Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/apei/einj-core.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* APEI Error INJection support
4
*
5
* EINJ provides a hardware error injection mechanism, this is useful
6
* for debugging and testing of other APEI and RAS features.
7
*
8
* For more information about EINJ, please refer to ACPI Specification
9
* version 4.0, section 17.5.
10
*
11
* Copyright 2009-2010 Intel Corp.
12
* Author: Huang Ying <[email protected]>
13
*/
14
15
#include <linux/kernel.h>
16
#include <linux/module.h>
17
#include <linux/init.h>
18
#include <linux/io.h>
19
#include <linux/debugfs.h>
20
#include <linux/seq_file.h>
21
#include <linux/nmi.h>
22
#include <linux/delay.h>
23
#include <linux/mm.h>
24
#include <linux/device/faux.h>
25
#include <linux/unaligned.h>
26
27
#include "apei-internal.h"
28
29
#undef pr_fmt
30
#define pr_fmt(fmt) "EINJ: " fmt
31
32
#define SLEEP_UNIT_MIN 1000 /* 1ms */
33
#define SLEEP_UNIT_MAX 5000 /* 5ms */
34
/* Firmware should respond within 1 seconds */
35
#define FIRMWARE_TIMEOUT (1 * USEC_PER_SEC)
36
#define COMPONENT_LEN 16
37
#define ACPI65_EINJV2_SUPP BIT(30)
38
#define ACPI5_VENDOR_BIT BIT(31)
39
#define MEM_ERROR_MASK (ACPI_EINJ_MEMORY_CORRECTABLE | \
40
ACPI_EINJ_MEMORY_UNCORRECTABLE | \
41
ACPI_EINJ_MEMORY_FATAL)
42
#define CXL_ERROR_MASK (ACPI_EINJ_CXL_CACHE_CORRECTABLE | \
43
ACPI_EINJ_CXL_CACHE_UNCORRECTABLE | \
44
ACPI_EINJ_CXL_CACHE_FATAL | \
45
ACPI_EINJ_CXL_MEM_CORRECTABLE | \
46
ACPI_EINJ_CXL_MEM_UNCORRECTABLE | \
47
ACPI_EINJ_CXL_MEM_FATAL)
48
49
/*
50
* ACPI version 5 provides a SET_ERROR_TYPE_WITH_ADDRESS action.
51
*/
52
static int acpi5;
53
54
struct syndrome_array {
55
union {
56
u8 acpi_id[COMPONENT_LEN];
57
u8 device_id[COMPONENT_LEN];
58
u8 pcie_sbdf[COMPONENT_LEN];
59
u8 vendor_id[COMPONENT_LEN];
60
} comp_id;
61
union {
62
u8 proc_synd[COMPONENT_LEN];
63
u8 mem_synd[COMPONENT_LEN];
64
u8 pcie_synd[COMPONENT_LEN];
65
u8 vendor_synd[COMPONENT_LEN];
66
} comp_synd;
67
};
68
69
struct einjv2_extension_struct {
70
u32 length;
71
u16 revision;
72
u16 component_arr_count;
73
struct syndrome_array component_arr[] __counted_by(component_arr_count);
74
};
75
76
struct set_error_type_with_address {
77
u32 type;
78
u32 vendor_extension;
79
u32 flags;
80
u32 apicid;
81
u64 memory_address;
82
u64 memory_address_range;
83
u32 pcie_sbdf;
84
struct einjv2_extension_struct einjv2_struct;
85
};
86
enum {
87
SETWA_FLAGS_APICID = 1,
88
SETWA_FLAGS_MEM = 2,
89
SETWA_FLAGS_PCIE_SBDF = 4,
90
SETWA_FLAGS_EINJV2 = 8,
91
};
92
93
/*
94
* Vendor extensions for platform specific operations
95
*/
96
struct vendor_error_type_extension {
97
u32 length;
98
u32 pcie_sbdf;
99
u16 vendor_id;
100
u16 device_id;
101
u8 rev_id;
102
u8 reserved[3];
103
};
104
105
static u32 notrigger;
106
107
static u32 vendor_flags;
108
static struct debugfs_blob_wrapper vendor_blob;
109
static struct debugfs_blob_wrapper vendor_errors;
110
static char vendor_dev[64];
111
112
static u32 max_nr_components;
113
static u32 available_error_type;
114
static u32 available_error_type_v2;
115
static struct syndrome_array *syndrome_data;
116
117
/*
118
* Some BIOSes allow parameters to the SET_ERROR_TYPE entries in the
119
* EINJ table through an unpublished extension. Use with caution as
120
* most will ignore the parameter and make their own choice of address
121
* for error injection. This extension is used only if
122
* param_extension module parameter is specified.
123
*/
124
struct einj_parameter {
125
u64 type;
126
u64 reserved1;
127
u64 reserved2;
128
u64 param1;
129
u64 param2;
130
};
131
132
#define EINJ_OP_BUSY 0x1
133
#define EINJ_STATUS_SUCCESS 0x0
134
#define EINJ_STATUS_FAIL 0x1
135
#define EINJ_STATUS_INVAL 0x2
136
137
#define EINJ_TAB_ENTRY(tab) \
138
((struct acpi_whea_header *)((char *)(tab) + \
139
sizeof(struct acpi_table_einj)))
140
141
static bool param_extension;
142
module_param(param_extension, bool, 0);
143
144
static struct acpi_table_einj *einj_tab;
145
146
static struct apei_resources einj_resources;
147
148
static struct apei_exec_ins_type einj_ins_type[] = {
149
[ACPI_EINJ_READ_REGISTER] = {
150
.flags = APEI_EXEC_INS_ACCESS_REGISTER,
151
.run = apei_exec_read_register,
152
},
153
[ACPI_EINJ_READ_REGISTER_VALUE] = {
154
.flags = APEI_EXEC_INS_ACCESS_REGISTER,
155
.run = apei_exec_read_register_value,
156
},
157
[ACPI_EINJ_WRITE_REGISTER] = {
158
.flags = APEI_EXEC_INS_ACCESS_REGISTER,
159
.run = apei_exec_write_register,
160
},
161
[ACPI_EINJ_WRITE_REGISTER_VALUE] = {
162
.flags = APEI_EXEC_INS_ACCESS_REGISTER,
163
.run = apei_exec_write_register_value,
164
},
165
[ACPI_EINJ_NOOP] = {
166
.flags = 0,
167
.run = apei_exec_noop,
168
},
169
};
170
171
/*
172
* Prevent EINJ interpreter to run simultaneously, because the
173
* corresponding firmware implementation may not work properly when
174
* invoked simultaneously.
175
*/
176
static DEFINE_MUTEX(einj_mutex);
177
178
/*
179
* Exported APIs use this flag to exit early if einj_probe() failed.
180
*/
181
bool einj_initialized __ro_after_init;
182
183
static void __iomem *einj_param;
184
static u32 v5param_size;
185
static bool is_v2;
186
187
static void einj_exec_ctx_init(struct apei_exec_context *ctx)
188
{
189
apei_exec_ctx_init(ctx, einj_ins_type, ARRAY_SIZE(einj_ins_type),
190
EINJ_TAB_ENTRY(einj_tab), einj_tab->entries);
191
}
192
193
static int __einj_get_available_error_type(u32 *type, int einj_action)
194
{
195
struct apei_exec_context ctx;
196
int rc;
197
198
einj_exec_ctx_init(&ctx);
199
rc = apei_exec_run(&ctx, einj_action);
200
if (rc)
201
return rc;
202
*type = apei_exec_ctx_get_output(&ctx);
203
204
return 0;
205
}
206
207
/* Get error injection capabilities of the platform */
208
int einj_get_available_error_type(u32 *type, int einj_action)
209
{
210
int rc;
211
212
mutex_lock(&einj_mutex);
213
rc = __einj_get_available_error_type(type, einj_action);
214
mutex_unlock(&einj_mutex);
215
216
return rc;
217
}
218
219
static int einj_get_available_error_types(u32 *type1, u32 *type2)
220
{
221
int rc;
222
223
rc = einj_get_available_error_type(type1, ACPI_EINJ_GET_ERROR_TYPE);
224
if (rc)
225
return rc;
226
if (*type1 & ACPI65_EINJV2_SUPP) {
227
rc = einj_get_available_error_type(type2,
228
ACPI_EINJV2_GET_ERROR_TYPE);
229
if (rc)
230
return rc;
231
}
232
233
return 0;
234
}
235
236
static int einj_timedout(u64 *t)
237
{
238
if ((s64)*t < SLEEP_UNIT_MIN) {
239
pr_warn(FW_WARN "Firmware does not respond in time\n");
240
return 1;
241
}
242
*t -= SLEEP_UNIT_MIN;
243
usleep_range(SLEEP_UNIT_MIN, SLEEP_UNIT_MAX);
244
245
return 0;
246
}
247
248
static void get_oem_vendor_struct(u64 paddr, int offset,
249
struct vendor_error_type_extension *v)
250
{
251
unsigned long vendor_size;
252
u64 target_pa = paddr + offset + sizeof(struct vendor_error_type_extension);
253
254
vendor_size = v->length - sizeof(struct vendor_error_type_extension);
255
256
if (vendor_size)
257
vendor_errors.data = acpi_os_map_memory(target_pa, vendor_size);
258
259
if (vendor_errors.data)
260
vendor_errors.size = vendor_size;
261
}
262
263
static void check_vendor_extension(u64 paddr,
264
struct set_error_type_with_address *v5param)
265
{
266
int offset = v5param->vendor_extension;
267
struct vendor_error_type_extension v;
268
struct vendor_error_type_extension __iomem *p;
269
u32 sbdf;
270
271
if (!offset)
272
return;
273
p = acpi_os_map_iomem(paddr + offset, sizeof(*p));
274
if (!p)
275
return;
276
memcpy_fromio(&v, p, sizeof(v));
277
get_oem_vendor_struct(paddr, offset, &v);
278
sbdf = v.pcie_sbdf;
279
sprintf(vendor_dev, "%x:%x:%x.%x vendor_id=%x device_id=%x rev_id=%x\n",
280
sbdf >> 24, (sbdf >> 16) & 0xff,
281
(sbdf >> 11) & 0x1f, (sbdf >> 8) & 0x7,
282
v.vendor_id, v.device_id, v.rev_id);
283
acpi_os_unmap_iomem(p, sizeof(v));
284
}
285
286
static void __iomem *einj_get_parameter_address(void)
287
{
288
int i;
289
u64 pa_v4 = 0, pa_v5 = 0;
290
struct acpi_whea_header *entry;
291
292
entry = EINJ_TAB_ENTRY(einj_tab);
293
for (i = 0; i < einj_tab->entries; i++) {
294
if (entry->action == ACPI_EINJ_SET_ERROR_TYPE &&
295
entry->instruction == ACPI_EINJ_WRITE_REGISTER &&
296
entry->register_region.space_id ==
297
ACPI_ADR_SPACE_SYSTEM_MEMORY)
298
pa_v4 = get_unaligned(&entry->register_region.address);
299
if (entry->action == ACPI_EINJ_SET_ERROR_TYPE_WITH_ADDRESS &&
300
entry->instruction == ACPI_EINJ_WRITE_REGISTER &&
301
entry->register_region.space_id ==
302
ACPI_ADR_SPACE_SYSTEM_MEMORY)
303
pa_v5 = get_unaligned(&entry->register_region.address);
304
entry++;
305
}
306
if (pa_v5) {
307
struct set_error_type_with_address v5param;
308
struct set_error_type_with_address __iomem *p;
309
310
v5param_size = sizeof(v5param);
311
p = acpi_os_map_iomem(pa_v5, sizeof(*p));
312
if (p) {
313
int offset, len;
314
315
memcpy_fromio(&v5param, p, v5param_size);
316
acpi5 = 1;
317
check_vendor_extension(pa_v5, &v5param);
318
if (is_v2 && available_error_type & ACPI65_EINJV2_SUPP) {
319
len = v5param.einjv2_struct.length;
320
offset = offsetof(struct einjv2_extension_struct, component_arr);
321
max_nr_components = (len - offset) /
322
sizeof(v5param.einjv2_struct.component_arr[0]);
323
/*
324
* The first call to acpi_os_map_iomem above does not include the
325
* component array, instead it is used to read and calculate maximum
326
* number of components supported by the system. Below, the mapping
327
* is expanded to include the component array.
328
*/
329
acpi_os_unmap_iomem(p, v5param_size);
330
offset = offsetof(struct set_error_type_with_address, einjv2_struct);
331
v5param_size = offset + struct_size(&v5param.einjv2_struct,
332
component_arr, max_nr_components);
333
p = acpi_os_map_iomem(pa_v5, v5param_size);
334
}
335
return p;
336
}
337
}
338
if (param_extension && pa_v4) {
339
struct einj_parameter v4param;
340
struct einj_parameter __iomem *p;
341
342
p = acpi_os_map_iomem(pa_v4, sizeof(*p));
343
if (!p)
344
return NULL;
345
memcpy_fromio(&v4param, p, sizeof(v4param));
346
if (v4param.reserved1 || v4param.reserved2) {
347
acpi_os_unmap_iomem(p, sizeof(v4param));
348
return NULL;
349
}
350
return p;
351
}
352
353
return NULL;
354
}
355
356
/* do sanity check to trigger table */
357
static int einj_check_trigger_header(struct acpi_einj_trigger *trigger_tab)
358
{
359
if (trigger_tab->header_size != sizeof(struct acpi_einj_trigger))
360
return -EINVAL;
361
if (trigger_tab->table_size > PAGE_SIZE ||
362
trigger_tab->table_size < trigger_tab->header_size)
363
return -EINVAL;
364
if (trigger_tab->entry_count !=
365
(trigger_tab->table_size - trigger_tab->header_size) /
366
sizeof(struct acpi_einj_entry))
367
return -EINVAL;
368
369
return 0;
370
}
371
372
static struct acpi_generic_address *einj_get_trigger_parameter_region(
373
struct acpi_einj_trigger *trigger_tab, u64 param1, u64 param2)
374
{
375
int i;
376
struct acpi_whea_header *entry;
377
378
entry = (struct acpi_whea_header *)
379
((char *)trigger_tab + sizeof(struct acpi_einj_trigger));
380
for (i = 0; i < trigger_tab->entry_count; i++) {
381
if (entry->action == ACPI_EINJ_TRIGGER_ERROR &&
382
entry->instruction <= ACPI_EINJ_WRITE_REGISTER_VALUE &&
383
entry->register_region.space_id ==
384
ACPI_ADR_SPACE_SYSTEM_MEMORY &&
385
(entry->register_region.address & param2) == (param1 & param2))
386
return &entry->register_region;
387
entry++;
388
}
389
390
return NULL;
391
}
392
/* Execute instructions in trigger error action table */
393
static int __einj_error_trigger(u64 trigger_paddr, u32 type,
394
u64 param1, u64 param2)
395
{
396
struct acpi_einj_trigger trigger_tab;
397
struct acpi_einj_trigger *full_trigger_tab;
398
struct apei_exec_context trigger_ctx;
399
struct apei_resources trigger_resources;
400
struct acpi_whea_header *trigger_entry;
401
struct resource *r;
402
u32 table_size;
403
int rc = -EIO;
404
struct acpi_generic_address *trigger_param_region = NULL;
405
struct acpi_einj_trigger __iomem *p = NULL;
406
407
r = request_mem_region(trigger_paddr, sizeof(trigger_tab),
408
"APEI EINJ Trigger Table");
409
if (!r) {
410
pr_err("Can not request [mem %#010llx-%#010llx] for Trigger table\n",
411
(unsigned long long)trigger_paddr,
412
(unsigned long long)trigger_paddr +
413
sizeof(trigger_tab) - 1);
414
goto out;
415
}
416
p = ioremap_cache(trigger_paddr, sizeof(*p));
417
if (!p) {
418
pr_err("Failed to map trigger table!\n");
419
goto out_rel_header;
420
}
421
memcpy_fromio(&trigger_tab, p, sizeof(trigger_tab));
422
rc = einj_check_trigger_header(&trigger_tab);
423
if (rc) {
424
pr_warn(FW_BUG "Invalid trigger error action table.\n");
425
goto out_rel_header;
426
}
427
428
/* No action structures in the TRIGGER_ERROR table, nothing to do */
429
if (!trigger_tab.entry_count)
430
goto out_rel_header;
431
432
rc = -EIO;
433
table_size = trigger_tab.table_size;
434
full_trigger_tab = kmalloc(table_size, GFP_KERNEL);
435
if (!full_trigger_tab)
436
goto out_rel_header;
437
r = request_mem_region(trigger_paddr + sizeof(trigger_tab),
438
table_size - sizeof(trigger_tab),
439
"APEI EINJ Trigger Table");
440
if (!r) {
441
pr_err("Can not request [mem %#010llx-%#010llx] for Trigger Table Entry\n",
442
(unsigned long long)trigger_paddr + sizeof(trigger_tab),
443
(unsigned long long)trigger_paddr + table_size - 1);
444
goto out_free_trigger_tab;
445
}
446
iounmap(p);
447
p = ioremap_cache(trigger_paddr, table_size);
448
if (!p) {
449
pr_err("Failed to map trigger table!\n");
450
goto out_rel_entry;
451
}
452
memcpy_fromio(full_trigger_tab, p, table_size);
453
trigger_entry = (struct acpi_whea_header *)
454
((char *)full_trigger_tab + sizeof(struct acpi_einj_trigger));
455
apei_resources_init(&trigger_resources);
456
apei_exec_ctx_init(&trigger_ctx, einj_ins_type,
457
ARRAY_SIZE(einj_ins_type),
458
trigger_entry, trigger_tab.entry_count);
459
rc = apei_exec_collect_resources(&trigger_ctx, &trigger_resources);
460
if (rc)
461
goto out_fini;
462
rc = apei_resources_sub(&trigger_resources, &einj_resources);
463
if (rc)
464
goto out_fini;
465
/*
466
* Some firmware will access target address specified in
467
* param1 to trigger the error when injecting memory error.
468
* This will cause resource conflict with regular memory. So
469
* remove it from trigger table resources.
470
*/
471
if ((param_extension || acpi5) && (type & MEM_ERROR_MASK) && param2) {
472
struct apei_resources addr_resources;
473
474
apei_resources_init(&addr_resources);
475
trigger_param_region = einj_get_trigger_parameter_region(
476
full_trigger_tab, param1, param2);
477
if (trigger_param_region) {
478
rc = apei_resources_add(&addr_resources,
479
trigger_param_region->address,
480
trigger_param_region->bit_width/8, true);
481
if (rc)
482
goto out_fini;
483
rc = apei_resources_sub(&trigger_resources,
484
&addr_resources);
485
}
486
apei_resources_fini(&addr_resources);
487
if (rc)
488
goto out_fini;
489
}
490
rc = apei_resources_request(&trigger_resources, "APEI EINJ Trigger");
491
if (rc)
492
goto out_fini;
493
rc = apei_exec_pre_map_gars(&trigger_ctx);
494
if (rc)
495
goto out_release;
496
497
rc = apei_exec_run(&trigger_ctx, ACPI_EINJ_TRIGGER_ERROR);
498
499
apei_exec_post_unmap_gars(&trigger_ctx);
500
out_release:
501
apei_resources_release(&trigger_resources);
502
out_fini:
503
apei_resources_fini(&trigger_resources);
504
out_rel_entry:
505
release_mem_region(trigger_paddr + sizeof(trigger_tab),
506
table_size - sizeof(trigger_tab));
507
out_free_trigger_tab:
508
kfree(full_trigger_tab);
509
out_rel_header:
510
release_mem_region(trigger_paddr, sizeof(trigger_tab));
511
out:
512
if (p)
513
iounmap(p);
514
515
return rc;
516
}
517
518
static bool is_end_of_list(u8 *val)
519
{
520
for (int i = 0; i < COMPONENT_LEN; ++i) {
521
if (val[i] != 0xFF)
522
return false;
523
}
524
return true;
525
}
526
static int __einj_error_inject(u32 type, u32 flags, u64 param1, u64 param2,
527
u64 param3, u64 param4)
528
{
529
struct apei_exec_context ctx;
530
u64 val, trigger_paddr, timeout = FIRMWARE_TIMEOUT;
531
int i, rc;
532
533
einj_exec_ctx_init(&ctx);
534
535
rc = apei_exec_run_optional(&ctx, ACPI_EINJ_BEGIN_OPERATION);
536
if (rc)
537
return rc;
538
apei_exec_ctx_set_input(&ctx, type);
539
if (acpi5) {
540
struct set_error_type_with_address *v5param;
541
542
v5param = kmalloc(v5param_size, GFP_KERNEL);
543
if (!v5param)
544
return -ENOMEM;
545
546
memcpy_fromio(v5param, einj_param, v5param_size);
547
v5param->type = type;
548
if (type & ACPI5_VENDOR_BIT) {
549
switch (vendor_flags) {
550
case SETWA_FLAGS_APICID:
551
v5param->apicid = param1;
552
break;
553
case SETWA_FLAGS_MEM:
554
v5param->memory_address = param1;
555
v5param->memory_address_range = param2;
556
break;
557
case SETWA_FLAGS_PCIE_SBDF:
558
v5param->pcie_sbdf = param1;
559
break;
560
}
561
v5param->flags = vendor_flags;
562
} else if (flags) {
563
v5param->flags = flags;
564
v5param->memory_address = param1;
565
v5param->memory_address_range = param2;
566
567
if (is_v2) {
568
for (i = 0; i < max_nr_components; i++) {
569
if (is_end_of_list(syndrome_data[i].comp_id.acpi_id))
570
break;
571
v5param->einjv2_struct.component_arr[i].comp_id =
572
syndrome_data[i].comp_id;
573
v5param->einjv2_struct.component_arr[i].comp_synd =
574
syndrome_data[i].comp_synd;
575
}
576
v5param->einjv2_struct.component_arr_count = i;
577
} else {
578
v5param->apicid = param3;
579
v5param->pcie_sbdf = param4;
580
}
581
} else {
582
switch (type) {
583
case ACPI_EINJ_PROCESSOR_CORRECTABLE:
584
case ACPI_EINJ_PROCESSOR_UNCORRECTABLE:
585
case ACPI_EINJ_PROCESSOR_FATAL:
586
v5param->apicid = param1;
587
v5param->flags = SETWA_FLAGS_APICID;
588
break;
589
case ACPI_EINJ_MEMORY_CORRECTABLE:
590
case ACPI_EINJ_MEMORY_UNCORRECTABLE:
591
case ACPI_EINJ_MEMORY_FATAL:
592
v5param->memory_address = param1;
593
v5param->memory_address_range = param2;
594
v5param->flags = SETWA_FLAGS_MEM;
595
break;
596
case ACPI_EINJ_PCIX_CORRECTABLE:
597
case ACPI_EINJ_PCIX_UNCORRECTABLE:
598
case ACPI_EINJ_PCIX_FATAL:
599
v5param->pcie_sbdf = param1;
600
v5param->flags = SETWA_FLAGS_PCIE_SBDF;
601
break;
602
}
603
}
604
memcpy_toio(einj_param, v5param, v5param_size);
605
kfree(v5param);
606
} else {
607
rc = apei_exec_run(&ctx, ACPI_EINJ_SET_ERROR_TYPE);
608
if (rc)
609
return rc;
610
if (einj_param) {
611
struct einj_parameter v4param;
612
613
memcpy_fromio(&v4param, einj_param, sizeof(v4param));
614
v4param.param1 = param1;
615
v4param.param2 = param2;
616
memcpy_toio(einj_param, &v4param, sizeof(v4param));
617
}
618
}
619
rc = apei_exec_run(&ctx, ACPI_EINJ_EXECUTE_OPERATION);
620
if (rc)
621
return rc;
622
for (;;) {
623
rc = apei_exec_run(&ctx, ACPI_EINJ_CHECK_BUSY_STATUS);
624
if (rc)
625
return rc;
626
val = apei_exec_ctx_get_output(&ctx);
627
if (!(val & EINJ_OP_BUSY))
628
break;
629
if (einj_timedout(&timeout))
630
return -EIO;
631
}
632
rc = apei_exec_run(&ctx, ACPI_EINJ_GET_COMMAND_STATUS);
633
if (rc)
634
return rc;
635
val = apei_exec_ctx_get_output(&ctx);
636
if (val == EINJ_STATUS_FAIL)
637
return -EBUSY;
638
else if (val == EINJ_STATUS_INVAL)
639
return -EINVAL;
640
641
/*
642
* The error is injected into the platform successfully, then it needs
643
* to trigger the error.
644
*/
645
rc = apei_exec_run(&ctx, ACPI_EINJ_GET_TRIGGER_TABLE);
646
if (rc)
647
return rc;
648
trigger_paddr = apei_exec_ctx_get_output(&ctx);
649
if (notrigger == 0) {
650
rc = __einj_error_trigger(trigger_paddr, type, param1, param2);
651
if (rc)
652
return rc;
653
}
654
rc = apei_exec_run_optional(&ctx, ACPI_EINJ_END_OPERATION);
655
656
return rc;
657
}
658
659
/* Allow almost all types of address except MMIO. */
660
static bool is_allowed_range(u64 base_addr, u64 size)
661
{
662
int i;
663
/*
664
* MMIO region is usually claimed with IORESOURCE_MEM + IORES_DESC_NONE.
665
* However, IORES_DESC_NONE is treated like a wildcard when we check if
666
* region intersects with known resource. So do an allow list check for
667
* IORES_DESCs that definitely or most likely not MMIO.
668
*/
669
int non_mmio_desc[] = {
670
IORES_DESC_CRASH_KERNEL,
671
IORES_DESC_ACPI_TABLES,
672
IORES_DESC_ACPI_NV_STORAGE,
673
IORES_DESC_PERSISTENT_MEMORY,
674
IORES_DESC_PERSISTENT_MEMORY_LEGACY,
675
/* Treat IORES_DESC_DEVICE_PRIVATE_MEMORY as MMIO. */
676
IORES_DESC_RESERVED,
677
IORES_DESC_SOFT_RESERVED,
678
};
679
680
if (region_intersects(base_addr, size, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
681
== REGION_INTERSECTS)
682
return true;
683
684
for (i = 0; i < ARRAY_SIZE(non_mmio_desc); ++i) {
685
if (region_intersects(base_addr, size, IORESOURCE_MEM, non_mmio_desc[i])
686
== REGION_INTERSECTS)
687
return true;
688
}
689
690
if (arch_is_platform_page(base_addr))
691
return true;
692
693
return false;
694
}
695
696
/* Inject the specified hardware error */
697
int einj_error_inject(u32 type, u32 flags, u64 param1, u64 param2, u64 param3,
698
u64 param4)
699
{
700
int rc;
701
u64 base_addr, size;
702
703
/* If user manually set "flags", make sure it is legal */
704
if (flags && (flags & ~(SETWA_FLAGS_APICID | SETWA_FLAGS_MEM |
705
SETWA_FLAGS_PCIE_SBDF | SETWA_FLAGS_EINJV2)))
706
return -EINVAL;
707
708
/* check if type is a valid EINJv2 error type */
709
if (is_v2) {
710
if (!(type & available_error_type_v2))
711
return -EINVAL;
712
}
713
/*
714
* We need extra sanity checks for memory errors.
715
* Other types leap directly to injection.
716
*/
717
718
/* ensure param1/param2 existed */
719
if (!(param_extension || acpi5))
720
goto inject;
721
722
/* ensure injection is memory related */
723
if (type & ACPI5_VENDOR_BIT) {
724
if (vendor_flags != SETWA_FLAGS_MEM)
725
goto inject;
726
} else if (!(type & MEM_ERROR_MASK) && !(flags & SETWA_FLAGS_MEM)) {
727
goto inject;
728
}
729
730
/*
731
* Injections targeting a CXL 1.0/1.1 port have to be injected
732
* via the einj_cxl_rch_error_inject() path as that does the proper
733
* validation of the given RCRB base (MMIO) address.
734
*/
735
if (einj_is_cxl_error_type(type) && (flags & SETWA_FLAGS_MEM))
736
return -EINVAL;
737
738
/*
739
* Disallow crazy address masks that give BIOS leeway to pick
740
* injection address almost anywhere. Insist on page or
741
* better granularity and that target address is normal RAM or
742
* as long as is not MMIO.
743
*/
744
base_addr = param1 & param2;
745
size = ~param2 + 1;
746
747
if ((param2 & PAGE_MASK) != PAGE_MASK)
748
return -EINVAL;
749
750
if (!is_allowed_range(base_addr, size))
751
return -EINVAL;
752
753
if (is_zero_pfn(base_addr >> PAGE_SHIFT))
754
return -EADDRINUSE;
755
756
inject:
757
mutex_lock(&einj_mutex);
758
rc = __einj_error_inject(type, flags, param1, param2, param3, param4);
759
mutex_unlock(&einj_mutex);
760
761
return rc;
762
}
763
764
int einj_cxl_rch_error_inject(u32 type, u32 flags, u64 param1, u64 param2,
765
u64 param3, u64 param4)
766
{
767
int rc;
768
769
if (!(einj_is_cxl_error_type(type) && (flags & SETWA_FLAGS_MEM)))
770
return -EINVAL;
771
772
mutex_lock(&einj_mutex);
773
rc = __einj_error_inject(type, flags, param1, param2, param3, param4);
774
mutex_unlock(&einj_mutex);
775
776
return rc;
777
}
778
779
static u32 error_type;
780
static u32 error_flags;
781
static u64 error_param1;
782
static u64 error_param2;
783
static u64 error_param3;
784
static u64 error_param4;
785
static struct dentry *einj_debug_dir;
786
static char einj_buf[32];
787
static bool einj_v2_enabled;
788
static struct { u32 mask; const char *str; } const einj_error_type_string[] = {
789
{ BIT(0), "Processor Correctable" },
790
{ BIT(1), "Processor Uncorrectable non-fatal" },
791
{ BIT(2), "Processor Uncorrectable fatal" },
792
{ BIT(3), "Memory Correctable" },
793
{ BIT(4), "Memory Uncorrectable non-fatal" },
794
{ BIT(5), "Memory Uncorrectable fatal" },
795
{ BIT(6), "PCI Express Correctable" },
796
{ BIT(7), "PCI Express Uncorrectable non-fatal" },
797
{ BIT(8), "PCI Express Uncorrectable fatal" },
798
{ BIT(9), "Platform Correctable" },
799
{ BIT(10), "Platform Uncorrectable non-fatal" },
800
{ BIT(11), "Platform Uncorrectable fatal"},
801
{ BIT(31), "Vendor Defined Error Types" },
802
};
803
804
static struct { u32 mask; const char *str; } const einjv2_error_type_string[] = {
805
{ BIT(0), "EINJV2 Processor Error" },
806
{ BIT(1), "EINJV2 Memory Error" },
807
{ BIT(2), "EINJV2 PCI Express Error" },
808
};
809
810
static int available_error_type_show(struct seq_file *m, void *v)
811
{
812
813
for (int pos = 0; pos < ARRAY_SIZE(einj_error_type_string); pos++)
814
if (available_error_type & einj_error_type_string[pos].mask)
815
seq_printf(m, "0x%08x\t%s\n", einj_error_type_string[pos].mask,
816
einj_error_type_string[pos].str);
817
if ((available_error_type & ACPI65_EINJV2_SUPP) && einj_v2_enabled) {
818
for (int pos = 0; pos < ARRAY_SIZE(einjv2_error_type_string); pos++) {
819
if (available_error_type_v2 & einjv2_error_type_string[pos].mask)
820
seq_printf(m, "V2_0x%08x\t%s\n", einjv2_error_type_string[pos].mask,
821
einjv2_error_type_string[pos].str);
822
}
823
}
824
return 0;
825
}
826
827
DEFINE_SHOW_ATTRIBUTE(available_error_type);
828
829
static ssize_t error_type_get(struct file *file, char __user *buf,
830
size_t count, loff_t *ppos)
831
{
832
return simple_read_from_buffer(buf, count, ppos, einj_buf, strlen(einj_buf));
833
}
834
835
bool einj_is_cxl_error_type(u64 type)
836
{
837
return (type & CXL_ERROR_MASK) && (!(type & ACPI5_VENDOR_BIT));
838
}
839
840
int einj_validate_error_type(u64 type)
841
{
842
u32 tval, vendor;
843
844
/* Only low 32 bits for error type are valid */
845
if (type & GENMASK_ULL(63, 32))
846
return -EINVAL;
847
848
/*
849
* Vendor defined types have 0x80000000 bit set, and
850
* are not enumerated by ACPI_EINJ_GET_ERROR_TYPE
851
*/
852
vendor = type & ACPI5_VENDOR_BIT;
853
tval = type & GENMASK(30, 0);
854
855
/* Only one error type can be specified */
856
if (tval & (tval - 1))
857
return -EINVAL;
858
if (!vendor)
859
if (!(type & (available_error_type | available_error_type_v2)))
860
return -EINVAL;
861
862
return 0;
863
}
864
865
static ssize_t error_type_set(struct file *file, const char __user *buf,
866
size_t count, loff_t *ppos)
867
{
868
int rc;
869
u64 val;
870
871
/* Leave the last character for the NUL terminator */
872
if (count > sizeof(einj_buf) - 1)
873
return -EINVAL;
874
875
memset(einj_buf, 0, sizeof(einj_buf));
876
if (copy_from_user(einj_buf, buf, count))
877
return -EFAULT;
878
879
if (strncmp(einj_buf, "V2_", 3) == 0) {
880
if (!sscanf(einj_buf, "V2_%llx", &val))
881
return -EINVAL;
882
is_v2 = true;
883
} else {
884
if (!sscanf(einj_buf, "%llx", &val))
885
return -EINVAL;
886
is_v2 = false;
887
}
888
889
rc = einj_validate_error_type(val);
890
if (rc)
891
return rc;
892
893
error_type = val;
894
895
return count;
896
}
897
898
static const struct file_operations error_type_fops = {
899
.read = error_type_get,
900
.write = error_type_set,
901
};
902
903
static int error_inject_set(void *data, u64 val)
904
{
905
if (!error_type)
906
return -EINVAL;
907
908
if (is_v2)
909
error_flags |= SETWA_FLAGS_EINJV2;
910
else
911
error_flags &= ~SETWA_FLAGS_EINJV2;
912
913
return einj_error_inject(error_type, error_flags, error_param1, error_param2,
914
error_param3, error_param4);
915
}
916
917
DEFINE_DEBUGFS_ATTRIBUTE(error_inject_fops, NULL, error_inject_set, "%llu\n");
918
919
static int einj_check_table(struct acpi_table_einj *einj_tab)
920
{
921
if ((einj_tab->header_length !=
922
(sizeof(struct acpi_table_einj) - sizeof(einj_tab->header)))
923
&& (einj_tab->header_length != sizeof(struct acpi_table_einj)))
924
return -EINVAL;
925
if (einj_tab->header.length < sizeof(struct acpi_table_einj))
926
return -EINVAL;
927
if (einj_tab->entries !=
928
(einj_tab->header.length - sizeof(struct acpi_table_einj)) /
929
sizeof(struct acpi_einj_entry))
930
return -EINVAL;
931
932
return 0;
933
}
934
935
static ssize_t u128_read(struct file *f, char __user *buf, size_t count, loff_t *off)
936
{
937
char output[2 * COMPONENT_LEN + 1];
938
u8 *data = f->f_inode->i_private;
939
int i;
940
941
if (*off >= sizeof(output))
942
return 0;
943
944
for (i = 0; i < COMPONENT_LEN; i++)
945
sprintf(output + 2 * i, "%.02x", data[COMPONENT_LEN - i - 1]);
946
output[2 * COMPONENT_LEN] = '\n';
947
948
return simple_read_from_buffer(buf, count, off, output, sizeof(output));
949
}
950
951
static ssize_t u128_write(struct file *f, const char __user *buf, size_t count, loff_t *off)
952
{
953
char input[2 + 2 * COMPONENT_LEN + 2];
954
u8 *save = f->f_inode->i_private;
955
u8 tmp[COMPONENT_LEN];
956
char byte[3] = {};
957
char *s, *e;
958
ssize_t c;
959
long val;
960
int i;
961
962
/* Require that user supply whole input line in one write(2) syscall */
963
if (*off)
964
return -EINVAL;
965
966
c = simple_write_to_buffer(input, sizeof(input), off, buf, count);
967
if (c < 0)
968
return c;
969
970
if (c < 1 || input[c - 1] != '\n')
971
return -EINVAL;
972
973
/* Empty line means invalidate this entry */
974
if (c == 1) {
975
memset(save, 0xff, COMPONENT_LEN);
976
return c;
977
}
978
979
if (input[0] == '0' && (input[1] == 'x' || input[1] == 'X'))
980
s = input + 2;
981
else
982
s = input;
983
e = input + c - 1;
984
985
for (i = 0; i < COMPONENT_LEN; i++) {
986
byte[1] = *--e;
987
byte[0] = e > s ? *--e : '0';
988
if (kstrtol(byte, 16, &val))
989
return -EINVAL;
990
tmp[i] = val;
991
if (e <= s)
992
break;
993
}
994
while (++i < COMPONENT_LEN)
995
tmp[i] = 0;
996
997
memcpy(save, tmp, COMPONENT_LEN);
998
999
return c;
1000
}
1001
1002
static const struct file_operations u128_fops = {
1003
.read = u128_read,
1004
.write = u128_write,
1005
};
1006
1007
static bool setup_einjv2_component_files(void)
1008
{
1009
char name[32];
1010
1011
syndrome_data = kcalloc(max_nr_components, sizeof(syndrome_data[0]), GFP_KERNEL);
1012
if (!syndrome_data)
1013
return false;
1014
1015
for (int i = 0; i < max_nr_components; i++) {
1016
sprintf(name, "component_id%d", i);
1017
debugfs_create_file(name, 0600, einj_debug_dir,
1018
&syndrome_data[i].comp_id, &u128_fops);
1019
sprintf(name, "component_syndrome%d", i);
1020
debugfs_create_file(name, 0600, einj_debug_dir,
1021
&syndrome_data[i].comp_synd, &u128_fops);
1022
}
1023
1024
return true;
1025
}
1026
1027
static int __init einj_probe(struct faux_device *fdev)
1028
{
1029
int rc;
1030
acpi_status status;
1031
struct apei_exec_context ctx;
1032
1033
status = acpi_get_table(ACPI_SIG_EINJ, 0,
1034
(struct acpi_table_header **)&einj_tab);
1035
if (status == AE_NOT_FOUND) {
1036
pr_debug("EINJ table not found.\n");
1037
return -ENODEV;
1038
} else if (ACPI_FAILURE(status)) {
1039
pr_err("Failed to get EINJ table: %s\n",
1040
acpi_format_exception(status));
1041
return -EINVAL;
1042
}
1043
1044
rc = einj_check_table(einj_tab);
1045
if (rc) {
1046
pr_warn(FW_BUG "Invalid EINJ table.\n");
1047
goto err_put_table;
1048
}
1049
1050
rc = einj_get_available_error_types(&available_error_type, &available_error_type_v2);
1051
if (rc)
1052
goto err_put_table;
1053
1054
rc = -ENOMEM;
1055
einj_debug_dir = debugfs_create_dir("einj", apei_get_debugfs_dir());
1056
1057
debugfs_create_file("available_error_type", S_IRUSR, einj_debug_dir,
1058
NULL, &available_error_type_fops);
1059
debugfs_create_file_unsafe("error_type", 0600, einj_debug_dir,
1060
NULL, &error_type_fops);
1061
debugfs_create_file_unsafe("error_inject", 0200, einj_debug_dir,
1062
NULL, &error_inject_fops);
1063
1064
apei_resources_init(&einj_resources);
1065
einj_exec_ctx_init(&ctx);
1066
rc = apei_exec_collect_resources(&ctx, &einj_resources);
1067
if (rc) {
1068
pr_err("Error collecting EINJ resources.\n");
1069
goto err_fini;
1070
}
1071
1072
rc = apei_resources_request(&einj_resources, "APEI EINJ");
1073
if (rc) {
1074
pr_err("Error requesting memory/port resources.\n");
1075
goto err_fini;
1076
}
1077
1078
rc = apei_exec_pre_map_gars(&ctx);
1079
if (rc) {
1080
pr_err("Error pre-mapping GARs.\n");
1081
goto err_release;
1082
}
1083
1084
einj_param = einj_get_parameter_address();
1085
if ((param_extension || acpi5) && einj_param) {
1086
debugfs_create_x32("flags", S_IRUSR | S_IWUSR, einj_debug_dir,
1087
&error_flags);
1088
debugfs_create_x64("param1", S_IRUSR | S_IWUSR, einj_debug_dir,
1089
&error_param1);
1090
debugfs_create_x64("param2", S_IRUSR | S_IWUSR, einj_debug_dir,
1091
&error_param2);
1092
debugfs_create_x64("param3", S_IRUSR | S_IWUSR, einj_debug_dir,
1093
&error_param3);
1094
debugfs_create_x64("param4", S_IRUSR | S_IWUSR, einj_debug_dir,
1095
&error_param4);
1096
debugfs_create_x32("notrigger", S_IRUSR | S_IWUSR,
1097
einj_debug_dir, &notrigger);
1098
if (available_error_type & ACPI65_EINJV2_SUPP)
1099
einj_v2_enabled = setup_einjv2_component_files();
1100
}
1101
1102
if (vendor_dev[0]) {
1103
vendor_blob.data = vendor_dev;
1104
vendor_blob.size = strlen(vendor_dev);
1105
debugfs_create_blob("vendor", S_IRUSR, einj_debug_dir,
1106
&vendor_blob);
1107
debugfs_create_x32("vendor_flags", S_IRUSR | S_IWUSR,
1108
einj_debug_dir, &vendor_flags);
1109
}
1110
1111
if (vendor_errors.size)
1112
debugfs_create_blob("oem_error", 0600, einj_debug_dir,
1113
&vendor_errors);
1114
1115
pr_info("Error INJection is initialized.\n");
1116
1117
return 0;
1118
1119
err_release:
1120
apei_resources_release(&einj_resources);
1121
err_fini:
1122
apei_resources_fini(&einj_resources);
1123
debugfs_remove_recursive(einj_debug_dir);
1124
err_put_table:
1125
acpi_put_table((struct acpi_table_header *)einj_tab);
1126
1127
return rc;
1128
}
1129
1130
static void einj_remove(struct faux_device *fdev)
1131
{
1132
struct apei_exec_context ctx;
1133
1134
if (einj_param) {
1135
acpi_size size = (acpi5) ?
1136
v5param_size :
1137
sizeof(struct einj_parameter);
1138
1139
acpi_os_unmap_iomem(einj_param, size);
1140
if (vendor_errors.size)
1141
acpi_os_unmap_memory(vendor_errors.data, vendor_errors.size);
1142
}
1143
einj_exec_ctx_init(&ctx);
1144
apei_exec_post_unmap_gars(&ctx);
1145
apei_resources_release(&einj_resources);
1146
apei_resources_fini(&einj_resources);
1147
debugfs_remove_recursive(einj_debug_dir);
1148
kfree(syndrome_data);
1149
acpi_put_table((struct acpi_table_header *)einj_tab);
1150
}
1151
1152
static struct faux_device *einj_dev;
1153
static struct faux_device_ops einj_device_ops = {
1154
.probe = einj_probe,
1155
.remove = einj_remove,
1156
};
1157
1158
static int __init einj_init(void)
1159
{
1160
if (acpi_disabled) {
1161
pr_debug("ACPI disabled.\n");
1162
return -ENODEV;
1163
}
1164
1165
einj_dev = faux_device_create("acpi-einj", NULL, &einj_device_ops);
1166
1167
if (einj_dev)
1168
einj_initialized = true;
1169
1170
return 0;
1171
}
1172
1173
static void __exit einj_exit(void)
1174
{
1175
faux_device_destroy(einj_dev);
1176
}
1177
1178
module_init(einj_init);
1179
module_exit(einj_exit);
1180
1181
MODULE_AUTHOR("Huang Ying");
1182
MODULE_DESCRIPTION("APEI Error INJection support");
1183
MODULE_LICENSE("GPL");
1184
1185