released only when
1901
* this hits 0. It is incremented on CS and CS_WAIT.
1902
* @cs_pending: array of hl fence objects representing pending CS.
1903
* @outcome_store: storage data structure used to remember outcomes of completed
1904
* command submissions for a long time after CS id wraparound.
1905
* @va_range: holds available virtual addresses for host and dram mappings.
1906
* @mem_hash_lock: protects the mem_hash.
1907
* @hw_block_list_lock: protects the HW block memory list.
1908
* @ts_reg_lock: timestamp registration ioctls lock.
1909
* @debugfs_list: node in debugfs list of contexts.
1910
* @hw_block_mem_list: list of HW block virtual mapped addresses.
1911
* @cs_counters: context command submission counters.
1912
* @cb_va_pool: device VA pool for command buffers which are mapped to the
1913
* device's MMU.
1914
* @sig_mgr: encaps signals handle manager.
1915
* @cb_va_pool_base: the base address for the device VA pool
1916
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1917
* to user so user could inquire about CS. It is used as
1918
* index to cs_pending array.
1919
* @dram_default_hops: array that holds all hops addresses needed for default
1920
* DRAM mapping.
1921
* @cs_lock: spinlock to protect cs_sequence.
1922
* @dram_phys_mem: amount of used physical DRAM memory by this context.
1923
* @thread_ctx_switch_token: token to prevent multiple threads of the same
1924
* context from running the context switch phase.
1925
* Only a single thread should run it.
1926
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1927
* the context switch phase from moving to their
1928
* execution phase before the context switch phase
1929
* has finished.
1930
* @asid: context's unique address space ID in the device's MMU.
1931
* @handle: context's opaque handle for user
1932
*/
1933
struct hl_ctx {
1934
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1935
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1936
DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1937
struct hl_fpriv *hpriv;
1938
struct hl_device *hdev;
1939
struct kref refcount;
1940
struct hl_fence **cs_pending;
1941
struct hl_cs_outcome_store outcome_store;
1942
struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1943
struct mutex mem_hash_lock;
1944
struct mutex hw_block_list_lock;
1945
struct mutex ts_reg_lock;
1946
struct list_head debugfs_list;
1947
struct list_head hw_block_mem_list;
1948
struct hl_cs_counters_atomic cs_counters;
1949
struct gen_pool *cb_va_pool;
1950
struct hl_encaps_signals_mgr sig_mgr;
1951
u64 cb_va_pool_base;
1952
u64 cs_sequence;
1953
u64 *dram_default_hops;
1954
spinlock_t cs_lock;
1955
atomic64_t dram_phys_mem;
1956
atomic_t thread_ctx_switch_token;
1957
u32 thread_ctx_switch_wait_token;
1958
u32 asid;
1959
u32 handle;
1960
};
1961
1962
/**
1963
* struct hl_ctx_mgr - for handling multiple contexts.
1964
* @lock: protects ctx_handles.
1965
* @handles: idr to hold all ctx handles.
1966
*/
1967
struct hl_ctx_mgr {
1968
struct mutex lock;
1969
struct idr handles;
1970
};
1971
1972
1973
/*
1974
* COMMAND SUBMISSIONS
1975
*/
1976
1977
/**
1978
* struct hl_userptr - memory mapping chunk information
1979
* @vm_type: type of the VM.
1980
* @job_node: linked-list node for hanging the object on the Job's list.
1981
* @pages: pointer to struct page array
1982
* @npages: size of @pages array
1983
* @sgt: pointer to the scatter-gather table that holds the pages.
1984
* @dir: for DMA unmapping, the direction must be supplied, so save it.
1985
* @debugfs_list: node in debugfs list of command submissions.
1986
* @pid: the pid of the user process owning the memory
1987
* @addr: user-space virtual address of the start of the memory area.
1988
* @size: size of the memory area to pin & map.
1989
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1990
*/
1991
struct hl_userptr {
1992
enum vm_type vm_type; /* must be first */
1993
struct list_head job_node;
1994
struct page **pages;
1995
unsigned int npages;
1996
struct sg_table *sgt;
1997
enum dma_data_direction dir;
1998
struct list_head debugfs_list;
1999
pid_t pid;
2000
u64 addr;
2001
u64 size;
2002
u8 dma_mapped;
2003
};
2004
2005
/**
2006
* struct hl_cs - command submission.
2007
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
2008
* @ctx: the context this CS belongs to.
2009
* @job_list: list of the CS's jobs in the various queues.
2010
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
2011
* @refcount: reference counter for usage of the CS.
2012
* @fence: pointer to the fence object of this CS.
2013
* @signal_fence: pointer to the fence object of the signal CS (used by wait
2014
* CS only).
2015
* @finish_work: workqueue object to run when CS is completed by H/W.
2016
* @work_tdr: delayed work node for TDR.
2017
* @mirror_node : node in device mirror list of command submissions.
2018
* @staged_cs_node: node in the staged cs list.
2019
* @debugfs_list: node in debugfs list of command submissions.
2020
* @encaps_sig_hdl: holds the encaps signals handle.
2021
* @sequence: the sequence number of this CS.
2022
* @staged_sequence: the sequence of the staged submission this CS is part of,
2023
* relevant only if staged_cs is set.
2024
* @timeout_jiffies: cs timeout in jiffies.
2025
* @submission_time_jiffies: submission time of the cs
2026
* @type: CS_TYPE_*.
2027
* @jobs_cnt: counter of submitted jobs on all queues.
2028
* @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
2029
* @completion_timestamp: timestamp of the last completed cs job.
2030
* @sob_addr_offset: sob offset from the configuration base address.
2031
* @initial_sob_count: count of completed signals in SOB before current submission of signal or
2032
* cs with encaps signals.
2033
* @submitted: true if CS was submitted to H/W.
2034
* @completed: true if CS was completed by device.
2035
* @timedout : true if CS was timedout.
2036
* @tdr_active: true if TDR was activated for this CS (to prevent
2037
* double TDR activation).
2038
* @aborted: true if CS was aborted due to some device error.
2039
* @timestamp: true if a timestamp must be captured upon completion.
2040
* @staged_last: true if this is the last staged CS and needs completion.
2041
* @staged_first: true if this is the first staged CS and we need to receive
2042
* timeout for this CS.
2043
* @staged_cs: true if this CS is part of a staged submission.
2044
* @skip_reset_on_timeout: true if we shall not reset the device in case
2045
* timeout occurs (debug scenario).
2046
* @encaps_signals: true if this CS has encaps reserved signals.
2047
*/
2048
struct hl_cs {
2049
u16 *jobs_in_queue_cnt;
2050
struct hl_ctx *ctx;
2051
struct list_head job_list;
2052
spinlock_t job_lock;
2053
struct kref refcount;
2054
struct hl_fence *fence;
2055
struct hl_fence *signal_fence;
2056
struct work_struct finish_work;
2057
struct delayed_work work_tdr;
2058
struct list_head mirror_node;
2059
struct list_head staged_cs_node;
2060
struct list_head debugfs_list;
2061
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2062
ktime_t completion_timestamp;
2063
u64 sequence;
2064
u64 staged_sequence;
2065
u64 timeout_jiffies;
2066
u64 submission_time_jiffies;
2067
enum hl_cs_type type;
2068
u32 jobs_cnt;
2069
u32 encaps_sig_hdl_id;
2070
u32 sob_addr_offset;
2071
u16 initial_sob_count;
2072
u8 submitted;
2073
u8 completed;
2074
u8 timedout;
2075
u8 tdr_active;
2076
u8 aborted;
2077
u8 timestamp;
2078
u8 staged_last;
2079
u8 staged_first;
2080
u8 staged_cs;
2081
u8 skip_reset_on_timeout;
2082
u8 encaps_signals;
2083
};
2084
2085
/**
2086
* struct hl_cs_job - command submission job.
2087
* @cs_node: the node to hang on the CS jobs list.
2088
* @cs: the CS this job belongs to.
2089
* @user_cb: the CB we got from the user.
2090
* @patched_cb: in case of patching, this is internal CB which is submitted on
2091
* the queue instead of the CB we got from the IOCTL.
2092
* @finish_work: workqueue object to run when job is completed.
2093
* @userptr_list: linked-list of userptr mappings that belong to this job and
2094
* wait for completion.
2095
* @debugfs_list: node in debugfs list of command submission jobs.
2096
* @refcount: reference counter for usage of the CS job.
2097
* @queue_type: the type of the H/W queue this job is submitted to.
2098
* @timestamp: timestamp upon job completion
2099
* @id: the id of this job inside a CS.
2100
* @hw_queue_id: the id of the H/W queue this job is submitted to.
2101
* @user_cb_size: the actual size of the CB we got from the user.
2102
* @job_cb_size: the actual size of the CB that we put on the queue.
2103
* @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2104
* to wait on part of the reserved signals.
2105
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2106
* handle to a kernel-allocated CB object, false
2107
* otherwise (SRAM/DRAM/host address).
2108
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2109
* info is needed later, when adding the 2xMSG_PROT at the
2110
* end of the JOB, to know which barriers to put in the
2111
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2112
* have streams so the engine can't be busy by another
2113
* stream.
2114
*/
2115
struct hl_cs_job {
2116
struct list_head cs_node;
2117
struct hl_cs *cs;
2118
struct hl_cb *user_cb;
2119
struct hl_cb *patched_cb;
2120
struct work_struct finish_work;
2121
struct list_head userptr_list;
2122
struct list_head debugfs_list;
2123
struct kref refcount;
2124
enum hl_queue_type queue_type;
2125
ktime_t timestamp;
2126
u32 id;
2127
u32 hw_queue_id;
2128
u32 user_cb_size;
2129
u32 job_cb_size;
2130
u32 encaps_sig_wait_offset;
2131
u8 is_kernel_allocated_cb;
2132
u8 contains_dma_pkt;
2133
};
2134
2135
/**
2136
* struct hl_cs_parser - command submission parser properties.
2137
* @user_cb: the CB we got from the user.
2138
* @patched_cb: in case of patching, this is internal CB which is submitted on
2139
* the queue instead of the CB we got from the IOCTL.
2140
* @job_userptr_list: linked-list of userptr mappings that belong to the related
2141
* job and wait for completion.
2142
* @cs_sequence: the sequence number of the related CS.
2143
* @queue_type: the type of the H/W queue this job is submitted to.
2144
* @ctx_id: the ID of the context the related CS belongs to.
2145
* @hw_queue_id: the id of the H/W queue this job is submitted to.
2146
* @user_cb_size: the actual size of the CB we got from the user.
2147
* @patched_cb_size: the size of the CB after parsing.
2148
* @job_id: the id of the related job inside the related CS.
2149
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2150
* handle to a kernel-allocated CB object, false
2151
* otherwise (SRAM/DRAM/host address).
2152
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2153
* info is needed later, when adding the 2xMSG_PROT at the
2154
* end of the JOB, to know which barriers to put in the
2155
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2156
* have streams so the engine can't be busy by another
2157
* stream.
2158
* @completion: true if we need completion for this CS.
2159
*/
2160
struct hl_cs_parser {
2161
struct hl_cb *user_cb;
2162
struct hl_cb *patched_cb;
2163
struct list_head *job_userptr_list;
2164
u64 cs_sequence;
2165
enum hl_queue_type queue_type;
2166
u32 ctx_id;
2167
u32 hw_queue_id;
2168
u32 user_cb_size;
2169
u32 patched_cb_size;
2170
u8 job_id;
2171
u8 is_kernel_allocated_cb;
2172
u8 contains_dma_pkt;
2173
u8 completion;
2174
};
2175
2176
/*
2177
* MEMORY STRUCTURE
2178
*/
2179
2180
/**
2181
* struct hl_vm_hash_node - hash element from virtual address to virtual
2182
* memory area descriptor (hl_vm_phys_pg_list or
2183
* hl_userptr).
2184
* @node: node to hang on the hash table in context object.
2185
* @vaddr: key virtual address.
2186
* @handle: memory handle for device memory allocation.
2187
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2188
* @export_cnt: number of exports from within the VA block.
2189
*/
2190
struct hl_vm_hash_node {
2191
struct hlist_node node;
2192
u64 vaddr;
2193
u64 handle;
2194
void *ptr;
2195
int export_cnt;
2196
};
2197
2198
/**
2199
* struct hl_vm_hw_block_list_node - list element from user virtual address to
2200
* HW block id.
2201
* @node: node to hang on the list in context object.
2202
* @ctx: the context this node belongs to.
2203
* @vaddr: virtual address of the HW block.
2204
* @block_size: size of the block.
2205
* @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2206
* @id: HW block id (handle).
2207
*/
2208
struct hl_vm_hw_block_list_node {
2209
struct list_head node;
2210
struct hl_ctx *ctx;
2211
unsigned long vaddr;
2212
u32 block_size;
2213
u32 mapped_size;
2214
u32 id;
2215
};
2216
2217
/**
2218
* struct hl_vm_phys_pg_pack - physical page pack.
2219
* @vm_type: describes the type of the virtual area descriptor.
2220
* @pages: the physical page array.
2221
* @npages: num physical pages in the pack.
2222
* @total_size: total size of all the pages in this list.
2223
* @node: used to attach to deletion list that is used when all the allocations are cleared
2224
* at the teardown of the context.
2225
* @mapping_cnt: number of shared mappings.
2226
* @asid: the context related to this list.
2227
* @page_size: size of each page in the pack.
2228
* @flags: HL_MEM_* flags related to this list.
2229
* @handle: the provided handle related to this list.
2230
* @offset: offset from the first page.
2231
* @contiguous: is contiguous physical memory.
2232
* @created_from_userptr: is product of host virtual address.
2233
*/
2234
struct hl_vm_phys_pg_pack {
2235
enum vm_type vm_type; /* must be first */
2236
u64 *pages;
2237
u64 npages;
2238
u64 total_size;
2239
struct list_head node;
2240
atomic_t mapping_cnt;
2241
u32 asid;
2242
u32 page_size;
2243
u32 flags;
2244
u32 handle;
2245
u32 offset;
2246
u8 contiguous;
2247
u8 created_from_userptr;
2248
};
2249
2250
/**
2251
* struct hl_vm_va_block - virtual range block information.
2252
* @node: node to hang on the virtual range list in context object.
2253
* @start: virtual range start address.
2254
* @end: virtual range end address.
2255
* @size: virtual range size.
2256
*/
2257
struct hl_vm_va_block {
2258
struct list_head node;
2259
u64 start;
2260
u64 end;
2261
u64 size;
2262
};
2263
2264
/**
2265
* struct hl_vm - virtual memory manager for MMU.
2266
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
2267
* @dram_pg_pool_refcount: reference counter for the pool usage.
2268
* @idr_lock: protects the phys_pg_list_handles.
2269
* @phys_pg_pack_handles: idr to hold all device allocations handles.
2270
* @init_done: whether initialization was done. We need this because VM
2271
* initialization might be skipped during device initialization.
2272
*/
2273
struct hl_vm {
2274
struct gen_pool *dram_pg_pool;
2275
struct kref dram_pg_pool_refcount;
2276
spinlock_t idr_lock;
2277
struct idr phys_pg_pack_handles;
2278
u8 init_done;
2279
};
2280
2281
#ifdef CONFIG_HL_HLDIO
2282
#include "hldio.h"
2283
#endif
2284
2285
/*
2286
* DEBUG, PROFILING STRUCTURE
2287
*/
2288
2289
/**
2290
* struct hl_debug_params - Coresight debug parameters.
2291
* @input: pointer to component specific input parameters.
2292
* @output: pointer to component specific output parameters.
2293
* @output_size: size of output buffer.
2294
* @reg_idx: relevant register ID.
2295
* @op: component operation to execute.
2296
* @enable: true if to enable component debugging, false otherwise.
2297
*/
2298
struct hl_debug_params {
2299
void *input;
2300
void *output;
2301
u32 output_size;
2302
u32 reg_idx;
2303
u32 op;
2304
bool enable;
2305
};
2306
2307
/**
2308
* struct hl_notifier_event - holds the notifier data structure
2309
* @eventfd: the event file descriptor to raise the notifications
2310
* @lock: mutex lock to protect the notifier data flows
2311
* @events_mask: indicates the bitmap events
2312
*/
2313
struct hl_notifier_event {
2314
struct eventfd_ctx *eventfd;
2315
struct mutex lock;
2316
u64 events_mask;
2317
};
2318
2319
/*
2320
* FILE PRIVATE STRUCTURE
2321
*/
2322
2323
/**
2324
* struct hl_fpriv - process information stored in FD private data.
2325
* @hdev: habanalabs device structure.
2326
* @file_priv: pointer to the DRM file private data structure.
2327
* @taskpid: current process ID.
2328
* @ctx: current executing context. TODO: remove for multiple ctx per process
2329
* @ctx_mgr: context manager to handle multiple context for this FD.
2330
* @mem_mgr: manager descriptor for memory exportable via mmap
2331
* @notifier_event: notifier eventfd towards user process
2332
* @debugfs_list: list of relevant ASIC debugfs.
2333
* @dev_node: node in the device list of file private data
2334
* @refcount: number of related contexts.
2335
* @restore_phase_mutex: lock for context switch and restore phase.
2336
* @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2337
* ctx per process.
2338
*/
2339
struct hl_fpriv {
2340
struct hl_device *hdev;
2341
struct drm_file *file_priv;
2342
struct pid *taskpid;
2343
struct hl_ctx *ctx;
2344
struct hl_ctx_mgr ctx_mgr;
2345
struct hl_mem_mgr mem_mgr;
2346
struct hl_notifier_event notifier_event;
2347
struct list_head debugfs_list;
2348
struct list_head dev_node;
2349
struct kref refcount;
2350
struct mutex restore_phase_mutex;
2351
struct mutex ctx_lock;
2352
};
2353
2354
/*
2355
* DebugFS
2356
*/
2357
2358
/**
2359
* struct hl_info_list - debugfs file ops.
2360
* @name: file name.
2361
* @show: function to output information.
2362
* @write: function to write to the file.
2363
*/
2364
struct hl_info_list {
2365
const char *name;
2366
int (*show)(struct seq_file *s, void *data);
2367
ssize_t (*write)(struct file *file, const char __user *buf,
2368
size_t count, loff_t *f_pos);
2369
};
2370
2371
/**
2372
* struct hl_debugfs_entry - debugfs dentry wrapper.
2373
* @info_ent: dentry related ops.
2374
* @dev_entry: ASIC specific debugfs manager.
2375
*/
2376
struct hl_debugfs_entry {
2377
const struct hl_info_list *info_ent;
2378
struct hl_dbg_device_entry *dev_entry;
2379
};
2380
2381
2382
/**
2383
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
2384
* @root: root dentry.
2385
* @hdev: habanalabs device structure.
2386
* @entry_arr: array of available hl_debugfs_entry.
2387
* @file_list: list of available debugfs files.
2388
* @file_mutex: protects file_list.
2389
* @cb_list: list of available CBs.
2390
* @cb_spinlock: protects cb_list.
2391
* @cs_list: list of available CSs.
2392
* @cs_spinlock: protects cs_list.
2393
* @cs_job_list: list of available CB jobs.
2394
* @cs_job_spinlock: protects cs_job_list.
2395
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2396
* @userptr_spinlock: protects userptr_list.
2397
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
2398
* @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2399
* @data_dma_blob_desc: data DMA descriptor of blob.
2400
* @mon_dump_blob_desc: monitor dump descriptor of blob.
2401
* @state_dump: data of the system states in case of a bad cs.
2402
* @state_dump_sem: protects state_dump.
2403
* @addr: next address to read/write from/to in read/write32.
2404
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
2405
* @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2406
* @userptr_lookup: the target user ptr to look up for on demand.
2407
* @mmu_asid: ASID to use while translating in mmu_show.
2408
* @state_dump_head: index of the latest state dump
2409
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2410
* @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2411
* @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2412
* @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2413
* @dio_stats: Direct I/O statistics
2414
*/
2415
struct hl_dbg_device_entry {
2416
struct dentry *root;
2417
struct hl_device *hdev;
2418
struct hl_debugfs_entry *entry_arr;
2419
struct list_head file_list;
2420
struct mutex file_mutex;
2421
struct list_head cb_list;
2422
spinlock_t cb_spinlock;
2423
struct list_head cs_list;
2424
spinlock_t cs_spinlock;
2425
struct list_head cs_job_list;
2426
spinlock_t cs_job_spinlock;
2427
struct list_head userptr_list;
2428
spinlock_t userptr_spinlock;
2429
struct list_head ctx_mem_hash_list;
2430
struct mutex ctx_mem_hash_mutex;
2431
struct debugfs_blob_wrapper data_dma_blob_desc;
2432
struct debugfs_blob_wrapper mon_dump_blob_desc;
2433
char *state_dump[HL_STATE_DUMP_HIST_LEN];
2434
struct rw_semaphore state_dump_sem;
2435
u64 addr;
2436
u64 mmu_addr;
2437
u64 mmu_cap_mask;
2438
u64 userptr_lookup;
2439
u32 mmu_asid;
2440
u32 state_dump_head;
2441
u8 i2c_bus;
2442
u8 i2c_addr;
2443
u8 i2c_reg;
2444
u8 i2c_len;
2445
#ifdef CONFIG_HL_HLDIO
2446
struct hl_dio_stats dio_stats;
2447
#endif
2448
};
2449
2450
/**
2451
* struct hl_debugfs_cfg_access_entry - single debugfs config access object, member of
2452
* hl_debugfs_cfg_access.
2453
* @seconds_since_epoch: seconds since January 1, 1970, used for time comparisons.
2454
* @debugfs_type: the debugfs operation requested, can be READ32, WRITE32, READ64 or WRITE64.
2455
* @addr: the requested address to access.
2456
* @valid: if set, this entry has valid data for dumping at interrupt time.
2457
*/
2458
struct hl_debugfs_cfg_access_entry {
2459
ktime_t seconds_since_epoch;
2460
enum debugfs_access_type debugfs_type;
2461
u64 addr;
2462
bool valid;
2463
};
2464
2465
/**
2466
* struct hl_debugfs_cfg_access - saves debugfs config region access requests history.
2467
* @cfg_access_list: list of objects describing config region access requests.
2468
* @head: next valid index to add new entry to in cfg_access_list.
2469
*/
2470
struct hl_debugfs_cfg_access {
2471
struct hl_debugfs_cfg_access_entry cfg_access_list[HL_DBGFS_CFG_ACCESS_HIST_LEN];
2472
u32 head;
2473
spinlock_t lock; /* protects head and entries */
2474
};
2475
2476
/**
2477
* struct hl_hw_obj_name_entry - single hw object name, member of
2478
* hl_state_dump_specs
2479
* @node: link to the containing hash table
2480
* @name: hw object name
2481
* @id: object identifier
2482
*/
2483
struct hl_hw_obj_name_entry {
2484
struct hlist_node node;
2485
const char *name;
2486
u32 id;
2487
};
2488
2489
enum hl_state_dump_specs_props {
2490
SP_SYNC_OBJ_BASE_ADDR,
2491
SP_NEXT_SYNC_OBJ_ADDR,
2492
SP_SYNC_OBJ_AMOUNT,
2493
SP_MON_OBJ_WR_ADDR_LOW,
2494
SP_MON_OBJ_WR_ADDR_HIGH,
2495
SP_MON_OBJ_WR_DATA,
2496
SP_MON_OBJ_ARM_DATA,
2497
SP_MON_OBJ_STATUS,
2498
SP_MONITORS_AMOUNT,
2499
SP_TPC0_CMDQ,
2500
SP_TPC0_CFG_SO,
2501
SP_NEXT_TPC,
2502
SP_MME_CMDQ,
2503
SP_MME_CFG_SO,
2504
SP_NEXT_MME,
2505
SP_DMA_CMDQ,
2506
SP_DMA_CFG_SO,
2507
SP_DMA_QUEUES_OFFSET,
2508
SP_NUM_OF_MME_ENGINES,
2509
SP_SUB_MME_ENG_NUM,
2510
SP_NUM_OF_DMA_ENGINES,
2511
SP_NUM_OF_TPC_ENGINES,
2512
SP_ENGINE_NUM_OF_QUEUES,
2513
SP_ENGINE_NUM_OF_STREAMS,
2514
SP_ENGINE_NUM_OF_FENCES,
2515
SP_FENCE0_CNT_OFFSET,
2516
SP_FENCE0_RDATA_OFFSET,
2517
SP_CP_STS_OFFSET,
2518
SP_NUM_CORES,
2519
2520
SP_MAX
2521
};
2522
2523
enum hl_sync_engine_type {
2524
ENGINE_TPC,
2525
ENGINE_DMA,
2526
ENGINE_MME,
2527
};
2528
2529
/**
2530
* struct hl_mon_state_dump - represents a state dump of a single monitor
2531
* @id: monitor id
2532
* @wr_addr_low: address monitor will write to, low bits
2533
* @wr_addr_high: address monitor will write to, high bits
2534
* @wr_data: data monitor will write
2535
* @arm_data: register value containing monitor configuration
2536
* @status: monitor status
2537
*/
2538
struct hl_mon_state_dump {
2539
u32 id;
2540
u32 wr_addr_low;
2541
u32 wr_addr_high;
2542
u32 wr_data;
2543
u32 arm_data;
2544
u32 status;
2545
};
2546
2547
/**
2548
* struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2549
* @engine_type: type of the engine
2550
* @engine_id: id of the engine
2551
* @sync_id: id of the sync object
2552
*/
2553
struct hl_sync_to_engine_map_entry {
2554
struct hlist_node node;
2555
enum hl_sync_engine_type engine_type;
2556
u32 engine_id;
2557
u32 sync_id;
2558
};
2559
2560
/**
2561
* struct hl_sync_to_engine_map - maps sync object id to associated engine id
2562
* @tb: hash table containing the mapping, each element is of type
2563
* struct hl_sync_to_engine_map_entry
2564
*/
2565
struct hl_sync_to_engine_map {
2566
DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2567
};
2568
2569
/**
2570
* struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2571
* @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2572
* @print_single_monitor: format monitor data as string
2573
* @monitor_valid: return true if given monitor dump is valid
2574
* @print_fences_single_engine: format fences data as string
2575
*/
2576
struct hl_state_dump_specs_funcs {
2577
int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2578
struct hl_sync_to_engine_map *map);
2579
int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2580
struct hl_device *hdev,
2581
struct hl_mon_state_dump *mon);
2582
int (*monitor_valid)(struct hl_mon_state_dump *mon);
2583
int (*print_fences_single_engine)(struct hl_device *hdev,
2584
u64 base_offset,
2585
u64 status_base_offset,
2586
enum hl_sync_engine_type engine_type,
2587
u32 engine_id, char **buf,
2588
size_t *size, size_t *offset);
2589
};
2590
2591
/**
2592
* struct hl_state_dump_specs - defines ASIC known hw objects names
2593
* @so_id_to_str_tb: sync objects names index table
2594
* @monitor_id_to_str_tb: monitors names index table
2595
* @funcs: virtual functions used for state dump
2596
* @sync_namager_names: readable names for sync manager if available (ex: N_E)
2597
* @props: pointer to a per asic const props array required for state dump
2598
*/
2599
struct hl_state_dump_specs {
2600
DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2601
DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2602
struct hl_state_dump_specs_funcs funcs;
2603
const char * const *sync_namager_names;
2604
s64 *props;
2605
};
2606
2607
2608
/*
2609
* DEVICES
2610
*/
2611
2612
#define HL_STR_MAX 64
2613
2614
#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2615
2616
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2617
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2618
*/
2619
#define HL_MAX_MINORS 256
2620
2621
/*
2622
* Registers read & write functions.
2623
*/
2624
2625
u32 hl_rreg(struct hl_device *hdev, u32 reg);
2626
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2627
2628
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2629
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2630
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2631
hdev->asic_funcs->rreg(hdev, (reg)))
2632
2633
#define WREG32_P(reg, val, mask) \
2634
do { \
2635
u32 tmp_ = RREG32(reg); \
2636
tmp_ &= (mask); \
2637
tmp_ |= ((val) & ~(mask)); \
2638
WREG32(reg, tmp_); \
2639
} while (0)
2640
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2641
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2642
2643
#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2644
2645
#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2646
2647
#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2648
2649
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2650
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2651
#define WREG32_FIELD(reg, offset, field, val) \
2652
WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2653
~REG_FIELD_MASK(reg, field)) | \
2654
(val) << REG_FIELD_SHIFT(reg, field))
2655
2656
/* Timeout should be longer when working with simulator but cap the
2657
* increased timeout to some maximum
2658
*/
2659
#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2660
({ \
2661
ktime_t __timeout; \
2662
u32 __elbi_read; \
2663
int __rc = 0; \
2664
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2665
might_sleep_if(sleep_us); \
2666
for (;;) { \
2667
if (elbi) { \
2668
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2669
if (__rc) \
2670
break; \
2671
(val) = __elbi_read; \
2672
} else {\
2673
(val) = RREG32(lower_32_bits(addr)); \
2674
} \
2675
if (cond) \
2676
break; \
2677
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2678
if (elbi) { \
2679
__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2680
if (__rc) \
2681
break; \
2682
(val) = __elbi_read; \
2683
} else {\
2684
(val) = RREG32(lower_32_bits(addr)); \
2685
} \
2686
break; \
2687
} \
2688
if (sleep_us) \
2689
usleep_range((sleep_us >> 2) + 1, sleep_us); \
2690
} \
2691
__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2692
})
2693
2694
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2695
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2696
2697
#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2698
hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2699
2700
/*
2701
* poll array of register addresses.
2702
* condition is satisfied if all registers values match the expected value.
2703
* once some register in the array satisfies the condition it will not be polled again,
2704
* this is done both for efficiency and due to some registers are "clear on read".
2705
* TODO: use read from PCI bar in other places in the code (SW-91406)
2706
*/
2707
#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2708
timeout_us, elbi) \
2709
({ \
2710
ktime_t __timeout; \
2711
u64 __elem_bitmask; \
2712
u32 __read_val; \
2713
u8 __arr_idx; \
2714
int __rc = 0; \
2715
\
2716
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2717
might_sleep_if(sleep_us); \
2718
if (arr_size >= 64) \
2719
__rc = -EINVAL; \
2720
else \
2721
__elem_bitmask = BIT_ULL(arr_size) - 1; \
2722
for (;;) { \
2723
if (__rc) \
2724
break; \
2725
for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2726
if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2727
continue; \
2728
if (elbi) { \
2729
__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2730
if (__rc) \
2731
break; \
2732
} else { \
2733
__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2734
} \
2735
if (__read_val == (expected_val)) \
2736
__elem_bitmask &= ~BIT_ULL(__arr_idx); \
2737
} \
2738
if (__rc || (__elem_bitmask == 0)) \
2739
break; \
2740
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2741
break; \
2742
if (sleep_us) \
2743
usleep_range((sleep_us >> 2) + 1, sleep_us); \
2744
} \
2745
__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2746
})
2747
2748
#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2749
timeout_us) \
2750
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2751
timeout_us, false)
2752
2753
#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2754
timeout_us) \
2755
hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2756
timeout_us, true)
2757
2758
/*
2759
* address in this macro points always to a memory location in the
2760
* host's (server's) memory. That location is updated asynchronously
2761
* either by the direct access of the device or by another core.
2762
*
2763
* To work both in LE and BE architectures, we need to distinguish between the
2764
* two states (device or another core updates the memory location). Therefore,
2765
* if mem_written_by_device is true, the host memory being polled will be
2766
* updated directly by the device. If false, the host memory being polled will
2767
* be updated by host CPU. Required so host knows whether or not the memory
2768
* might need to be byte-swapped before returning value to caller.
2769
*
2770
* On the first 4 polling iterations the macro goes to sleep for short period of
2771
* time that gradually increases and reaches sleep_us on the fifth iteration.
2772
*/
2773
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2774
mem_written_by_device) \
2775
({ \
2776
u64 __sleep_step_us; \
2777
ktime_t __timeout; \
2778
u8 __step = 8; \
2779
\
2780
__timeout = ktime_add_us(ktime_get(), timeout_us); \
2781
might_sleep_if(sleep_us); \
2782
for (;;) { \
2783
/* Verify we read updates done by other cores or by device */ \
2784
mb(); \
2785
(val) = *((u32 *)(addr)); \
2786
if (mem_written_by_device) \
2787
(val) = le32_to_cpu(*(__le32 *) &(val)); \
2788
if (cond) \
2789
break; \
2790
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2791
(val) = *((u32 *)(addr)); \
2792
if (mem_written_by_device) \
2793
(val) = le32_to_cpu(*(__le32 *) &(val)); \
2794
break; \
2795
} \
2796
__sleep_step_us = sleep_us >> __step; \
2797
if (__sleep_step_us) \
2798
usleep_range((__sleep_step_us >> 2) + 1, __sleep_step_us); \
2799
__step >>= 1; \
2800
} \
2801
(cond) ? 0 : -ETIMEDOUT; \
2802
})
2803
2804
#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2805
({ \
2806
struct user_mapped_block *p = blk; \
2807
\
2808
p->address = base; \
2809
p->size = sz; \
2810
})
2811
2812
#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2813
({ \
2814
usr_intr.hdev = hdev; \
2815
usr_intr.interrupt_id = intr_id; \
2816
usr_intr.type = intr_type; \
2817
INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2818
spin_lock_init(&usr_intr.wait_list_lock); \
2819
INIT_LIST_HEAD(&usr_intr.ts_list_head); \
2820
spin_lock_init(&usr_intr.ts_list_lock); \
2821
})
2822
2823
struct hwmon_chip_info;
2824
2825
/**
2826
* struct hl_device_reset_work - reset work wrapper.
2827
* @reset_work: reset work to be done.
2828
* @hdev: habanalabs device structure.
2829
* @flags: reset flags.
2830
*/
2831
struct hl_device_reset_work {
2832
struct delayed_work reset_work;
2833
struct hl_device *hdev;
2834
u32 flags;
2835
};
2836
2837
/**
2838
* struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2839
* page-table internal information.
2840
* @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2841
* allocating hops.
2842
* @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2843
*/
2844
struct hl_mmu_hr_priv {
2845
struct gen_pool *mmu_pgt_pool;
2846
struct pgt_info *mmu_asid_hop0;
2847
};
2848
2849
/**
2850
* struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2851
* page-table internal information.
2852
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2853
* @mmu_shadow_hop0: shadow array of hop0 tables.
2854
*/
2855
struct hl_mmu_dr_priv {
2856
struct gen_pool *mmu_pgt_pool;
2857
void *mmu_shadow_hop0;
2858
};
2859
2860
/**
2861
* struct hl_mmu_priv - used for holding per-device mmu internal information.
2862
* @dr: information on the device-resident MMU, when exists.
2863
* @hr: information on the host-resident MMU, when exists.
2864
*/
2865
struct hl_mmu_priv {
2866
struct hl_mmu_dr_priv dr;
2867
struct hl_mmu_hr_priv hr;
2868
};
2869
2870
/**
2871
* struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2872
* that was created in order to translate a virtual address to a
2873
* physical one.
2874
* @hop_addr: The address of the hop.
2875
* @hop_pte_addr: The address of the hop entry.
2876
* @hop_pte_val: The value in the hop entry.
2877
*/
2878
struct hl_mmu_per_hop_info {
2879
u64 hop_addr;
2880
u64 hop_pte_addr;
2881
u64 hop_pte_val;
2882
};
2883
2884
/**
2885
* struct hl_mmu_hop_info - A structure describing the TLB hops and their
2886
* hop-entries that were created in order to translate a virtual address to a
2887
* physical one.
2888
* @scrambled_vaddr: The value of the virtual address after scrambling. This
2889
* address replaces the original virtual-address when mapped
2890
* in the MMU tables.
2891
* @unscrambled_paddr: The un-scrambled physical address.
2892
* @hop_info: Array holding the per-hop information used for the translation.
2893
* @used_hops: The number of hops used for the translation.
2894
* @range_type: virtual address range type.
2895
*/
2896
struct hl_mmu_hop_info {
2897
u64 scrambled_vaddr;
2898
u64 unscrambled_paddr;
2899
struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2900
u32 used_hops;
2901
enum hl_va_range_type range_type;
2902
};
2903
2904
/**
2905
* struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2906
* @get_hop0_pgt_info: get page table info structure for HOP0.
2907
* @get_pgt_info: get page table info structure for HOP other than HOP0.
2908
* @add_pgt_info: add page table info structure to hash.
2909
* @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2910
*/
2911
struct hl_hr_mmu_funcs {
2912
struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2913
struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2914
void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2915
int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2916
struct hl_mmu_hop_info *hops,
2917
u64 virt_addr, bool *is_huge);
2918
};
2919
2920
/**
2921
* struct hl_mmu_funcs - Device related MMU functions.
2922
* @init: initialize the MMU module.
2923
* @fini: release the MMU module.
2924
* @ctx_init: Initialize a context for using the MMU module.
2925
* @ctx_fini: disable a ctx from using the mmu module.
2926
* @map: maps a virtual address to physical address for a context.
2927
* @unmap: unmap a virtual address of a context.
2928
* @flush: flush all writes from all cores to reach device MMU.
2929
* @swap_out: marks all mapping of the given context as swapped out.
2930
* @swap_in: marks all mapping of the given context as swapped in.
2931
* @get_tlb_info: returns the list of hops and hop-entries used that were
2932
* created in order to translate the giver virtual address to a
2933
* physical one.
2934
* @hr_funcs: functions specific to host resident MMU.
2935
*/
2936
struct hl_mmu_funcs {
2937
int (*init)(struct hl_device *hdev);
2938
void (*fini)(struct hl_device *hdev);
2939
int (*ctx_init)(struct hl_ctx *ctx);
2940
void (*ctx_fini)(struct hl_ctx *ctx);
2941
int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2942
bool is_dram_addr);
2943
int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2944
void (*flush)(struct hl_ctx *ctx);
2945
void (*swap_out)(struct hl_ctx *ctx);
2946
void (*swap_in)(struct hl_ctx *ctx);
2947
int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2948
struct hl_hr_mmu_funcs hr_funcs;
2949
};
2950
2951
/**
2952
* struct hl_prefetch_work - prefetch work structure handler
2953
* @prefetch_work: actual work struct.
2954
* @ctx: compute context.
2955
* @va: virtual address to pre-fetch.
2956
* @size: pre-fetch size.
2957
* @flags: operation flags.
2958
* @asid: ASID for maintenance operation.
2959
*/
2960
struct hl_prefetch_work {
2961
struct work_struct prefetch_work;
2962
struct hl_ctx *ctx;
2963
u64 va;
2964
u64 size;
2965
u32 flags;
2966
u32 asid;
2967
};
2968
2969
/*
2970
* number of user contexts allowed to call wait_for_multi_cs ioctl in
2971
* parallel
2972
*/
2973
#define MULTI_CS_MAX_USER_CTX 2
2974
2975
/**
2976
* struct multi_cs_completion - multi CS wait completion.
2977
* @completion: completion of any of the CS in the list
2978
* @lock: spinlock for the completion structure
2979
* @timestamp: timestamp for the multi-CS completion
2980
* @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2981
* is waiting
2982
* @used: 1 if in use, otherwise 0
2983
*/
2984
struct multi_cs_completion {
2985
struct completion completion;
2986
spinlock_t lock;
2987
s64 timestamp;
2988
u32 stream_master_qid_map;
2989
u8 used;
2990
};
2991
2992
/**
2993
* struct multi_cs_data - internal data for multi CS call
2994
* @ctx: pointer to the context structure
2995
* @fence_arr: array of fences of all CSs
2996
* @seq_arr: array of CS sequence numbers
2997
* @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2998
* @timestamp: timestamp of first completed CS
2999
* @wait_status: wait for CS status
3000
* @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
3001
* @arr_len: fence_arr and seq_arr array length
3002
* @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
3003
* @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
3004
*/
3005
struct multi_cs_data {
3006
struct hl_ctx *ctx;
3007
struct hl_fence **fence_arr;
3008
u64 *seq_arr;
3009
s64 timeout_jiffies;
3010
s64 timestamp;
3011
long wait_status;
3012
u32 completion_bitmap;
3013
u8 arr_len;
3014
u8 gone_cs;
3015
u8 update_ts;
3016
};
3017
3018
/**
3019
* struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
3020
* @start: timestamp taken when 'start' event is received in driver
3021
* @end: timestamp taken when 'end' event is received in driver
3022
*/
3023
struct hl_clk_throttle_timestamp {
3024
ktime_t start;
3025
ktime_t end;
3026
};
3027
3028
/**
3029
* struct hl_clk_throttle - keeps current/last clock throttling timestamps
3030
* @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
3031
* index 1 refers to THERMAL
3032
* @lock: protects this structure as it can be accessed from both event queue
3033
* context and info_ioctl context
3034
* @current_reason: bitmask represents the current clk throttling reasons
3035
* @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
3036
*/
3037
struct hl_clk_throttle {
3038
struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
3039
struct mutex lock;
3040
u32 current_reason;
3041
u32 aggregated_reason;
3042
};
3043
3044
/**
3045
* struct user_mapped_block - describes a hw block allowed to be mmapped by user
3046
* @address: physical HW block address
3047
* @size: allowed size for mmap
3048
*/
3049
struct user_mapped_block {
3050
u32 address;
3051
u32 size;
3052
};
3053
3054
/**
3055
* struct cs_timeout_info - info of last CS timeout occurred.
3056
* @timestamp: CS timeout timestamp.
3057
* @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
3058
* so the first (root cause) CS timeout will not be overwritten.
3059
* @seq: CS timeout sequence number.
3060
*/
3061
struct cs_timeout_info {
3062
ktime_t timestamp;
3063
atomic_t write_enable;
3064
u64 seq;
3065
};
3066
3067
#define MAX_QMAN_STREAMS_INFO 4
3068
#define OPCODE_INFO_MAX_ADDR_SIZE 8
3069
/**
3070
* struct undefined_opcode_info - info about last undefined opcode error
3071
* @timestamp: timestamp of the undefined opcode error
3072
* @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
3073
* entries. In case all streams array entries are
3074
* filled with values, it means the execution was in Lower-CP.
3075
* @cq_addr: the address of the current handled command buffer
3076
* @cq_size: the size of the current handled command buffer
3077
* @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
3078
* should be equal to 1 in case of undefined opcode
3079
* in Upper-CP (specific stream) and equal to 4 in case
3080
* of undefined opcode in Lower-CP.
3081
* @engine_id: engine-id that the error occurred on
3082
* @stream_id: the stream id the error occurred on. In case the stream equals to
3083
* MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
3084
* @write_enable: if set, writing to undefined opcode parameters in the structure
3085
* is enable so the first (root cause) undefined opcode will not be
3086
* overwritten.
3087
*/
3088
struct undefined_opcode_info {
3089
ktime_t timestamp;
3090
u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
3091
u64 cq_addr;
3092
u32 cq_size;
3093
u32 cb_addr_streams_len;
3094
u32 engine_id;
3095
u32 stream_id;
3096
bool write_enable;
3097
};
3098
3099
/**
3100
* struct page_fault_info - page fault information.
3101
* @page_fault: holds information collected during a page fault.
3102
* @user_mappings: buffer containing user mappings.
3103
* @num_of_user_mappings: number of user mappings.
3104
* @page_fault_detected: if set as 1, then a page-fault was discovered for the
3105
* first time after the driver has finished booting-up.
3106
* Since we're looking for the page-fault's root cause,
3107
* we don't care of the others that might follow it-
3108
* so once changed to 1, it will remain that way.
3109
* @page_fault_info_available: indicates that a page fault info is now available.
3110
*/
3111
struct page_fault_info {
3112
struct hl_page_fault_info page_fault;
3113
struct hl_user_mapping *user_mappings;
3114
u64 num_of_user_mappings;
3115
atomic_t page_fault_detected;
3116
bool page_fault_info_available;
3117
};
3118
3119
/**
3120
* struct razwi_info - RAZWI information.
3121
* @razwi: holds information collected during a RAZWI
3122
* @razwi_detected: if set as 1, then a RAZWI was discovered for the
3123
* first time after the driver has finished booting-up.
3124
* Since we're looking for the RAZWI's root cause,
3125
* we don't care of the others that might follow it-
3126
* so once changed to 1, it will remain that way.
3127
* @razwi_info_available: indicates that a RAZWI info is now available.
3128
*/
3129
struct razwi_info {
3130
struct hl_info_razwi_event razwi;
3131
atomic_t razwi_detected;
3132
bool razwi_info_available;
3133
};
3134
3135
/**
3136
* struct hw_err_info - HW error information.
3137
* @event: holds information on the event.
3138
* @event_detected: if set as 1, then a HW event was discovered for the
3139
* first time after the driver has finished booting-up.
3140
* currently we assume that only fatal events (that require hard-reset) are
3141
* reported so we don't care of the others that might follow it.
3142
* so once changed to 1, it will remain that way.
3143
* TODO: support multiple events.
3144
* @event_info_available: indicates that a HW event info is now available.
3145
*/
3146
struct hw_err_info {
3147
struct hl_info_hw_err_event event;
3148
atomic_t event_detected;
3149
bool event_info_available;
3150
};
3151
3152
/**
3153
* struct fw_err_info - FW error information.
3154
* @event: holds information on the event.
3155
* @event_detected: if set as 1, then a FW event was discovered for the
3156
* first time after the driver has finished booting-up.
3157
* currently we assume that only fatal events (that require hard-reset) are
3158
* reported so we don't care of the others that might follow it.
3159
* so once changed to 1, it will remain that way.
3160
* TODO: support multiple events.
3161
* @event_info_available: indicates that a HW event info is now available.
3162
*/
3163
struct fw_err_info {
3164
struct hl_info_fw_err_event event;
3165
atomic_t event_detected;
3166
bool event_info_available;
3167
};
3168
3169
/**
3170
* struct engine_err_info - engine error information.
3171
* @event: holds information on the event.
3172
* @event_detected: if set as 1, then an engine event was discovered for the
3173
* first time after the driver has finished booting-up.
3174
* @event_info_available: indicates that an engine event info is now available.
3175
*/
3176
struct engine_err_info {
3177
struct hl_info_engine_err_event event;
3178
atomic_t event_detected;
3179
bool event_info_available;
3180
};
3181
3182
3183
/**
3184
* struct hl_error_info - holds information collected during an error.
3185
* @cs_timeout: CS timeout error information.
3186
* @razwi_info: RAZWI information.
3187
* @undef_opcode: undefined opcode information.
3188
* @page_fault_info: page fault information.
3189
* @hw_err: (fatal) hardware error information.
3190
* @fw_err: firmware error information.
3191
* @engine_err: engine error information.
3192
*/
3193
struct hl_error_info {
3194
struct cs_timeout_info cs_timeout;
3195
struct razwi_info razwi_info;
3196
struct undefined_opcode_info undef_opcode;
3197
struct page_fault_info page_fault_info;
3198
struct hw_err_info hw_err;
3199
struct fw_err_info fw_err;
3200
struct engine_err_info engine_err;
3201
};
3202
3203
/**
3204
* struct hl_reset_info - holds current device reset information.
3205
* @lock: lock to protect critical reset flows.
3206
* @compute_reset_cnt: number of compute resets since the driver was loaded.
3207
* @hard_reset_cnt: number of hard resets since the driver was loaded.
3208
* @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3209
* here we hold the hard reset flags.
3210
* @in_reset: is device in reset flow.
3211
* @in_compute_reset: Device is currently in reset but not in hard-reset.
3212
* @needs_reset: true if reset_on_lockup is false and device should be reset
3213
* due to lockup.
3214
* @hard_reset_pending: is there a hard reset work pending.
3215
* @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3216
* triggered, and cleared after it is shared with preboot.
3217
* @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3218
* with a new value on next reset
3219
* @reset_trigger_repeated: set if device reset is triggered more than once with
3220
* same cause.
3221
* @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3222
* complete instead.
3223
* @watchdog_active: true if a device release watchdog work is scheduled.
3224
*/
3225
struct hl_reset_info {
3226
spinlock_t lock;
3227
u32 compute_reset_cnt;
3228
u32 hard_reset_cnt;
3229
u32 hard_reset_schedule_flags;
3230
u8 in_reset;
3231
u8 in_compute_reset;
3232
u8 needs_reset;
3233
u8 hard_reset_pending;
3234
u8 curr_reset_cause;
3235
u8 prev_reset_trigger;
3236
u8 reset_trigger_repeated;
3237
u8 skip_reset_on_timeout;
3238
u8 watchdog_active;
3239
};
3240
3241
/**
3242
* struct eq_heartbeat_debug_info - stores debug info to be used upon heartbeat failure.
3243
* @last_pq_heartbeat_ts: timestamp of the last test packet that was sent to FW.
3244
* This packet is the trigger in FW to send the EQ heartbeat event.
3245
* @last_eq_heartbeat_ts: timestamp of the last EQ heartbeat event that was received from FW.
3246
* @heartbeat_event_counter: number of heartbeat events received.
3247
* @cpu_queue_id: used to read the queue pi/ci
3248
*/
3249
struct eq_heartbeat_debug_info {
3250
time64_t last_pq_heartbeat_ts;
3251
time64_t last_eq_heartbeat_ts;
3252
u32 heartbeat_event_counter;
3253
u32 cpu_queue_id;
3254
};
3255
3256
/**
3257
* struct hl_device - habanalabs device structure.
3258
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
3259
* @pcie_bar_phys: array of available PCIe bars physical addresses.
3260
* (required only for PCI address match mode)
3261
* @pcie_bar: array of available PCIe bars virtual addresses.
3262
* @rmmio: configuration area address on SRAM.
3263
* @drm: related DRM device.
3264
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
3265
* @dev: related kernel basic device structure.
3266
* @dev_ctrl: related kernel device structure for the control device
3267
* @work_heartbeat: delayed work for CPU-CP is-alive check.
3268
* @device_reset_work: delayed work which performs hard reset
3269
* @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3270
* device upon certain error cases.
3271
* @asic_name: ASIC specific name.
3272
* @asic_type: ASIC specific type.
3273
* @completion_queue: array of hl_cq.
3274
* @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3275
* interrupt, driver will monitor the list of fences
3276
* registered to this interrupt.
3277
* @tpc_interrupt: single TPC interrupt for all TPCs.
3278
* @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3279
* @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3280
* upon any user CQ interrupt, driver will monitor the
3281
* list of fences registered to this common structure.
3282
* @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3283
* @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3284
* outstanding command submissions.
3285
* @cq_wq: work queues of completion queues for executing work in process
3286
* context.
3287
* @eq_wq: work queue of event queue for executing work in process context.
3288
* @cs_cmplt_wq: work queue of CS completions for executing work in process
3289
* context.
3290
* @ts_free_obj_wq: work queue for timestamp registration objects release.
3291
* @prefetch_wq: work queue for MMU pre-fetch operations.
3292
* @reset_wq: work queue for device reset procedure.
3293
* @kernel_ctx: Kernel driver context structure.
3294
* @kernel_queues: array of hl_hw_queue.
3295
* @cs_mirror_list: CS mirror list for TDR.
3296
* @cs_mirror_lock: protects cs_mirror_list.
3297
* @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3298
* @event_queue: event queue for IRQ from CPU-CP.
3299
* @dma_pool: DMA pool for small allocations.
3300
* @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3301
* @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3302
* @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3303
* @asid_bitmap: holds used/available ASIDs.
3304
* @asid_mutex: protects asid_bitmap.
3305
* @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3306
* @debug_lock: protects critical section of setting debug mode for device
3307
* @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3308
* page tables are per context, the invalidation h/w is per MMU.
3309
* Therefore, we can't allow multiple contexts (we only have two,
3310
* user and kernel) to access the invalidation h/w at the same time.
3311
* In addition, any change to the PGT, modifying the MMU hash or
3312
* walking the PGT requires talking this lock.
3313
* @asic_prop: ASIC specific immutable properties.
3314
* @asic_funcs: ASIC specific functions.
3315
* @asic_specific: ASIC specific information to use only from ASIC files.
3316
* @vm: virtual memory manager for MMU.
3317
* @hwmon_dev: H/W monitor device.
3318
* @hl_chip_info: ASIC's sensors information.
3319
* @device_status_description: device status description.
3320
* @hl_debugfs: device's debugfs manager.
3321
* @debugfs_cfg_accesses: list of last debugfs config region accesses.
3322
* @cb_pool: list of pre allocated CBs.
3323
* @cb_pool_lock: protects the CB pool.
3324
* @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3325
* @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3326
* @internal_cb_pool: internal command buffer memory pool.
3327
* @internal_cb_va_base: internal cb pool mmu virtual address base
3328
* @fpriv_list: list of file private data structures. Each structure is created
3329
* when a user opens the device
3330
* @fpriv_ctrl_list: list of file private data structures. Each structure is created
3331
* when a user opens the control device
3332
* @fpriv_list_lock: protects the fpriv_list
3333
* @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3334
* @aggregated_cs_counters: aggregated cs counters among all contexts
3335
* @mmu_priv: device-specific MMU data.
3336
* @mmu_func: device-related MMU functions.
3337
* @dec: list of decoder sw instance
3338
* @fw_loader: FW loader manager.
3339
* @pci_mem_region: array of memory regions in the PCI
3340
* @state_dump_specs: constants and dictionaries needed to dump system state.
3341
* @multi_cs_completion: array of multi-CS completion.
3342
* @clk_throttling: holds information about current/previous clock throttling events
3343
* @captured_err_info: holds information about errors.
3344
* @reset_info: holds current device reset information.
3345
* @heartbeat_debug_info: counters used to debug heartbeat failures.
3346
* @hldio: describes habanalabs direct storage interaction interface.
3347
* @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling.
3348
* @stream_master_qid_arr: pointer to array with QIDs of master streams.
3349
* @fw_inner_major_ver: the major of current loaded preboot inner version.
3350
* @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3351
* @fw_sw_major_ver: the major of current loaded preboot SW version.
3352
* @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3353
* @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3354
* @dram_used_mem: current DRAM memory consumption.
3355
* @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3356
* @timeout_jiffies: device CS timeout value.
3357
* @max_power: the max power of the device, as configured by the sysadmin. This
3358
* value is saved so in case of hard-reset, the driver will restore
3359
* this value and update the F/W after the re-initialization
3360
* @boot_error_status_mask: contains a mask of the device boot error status.
3361
* Each bit represents a different error, according to
3362
* the defines in hl_boot_if.h. If the bit is cleared,
3363
* the error will be ignored by the driver during
3364
* device initialization. Mainly used to debug and
3365
* workaround firmware bugs
3366
* @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3367
* @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3368
* @last_successful_open_jif: timestamp (jiffies) of the last successful
3369
* device open.
3370
* @last_open_session_duration_jif: duration (jiffies) of the last device open
3371
* session.
3372
* @open_counter: number of successful device open operations.
3373
* @fw_poll_interval_usec: FW status poll interval in usec.
3374
* used for CPU boot status
3375
* @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3376
* used for COMMs protocols cmds(COMMS_STS_*)
3377
* @dram_binning: contains mask of drams that is received from the f/w which indicates which
3378
* drams are binned-out
3379
* @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3380
* tpc engines are binned-out
3381
* @dmabuf_export_cnt: number of dma-buf exporting.
3382
* @card_type: Various ASICs have several card types. This indicates the card
3383
* type of the current device.
3384
* @major: habanalabs kernel driver major.
3385
* @high_pll: high PLL profile frequency.
3386
* @decoder_binning: contains mask of decoder engines that is received from the f/w which
3387
* indicates which decoder engines are binned-out
3388
* @edma_binning: contains mask of edma engines that is received from the f/w which
3389
* indicates which edma engines are binned-out
3390
* @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3391
* @rotator_binning: contains mask of rotators engines that is received from the f/w
3392
* which indicates which rotator engines are binned-out(Gaudi3 and above).
3393
* @id: device minor.
3394
* @cdev_idx: char device index.
3395
* @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3396
* addresses.
3397
* @is_in_dram_scrub: true if dram scrub operation is on going.
3398
* @disabled: is device disabled.
3399
* @cpld_shutdown: is cpld shutdown.
3400
* @late_init_done: is late init stage was done during initialization.
3401
* @hwmon_initialized: is H/W monitor sensors was initialized.
3402
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3403
* otherwise.
3404
* @dram_default_page_mapping: is DRAM default page mapping enabled.
3405
* @memory_scrub: true to perform device memory scrub in various locations,
3406
* such as context-switch, context close, page free, etc.
3407
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3408
* huge pages.
3409
* @init_done: is the initialization of the device done.
3410
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3411
* @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3412
* can be used. This indication is needed because in some ASICs we need to do
3413
* specific operations to enable that infrastructure.
3414
* @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3415
* @stop_on_err: true if engines should stop on error.
3416
* @supports_sync_stream: is sync stream supported.
3417
* @sync_stream_queue_idx: helper index for sync stream queues initialization.
3418
* @collective_mon_idx: helper index for collective initialization
3419
* @supports_coresight: is CoreSight supported.
3420
* @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3421
* @process_kill_trial_cnt: number of trials reset thread tried killing
3422
* user processes
3423
* @device_fini_pending: true if device_fini was called and might be
3424
* waiting for the reset thread to finish
3425
* @supports_staged_submission: true if staged submissions are supported
3426
* @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3427
* halted. We can't halt it again because the COMMS
3428
* protocol will throw an error. Relevant only for
3429
* cases where Linux was not loaded to device CPU
3430
* @supports_wait_for_multi_cs: true if wait for multi CS is supported
3431
* @is_compute_ctx_active: Whether there is an active compute context executing.
3432
* @compute_ctx_in_release: true if the current compute context is being released.
3433
* @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3434
* @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3435
* device.
3436
* @supports_ctx_switch: true if a ctx switch is required upon first submission.
3437
* @support_preboot_binning: true if we support read binning info from preboot.
3438
* @eq_heartbeat_received: indication that eq heartbeat event has received from FW.
3439
* @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3440
* @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3441
* stages and sometimes we want to stop at a certain stage. Used only for testing.
3442
* @mmu_disable: Disable the device MMU(s). Used only for testing.
3443
* @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3444
* @pldm: Whether we are running in Palladium environment. Used only for testing.
3445
* @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3446
* the f/w. Used only for testing.
3447
* @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3448
* @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3449
* Used only for testing.
3450
* @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3451
* that the f/w is always alive. Used only for testing.
3452
*/
3453
struct hl_device {
3454
struct pci_dev *pdev;
3455
u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3456
void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3457
void __iomem *rmmio;
3458
struct drm_device drm;
3459
struct cdev cdev_ctrl;
3460
struct device *dev;
3461
struct device *dev_ctrl;
3462
struct delayed_work work_heartbeat;
3463
struct hl_device_reset_work device_reset_work;
3464
struct hl_device_reset_work device_release_watchdog_work;
3465
char asic_name[HL_STR_MAX];
3466
char status[HL_DEV_STS_MAX][HL_STR_MAX];
3467
enum hl_asic_type asic_type;
3468
struct hl_cq *completion_queue;
3469
struct hl_user_interrupt *user_interrupt;
3470
struct hl_user_interrupt tpc_interrupt;
3471
struct hl_user_interrupt unexpected_error_interrupt;
3472
struct hl_user_interrupt common_user_cq_interrupt;
3473
struct hl_user_interrupt common_decoder_interrupt;
3474
struct hl_cs **shadow_cs_queue;
3475
struct workqueue_struct **cq_wq;
3476
struct workqueue_struct *eq_wq;
3477
struct workqueue_struct *cs_cmplt_wq;
3478
struct workqueue_struct *ts_free_obj_wq;
3479
struct workqueue_struct *prefetch_wq;
3480
struct workqueue_struct *reset_wq;
3481
struct hl_ctx *kernel_ctx;
3482
struct hl_hw_queue *kernel_queues;
3483
struct list_head cs_mirror_list;
3484
spinlock_t cs_mirror_lock;
3485
struct hl_mem_mgr kernel_mem_mgr;
3486
struct hl_eq event_queue;
3487
struct dma_pool *dma_pool;
3488
void *cpu_accessible_dma_mem;
3489
dma_addr_t cpu_accessible_dma_address;
3490
struct gen_pool *cpu_accessible_dma_pool;
3491
unsigned long *asid_bitmap;
3492
struct mutex asid_mutex;
3493
struct mutex send_cpu_message_lock;
3494
struct mutex debug_lock;
3495
struct mutex mmu_lock;
3496
struct asic_fixed_properties asic_prop;
3497
const struct hl_asic_funcs *asic_funcs;
3498
void *asic_specific;
3499
struct hl_vm vm;
3500
struct device *hwmon_dev;
3501
struct hwmon_chip_info *hl_chip_info;
3502
3503
struct hl_dbg_device_entry hl_debugfs;
3504
struct hl_debugfs_cfg_access debugfs_cfg_accesses;
3505
3506
struct list_head cb_pool;
3507
spinlock_t cb_pool_lock;
3508
3509
void *internal_cb_pool_virt_addr;
3510
dma_addr_t internal_cb_pool_dma_addr;
3511
struct gen_pool *internal_cb_pool;
3512
u64 internal_cb_va_base;
3513
3514
struct list_head fpriv_list;
3515
struct list_head fpriv_ctrl_list;
3516
struct mutex fpriv_list_lock;
3517
struct mutex fpriv_ctrl_list_lock;
3518
3519
struct hl_cs_counters_atomic aggregated_cs_counters;
3520
3521
struct hl_mmu_priv mmu_priv;
3522
struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3523
3524
struct hl_dec *dec;
3525
3526
struct fw_load_mgr fw_loader;
3527
3528
struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3529
3530
struct hl_state_dump_specs state_dump_specs;
3531
3532
struct multi_cs_completion multi_cs_completion[
3533
MULTI_CS_MAX_USER_CTX];
3534
struct hl_clk_throttle clk_throttling;
3535
struct hl_error_info captured_err_info;
3536
3537
struct hl_reset_info reset_info;
3538
3539
struct eq_heartbeat_debug_info heartbeat_debug_info;
3540
#ifdef CONFIG_HL_HLDIO
3541
struct hl_dio hldio;
3542
#endif
3543
cpumask_t irq_affinity_mask;
3544
3545
u32 *stream_master_qid_arr;
3546
u32 fw_inner_major_ver;
3547
u32 fw_inner_minor_ver;
3548
u32 fw_sw_major_ver;
3549
u32 fw_sw_minor_ver;
3550
u32 fw_sw_sub_minor_ver;
3551
atomic64_t dram_used_mem;
3552
u64 memory_scrub_val;
3553
u64 timeout_jiffies;
3554
u64 max_power;
3555
u64 boot_error_status_mask;
3556
u64 dram_pci_bar_start;
3557
u64 last_successful_open_jif;
3558
u64 last_open_session_duration_jif;
3559
u64 open_counter;
3560
u64 fw_poll_interval_usec;
3561
ktime_t last_successful_open_ktime;
3562
u64 fw_comms_poll_interval_usec;
3563
u64 dram_binning;
3564
u64 tpc_binning;
3565
atomic_t dmabuf_export_cnt;
3566
enum cpucp_card_types card_type;
3567
u32 major;
3568
u32 high_pll;
3569
u32 decoder_binning;
3570
u32 edma_binning;
3571
u32 device_release_watchdog_timeout_sec;
3572
u32 rotator_binning;
3573
u16 id;
3574
u16 cdev_idx;
3575
u16 cpu_pci_msb_addr;
3576
u8 is_in_dram_scrub;
3577
u8 disabled;
3578
u8 cpld_shutdown;
3579
u8 late_init_done;
3580
u8 hwmon_initialized;
3581
u8 reset_on_lockup;
3582
u8 dram_default_page_mapping;
3583
u8 memory_scrub;
3584
u8 pmmu_huge_range;
3585
u8 init_done;
3586
u8 device_cpu_disabled;
3587
u8 in_debug;
3588
u8 cdev_sysfs_debugfs_created;
3589
u8 stop_on_err;
3590
u8 supports_sync_stream;
3591
u8 sync_stream_queue_idx;
3592
u8 collective_mon_idx;
3593
u8 supports_coresight;
3594
u8 supports_cb_mapping;
3595
u8 process_kill_trial_cnt;
3596
u8 device_fini_pending;
3597
u8 supports_staged_submission;
3598
u8 device_cpu_is_halted;
3599
u8 supports_wait_for_multi_cs;
3600
u8 stream_master_qid_arr_size;
3601
u8 is_compute_ctx_active;
3602
u8 compute_ctx_in_release;
3603
u8 supports_mmu_prefetch;
3604
u8 reset_upon_device_release;
3605
u8 supports_ctx_switch;
3606
u8 support_preboot_binning;
3607
u8 eq_heartbeat_received;
3608
3609
/* Parameters for bring-up to be upstreamed */
3610
u64 nic_ports_mask;
3611
u64 fw_components;
3612
u8 mmu_disable;
3613
u8 cpu_queues_enable;
3614
u8 pldm;
3615
u8 hard_reset_on_fw_events;
3616
u8 bmc_enable;
3617
u8 reset_on_preboot_fail;
3618
u8 heartbeat;
3619
};
3620
3621
/* Retrieve PCI device name in case of a PCI device or dev name in simulator */
3622
#define HL_DEV_NAME(hdev) \
3623
((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE")
3624
3625
/**
3626
* struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3627
* @refcount: refcount used to protect removing this id when several
3628
* wait cs are used to wait of the reserved encaps signals.
3629
* @hdev: pointer to habanalabs device structure.
3630
* @hw_sob: pointer to H/W SOB used in the reservation.
3631
* @ctx: pointer to the user's context data structure
3632
* @cs_seq: staged cs sequence which contains encapsulated signals
3633
* @id: idr handler id to be used to fetch the handler info
3634
* @q_idx: stream queue index
3635
* @pre_sob_val: current SOB value before reservation
3636
* @count: signals number
3637
*/
3638
struct hl_cs_encaps_sig_handle {
3639
struct kref refcount;
3640
struct hl_device *hdev;
3641
struct hl_hw_sob *hw_sob;
3642
struct hl_ctx *ctx;
3643
u64 cs_seq;
3644
u32 id;
3645
u32 q_idx;
3646
u32 pre_sob_val;
3647
u32 count;
3648
};
3649
3650
/**
3651
* struct hl_info_fw_err_info - firmware error information structure
3652
* @err_type: The type of error detected (or reported).
3653
* @event_mask: Pointer to the event mask to be modified with the detected error flag
3654
* (can be NULL)
3655
* @event_id: The id of the event that reported the error
3656
* (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3657
*/
3658
struct hl_info_fw_err_info {
3659
enum hl_info_fw_err_type err_type;
3660
u64 *event_mask;
3661
u16 event_id;
3662
};
3663
3664
/*
3665
* IOCTLs
3666
*/
3667
3668
/**
3669
* typedef hl_ioctl_t - typedef for ioctl function in the driver
3670
* @hpriv: pointer to the FD's private data, which contains state of
3671
* user process
3672
* @data: pointer to the input/output arguments structure of the IOCTL
3673
*
3674
* Return: 0 for success, negative value for error
3675
*/
3676
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3677
3678
/**
3679
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3680
* @cmd: the IOCTL code as created by the kernel macros.
3681
* @func: pointer to the driver's function that should be called for this IOCTL.
3682
*/
3683
struct hl_ioctl_desc {
3684
unsigned int cmd;
3685
hl_ioctl_t *func;
3686
};
3687
3688
/*
3689
* Kernel module functions that can be accessed by entire module
3690
*/
3691
3692
/**
3693
* hl_get_sg_info() - get number of pages and the DMA address from SG list.
3694
* @sg: the SG list.
3695
* @dma_addr: pointer to DMA address to return.
3696
*
3697
* Calculate the number of consecutive pages described by the SG list. Take the
3698
* offset of the address in the first page, add to it the length and round it up
3699
* to the number of needed pages.
3700
*/
3701
static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3702
{
3703
*dma_addr = sg_dma_address(sg);
3704
3705
return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3706
(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3707
}
3708
3709
/**
3710
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3711
* @address: The start address of the area we want to validate.
3712
* @size: The size in bytes of the area we want to validate.
3713
* @range_start_address: The start address of the valid range.
3714
* @range_end_address: The end address of the valid range.
3715
*
3716
* Return: true if the area is inside the valid range, false otherwise.
3717
*/
3718
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3719
u64 range_start_address, u64 range_end_address)
3720
{
3721
u64 end_address = address + size;
3722
3723
if ((address >= range_start_address) &&
3724
(end_address <= range_end_address) &&
3725
(end_address > address))
3726
return true;
3727
3728
return false;
3729
}
3730
3731
static inline struct hl_device *to_hl_device(struct drm_device *ddev)
3732
{
3733
return container_of(ddev, struct hl_device, drm);
3734
}
3735
3736
/**
3737
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3738
* @address: The start address of the area we want to validate.
3739
* @size: The size in bytes of the area we want to validate.
3740
* @range_start_address: The start address of the valid range.
3741
* @range_end_address: The end address of the valid range.
3742
*
3743
* Return: true if the area overlaps part or all of the valid range,
3744
* false otherwise.
3745
*/
3746
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3747
u64 range_start_address, u64 range_end_address)
3748
{
3749
u64 end_address = address + size - 1;
3750
3751
return ((address <= range_end_address) && (range_start_address <= end_address));
3752
}
3753
3754
uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3755
void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3756
void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3757
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3758
gfp_t flag, const char *caller);
3759
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3760
dma_addr_t dma_handle, const char *caller);
3761
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3762
dma_addr_t *dma_handle, const char *caller);
3763
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3764
const char *caller);
3765
int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3766
enum dma_data_direction dir, const char *caller);
3767
void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3768
enum dma_data_direction dir, const char *caller);
3769
int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3770
enum dma_data_direction dir);
3771
void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3772
enum dma_data_direction dir);
3773
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3774
enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3775
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3776
enum debugfs_access_type acc_type);
3777
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3778
u64 addr, u64 *val, enum debugfs_access_type acc_type);
3779
3780
int hl_mmap(struct file *filp, struct vm_area_struct *vma);
3781
3782
int hl_device_open(struct drm_device *drm, struct drm_file *file_priv);
3783
void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv);
3784
3785
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3786
bool hl_device_operational(struct hl_device *hdev,
3787
enum hl_device_status *status);
3788
bool hl_ctrl_device_operational(struct hl_device *hdev,
3789
enum hl_device_status *status);
3790
enum hl_device_status hl_device_status(struct hl_device *hdev);
3791
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3792
int hl_hw_queues_create(struct hl_device *hdev);
3793
void hl_hw_queues_destroy(struct hl_device *hdev);
3794
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3795
u32 cb_size, u64 cb_ptr);
3796
void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3797
u32 ctl, u32 len, u64 ptr);
3798
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3799
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3800
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3801
void hl_hw_queue_update_ci(struct hl_cs *cs);
3802
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3803
3804
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3805
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3806
3807
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3808
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3809
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3810
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3811
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3812
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3813
void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q);
3814
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3815
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3816
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3817
irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg);
3818
irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3819
irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg);
3820
u32 hl_cq_inc_ptr(u32 ptr);
3821
3822
int hl_asid_init(struct hl_device *hdev);
3823
void hl_asid_fini(struct hl_device *hdev);
3824
unsigned long hl_asid_alloc(struct hl_device *hdev);
3825
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3826
3827
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3828
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3829
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3830
void hl_ctx_do_release(struct kref *ref);
3831
void hl_ctx_get(struct hl_ctx *ctx);
3832
int hl_ctx_put(struct hl_ctx *ctx);
3833
struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3834
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3835
int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3836
struct hl_fence **fence, u32 arr_len);
3837
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3838
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3839
3840
int hl_device_init(struct hl_device *hdev);
3841
void hl_device_fini(struct hl_device *hdev);
3842
int hl_device_suspend(struct hl_device *hdev);
3843
int hl_device_resume(struct hl_device *hdev);
3844
int hl_device_reset(struct hl_device *hdev, u32 flags);
3845
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3846
void hl_hpriv_get(struct hl_fpriv *hpriv);
3847
int hl_hpriv_put(struct hl_fpriv *hpriv);
3848
int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3849
3850
int hl_build_hwmon_channel_info(struct hl_device *hdev,
3851
struct cpucp_sensor *sensors_arr);
3852
3853
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3854
3855
int hl_sysfs_init(struct hl_device *hdev);
3856
void hl_sysfs_fini(struct hl_device *hdev);
3857
3858
int hl_hwmon_init(struct hl_device *hdev);
3859
void hl_hwmon_fini(struct hl_device *hdev);
3860
void hl_hwmon_release_resources(struct hl_device *hdev);
3861
3862
int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3863
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3864
bool map_cb, u64 *handle);
3865
int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3866
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3867
struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3868
void hl_cb_put(struct hl_cb *cb);
3869
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3870
bool internal_cb);
3871
int hl_cb_pool_init(struct hl_device *hdev);
3872
int hl_cb_pool_fini(struct hl_device *hdev);
3873
int hl_cb_va_pool_init(struct hl_ctx *ctx);
3874
void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3875
3876
void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3877
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3878
enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3879
void hl_sob_reset_error(struct kref *ref);
3880
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3881
void hl_fence_put(struct hl_fence *fence);
3882
void hl_fences_put(struct hl_fence **fence, int len);
3883
void hl_fence_get(struct hl_fence *fence);
3884
void cs_get(struct hl_cs *cs);
3885
bool cs_needs_completion(struct hl_cs *cs);
3886
bool cs_needs_timeout(struct hl_cs *cs);
3887
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3888
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3889
void hl_multi_cs_completion_init(struct hl_device *hdev);
3890
u32 hl_get_active_cs_num(struct hl_device *hdev);
3891
3892
void goya_set_asic_funcs(struct hl_device *hdev);
3893
void gaudi_set_asic_funcs(struct hl_device *hdev);
3894
void gaudi2_set_asic_funcs(struct hl_device *hdev);
3895
3896
int hl_vm_ctx_init(struct hl_ctx *ctx);
3897
void hl_vm_ctx_fini(struct hl_ctx *ctx);
3898
3899
int hl_vm_init(struct hl_device *hdev);
3900
void hl_vm_fini(struct hl_device *hdev);
3901
3902
void hl_hw_block_mem_init(struct hl_ctx *ctx);
3903
void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3904
3905
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3906
enum hl_va_range_type type, u64 size, u32 alignment);
3907
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3908
u64 start_addr, u64 size);
3909
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3910
struct hl_userptr *userptr);
3911
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3912
void hl_userptr_delete_list(struct hl_device *hdev,
3913
struct list_head *userptr_list);
3914
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3915
struct list_head *userptr_list,
3916
struct hl_userptr **userptr);
3917
3918
int hl_mmu_init(struct hl_device *hdev);
3919
void hl_mmu_fini(struct hl_device *hdev);
3920
int hl_mmu_ctx_init(struct hl_ctx *ctx);
3921
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3922
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3923
u32 page_size, bool flush_pte);
3924
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3925
u32 page_size, u32 *real_page_size, bool is_dram_addr);
3926
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3927
bool flush_pte);
3928
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3929
u64 phys_addr, u32 size);
3930
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3931
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3932
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3933
u32 flags, u32 asid, u64 va, u64 size);
3934
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3935
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3936
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3937
u8 hop_idx, u64 hop_addr, u64 virt_addr);
3938
void hl_mmu_hr_flush(struct hl_ctx *ctx);
3939
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3940
u64 pgt_size);
3941
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3942
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3943
u32 hop_table_size);
3944
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3945
u32 hop_table_size);
3946
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3947
u64 val, u32 hop_table_size);
3948
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3949
u32 hop_table_size);
3950
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3951
u32 hop_table_size);
3952
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3953
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3954
struct hl_hr_mmu_funcs *hr_func,
3955
u64 curr_pte);
3956
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3957
struct hl_hr_mmu_funcs *hr_func,
3958
struct hl_mmu_properties *mmu_prop);
3959
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3960
struct hl_mmu_hr_priv *hr_priv,
3961
struct hl_hr_mmu_funcs *hr_func,
3962
struct hl_mmu_properties *mmu_prop,
3963
u64 curr_pte, bool *is_new_hop);
3964
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3965
struct hl_hr_mmu_funcs *hr_func);
3966
int hl_mmu_if_set_funcs(struct hl_device *hdev);
3967
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3968
void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3969
void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3970
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3971
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3972
struct hl_mmu_hop_info *hops);
3973
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3974
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3975
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3976
struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr);
3977
void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr);
3978
void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info);
3979
u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx);
3980
u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx);
3981
void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3982
void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3983
void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr);
3984
u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
3985
void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr);
3986
int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr);
3987
u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop);
3988
u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx);
3989
void hl_mmu_dr_flush(struct hl_ctx *ctx);
3990
int hl_mmu_dr_init(struct hl_device *hdev);
3991
void hl_mmu_dr_fini(struct hl_device *hdev);
3992
3993
int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor);
3994
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3995
void __iomem *dst, u32 src_offset, u32 size);
3996
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3997
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3998
u16 len, u32 timeout, u64 *result);
3999
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
4000
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
4001
size_t irq_arr_size);
4002
int hl_fw_test_cpu_queue(struct hl_device *hdev);
4003
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
4004
dma_addr_t *dma_handle);
4005
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
4006
void *vaddr);
4007
int hl_fw_send_heartbeat(struct hl_device *hdev);
4008
int hl_fw_cpucp_info_get(struct hl_device *hdev,
4009
u32 sts_boot_dev_sts0_reg,
4010
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
4011
u32 boot_err1_reg);
4012
int hl_fw_cpucp_handshake(struct hl_device *hdev,
4013
u32 sts_boot_dev_sts0_reg,
4014
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
4015
u32 boot_err1_reg);
4016
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
4017
int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
4018
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
4019
struct hl_info_pci_counters *counters);
4020
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
4021
u64 *total_energy);
4022
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
4023
enum pll_index *pll_index);
4024
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
4025
u16 *pll_freq_arr);
4026
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
4027
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
4028
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
4029
int hl_fw_init_cpu(struct hl_device *hdev);
4030
int hl_fw_wait_preboot_ready(struct hl_device *hdev);
4031
int hl_fw_read_preboot_status(struct hl_device *hdev);
4032
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
4033
struct fw_load_mgr *fw_loader,
4034
enum comms_cmd cmd, unsigned int size,
4035
bool wait_ok, u32 timeout);
4036
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
4037
struct cpucp_hbm_row_info *info);
4038
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
4039
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
4040
int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
4041
int hl_fw_send_soft_reset(struct hl_device *hdev);
4042
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
4043
bool is_wc[3]);
4044
int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
4045
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
4046
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
4047
struct hl_inbound_pci_region *pci_region);
4048
int hl_pci_set_outbound_region(struct hl_device *hdev,
4049
struct hl_outbound_pci_region *pci_region);
4050
enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
4051
int hl_pci_init(struct hl_device *hdev);
4052
void hl_pci_fini(struct hl_device *hdev);
4053
4054
long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
4055
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
4056
int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4057
int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4058
int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4059
int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4060
int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4061
int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4062
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4063
long hl_fw_get_max_power(struct hl_device *hdev);
4064
void hl_fw_set_max_power(struct hl_device *hdev);
4065
int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
4066
u32 nonce);
4067
int hl_fw_get_dev_info_signed(struct hl_device *hdev,
4068
struct cpucp_dev_info_signed *dev_info_signed, u32 nonce);
4069
int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4070
int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4071
int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4072
int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4073
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
4074
void hl_fw_set_pll_profile(struct hl_device *hdev);
4075
void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
4076
void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
4077
int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
4078
dma_addr_t buff, u32 *size);
4079
4080
void hw_sob_get(struct hl_hw_sob *hw_sob);
4081
void hw_sob_put(struct hl_hw_sob *hw_sob);
4082
void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
4083
void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
4084
void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
4085
struct hl_cs *cs, struct hl_cs_job *job,
4086
struct hl_cs_compl *cs_cmpl);
4087
4088
int hl_dec_init(struct hl_device *hdev);
4089
void hl_dec_fini(struct hl_device *hdev);
4090
void hl_dec_ctx_fini(struct hl_ctx *ctx);
4091
4092
void hl_release_pending_user_interrupts(struct hl_device *hdev);
4093
void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
4094
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
4095
struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
4096
4097
int hl_state_dump(struct hl_device *hdev);
4098
const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
4099
const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
4100
struct hl_mon_state_dump *mon);
4101
void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
4102
__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
4103
const char *format, ...);
4104
char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
4105
const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
4106
4107
void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
4108
void hl_mem_mgr_fini(struct hl_mem_mgr *mmg, struct hl_mem_mgr_fini_stats *stats);
4109
void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
4110
int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
4111
void *args);
4112
struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
4113
u64 handle);
4114
int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
4115
int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
4116
struct hl_mmap_mem_buf *
4117
hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
4118
struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
4119
void *args);
4120
__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
4121
void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4122
u8 flags);
4123
void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4124
u8 flags, u64 *event_mask);
4125
void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
4126
void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
4127
u64 *event_mask);
4128
void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
4129
void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
4130
void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count);
4131
void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
4132
void hl_init_cpu_for_irq(struct hl_device *hdev);
4133
void hl_set_irq_affinity(struct hl_device *hdev, int irq);
4134
void hl_eq_heartbeat_event_handle(struct hl_device *hdev);
4135
void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask);
4136
void hl_eq_cpld_shutdown_event_handle(struct hl_device *hdev, u16 event_id, u64 *event_mask);
4137
4138
#ifdef CONFIG_DEBUG_FS
4139
4140
int hl_debugfs_device_init(struct hl_device *hdev);
4141
void hl_debugfs_device_fini(struct hl_device *hdev);
4142
void hl_debugfs_add_device(struct hl_device *hdev);
4143
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
4144
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
4145
void hl_debugfs_add_cb(struct hl_cb *cb);
4146
void hl_debugfs_remove_cb(struct hl_cb *cb);
4147
void hl_debugfs_add_cs(struct hl_cs *cs);
4148
void hl_debugfs_remove_cs(struct hl_cs *cs);
4149
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
4150
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
4151
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
4152
void hl_debugfs_remove_userptr(struct hl_device *hdev,
4153
struct hl_userptr *userptr);
4154
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4155
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4156
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
4157
unsigned long length);
4158
void hl_debugfs_cfg_access_history_dump(struct hl_device *hdev);
4159
4160
#else
4161
4162
static inline int hl_debugfs_device_init(struct hl_device *hdev)
4163
{
4164
return 0;
4165
}
4166
4167
static inline void hl_debugfs_device_fini(struct hl_device *hdev)
4168
{
4169
}
4170
4171
static inline void hl_debugfs_add_device(struct hl_device *hdev)
4172
{
4173
}
4174
4175
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4176
{
4177
}
4178
4179
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4180
{
4181
}
4182
4183
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4184
{
4185
}
4186
4187
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4188
{
4189
}
4190
4191
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4192
{
4193
}
4194
4195
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4196
{
4197
}
4198
4199
static inline void hl_debugfs_add_job(struct hl_device *hdev,
4200
struct hl_cs_job *job)
4201
{
4202
}
4203
4204
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4205
struct hl_cs_job *job)
4206
{
4207
}
4208
4209
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4210
struct hl_userptr *userptr)
4211
{
4212
}
4213
4214
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4215
struct hl_userptr *userptr)
4216
{
4217
}
4218
4219
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4220
struct hl_ctx *ctx)
4221
{
4222
}
4223
4224
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4225
struct hl_ctx *ctx)
4226
{
4227
}
4228
4229
static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4230
char *data, unsigned long length)
4231
{
4232
}
4233
4234
static inline void hl_debugfs_cfg_access_history_dump(struct hl_device *hdev)
4235
{
4236
}
4237
4238
#endif
4239
4240
/* Security */
4241
int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4242
const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4243
int array_size);
4244
int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4245
int mm_array_size, int offset, const u32 pb_blocks[],
4246
struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4247
void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4248
struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4249
int array_size);
4250
void hl_secure_block(struct hl_device *hdev,
4251
struct hl_block_glbl_sec sgs_array[], int array_size);
4252
int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4253
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4254
const u32 pb_blocks[], u32 blocks_array_size,
4255
const u32 *regs_array, u32 regs_array_size, u64 mask);
4256
int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4257
u32 num_instances, u32 instance_offset,
4258
const u32 pb_blocks[], u32 blocks_array_size,
4259
const u32 *regs_array, u32 regs_array_size);
4260
int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4261
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4262
const u32 pb_blocks[], u32 blocks_array_size,
4263
const struct range *regs_range_array, u32 regs_range_array_size,
4264
u64 mask);
4265
int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4266
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4267
const u32 pb_blocks[], u32 blocks_array_size,
4268
const struct range *regs_range_array,
4269
u32 regs_range_array_size);
4270
int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4271
u32 num_instances, u32 instance_offset,
4272
const u32 pb_blocks[], u32 blocks_array_size,
4273
const u32 *regs_array, u32 regs_array_size);
4274
int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4275
u32 num_instances, u32 instance_offset,
4276
const u32 pb_blocks[], u32 blocks_array_size,
4277
const struct range *regs_range_array,
4278
u32 regs_range_array_size);
4279
void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4280
u32 num_instances, u32 instance_offset,
4281
const u32 pb_blocks[], u32 blocks_array_size);
4282
void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4283
u32 dcore_offset, u32 num_instances, u32 instance_offset,
4284
const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4285
void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4286
u32 num_instances, u32 instance_offset,
4287
const u32 pb_blocks[], u32 blocks_array_size);
4288
4289
/* IOCTLs */
4290
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4291
int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4292
int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4293
int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4294
int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4295
int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4296
int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4297
4298
#endif /* HABANALABSP_H_ */
4299
4300