Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/acpi/arm64/iort.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2016, Semihalf
4
* Author: Tomasz Nowicki <[email protected]>
5
*
6
* This file implements early detection/parsing of I/O mapping
7
* reported to OS through firmware via I/O Remapping Table (IORT)
8
* IORT document number: ARM DEN 0049A
9
*/
10
11
#define pr_fmt(fmt) "ACPI: IORT: " fmt
12
13
#include <linux/acpi_iort.h>
14
#include <linux/bitfield.h>
15
#include <linux/iommu.h>
16
#include <linux/kernel.h>
17
#include <linux/list.h>
18
#include <linux/pci.h>
19
#include <linux/platform_device.h>
20
#include <linux/slab.h>
21
#include <linux/dma-map-ops.h>
22
#include "init.h"
23
24
#define IORT_TYPE_MASK(type) (1 << (type))
25
#define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
26
#define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
27
(1 << ACPI_IORT_NODE_SMMU_V3))
28
29
struct iort_its_msi_chip {
30
struct list_head list;
31
struct fwnode_handle *fw_node;
32
phys_addr_t base_addr;
33
u32 translation_id;
34
};
35
36
struct iort_fwnode {
37
struct list_head list;
38
struct acpi_iort_node *iort_node;
39
struct fwnode_handle *fwnode;
40
};
41
static LIST_HEAD(iort_fwnode_list);
42
static DEFINE_SPINLOCK(iort_fwnode_lock);
43
44
/**
45
* iort_set_fwnode() - Create iort_fwnode and use it to register
46
* iommu data in the iort_fwnode_list
47
*
48
* @iort_node: IORT table node associated with the IOMMU
49
* @fwnode: fwnode associated with the IORT node
50
*
51
* Returns: 0 on success
52
* <0 on failure
53
*/
54
static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
55
struct fwnode_handle *fwnode)
56
{
57
struct iort_fwnode *np;
58
59
np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
60
61
if (WARN_ON(!np))
62
return -ENOMEM;
63
64
INIT_LIST_HEAD(&np->list);
65
np->iort_node = iort_node;
66
np->fwnode = fwnode;
67
68
spin_lock(&iort_fwnode_lock);
69
list_add_tail(&np->list, &iort_fwnode_list);
70
spin_unlock(&iort_fwnode_lock);
71
72
return 0;
73
}
74
75
/**
76
* iort_get_fwnode() - Retrieve fwnode associated with an IORT node
77
*
78
* @node: IORT table node to be looked-up
79
*
80
* Returns: fwnode_handle pointer on success, NULL on failure
81
*/
82
static inline struct fwnode_handle *iort_get_fwnode(
83
struct acpi_iort_node *node)
84
{
85
struct iort_fwnode *curr;
86
struct fwnode_handle *fwnode = NULL;
87
88
spin_lock(&iort_fwnode_lock);
89
list_for_each_entry(curr, &iort_fwnode_list, list) {
90
if (curr->iort_node == node) {
91
fwnode = curr->fwnode;
92
break;
93
}
94
}
95
spin_unlock(&iort_fwnode_lock);
96
97
return fwnode;
98
}
99
100
/**
101
* iort_delete_fwnode() - Delete fwnode associated with an IORT node
102
*
103
* @node: IORT table node associated with fwnode to delete
104
*/
105
static inline void iort_delete_fwnode(struct acpi_iort_node *node)
106
{
107
struct iort_fwnode *curr, *tmp;
108
109
spin_lock(&iort_fwnode_lock);
110
list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
111
if (curr->iort_node == node) {
112
list_del(&curr->list);
113
kfree(curr);
114
break;
115
}
116
}
117
spin_unlock(&iort_fwnode_lock);
118
}
119
120
/**
121
* iort_get_iort_node() - Retrieve iort_node associated with an fwnode
122
*
123
* @fwnode: fwnode associated with device to be looked-up
124
*
125
* Returns: iort_node pointer on success, NULL on failure
126
*/
127
static inline struct acpi_iort_node *iort_get_iort_node(
128
struct fwnode_handle *fwnode)
129
{
130
struct iort_fwnode *curr;
131
struct acpi_iort_node *iort_node = NULL;
132
133
spin_lock(&iort_fwnode_lock);
134
list_for_each_entry(curr, &iort_fwnode_list, list) {
135
if (curr->fwnode == fwnode) {
136
iort_node = curr->iort_node;
137
break;
138
}
139
}
140
spin_unlock(&iort_fwnode_lock);
141
142
return iort_node;
143
}
144
145
typedef acpi_status (*iort_find_node_callback)
146
(struct acpi_iort_node *node, void *context);
147
148
/* Root pointer to the mapped IORT table */
149
static struct acpi_table_header *iort_table;
150
151
static LIST_HEAD(iort_msi_chip_list);
152
static DEFINE_SPINLOCK(iort_msi_chip_lock);
153
154
/**
155
* iort_register_domain_token() - register domain token along with related
156
* ITS ID and base address to the list from where we can get it back later on.
157
* @trans_id: ITS ID.
158
* @base: ITS base address.
159
* @fw_node: Domain token.
160
*
161
* Returns: 0 on success, -ENOMEM if no memory when allocating list element
162
*/
163
int iort_register_domain_token(int trans_id, phys_addr_t base,
164
struct fwnode_handle *fw_node)
165
{
166
struct iort_its_msi_chip *its_msi_chip;
167
168
its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
169
if (!its_msi_chip)
170
return -ENOMEM;
171
172
its_msi_chip->fw_node = fw_node;
173
its_msi_chip->translation_id = trans_id;
174
its_msi_chip->base_addr = base;
175
176
spin_lock(&iort_msi_chip_lock);
177
list_add(&its_msi_chip->list, &iort_msi_chip_list);
178
spin_unlock(&iort_msi_chip_lock);
179
180
return 0;
181
}
182
183
/**
184
* iort_deregister_domain_token() - Deregister domain token based on ITS ID
185
* @trans_id: ITS ID.
186
*
187
* Returns: none.
188
*/
189
void iort_deregister_domain_token(int trans_id)
190
{
191
struct iort_its_msi_chip *its_msi_chip, *t;
192
193
spin_lock(&iort_msi_chip_lock);
194
list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
195
if (its_msi_chip->translation_id == trans_id) {
196
list_del(&its_msi_chip->list);
197
kfree(its_msi_chip);
198
break;
199
}
200
}
201
spin_unlock(&iort_msi_chip_lock);
202
}
203
204
/**
205
* iort_find_domain_token() - Find domain token based on given ITS ID
206
* @trans_id: ITS ID.
207
*
208
* Returns: domain token when find on the list, NULL otherwise
209
*/
210
struct fwnode_handle *iort_find_domain_token(int trans_id)
211
{
212
struct fwnode_handle *fw_node = NULL;
213
struct iort_its_msi_chip *its_msi_chip;
214
215
spin_lock(&iort_msi_chip_lock);
216
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
217
if (its_msi_chip->translation_id == trans_id) {
218
fw_node = its_msi_chip->fw_node;
219
break;
220
}
221
}
222
spin_unlock(&iort_msi_chip_lock);
223
224
return fw_node;
225
}
226
227
static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
228
iort_find_node_callback callback,
229
void *context)
230
{
231
struct acpi_iort_node *iort_node, *iort_end;
232
struct acpi_table_iort *iort;
233
int i;
234
235
if (!iort_table)
236
return NULL;
237
238
/* Get the first IORT node */
239
iort = (struct acpi_table_iort *)iort_table;
240
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
241
iort->node_offset);
242
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
243
iort_table->length);
244
245
for (i = 0; i < iort->node_count; i++) {
246
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
247
"IORT node pointer overflows, bad table!\n"))
248
return NULL;
249
250
if (iort_node->type == type &&
251
ACPI_SUCCESS(callback(iort_node, context)))
252
return iort_node;
253
254
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
255
iort_node->length);
256
}
257
258
return NULL;
259
}
260
261
static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
262
void *context)
263
{
264
struct device *dev = context;
265
acpi_status status = AE_NOT_FOUND;
266
267
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
268
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
269
struct acpi_device *adev;
270
struct acpi_iort_named_component *ncomp;
271
struct device *nc_dev = dev;
272
273
/*
274
* Walk the device tree to find a device with an
275
* ACPI companion; there is no point in scanning
276
* IORT for a device matching a named component if
277
* the device does not have an ACPI companion to
278
* start with.
279
*/
280
do {
281
adev = ACPI_COMPANION(nc_dev);
282
if (adev)
283
break;
284
285
nc_dev = nc_dev->parent;
286
} while (nc_dev);
287
288
if (!adev)
289
goto out;
290
291
status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
292
if (ACPI_FAILURE(status)) {
293
dev_warn(nc_dev, "Can't get device full path name\n");
294
goto out;
295
}
296
297
ncomp = (struct acpi_iort_named_component *)node->node_data;
298
status = !strcmp(ncomp->device_name, buf.pointer) ?
299
AE_OK : AE_NOT_FOUND;
300
acpi_os_free(buf.pointer);
301
} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
302
struct acpi_iort_root_complex *pci_rc;
303
struct pci_bus *bus;
304
305
bus = to_pci_bus(dev);
306
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
307
308
/*
309
* It is assumed that PCI segment numbers maps one-to-one
310
* with root complexes. Each segment number can represent only
311
* one root complex.
312
*/
313
status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
314
AE_OK : AE_NOT_FOUND;
315
}
316
out:
317
return status;
318
}
319
320
static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
321
u32 *rid_out, bool check_overlap)
322
{
323
/* Single mapping does not care for input id */
324
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
325
if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
326
type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
327
*rid_out = map->output_base;
328
return 0;
329
}
330
331
pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
332
map, type);
333
return -ENXIO;
334
}
335
336
if (rid_in < map->input_base ||
337
(rid_in > map->input_base + map->id_count))
338
return -ENXIO;
339
340
if (check_overlap) {
341
/*
342
* We already found a mapping for this input ID at the end of
343
* another region. If it coincides with the start of this
344
* region, we assume the prior match was due to the off-by-1
345
* issue mentioned below, and allow it to be superseded.
346
* Otherwise, things are *really* broken, and we just disregard
347
* duplicate matches entirely to retain compatibility.
348
*/
349
pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
350
map, rid_in);
351
if (rid_in != map->input_base)
352
return -ENXIO;
353
354
pr_err(FW_BUG "applying workaround.\n");
355
}
356
357
*rid_out = map->output_base + (rid_in - map->input_base);
358
359
/*
360
* Due to confusion regarding the meaning of the id_count field (which
361
* carries the number of IDs *minus 1*), we may have to disregard this
362
* match if it is at the end of the range, and overlaps with the start
363
* of another one.
364
*/
365
if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
366
return -EAGAIN;
367
return 0;
368
}
369
370
static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
371
u32 *id_out, int index)
372
{
373
struct acpi_iort_node *parent;
374
struct acpi_iort_id_mapping *map;
375
376
if (!node->mapping_offset || !node->mapping_count ||
377
index >= node->mapping_count)
378
return NULL;
379
380
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
381
node->mapping_offset + index * sizeof(*map));
382
383
/* Firmware bug! */
384
if (!map->output_reference) {
385
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
386
node, node->type);
387
return NULL;
388
}
389
390
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
391
map->output_reference);
392
393
if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
394
if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
395
node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
396
node->type == ACPI_IORT_NODE_SMMU_V3 ||
397
node->type == ACPI_IORT_NODE_PMCG) {
398
*id_out = map->output_base;
399
return parent;
400
}
401
}
402
403
return NULL;
404
}
405
406
#ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
407
#define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
408
#endif
409
410
static int iort_get_id_mapping_index(struct acpi_iort_node *node)
411
{
412
struct acpi_iort_smmu_v3 *smmu;
413
struct acpi_iort_pmcg *pmcg;
414
415
switch (node->type) {
416
case ACPI_IORT_NODE_SMMU_V3:
417
/*
418
* SMMUv3 dev ID mapping index was introduced in revision 1
419
* table, not available in revision 0
420
*/
421
if (node->revision < 1)
422
return -EINVAL;
423
424
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
425
/*
426
* Until IORT E.e (node rev. 5), the ID mapping index was
427
* defined to be valid unless all interrupts are GSIV-based.
428
*/
429
if (node->revision < 5) {
430
if (smmu->event_gsiv && smmu->pri_gsiv &&
431
smmu->gerr_gsiv && smmu->sync_gsiv)
432
return -EINVAL;
433
} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
434
return -EINVAL;
435
}
436
437
if (smmu->id_mapping_index >= node->mapping_count) {
438
pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
439
node, node->type);
440
return -EINVAL;
441
}
442
443
return smmu->id_mapping_index;
444
case ACPI_IORT_NODE_PMCG:
445
pmcg = (struct acpi_iort_pmcg *)node->node_data;
446
if (pmcg->overflow_gsiv || node->mapping_count == 0)
447
return -EINVAL;
448
449
return 0;
450
default:
451
return -EINVAL;
452
}
453
}
454
455
static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
456
u32 id_in, u32 *id_out,
457
u8 type_mask)
458
{
459
u32 id = id_in;
460
461
/* Parse the ID mapping tree to find specified node type */
462
while (node) {
463
struct acpi_iort_id_mapping *map;
464
int i, index, rc = 0;
465
u32 out_ref = 0, map_id = id;
466
467
if (IORT_TYPE_MASK(node->type) & type_mask) {
468
if (id_out)
469
*id_out = id;
470
return node;
471
}
472
473
if (!node->mapping_offset || !node->mapping_count)
474
goto fail_map;
475
476
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
477
node->mapping_offset);
478
479
/* Firmware bug! */
480
if (!map->output_reference) {
481
pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
482
node, node->type);
483
goto fail_map;
484
}
485
486
/*
487
* Get the special ID mapping index (if any) and skip its
488
* associated ID map to prevent erroneous multi-stage
489
* IORT ID translations.
490
*/
491
index = iort_get_id_mapping_index(node);
492
493
/* Do the ID translation */
494
for (i = 0; i < node->mapping_count; i++, map++) {
495
/* if it is special mapping index, skip it */
496
if (i == index)
497
continue;
498
499
rc = iort_id_map(map, node->type, map_id, &id, out_ref);
500
if (!rc)
501
break;
502
if (rc == -EAGAIN)
503
out_ref = map->output_reference;
504
}
505
506
if (i == node->mapping_count && !out_ref)
507
goto fail_map;
508
509
node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
510
rc ? out_ref : map->output_reference);
511
}
512
513
fail_map:
514
/* Map input ID to output ID unchanged on mapping failure */
515
if (id_out)
516
*id_out = id_in;
517
518
return NULL;
519
}
520
521
static struct acpi_iort_node *iort_node_map_platform_id(
522
struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
523
int index)
524
{
525
struct acpi_iort_node *parent;
526
u32 id;
527
528
/* step 1: retrieve the initial dev id */
529
parent = iort_node_get_id(node, &id, index);
530
if (!parent)
531
return NULL;
532
533
/*
534
* optional step 2: map the initial dev id if its parent is not
535
* the target type we want, map it again for the use cases such
536
* as NC (named component) -> SMMU -> ITS. If the type is matched,
537
* return the initial dev id and its parent pointer directly.
538
*/
539
if (!(IORT_TYPE_MASK(parent->type) & type_mask))
540
parent = iort_node_map_id(parent, id, id_out, type_mask);
541
else
542
if (id_out)
543
*id_out = id;
544
545
return parent;
546
}
547
548
static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
549
{
550
struct pci_bus *pbus;
551
552
if (!dev_is_pci(dev)) {
553
struct acpi_iort_node *node;
554
/*
555
* scan iort_fwnode_list to see if it's an iort platform
556
* device (such as SMMU, PMCG),its iort node already cached
557
* and associated with fwnode when iort platform devices
558
* were initialized.
559
*/
560
node = iort_get_iort_node(dev->fwnode);
561
if (node)
562
return node;
563
/*
564
* if not, then it should be a platform device defined in
565
* DSDT/SSDT (with Named Component node in IORT)
566
*/
567
return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
568
iort_match_node_callback, dev);
569
}
570
571
pbus = to_pci_dev(dev)->bus;
572
573
return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
574
iort_match_node_callback, &pbus->dev);
575
}
576
577
/**
578
* iort_msi_map_id() - Map a MSI input ID for a device
579
* @dev: The device for which the mapping is to be done.
580
* @input_id: The device input ID.
581
*
582
* Returns: mapped MSI ID on success, input ID otherwise
583
*/
584
u32 iort_msi_map_id(struct device *dev, u32 input_id)
585
{
586
struct acpi_iort_node *node;
587
u32 dev_id;
588
589
node = iort_find_dev_node(dev);
590
if (!node)
591
return input_id;
592
593
iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
594
return dev_id;
595
}
596
597
/**
598
* iort_pmsi_get_dev_id() - Get the device id for a device
599
* @dev: The device for which the mapping is to be done.
600
* @dev_id: The device ID found.
601
*
602
* Returns: 0 for successful find a dev id, -ENODEV on error
603
*/
604
int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
605
{
606
int i, index;
607
struct acpi_iort_node *node;
608
609
node = iort_find_dev_node(dev);
610
if (!node)
611
return -ENODEV;
612
613
index = iort_get_id_mapping_index(node);
614
/* if there is a valid index, go get the dev_id directly */
615
if (index >= 0) {
616
if (iort_node_get_id(node, dev_id, index))
617
return 0;
618
} else {
619
for (i = 0; i < node->mapping_count; i++) {
620
if (iort_node_map_platform_id(node, dev_id,
621
IORT_MSI_TYPE, i))
622
return 0;
623
}
624
}
625
626
return -ENODEV;
627
}
628
629
static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
630
{
631
struct iort_its_msi_chip *its_msi_chip;
632
int ret = -ENODEV;
633
634
spin_lock(&iort_msi_chip_lock);
635
list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
636
if (its_msi_chip->translation_id == its_id) {
637
*base = its_msi_chip->base_addr;
638
ret = 0;
639
break;
640
}
641
}
642
spin_unlock(&iort_msi_chip_lock);
643
644
return ret;
645
}
646
647
/**
648
* iort_dev_find_its_id() - Find the ITS identifier for a device
649
* @dev: The device.
650
* @id: Device's ID
651
* @idx: Index of the ITS identifier list.
652
* @its_id: ITS identifier.
653
*
654
* Returns: 0 on success, appropriate error value otherwise
655
*/
656
static int iort_dev_find_its_id(struct device *dev, u32 id,
657
unsigned int idx, int *its_id)
658
{
659
struct acpi_iort_its_group *its;
660
struct acpi_iort_node *node;
661
662
node = iort_find_dev_node(dev);
663
if (!node)
664
return -ENXIO;
665
666
node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
667
if (!node)
668
return -ENXIO;
669
670
/* Move to ITS specific data */
671
its = (struct acpi_iort_its_group *)node->node_data;
672
if (idx >= its->its_count) {
673
dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
674
idx, its->its_count);
675
return -ENXIO;
676
}
677
678
*its_id = its->identifiers[idx];
679
return 0;
680
}
681
682
/**
683
* iort_get_device_domain() - Find MSI domain related to a device
684
* @dev: The device.
685
* @id: Requester ID for the device.
686
* @bus_token: irq domain bus token.
687
*
688
* Returns: the MSI domain for this device, NULL otherwise
689
*/
690
struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
691
enum irq_domain_bus_token bus_token)
692
{
693
struct fwnode_handle *handle;
694
int its_id;
695
696
if (iort_dev_find_its_id(dev, id, 0, &its_id))
697
return NULL;
698
699
handle = iort_find_domain_token(its_id);
700
if (!handle)
701
return NULL;
702
703
return irq_find_matching_fwnode(handle, bus_token);
704
}
705
706
static void iort_set_device_domain(struct device *dev,
707
struct acpi_iort_node *node)
708
{
709
struct acpi_iort_its_group *its;
710
struct acpi_iort_node *msi_parent;
711
struct acpi_iort_id_mapping *map;
712
struct fwnode_handle *iort_fwnode;
713
struct irq_domain *domain;
714
int index;
715
716
index = iort_get_id_mapping_index(node);
717
if (index < 0)
718
return;
719
720
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
721
node->mapping_offset + index * sizeof(*map));
722
723
/* Firmware bug! */
724
if (!map->output_reference ||
725
!(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
726
pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
727
node, node->type);
728
return;
729
}
730
731
msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
732
map->output_reference);
733
734
if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
735
return;
736
737
/* Move to ITS specific data */
738
its = (struct acpi_iort_its_group *)msi_parent->node_data;
739
740
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
741
if (!iort_fwnode)
742
return;
743
744
domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
745
if (domain)
746
dev_set_msi_domain(dev, domain);
747
}
748
749
/**
750
* iort_get_platform_device_domain() - Find MSI domain related to a
751
* platform device
752
* @dev: the dev pointer associated with the platform device
753
*
754
* Returns: the MSI domain for this device, NULL otherwise
755
*/
756
static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
757
{
758
struct acpi_iort_node *node, *msi_parent = NULL;
759
struct fwnode_handle *iort_fwnode;
760
struct acpi_iort_its_group *its;
761
int i;
762
763
/* find its associated iort node */
764
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
765
iort_match_node_callback, dev);
766
if (!node)
767
return NULL;
768
769
/* then find its msi parent node */
770
for (i = 0; i < node->mapping_count; i++) {
771
msi_parent = iort_node_map_platform_id(node, NULL,
772
IORT_MSI_TYPE, i);
773
if (msi_parent)
774
break;
775
}
776
777
if (!msi_parent)
778
return NULL;
779
780
/* Move to ITS specific data */
781
its = (struct acpi_iort_its_group *)msi_parent->node_data;
782
783
iort_fwnode = iort_find_domain_token(its->identifiers[0]);
784
if (!iort_fwnode)
785
return NULL;
786
787
return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
788
}
789
790
void acpi_configure_pmsi_domain(struct device *dev)
791
{
792
struct irq_domain *msi_domain;
793
794
msi_domain = iort_get_platform_device_domain(dev);
795
if (msi_domain)
796
dev_set_msi_domain(dev, msi_domain);
797
}
798
799
#ifdef CONFIG_IOMMU_API
800
static void iort_rmr_free(struct device *dev,
801
struct iommu_resv_region *region)
802
{
803
struct iommu_iort_rmr_data *rmr_data;
804
805
rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
806
kfree(rmr_data->sids);
807
kfree(rmr_data);
808
}
809
810
static struct iommu_iort_rmr_data *iort_rmr_alloc(
811
struct acpi_iort_rmr_desc *rmr_desc,
812
int prot, enum iommu_resv_type type,
813
u32 *sids, u32 num_sids)
814
{
815
struct iommu_iort_rmr_data *rmr_data;
816
struct iommu_resv_region *region;
817
u32 *sids_copy;
818
u64 addr = rmr_desc->base_address, size = rmr_desc->length;
819
820
rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
821
if (!rmr_data)
822
return NULL;
823
824
/* Create a copy of SIDs array to associate with this rmr_data */
825
sids_copy = kmemdup_array(sids, num_sids, sizeof(*sids), GFP_KERNEL);
826
if (!sids_copy) {
827
kfree(rmr_data);
828
return NULL;
829
}
830
rmr_data->sids = sids_copy;
831
rmr_data->num_sids = num_sids;
832
833
if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
834
/* PAGE align base addr and size */
835
addr &= PAGE_MASK;
836
size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
837
838
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
839
rmr_desc->base_address,
840
rmr_desc->base_address + rmr_desc->length - 1,
841
addr, addr + size - 1);
842
}
843
844
region = &rmr_data->rr;
845
INIT_LIST_HEAD(&region->list);
846
region->start = addr;
847
region->length = size;
848
region->prot = prot;
849
region->type = type;
850
region->free = iort_rmr_free;
851
852
return rmr_data;
853
}
854
855
static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
856
u32 count)
857
{
858
int i, j;
859
860
for (i = 0; i < count; i++) {
861
u64 end, start = desc[i].base_address, length = desc[i].length;
862
863
if (!length) {
864
pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
865
start);
866
continue;
867
}
868
869
end = start + length - 1;
870
871
/* Check for address overlap */
872
for (j = i + 1; j < count; j++) {
873
u64 e_start = desc[j].base_address;
874
u64 e_end = e_start + desc[j].length - 1;
875
876
if (start <= e_end && end >= e_start)
877
pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
878
start, end);
879
}
880
}
881
}
882
883
/*
884
* Please note, we will keep the already allocated RMR reserve
885
* regions in case of a memory allocation failure.
886
*/
887
static void iort_get_rmrs(struct acpi_iort_node *node,
888
struct acpi_iort_node *smmu,
889
u32 *sids, u32 num_sids,
890
struct list_head *head)
891
{
892
struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
893
struct acpi_iort_rmr_desc *rmr_desc;
894
int i;
895
896
rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
897
rmr->rmr_offset);
898
899
iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
900
901
for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
902
struct iommu_iort_rmr_data *rmr_data;
903
enum iommu_resv_type type;
904
int prot = IOMMU_READ | IOMMU_WRITE;
905
906
if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
907
type = IOMMU_RESV_DIRECT_RELAXABLE;
908
else
909
type = IOMMU_RESV_DIRECT;
910
911
if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
912
prot |= IOMMU_PRIV;
913
914
/* Attributes 0x00 - 0x03 represents device memory */
915
if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
916
ACPI_IORT_RMR_ATTR_DEVICE_GRE)
917
prot |= IOMMU_MMIO;
918
else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
919
ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
920
prot |= IOMMU_CACHE;
921
922
rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
923
sids, num_sids);
924
if (!rmr_data)
925
return;
926
927
list_add_tail(&rmr_data->rr.list, head);
928
}
929
}
930
931
static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
932
u32 new_count)
933
{
934
u32 *new_sids;
935
u32 total_count = count + new_count;
936
int i;
937
938
new_sids = krealloc_array(sids, count + new_count,
939
sizeof(*new_sids), GFP_KERNEL);
940
if (!new_sids) {
941
kfree(sids);
942
return NULL;
943
}
944
945
for (i = count; i < total_count; i++)
946
new_sids[i] = id_start++;
947
948
return new_sids;
949
}
950
951
static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
952
u32 id_count)
953
{
954
int i;
955
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
956
957
/*
958
* Make sure the kernel has preserved the boot firmware PCIe
959
* configuration. This is required to ensure that the RMR PCIe
960
* StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
961
*/
962
if (dev_is_pci(dev)) {
963
struct pci_dev *pdev = to_pci_dev(dev);
964
struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
965
966
if (!host->preserve_config)
967
return false;
968
}
969
970
for (i = 0; i < fwspec->num_ids; i++) {
971
if (fwspec->ids[i] >= id_start &&
972
fwspec->ids[i] <= id_start + id_count)
973
return true;
974
}
975
976
return false;
977
}
978
979
static void iort_node_get_rmr_info(struct acpi_iort_node *node,
980
struct acpi_iort_node *iommu,
981
struct device *dev, struct list_head *head)
982
{
983
struct acpi_iort_node *smmu = NULL;
984
struct acpi_iort_rmr *rmr;
985
struct acpi_iort_id_mapping *map;
986
u32 *sids = NULL;
987
u32 num_sids = 0;
988
int i;
989
990
if (!node->mapping_offset || !node->mapping_count) {
991
pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
992
node);
993
return;
994
}
995
996
rmr = (struct acpi_iort_rmr *)node->node_data;
997
if (!rmr->rmr_offset || !rmr->rmr_count)
998
return;
999
1000
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
1001
node->mapping_offset);
1002
1003
/*
1004
* Go through the ID mappings and see if we have a match for SMMU
1005
* and dev(if !NULL). If found, get the sids for the Node.
1006
* Please note, id_count is equal to the number of IDs in the
1007
* range minus one.
1008
*/
1009
for (i = 0; i < node->mapping_count; i++, map++) {
1010
struct acpi_iort_node *parent;
1011
1012
parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1013
map->output_reference);
1014
if (parent != iommu)
1015
continue;
1016
1017
/* If dev is valid, check RMR node corresponds to the dev SID */
1018
if (dev && !iort_rmr_has_dev(dev, map->output_base,
1019
map->id_count))
1020
continue;
1021
1022
/* Retrieve SIDs associated with the Node. */
1023
sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1024
map->id_count + 1);
1025
if (!sids)
1026
return;
1027
1028
num_sids += map->id_count + 1;
1029
}
1030
1031
if (!sids)
1032
return;
1033
1034
iort_get_rmrs(node, smmu, sids, num_sids, head);
1035
kfree(sids);
1036
}
1037
1038
static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1039
struct list_head *head)
1040
{
1041
struct acpi_table_iort *iort;
1042
struct acpi_iort_node *iort_node, *iort_end;
1043
int i;
1044
1045
/* Only supports ARM DEN 0049E.d onwards */
1046
if (iort_table->revision < 5)
1047
return;
1048
1049
iort = (struct acpi_table_iort *)iort_table;
1050
1051
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052
iort->node_offset);
1053
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1054
iort_table->length);
1055
1056
for (i = 0; i < iort->node_count; i++) {
1057
if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1058
"IORT node pointer overflows, bad table!\n"))
1059
return;
1060
1061
if (iort_node->type == ACPI_IORT_NODE_RMR)
1062
iort_node_get_rmr_info(iort_node, iommu, dev, head);
1063
1064
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1065
iort_node->length);
1066
}
1067
}
1068
1069
/*
1070
* Populate the RMR list associated with a given IOMMU and dev(if provided).
1071
* If dev is NULL, the function populates all the RMRs associated with the
1072
* given IOMMU.
1073
*/
1074
static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1075
struct device *dev,
1076
struct list_head *head)
1077
{
1078
struct acpi_iort_node *iommu;
1079
1080
iommu = iort_get_iort_node(iommu_fwnode);
1081
if (!iommu)
1082
return;
1083
1084
iort_find_rmrs(iommu, dev, head);
1085
}
1086
1087
static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1088
{
1089
struct acpi_iort_node *iommu;
1090
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1091
1092
iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1093
1094
if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1095
struct acpi_iort_smmu_v3 *smmu;
1096
1097
smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1098
if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1099
return iommu;
1100
}
1101
1102
return NULL;
1103
}
1104
1105
/*
1106
* Retrieve platform specific HW MSI reserve regions.
1107
* The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1108
* associated with the device are the HW MSI reserved regions.
1109
*/
1110
static void iort_iommu_msi_get_resv_regions(struct device *dev,
1111
struct list_head *head)
1112
{
1113
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1114
struct acpi_iort_its_group *its;
1115
struct acpi_iort_node *iommu_node, *its_node = NULL;
1116
int i;
1117
1118
iommu_node = iort_get_msi_resv_iommu(dev);
1119
if (!iommu_node)
1120
return;
1121
1122
/*
1123
* Current logic to reserve ITS regions relies on HW topologies
1124
* where a given PCI or named component maps its IDs to only one
1125
* ITS group; if a PCI or named component can map its IDs to
1126
* different ITS groups through IORT mappings this function has
1127
* to be reworked to ensure we reserve regions for all ITS groups
1128
* a given PCI or named component may map IDs to.
1129
*/
1130
1131
for (i = 0; i < fwspec->num_ids; i++) {
1132
its_node = iort_node_map_id(iommu_node,
1133
fwspec->ids[i],
1134
NULL, IORT_MSI_TYPE);
1135
if (its_node)
1136
break;
1137
}
1138
1139
if (!its_node)
1140
return;
1141
1142
/* Move to ITS specific data */
1143
its = (struct acpi_iort_its_group *)its_node->node_data;
1144
1145
for (i = 0; i < its->its_count; i++) {
1146
phys_addr_t base;
1147
1148
if (!iort_find_its_base(its->identifiers[i], &base)) {
1149
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1150
struct iommu_resv_region *region;
1151
1152
region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1153
prot, IOMMU_RESV_MSI,
1154
GFP_KERNEL);
1155
if (region)
1156
list_add_tail(&region->list, head);
1157
}
1158
}
1159
}
1160
1161
/**
1162
* iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1163
* @dev: Device from iommu_get_resv_regions()
1164
* @head: Reserved region list from iommu_get_resv_regions()
1165
*/
1166
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1167
{
1168
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1169
1170
iort_iommu_msi_get_resv_regions(dev, head);
1171
iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1172
}
1173
1174
/**
1175
* iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1176
* associated StreamIDs information.
1177
* @iommu_fwnode: fwnode associated with IOMMU
1178
* @head: Resereved region list
1179
*/
1180
void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1181
struct list_head *head)
1182
{
1183
iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1184
}
1185
EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1186
1187
/**
1188
* iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1189
* @iommu_fwnode: fwnode associated with IOMMU
1190
* @head: Resereved region list
1191
*/
1192
void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1193
struct list_head *head)
1194
{
1195
struct iommu_resv_region *entry, *next;
1196
1197
list_for_each_entry_safe(entry, next, head, list)
1198
entry->free(NULL, entry);
1199
}
1200
EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1201
1202
static inline bool iort_iommu_driver_enabled(u8 type)
1203
{
1204
switch (type) {
1205
case ACPI_IORT_NODE_SMMU_V3:
1206
return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1207
case ACPI_IORT_NODE_SMMU:
1208
return IS_ENABLED(CONFIG_ARM_SMMU);
1209
default:
1210
pr_warn("IORT node type %u does not describe an SMMU\n", type);
1211
return false;
1212
}
1213
}
1214
1215
static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1216
{
1217
struct acpi_iort_root_complex *pci_rc;
1218
1219
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1220
return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1221
}
1222
1223
static bool iort_pci_rc_supports_canwbs(struct acpi_iort_node *node)
1224
{
1225
struct acpi_iort_memory_access *memory_access;
1226
struct acpi_iort_root_complex *pci_rc;
1227
1228
pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1229
memory_access =
1230
(struct acpi_iort_memory_access *)&pci_rc->memory_properties;
1231
return memory_access->memory_flags & ACPI_IORT_MF_CANWBS;
1232
}
1233
1234
static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1235
u32 streamid)
1236
{
1237
struct fwnode_handle *iort_fwnode;
1238
1239
/* If there's no SMMU driver at all, give up now */
1240
if (!node || !iort_iommu_driver_enabled(node->type))
1241
return -ENODEV;
1242
1243
iort_fwnode = iort_get_fwnode(node);
1244
if (!iort_fwnode)
1245
return -ENODEV;
1246
1247
/*
1248
* If the SMMU drivers are enabled but not loaded/probed
1249
* yet, this will defer.
1250
*/
1251
return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode);
1252
}
1253
1254
struct iort_pci_alias_info {
1255
struct device *dev;
1256
struct acpi_iort_node *node;
1257
};
1258
1259
static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1260
{
1261
struct iort_pci_alias_info *info = data;
1262
struct acpi_iort_node *parent;
1263
u32 streamid;
1264
1265
parent = iort_node_map_id(info->node, alias, &streamid,
1266
IORT_IOMMU_TYPE);
1267
return iort_iommu_xlate(info->dev, parent, streamid);
1268
}
1269
1270
static void iort_named_component_init(struct device *dev,
1271
struct acpi_iort_node *node)
1272
{
1273
struct property_entry props[3] = {};
1274
struct acpi_iort_named_component *nc;
1275
1276
nc = (struct acpi_iort_named_component *)node->node_data;
1277
props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1278
FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1279
nc->node_flags));
1280
if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1281
props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1282
1283
if (device_create_managed_software_node(dev, props, NULL))
1284
dev_warn(dev, "Could not add device properties\n");
1285
}
1286
1287
static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1288
{
1289
struct acpi_iort_node *parent;
1290
int err = -ENODEV, i = 0;
1291
u32 streamid = 0;
1292
1293
do {
1294
1295
parent = iort_node_map_platform_id(node, &streamid,
1296
IORT_IOMMU_TYPE,
1297
i++);
1298
1299
if (parent)
1300
err = iort_iommu_xlate(dev, parent, streamid);
1301
} while (parent && !err);
1302
1303
return err;
1304
}
1305
1306
static int iort_nc_iommu_map_id(struct device *dev,
1307
struct acpi_iort_node *node,
1308
const u32 *in_id)
1309
{
1310
struct acpi_iort_node *parent;
1311
u32 streamid;
1312
1313
parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1314
if (parent)
1315
return iort_iommu_xlate(dev, parent, streamid);
1316
1317
return -ENODEV;
1318
}
1319
1320
1321
/**
1322
* iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1323
*
1324
* @dev: device to configure
1325
* @id_in: optional input id const value pointer
1326
*
1327
* Returns: 0 on success, <0 on failure
1328
*/
1329
int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1330
{
1331
struct acpi_iort_node *node;
1332
int err = -ENODEV;
1333
1334
if (dev_is_pci(dev)) {
1335
struct iommu_fwspec *fwspec;
1336
struct pci_bus *bus = to_pci_dev(dev)->bus;
1337
struct iort_pci_alias_info info = { .dev = dev };
1338
1339
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1340
iort_match_node_callback, &bus->dev);
1341
if (!node)
1342
return -ENODEV;
1343
1344
info.node = node;
1345
err = pci_for_each_dma_alias(to_pci_dev(dev),
1346
iort_pci_iommu_init, &info);
1347
1348
fwspec = dev_iommu_fwspec_get(dev);
1349
if (fwspec && iort_pci_rc_supports_ats(node))
1350
fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1351
if (fwspec && iort_pci_rc_supports_canwbs(node))
1352
fwspec->flags |= IOMMU_FWSPEC_PCI_RC_CANWBS;
1353
} else {
1354
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1355
iort_match_node_callback, dev);
1356
if (!node)
1357
return -ENODEV;
1358
1359
err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1360
iort_nc_iommu_map(dev, node);
1361
1362
if (!err)
1363
iort_named_component_init(dev, node);
1364
}
1365
1366
return err;
1367
}
1368
1369
#else
1370
void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1371
{ }
1372
int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1373
{ return -ENODEV; }
1374
#endif
1375
1376
static int nc_dma_get_range(struct device *dev, u64 *limit)
1377
{
1378
struct acpi_iort_node *node;
1379
struct acpi_iort_named_component *ncomp;
1380
1381
node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1382
iort_match_node_callback, dev);
1383
if (!node)
1384
return -ENODEV;
1385
1386
ncomp = (struct acpi_iort_named_component *)node->node_data;
1387
1388
if (!ncomp->memory_address_limit) {
1389
pr_warn(FW_BUG "Named component missing memory address limit\n");
1390
return -EINVAL;
1391
}
1392
1393
*limit = ncomp->memory_address_limit >= 64 ? U64_MAX :
1394
(1ULL << ncomp->memory_address_limit) - 1;
1395
1396
return 0;
1397
}
1398
1399
static int rc_dma_get_range(struct device *dev, u64 *limit)
1400
{
1401
struct acpi_iort_node *node;
1402
struct acpi_iort_root_complex *rc;
1403
struct pci_bus *pbus = to_pci_dev(dev)->bus;
1404
1405
node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1406
iort_match_node_callback, &pbus->dev);
1407
if (!node || node->revision < 1)
1408
return -ENODEV;
1409
1410
rc = (struct acpi_iort_root_complex *)node->node_data;
1411
1412
if (!rc->memory_address_limit) {
1413
pr_warn(FW_BUG "Root complex missing memory address limit\n");
1414
return -EINVAL;
1415
}
1416
1417
*limit = rc->memory_address_limit >= 64 ? U64_MAX :
1418
(1ULL << rc->memory_address_limit) - 1;
1419
1420
return 0;
1421
}
1422
1423
/**
1424
* iort_dma_get_ranges() - Look up DMA addressing limit for the device
1425
* @dev: device to lookup
1426
* @limit: DMA limit result pointer
1427
*
1428
* Return: 0 on success, an error otherwise.
1429
*/
1430
int iort_dma_get_ranges(struct device *dev, u64 *limit)
1431
{
1432
if (dev_is_pci(dev))
1433
return rc_dma_get_range(dev, limit);
1434
else
1435
return nc_dma_get_range(dev, limit);
1436
}
1437
1438
static void __init acpi_iort_register_irq(int hwirq, const char *name,
1439
int trigger,
1440
struct resource *res)
1441
{
1442
int irq = acpi_register_gsi(NULL, hwirq, trigger,
1443
ACPI_ACTIVE_HIGH);
1444
1445
if (irq <= 0) {
1446
pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1447
name);
1448
return;
1449
}
1450
1451
res->start = irq;
1452
res->end = irq;
1453
res->flags = IORESOURCE_IRQ;
1454
res->name = name;
1455
}
1456
1457
static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1458
{
1459
struct acpi_iort_smmu_v3 *smmu;
1460
/* Always present mem resource */
1461
int num_res = 1;
1462
1463
/* Retrieve SMMUv3 specific data */
1464
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1465
1466
if (smmu->event_gsiv)
1467
num_res++;
1468
1469
if (smmu->pri_gsiv)
1470
num_res++;
1471
1472
if (smmu->gerr_gsiv)
1473
num_res++;
1474
1475
if (smmu->sync_gsiv)
1476
num_res++;
1477
1478
return num_res;
1479
}
1480
1481
static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1482
{
1483
/*
1484
* Cavium ThunderX2 implementation doesn't not support unique
1485
* irq line. Use single irq line for all the SMMUv3 interrupts.
1486
*/
1487
if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1488
return false;
1489
1490
/*
1491
* ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1492
* SPI numbers here.
1493
*/
1494
return smmu->event_gsiv == smmu->pri_gsiv &&
1495
smmu->event_gsiv == smmu->gerr_gsiv &&
1496
smmu->event_gsiv == smmu->sync_gsiv;
1497
}
1498
1499
static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1500
{
1501
/*
1502
* Override the size, for Cavium ThunderX2 implementation
1503
* which doesn't support the page 1 SMMU register space.
1504
*/
1505
if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1506
return SZ_64K;
1507
1508
return SZ_128K;
1509
}
1510
1511
static void __init arm_smmu_v3_init_resources(struct resource *res,
1512
struct acpi_iort_node *node)
1513
{
1514
struct acpi_iort_smmu_v3 *smmu;
1515
int num_res = 0;
1516
1517
/* Retrieve SMMUv3 specific data */
1518
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1519
1520
res[num_res].start = smmu->base_address;
1521
res[num_res].end = smmu->base_address +
1522
arm_smmu_v3_resource_size(smmu) - 1;
1523
res[num_res].flags = IORESOURCE_MEM;
1524
1525
num_res++;
1526
if (arm_smmu_v3_is_combined_irq(smmu)) {
1527
if (smmu->event_gsiv)
1528
acpi_iort_register_irq(smmu->event_gsiv, "combined",
1529
ACPI_EDGE_SENSITIVE,
1530
&res[num_res++]);
1531
} else {
1532
1533
if (smmu->event_gsiv)
1534
acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1535
ACPI_EDGE_SENSITIVE,
1536
&res[num_res++]);
1537
1538
if (smmu->pri_gsiv)
1539
acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1540
ACPI_EDGE_SENSITIVE,
1541
&res[num_res++]);
1542
1543
if (smmu->gerr_gsiv)
1544
acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1545
ACPI_EDGE_SENSITIVE,
1546
&res[num_res++]);
1547
1548
if (smmu->sync_gsiv)
1549
acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1550
ACPI_EDGE_SENSITIVE,
1551
&res[num_res++]);
1552
}
1553
}
1554
1555
static void __init arm_smmu_v3_dma_configure(struct device *dev,
1556
struct acpi_iort_node *node)
1557
{
1558
struct acpi_iort_smmu_v3 *smmu;
1559
enum dev_dma_attr attr;
1560
1561
/* Retrieve SMMUv3 specific data */
1562
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1563
1564
attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1565
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1566
1567
/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1568
dev->dma_mask = &dev->coherent_dma_mask;
1569
1570
/* Configure DMA for the page table walker */
1571
acpi_dma_configure(dev, attr);
1572
}
1573
1574
#if defined(CONFIG_ACPI_NUMA)
1575
/*
1576
* set numa proximity domain for smmuv3 device
1577
*/
1578
static int __init arm_smmu_v3_set_proximity(struct device *dev,
1579
struct acpi_iort_node *node)
1580
{
1581
struct acpi_iort_smmu_v3 *smmu;
1582
1583
smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1584
if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1585
int dev_node = pxm_to_node(smmu->pxm);
1586
1587
if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1588
return -EINVAL;
1589
1590
set_dev_node(dev, dev_node);
1591
pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1592
smmu->base_address,
1593
smmu->pxm);
1594
}
1595
return 0;
1596
}
1597
#else
1598
#define arm_smmu_v3_set_proximity NULL
1599
#endif
1600
1601
static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1602
{
1603
struct acpi_iort_smmu *smmu;
1604
1605
/* Retrieve SMMU specific data */
1606
smmu = (struct acpi_iort_smmu *)node->node_data;
1607
1608
/*
1609
* Only consider the global fault interrupt and ignore the
1610
* configuration access interrupt.
1611
*
1612
* MMIO address and global fault interrupt resources are always
1613
* present so add them to the context interrupt count as a static
1614
* value.
1615
*/
1616
return smmu->context_interrupt_count + 2;
1617
}
1618
1619
static void __init arm_smmu_init_resources(struct resource *res,
1620
struct acpi_iort_node *node)
1621
{
1622
struct acpi_iort_smmu *smmu;
1623
int i, hw_irq, trigger, num_res = 0;
1624
u64 *ctx_irq, *glb_irq;
1625
1626
/* Retrieve SMMU specific data */
1627
smmu = (struct acpi_iort_smmu *)node->node_data;
1628
1629
res[num_res].start = smmu->base_address;
1630
res[num_res].end = smmu->base_address + smmu->span - 1;
1631
res[num_res].flags = IORESOURCE_MEM;
1632
num_res++;
1633
1634
glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1635
/* Global IRQs */
1636
hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1637
trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1638
1639
acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1640
&res[num_res++]);
1641
1642
/* Context IRQs */
1643
ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1644
for (i = 0; i < smmu->context_interrupt_count; i++) {
1645
hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1646
trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1647
1648
acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1649
&res[num_res++]);
1650
}
1651
}
1652
1653
static void __init arm_smmu_dma_configure(struct device *dev,
1654
struct acpi_iort_node *node)
1655
{
1656
struct acpi_iort_smmu *smmu;
1657
enum dev_dma_attr attr;
1658
1659
/* Retrieve SMMU specific data */
1660
smmu = (struct acpi_iort_smmu *)node->node_data;
1661
1662
attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1663
DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1664
1665
/* We expect the dma masks to be equivalent for SMMU set-ups */
1666
dev->dma_mask = &dev->coherent_dma_mask;
1667
1668
/* Configure DMA for the page table walker */
1669
acpi_dma_configure(dev, attr);
1670
}
1671
1672
static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1673
{
1674
struct acpi_iort_pmcg *pmcg;
1675
1676
/* Retrieve PMCG specific data */
1677
pmcg = (struct acpi_iort_pmcg *)node->node_data;
1678
1679
/*
1680
* There are always 2 memory resources.
1681
* If the overflow_gsiv is present then add that for a total of 3.
1682
*/
1683
return pmcg->overflow_gsiv ? 3 : 2;
1684
}
1685
1686
static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1687
struct acpi_iort_node *node)
1688
{
1689
struct acpi_iort_pmcg *pmcg;
1690
1691
/* Retrieve PMCG specific data */
1692
pmcg = (struct acpi_iort_pmcg *)node->node_data;
1693
1694
res[0].start = pmcg->page0_base_address;
1695
res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1696
res[0].flags = IORESOURCE_MEM;
1697
/*
1698
* The initial version in DEN0049C lacked a way to describe register
1699
* page 1, which makes it broken for most PMCG implementations; in
1700
* that case, just let the driver fail gracefully if it expects to
1701
* find a second memory resource.
1702
*/
1703
if (node->revision > 0) {
1704
res[1].start = pmcg->page1_base_address;
1705
res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1706
res[1].flags = IORESOURCE_MEM;
1707
}
1708
1709
if (pmcg->overflow_gsiv)
1710
acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1711
ACPI_EDGE_SENSITIVE, &res[2]);
1712
}
1713
1714
static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1715
/* HiSilicon Hip08 Platform */
1716
{"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1717
"Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1718
/* HiSilicon Hip09 Platform */
1719
{"HISI ", "HIP09 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1720
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1721
{"HISI ", "HIP09A ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1722
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1723
/* HiSilicon Hip10/11 Platform uses the same SMMU IP with Hip09 */
1724
{"HISI ", "HIP10 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1725
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1726
{"HISI ", "HIP10C ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1727
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1728
{"HISI ", "HIP11 ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1729
"Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1730
{ }
1731
};
1732
1733
static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1734
{
1735
u32 model;
1736
int idx;
1737
1738
idx = acpi_match_platform_list(pmcg_plat_info);
1739
if (idx >= 0)
1740
model = pmcg_plat_info[idx].data;
1741
else
1742
model = IORT_SMMU_V3_PMCG_GENERIC;
1743
1744
return platform_device_add_data(pdev, &model, sizeof(model));
1745
}
1746
1747
struct iort_dev_config {
1748
const char *name;
1749
int (*dev_init)(struct acpi_iort_node *node);
1750
void (*dev_dma_configure)(struct device *dev,
1751
struct acpi_iort_node *node);
1752
int (*dev_count_resources)(struct acpi_iort_node *node);
1753
void (*dev_init_resources)(struct resource *res,
1754
struct acpi_iort_node *node);
1755
int (*dev_set_proximity)(struct device *dev,
1756
struct acpi_iort_node *node);
1757
int (*dev_add_platdata)(struct platform_device *pdev);
1758
};
1759
1760
static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1761
.name = "arm-smmu-v3",
1762
.dev_dma_configure = arm_smmu_v3_dma_configure,
1763
.dev_count_resources = arm_smmu_v3_count_resources,
1764
.dev_init_resources = arm_smmu_v3_init_resources,
1765
.dev_set_proximity = arm_smmu_v3_set_proximity,
1766
};
1767
1768
static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1769
.name = "arm-smmu",
1770
.dev_dma_configure = arm_smmu_dma_configure,
1771
.dev_count_resources = arm_smmu_count_resources,
1772
.dev_init_resources = arm_smmu_init_resources,
1773
};
1774
1775
static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1776
.name = "arm-smmu-v3-pmcg",
1777
.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1778
.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1779
.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1780
};
1781
1782
static __init const struct iort_dev_config *iort_get_dev_cfg(
1783
struct acpi_iort_node *node)
1784
{
1785
switch (node->type) {
1786
case ACPI_IORT_NODE_SMMU_V3:
1787
return &iort_arm_smmu_v3_cfg;
1788
case ACPI_IORT_NODE_SMMU:
1789
return &iort_arm_smmu_cfg;
1790
case ACPI_IORT_NODE_PMCG:
1791
return &iort_arm_smmu_v3_pmcg_cfg;
1792
default:
1793
return NULL;
1794
}
1795
}
1796
1797
/**
1798
* iort_add_platform_device() - Allocate a platform device for IORT node
1799
* @node: Pointer to device ACPI IORT node
1800
* @ops: Pointer to IORT device config struct
1801
*
1802
* Returns: 0 on success, <0 failure
1803
*/
1804
static int __init iort_add_platform_device(struct acpi_iort_node *node,
1805
const struct iort_dev_config *ops)
1806
{
1807
struct fwnode_handle *fwnode;
1808
struct platform_device *pdev;
1809
struct resource *r;
1810
int ret, count;
1811
1812
pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1813
if (!pdev)
1814
return -ENOMEM;
1815
1816
if (ops->dev_set_proximity) {
1817
ret = ops->dev_set_proximity(&pdev->dev, node);
1818
if (ret)
1819
goto dev_put;
1820
}
1821
1822
count = ops->dev_count_resources(node);
1823
1824
r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1825
if (!r) {
1826
ret = -ENOMEM;
1827
goto dev_put;
1828
}
1829
1830
ops->dev_init_resources(r, node);
1831
1832
ret = platform_device_add_resources(pdev, r, count);
1833
/*
1834
* Resources are duplicated in platform_device_add_resources,
1835
* free their allocated memory
1836
*/
1837
kfree(r);
1838
1839
if (ret)
1840
goto dev_put;
1841
1842
/*
1843
* Platform devices based on PMCG nodes uses platform_data to
1844
* pass the hardware model info to the driver. For others, add
1845
* a copy of IORT node pointer to platform_data to be used to
1846
* retrieve IORT data information.
1847
*/
1848
if (ops->dev_add_platdata)
1849
ret = ops->dev_add_platdata(pdev);
1850
else
1851
ret = platform_device_add_data(pdev, &node, sizeof(node));
1852
1853
if (ret)
1854
goto dev_put;
1855
1856
fwnode = iort_get_fwnode(node);
1857
1858
if (!fwnode) {
1859
ret = -ENODEV;
1860
goto dev_put;
1861
}
1862
1863
pdev->dev.fwnode = fwnode;
1864
1865
if (ops->dev_dma_configure)
1866
ops->dev_dma_configure(&pdev->dev, node);
1867
1868
iort_set_device_domain(&pdev->dev, node);
1869
1870
ret = platform_device_add(pdev);
1871
if (ret)
1872
goto dma_deconfigure;
1873
1874
return 0;
1875
1876
dma_deconfigure:
1877
arch_teardown_dma_ops(&pdev->dev);
1878
dev_put:
1879
platform_device_put(pdev);
1880
1881
return ret;
1882
}
1883
1884
#ifdef CONFIG_PCI
1885
static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1886
{
1887
static bool acs_enabled __initdata;
1888
1889
if (acs_enabled)
1890
return;
1891
1892
if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1893
struct acpi_iort_node *parent;
1894
struct acpi_iort_id_mapping *map;
1895
int i;
1896
1897
map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1898
iort_node->mapping_offset);
1899
1900
for (i = 0; i < iort_node->mapping_count; i++, map++) {
1901
if (!map->output_reference)
1902
continue;
1903
1904
parent = ACPI_ADD_PTR(struct acpi_iort_node,
1905
iort_table, map->output_reference);
1906
/*
1907
* If we detect a RC->SMMU mapping, make sure
1908
* we enable ACS on the system.
1909
*/
1910
if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1911
(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1912
pci_request_acs();
1913
acs_enabled = true;
1914
return;
1915
}
1916
}
1917
}
1918
}
1919
#else
1920
static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1921
#endif
1922
1923
static void __init iort_init_platform_devices(void)
1924
{
1925
struct acpi_iort_node *iort_node, *iort_end;
1926
struct acpi_table_iort *iort;
1927
struct fwnode_handle *fwnode;
1928
int i, ret;
1929
const struct iort_dev_config *ops;
1930
1931
/*
1932
* iort_table and iort both point to the start of IORT table, but
1933
* have different struct types
1934
*/
1935
iort = (struct acpi_table_iort *)iort_table;
1936
1937
/* Get the first IORT node */
1938
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1939
iort->node_offset);
1940
iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1941
iort_table->length);
1942
1943
for (i = 0; i < iort->node_count; i++) {
1944
if (iort_node >= iort_end) {
1945
pr_err("iort node pointer overflows, bad table\n");
1946
return;
1947
}
1948
1949
iort_enable_acs(iort_node);
1950
1951
ops = iort_get_dev_cfg(iort_node);
1952
if (ops) {
1953
fwnode = acpi_alloc_fwnode_static();
1954
if (!fwnode)
1955
return;
1956
1957
iort_set_fwnode(iort_node, fwnode);
1958
1959
ret = iort_add_platform_device(iort_node, ops);
1960
if (ret) {
1961
iort_delete_fwnode(iort_node);
1962
acpi_free_fwnode_static(fwnode);
1963
return;
1964
}
1965
}
1966
1967
iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1968
iort_node->length);
1969
}
1970
}
1971
1972
void __init acpi_iort_init(void)
1973
{
1974
acpi_status status;
1975
1976
/* iort_table will be used at runtime after the iort init,
1977
* so we don't need to call acpi_put_table() to release
1978
* the IORT table mapping.
1979
*/
1980
status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1981
if (ACPI_FAILURE(status)) {
1982
if (status != AE_NOT_FOUND) {
1983
const char *msg = acpi_format_exception(status);
1984
1985
pr_err("Failed to get table, %s\n", msg);
1986
}
1987
1988
return;
1989
}
1990
1991
iort_init_platform_devices();
1992
}
1993
1994
#ifdef CONFIG_ZONE_DMA
1995
/*
1996
* Extract the highest CPU physical address accessible to all DMA masters in
1997
* the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1998
*/
1999
phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
2000
{
2001
phys_addr_t limit = PHYS_ADDR_MAX;
2002
struct acpi_iort_node *node, *end;
2003
struct acpi_table_iort *iort;
2004
acpi_status status;
2005
int i;
2006
2007
if (acpi_disabled)
2008
return limit;
2009
2010
status = acpi_get_table(ACPI_SIG_IORT, 0,
2011
(struct acpi_table_header **)&iort);
2012
if (ACPI_FAILURE(status))
2013
return limit;
2014
2015
node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2016
end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2017
2018
for (i = 0; i < iort->node_count; i++) {
2019
if (node >= end)
2020
break;
2021
2022
switch (node->type) {
2023
struct acpi_iort_named_component *ncomp;
2024
struct acpi_iort_root_complex *rc;
2025
phys_addr_t local_limit;
2026
2027
case ACPI_IORT_NODE_NAMED_COMPONENT:
2028
ncomp = (struct acpi_iort_named_component *)node->node_data;
2029
local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2030
limit = min_not_zero(limit, local_limit);
2031
break;
2032
2033
case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2034
if (node->revision < 1)
2035
break;
2036
2037
rc = (struct acpi_iort_root_complex *)node->node_data;
2038
local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2039
limit = min_not_zero(limit, local_limit);
2040
break;
2041
}
2042
node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2043
}
2044
acpi_put_table(&iort->header);
2045
return limit;
2046
}
2047
#endif
2048
2049