Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/bluetooth/btintel.c
29281 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
*
4
* Bluetooth support for Intel devices
5
*
6
* Copyright (C) 2015 Intel Corporation
7
*/
8
9
#include <linux/module.h>
10
#include <linux/firmware.h>
11
#include <linux/regmap.h>
12
#include <linux/string_choices.h>
13
#include <linux/acpi.h>
14
#include <acpi/acpi_bus.h>
15
#include <linux/unaligned.h>
16
#include <linux/efi.h>
17
18
#include <net/bluetooth/bluetooth.h>
19
#include <net/bluetooth/hci_core.h>
20
21
#include "btintel.h"
22
23
#define VERSION "0.1"
24
25
#define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}})
26
#define RSA_HEADER_LEN 644
27
#define CSS_HEADER_OFFSET 8
28
#define ECDSA_OFFSET 644
29
#define ECDSA_HEADER_LEN 320
30
31
#define BTINTEL_EFI_DSBR L"UefiCnvCommonDSBR"
32
33
enum {
34
DSM_SET_WDISABLE2_DELAY = 1,
35
DSM_SET_RESET_METHOD = 3,
36
};
37
38
#define BTINTEL_BT_DOMAIN 0x12
39
#define BTINTEL_SAR_LEGACY 0
40
#define BTINTEL_SAR_INC_PWR 1
41
#define BTINTEL_SAR_INC_PWR_SUPPORTED 0
42
43
#define CMD_WRITE_BOOT_PARAMS 0xfc0e
44
struct cmd_write_boot_params {
45
__le32 boot_addr;
46
u8 fw_build_num;
47
u8 fw_build_ww;
48
u8 fw_build_yy;
49
} __packed;
50
51
static struct {
52
const char *driver_name;
53
u8 hw_variant;
54
u32 fw_build_num;
55
} coredump_info;
56
57
static const guid_t btintel_guid_dsm =
58
GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233,
59
0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9);
60
61
int btintel_check_bdaddr(struct hci_dev *hdev)
62
{
63
struct hci_rp_read_bd_addr *bda;
64
struct sk_buff *skb;
65
66
skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
67
HCI_INIT_TIMEOUT);
68
if (IS_ERR(skb)) {
69
int err = PTR_ERR(skb);
70
bt_dev_err(hdev, "Reading Intel device address failed (%d)",
71
err);
72
return err;
73
}
74
75
if (skb->len != sizeof(*bda)) {
76
bt_dev_err(hdev, "Intel device address length mismatch");
77
kfree_skb(skb);
78
return -EIO;
79
}
80
81
bda = (struct hci_rp_read_bd_addr *)skb->data;
82
83
/* For some Intel based controllers, the default Bluetooth device
84
* address 00:03:19:9E:8B:00 can be found. These controllers are
85
* fully operational, but have the danger of duplicate addresses
86
* and that in turn can cause problems with Bluetooth operation.
87
*/
88
if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) {
89
bt_dev_err(hdev, "Found Intel default device address (%pMR)",
90
&bda->bdaddr);
91
hci_set_quirk(hdev, HCI_QUIRK_INVALID_BDADDR);
92
}
93
94
kfree_skb(skb);
95
96
return 0;
97
}
98
EXPORT_SYMBOL_GPL(btintel_check_bdaddr);
99
100
int btintel_enter_mfg(struct hci_dev *hdev)
101
{
102
static const u8 param[] = { 0x01, 0x00 };
103
struct sk_buff *skb;
104
105
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
106
if (IS_ERR(skb)) {
107
bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)",
108
PTR_ERR(skb));
109
return PTR_ERR(skb);
110
}
111
kfree_skb(skb);
112
113
return 0;
114
}
115
EXPORT_SYMBOL_GPL(btintel_enter_mfg);
116
117
int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched)
118
{
119
u8 param[] = { 0x00, 0x00 };
120
struct sk_buff *skb;
121
122
/* The 2nd command parameter specifies the manufacturing exit method:
123
* 0x00: Just disable the manufacturing mode (0x00).
124
* 0x01: Disable manufacturing mode and reset with patches deactivated.
125
* 0x02: Disable manufacturing mode and reset with patches activated.
126
*/
127
if (reset)
128
param[1] |= patched ? 0x02 : 0x01;
129
130
skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT);
131
if (IS_ERR(skb)) {
132
bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)",
133
PTR_ERR(skb));
134
return PTR_ERR(skb);
135
}
136
kfree_skb(skb);
137
138
return 0;
139
}
140
EXPORT_SYMBOL_GPL(btintel_exit_mfg);
141
142
int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
143
{
144
struct sk_buff *skb;
145
int err;
146
147
skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT);
148
if (IS_ERR(skb)) {
149
err = PTR_ERR(skb);
150
bt_dev_err(hdev, "Changing Intel device address failed (%d)",
151
err);
152
return err;
153
}
154
kfree_skb(skb);
155
156
return 0;
157
}
158
EXPORT_SYMBOL_GPL(btintel_set_bdaddr);
159
160
static int btintel_set_event_mask(struct hci_dev *hdev, bool debug)
161
{
162
u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
163
struct sk_buff *skb;
164
int err;
165
166
if (debug)
167
mask[1] |= 0x62;
168
169
skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT);
170
if (IS_ERR(skb)) {
171
err = PTR_ERR(skb);
172
bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err);
173
return err;
174
}
175
kfree_skb(skb);
176
177
return 0;
178
}
179
180
int btintel_set_diag(struct hci_dev *hdev, bool enable)
181
{
182
struct sk_buff *skb;
183
u8 param[3];
184
int err;
185
186
if (enable) {
187
param[0] = 0x03;
188
param[1] = 0x03;
189
param[2] = 0x03;
190
} else {
191
param[0] = 0x00;
192
param[1] = 0x00;
193
param[2] = 0x00;
194
}
195
196
skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT);
197
if (IS_ERR(skb)) {
198
err = PTR_ERR(skb);
199
if (err == -ENODATA)
200
goto done;
201
bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)",
202
err);
203
return err;
204
}
205
kfree_skb(skb);
206
207
done:
208
btintel_set_event_mask(hdev, enable);
209
return 0;
210
}
211
EXPORT_SYMBOL_GPL(btintel_set_diag);
212
213
static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable)
214
{
215
int err, ret;
216
217
err = btintel_enter_mfg(hdev);
218
if (err)
219
return err;
220
221
ret = btintel_set_diag(hdev, enable);
222
223
err = btintel_exit_mfg(hdev, false, false);
224
if (err)
225
return err;
226
227
return ret;
228
}
229
230
static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable)
231
{
232
int ret;
233
234
/* Legacy ROM device needs to be in the manufacturer mode to apply
235
* diagnostic setting
236
*
237
* This flag is set after reading the Intel version.
238
*/
239
if (btintel_test_flag(hdev, INTEL_ROM_LEGACY))
240
ret = btintel_set_diag_mfg(hdev, enable);
241
else
242
ret = btintel_set_diag(hdev, enable);
243
244
return ret;
245
}
246
247
void btintel_hw_error(struct hci_dev *hdev, u8 code)
248
{
249
struct sk_buff *skb;
250
u8 type = 0x00;
251
252
bt_dev_err(hdev, "Hardware error 0x%2.2x", code);
253
254
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
255
if (IS_ERR(skb)) {
256
bt_dev_err(hdev, "Reset after hardware error failed (%ld)",
257
PTR_ERR(skb));
258
return;
259
}
260
kfree_skb(skb);
261
262
skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT);
263
if (IS_ERR(skb)) {
264
bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)",
265
PTR_ERR(skb));
266
return;
267
}
268
269
if (skb->len != 13) {
270
bt_dev_err(hdev, "Exception info size mismatch");
271
kfree_skb(skb);
272
return;
273
}
274
275
bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1));
276
277
kfree_skb(skb);
278
}
279
EXPORT_SYMBOL_GPL(btintel_hw_error);
280
281
int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver)
282
{
283
const char *variant;
284
285
/* The hardware platform number has a fixed value of 0x37 and
286
* for now only accept this single value.
287
*/
288
if (ver->hw_platform != 0x37) {
289
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
290
ver->hw_platform);
291
return -EINVAL;
292
}
293
294
/* Check for supported iBT hardware variants of this firmware
295
* loading method.
296
*
297
* This check has been put in place to ensure correct forward
298
* compatibility options when newer hardware variants come along.
299
*/
300
switch (ver->hw_variant) {
301
case 0x07: /* WP - Legacy ROM */
302
case 0x08: /* StP - Legacy ROM */
303
case 0x0b: /* SfP */
304
case 0x0c: /* WsP */
305
case 0x11: /* JfP */
306
case 0x12: /* ThP */
307
case 0x13: /* HrP */
308
case 0x14: /* CcP */
309
break;
310
default:
311
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
312
ver->hw_variant);
313
return -EINVAL;
314
}
315
316
switch (ver->fw_variant) {
317
case 0x01:
318
variant = "Legacy ROM 2.5";
319
break;
320
case 0x06:
321
variant = "Bootloader";
322
break;
323
case 0x22:
324
variant = "Legacy ROM 2.x";
325
break;
326
case 0x23:
327
variant = "Firmware";
328
break;
329
default:
330
bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant);
331
return -EINVAL;
332
}
333
334
coredump_info.hw_variant = ver->hw_variant;
335
coredump_info.fw_build_num = ver->fw_build_num;
336
337
bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u",
338
variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f,
339
ver->fw_build_num, ver->fw_build_ww,
340
2000 + ver->fw_build_yy);
341
342
return 0;
343
}
344
EXPORT_SYMBOL_GPL(btintel_version_info);
345
346
static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen,
347
const void *param)
348
{
349
while (plen > 0) {
350
struct sk_buff *skb;
351
u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen;
352
353
cmd_param[0] = fragment_type;
354
memcpy(cmd_param + 1, param, fragment_len);
355
356
skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1,
357
cmd_param, HCI_INIT_TIMEOUT);
358
if (IS_ERR(skb))
359
return PTR_ERR(skb);
360
361
kfree_skb(skb);
362
363
plen -= fragment_len;
364
param += fragment_len;
365
}
366
367
return 0;
368
}
369
370
int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name)
371
{
372
const struct firmware *fw;
373
struct sk_buff *skb;
374
const u8 *fw_ptr;
375
int err;
376
377
err = request_firmware_direct(&fw, ddc_name, &hdev->dev);
378
if (err < 0) {
379
bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)",
380
ddc_name, err);
381
return err;
382
}
383
384
bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name);
385
386
fw_ptr = fw->data;
387
388
/* DDC file contains one or more DDC structure which has
389
* Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2).
390
*/
391
while (fw->size > fw_ptr - fw->data) {
392
u8 cmd_plen = fw_ptr[0] + sizeof(u8);
393
394
skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr,
395
HCI_INIT_TIMEOUT);
396
if (IS_ERR(skb)) {
397
bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)",
398
PTR_ERR(skb));
399
release_firmware(fw);
400
return PTR_ERR(skb);
401
}
402
403
fw_ptr += cmd_plen;
404
kfree_skb(skb);
405
}
406
407
release_firmware(fw);
408
409
bt_dev_info(hdev, "Applying Intel DDC parameters completed");
410
411
return 0;
412
}
413
EXPORT_SYMBOL_GPL(btintel_load_ddc_config);
414
415
int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug)
416
{
417
int err, ret;
418
419
err = btintel_enter_mfg(hdev);
420
if (err)
421
return err;
422
423
ret = btintel_set_event_mask(hdev, debug);
424
425
err = btintel_exit_mfg(hdev, false, false);
426
if (err)
427
return err;
428
429
return ret;
430
}
431
EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg);
432
433
int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver)
434
{
435
struct sk_buff *skb;
436
437
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
438
if (IS_ERR(skb)) {
439
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
440
PTR_ERR(skb));
441
return PTR_ERR(skb);
442
}
443
444
if (!skb || skb->len != sizeof(*ver)) {
445
bt_dev_err(hdev, "Intel version event size mismatch");
446
kfree_skb(skb);
447
return -EILSEQ;
448
}
449
450
memcpy(ver, skb->data, sizeof(*ver));
451
452
kfree_skb(skb);
453
454
return 0;
455
}
456
EXPORT_SYMBOL_GPL(btintel_read_version);
457
458
int btintel_version_info_tlv(struct hci_dev *hdev,
459
struct intel_version_tlv *version)
460
{
461
const char *variant;
462
463
/* The hardware platform number has a fixed value of 0x37 and
464
* for now only accept this single value.
465
*/
466
if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) {
467
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
468
INTEL_HW_PLATFORM(version->cnvi_bt));
469
return -EINVAL;
470
}
471
472
/* Check for supported iBT hardware variants of this firmware
473
* loading method.
474
*
475
* This check has been put in place to ensure correct forward
476
* compatibility options when newer hardware variants come along.
477
*/
478
switch (INTEL_HW_VARIANT(version->cnvi_bt)) {
479
case 0x17: /* TyP */
480
case 0x18: /* Slr */
481
case 0x19: /* Slr-F */
482
case 0x1b: /* Mgr */
483
case 0x1c: /* Gale Peak (GaP) */
484
case 0x1d: /* BlazarU (BzrU) */
485
case 0x1e: /* BlazarI (Bzr) */
486
case 0x1f: /* Scorpious Peak */
487
case 0x22: /* BlazarIW (BzrIW) */
488
break;
489
default:
490
bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)",
491
INTEL_HW_VARIANT(version->cnvi_bt));
492
return -EINVAL;
493
}
494
495
switch (version->img_type) {
496
case BTINTEL_IMG_BOOTLOADER:
497
variant = "Bootloader";
498
/* It is required that every single firmware fragment is acknowledged
499
* with a command complete event. If the boot parameters indicate
500
* that this bootloader does not send them, then abort the setup.
501
*/
502
if (version->limited_cce != 0x00) {
503
bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)",
504
version->limited_cce);
505
return -EINVAL;
506
}
507
508
/* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */
509
if (version->sbe_type > 0x01) {
510
bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)",
511
version->sbe_type);
512
return -EINVAL;
513
}
514
515
bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id);
516
bt_dev_info(hdev, "Secure boot is %s",
517
str_enabled_disabled(version->secure_boot));
518
bt_dev_info(hdev, "OTP lock is %s",
519
str_enabled_disabled(version->otp_lock));
520
bt_dev_info(hdev, "API lock is %s",
521
str_enabled_disabled(version->api_lock));
522
bt_dev_info(hdev, "Debug lock is %s",
523
str_enabled_disabled(version->debug_lock));
524
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
525
version->min_fw_build_nn, version->min_fw_build_cw,
526
2000 + version->min_fw_build_yy);
527
break;
528
case BTINTEL_IMG_IML:
529
variant = "Intermediate loader";
530
break;
531
case BTINTEL_IMG_OP:
532
variant = "Firmware";
533
break;
534
default:
535
bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type);
536
return -EINVAL;
537
}
538
539
coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt);
540
coredump_info.fw_build_num = version->build_num;
541
542
bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant,
543
2000 + (version->timestamp >> 8), version->timestamp & 0xff,
544
version->build_type, version->build_num);
545
if (version->img_type == BTINTEL_IMG_OP)
546
bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1);
547
548
return 0;
549
}
550
EXPORT_SYMBOL_GPL(btintel_version_info_tlv);
551
552
int btintel_parse_version_tlv(struct hci_dev *hdev,
553
struct intel_version_tlv *version,
554
struct sk_buff *skb)
555
{
556
/* Consume Command Complete Status field */
557
skb_pull(skb, 1);
558
559
/* Event parameters contain multiple TLVs. Read each of them
560
* and only keep the required data. Also, it use existing legacy
561
* version field like hw_platform, hw_variant, and fw_variant
562
* to keep the existing setup flow
563
*/
564
while (skb->len) {
565
struct intel_tlv *tlv;
566
567
/* Make sure skb has a minimum length of the header */
568
if (skb->len < sizeof(*tlv))
569
return -EINVAL;
570
571
tlv = (struct intel_tlv *)skb->data;
572
573
/* Make sure skb has a enough data */
574
if (skb->len < tlv->len + sizeof(*tlv))
575
return -EINVAL;
576
577
switch (tlv->type) {
578
case INTEL_TLV_CNVI_TOP:
579
version->cnvi_top = get_unaligned_le32(tlv->val);
580
break;
581
case INTEL_TLV_CNVR_TOP:
582
version->cnvr_top = get_unaligned_le32(tlv->val);
583
break;
584
case INTEL_TLV_CNVI_BT:
585
version->cnvi_bt = get_unaligned_le32(tlv->val);
586
break;
587
case INTEL_TLV_CNVR_BT:
588
version->cnvr_bt = get_unaligned_le32(tlv->val);
589
break;
590
case INTEL_TLV_DEV_REV_ID:
591
version->dev_rev_id = get_unaligned_le16(tlv->val);
592
break;
593
case INTEL_TLV_IMAGE_TYPE:
594
version->img_type = tlv->val[0];
595
break;
596
case INTEL_TLV_TIME_STAMP:
597
/* If image type is Operational firmware (0x03), then
598
* running FW Calendar Week and Year information can
599
* be extracted from Timestamp information
600
*/
601
version->min_fw_build_cw = tlv->val[0];
602
version->min_fw_build_yy = tlv->val[1];
603
version->timestamp = get_unaligned_le16(tlv->val);
604
break;
605
case INTEL_TLV_BUILD_TYPE:
606
version->build_type = tlv->val[0];
607
break;
608
case INTEL_TLV_BUILD_NUM:
609
/* If image type is Operational firmware (0x03), then
610
* running FW build number can be extracted from the
611
* Build information
612
*/
613
version->min_fw_build_nn = tlv->val[0];
614
version->build_num = get_unaligned_le32(tlv->val);
615
break;
616
case INTEL_TLV_SECURE_BOOT:
617
version->secure_boot = tlv->val[0];
618
break;
619
case INTEL_TLV_OTP_LOCK:
620
version->otp_lock = tlv->val[0];
621
break;
622
case INTEL_TLV_API_LOCK:
623
version->api_lock = tlv->val[0];
624
break;
625
case INTEL_TLV_DEBUG_LOCK:
626
version->debug_lock = tlv->val[0];
627
break;
628
case INTEL_TLV_MIN_FW:
629
version->min_fw_build_nn = tlv->val[0];
630
version->min_fw_build_cw = tlv->val[1];
631
version->min_fw_build_yy = tlv->val[2];
632
break;
633
case INTEL_TLV_LIMITED_CCE:
634
version->limited_cce = tlv->val[0];
635
break;
636
case INTEL_TLV_SBE_TYPE:
637
version->sbe_type = tlv->val[0];
638
break;
639
case INTEL_TLV_OTP_BDADDR:
640
memcpy(&version->otp_bd_addr, tlv->val,
641
sizeof(bdaddr_t));
642
break;
643
case INTEL_TLV_GIT_SHA1:
644
version->git_sha1 = get_unaligned_le32(tlv->val);
645
break;
646
case INTEL_TLV_FW_ID:
647
snprintf(version->fw_id, sizeof(version->fw_id),
648
"%s", tlv->val);
649
break;
650
default:
651
/* Ignore rest of information */
652
break;
653
}
654
/* consume the current tlv and move to next*/
655
skb_pull(skb, tlv->len + sizeof(*tlv));
656
}
657
658
return 0;
659
}
660
EXPORT_SYMBOL_GPL(btintel_parse_version_tlv);
661
662
static int btintel_read_version_tlv(struct hci_dev *hdev,
663
struct intel_version_tlv *version)
664
{
665
struct sk_buff *skb;
666
const u8 param[1] = { 0xFF };
667
668
if (!version)
669
return -EINVAL;
670
671
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
672
if (IS_ERR(skb)) {
673
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
674
PTR_ERR(skb));
675
return PTR_ERR(skb);
676
}
677
678
if (skb->data[0]) {
679
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
680
skb->data[0]);
681
kfree_skb(skb);
682
return -EIO;
683
}
684
685
btintel_parse_version_tlv(hdev, version, skb);
686
687
kfree_skb(skb);
688
return 0;
689
}
690
691
/* ------- REGMAP IBT SUPPORT ------- */
692
693
#define IBT_REG_MODE_8BIT 0x00
694
#define IBT_REG_MODE_16BIT 0x01
695
#define IBT_REG_MODE_32BIT 0x02
696
697
struct regmap_ibt_context {
698
struct hci_dev *hdev;
699
__u16 op_write;
700
__u16 op_read;
701
};
702
703
struct ibt_cp_reg_access {
704
__le32 addr;
705
__u8 mode;
706
__u8 len;
707
__u8 data[];
708
} __packed;
709
710
struct ibt_rp_reg_access {
711
__u8 status;
712
__le32 addr;
713
__u8 data[];
714
} __packed;
715
716
static int regmap_ibt_read(void *context, const void *addr, size_t reg_size,
717
void *val, size_t val_size)
718
{
719
struct regmap_ibt_context *ctx = context;
720
struct ibt_cp_reg_access cp;
721
struct ibt_rp_reg_access *rp;
722
struct sk_buff *skb;
723
int err = 0;
724
725
if (reg_size != sizeof(__le32))
726
return -EINVAL;
727
728
switch (val_size) {
729
case 1:
730
cp.mode = IBT_REG_MODE_8BIT;
731
break;
732
case 2:
733
cp.mode = IBT_REG_MODE_16BIT;
734
break;
735
case 4:
736
cp.mode = IBT_REG_MODE_32BIT;
737
break;
738
default:
739
return -EINVAL;
740
}
741
742
/* regmap provides a little-endian formatted addr */
743
cp.addr = *(__le32 *)addr;
744
cp.len = val_size;
745
746
bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr));
747
748
skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp,
749
HCI_CMD_TIMEOUT);
750
if (IS_ERR(skb)) {
751
err = PTR_ERR(skb);
752
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)",
753
le32_to_cpu(cp.addr), err);
754
return err;
755
}
756
757
if (skb->len != sizeof(*rp) + val_size) {
758
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len",
759
le32_to_cpu(cp.addr));
760
err = -EINVAL;
761
goto done;
762
}
763
764
rp = (struct ibt_rp_reg_access *)skb->data;
765
766
if (rp->addr != cp.addr) {
767
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr",
768
le32_to_cpu(rp->addr));
769
err = -EINVAL;
770
goto done;
771
}
772
773
memcpy(val, rp->data, val_size);
774
775
done:
776
kfree_skb(skb);
777
return err;
778
}
779
780
static int regmap_ibt_gather_write(void *context,
781
const void *addr, size_t reg_size,
782
const void *val, size_t val_size)
783
{
784
struct regmap_ibt_context *ctx = context;
785
struct ibt_cp_reg_access *cp;
786
struct sk_buff *skb;
787
int plen = sizeof(*cp) + val_size;
788
u8 mode;
789
int err = 0;
790
791
if (reg_size != sizeof(__le32))
792
return -EINVAL;
793
794
switch (val_size) {
795
case 1:
796
mode = IBT_REG_MODE_8BIT;
797
break;
798
case 2:
799
mode = IBT_REG_MODE_16BIT;
800
break;
801
case 4:
802
mode = IBT_REG_MODE_32BIT;
803
break;
804
default:
805
return -EINVAL;
806
}
807
808
cp = kmalloc(plen, GFP_KERNEL);
809
if (!cp)
810
return -ENOMEM;
811
812
/* regmap provides a little-endian formatted addr/value */
813
cp->addr = *(__le32 *)addr;
814
cp->mode = mode;
815
cp->len = val_size;
816
memcpy(&cp->data, val, val_size);
817
818
bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr));
819
820
skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT);
821
if (IS_ERR(skb)) {
822
err = PTR_ERR(skb);
823
bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)",
824
le32_to_cpu(cp->addr), err);
825
goto done;
826
}
827
kfree_skb(skb);
828
829
done:
830
kfree(cp);
831
return err;
832
}
833
834
static int regmap_ibt_write(void *context, const void *data, size_t count)
835
{
836
/* data contains register+value, since we only support 32bit addr,
837
* minimum data size is 4 bytes.
838
*/
839
if (WARN_ONCE(count < 4, "Invalid register access"))
840
return -EINVAL;
841
842
return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4);
843
}
844
845
static void regmap_ibt_free_context(void *context)
846
{
847
kfree(context);
848
}
849
850
static const struct regmap_bus regmap_ibt = {
851
.read = regmap_ibt_read,
852
.write = regmap_ibt_write,
853
.gather_write = regmap_ibt_gather_write,
854
.free_context = regmap_ibt_free_context,
855
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
856
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
857
};
858
859
/* Config is the same for all register regions */
860
static const struct regmap_config regmap_ibt_cfg = {
861
.name = "btintel_regmap",
862
.reg_bits = 32,
863
.val_bits = 32,
864
};
865
866
struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read,
867
u16 opcode_write)
868
{
869
struct regmap_ibt_context *ctx;
870
871
bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read,
872
opcode_write);
873
874
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
875
if (!ctx)
876
return ERR_PTR(-ENOMEM);
877
878
ctx->op_read = opcode_read;
879
ctx->op_write = opcode_write;
880
ctx->hdev = hdev;
881
882
return regmap_init(&hdev->dev, &regmap_ibt, ctx, &regmap_ibt_cfg);
883
}
884
EXPORT_SYMBOL_GPL(btintel_regmap_init);
885
886
int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param)
887
{
888
struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 };
889
struct sk_buff *skb;
890
891
params.boot_param = cpu_to_le32(boot_param);
892
893
skb = __hci_cmd_sync(hdev, BTINTEL_HCI_OP_RESET, sizeof(params), &params,
894
HCI_INIT_TIMEOUT);
895
if (IS_ERR(skb)) {
896
bt_dev_err(hdev, "Failed to send Intel Reset command");
897
return PTR_ERR(skb);
898
}
899
900
kfree_skb(skb);
901
902
return 0;
903
}
904
EXPORT_SYMBOL_GPL(btintel_send_intel_reset);
905
906
int btintel_read_boot_params(struct hci_dev *hdev,
907
struct intel_boot_params *params)
908
{
909
struct sk_buff *skb;
910
911
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
912
if (IS_ERR(skb)) {
913
bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
914
PTR_ERR(skb));
915
return PTR_ERR(skb);
916
}
917
918
if (skb->len != sizeof(*params)) {
919
bt_dev_err(hdev, "Intel boot parameters size mismatch");
920
kfree_skb(skb);
921
return -EILSEQ;
922
}
923
924
memcpy(params, skb->data, sizeof(*params));
925
926
kfree_skb(skb);
927
928
if (params->status) {
929
bt_dev_err(hdev, "Intel boot parameters command failed (%02x)",
930
params->status);
931
return -bt_to_errno(params->status);
932
}
933
934
bt_dev_info(hdev, "Device revision is %u",
935
le16_to_cpu(params->dev_revid));
936
937
bt_dev_info(hdev, "Secure boot is %s",
938
str_enabled_disabled(params->secure_boot));
939
940
bt_dev_info(hdev, "OTP lock is %s",
941
str_enabled_disabled(params->otp_lock));
942
943
bt_dev_info(hdev, "API lock is %s",
944
str_enabled_disabled(params->api_lock));
945
946
bt_dev_info(hdev, "Debug lock is %s",
947
str_enabled_disabled(params->debug_lock));
948
949
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
950
params->min_fw_build_nn, params->min_fw_build_cw,
951
2000 + params->min_fw_build_yy);
952
953
return 0;
954
}
955
EXPORT_SYMBOL_GPL(btintel_read_boot_params);
956
957
static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev,
958
const struct firmware *fw)
959
{
960
int err;
961
962
/* Start the firmware download transaction with the Init fragment
963
* represented by the 128 bytes of CSS header.
964
*/
965
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
966
if (err < 0) {
967
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
968
goto done;
969
}
970
971
/* Send the 256 bytes of public key information from the firmware
972
* as the PKey fragment.
973
*/
974
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
975
if (err < 0) {
976
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
977
goto done;
978
}
979
980
/* Send the 256 bytes of signature information from the firmware
981
* as the Sign fragment.
982
*/
983
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
984
if (err < 0) {
985
bt_dev_err(hdev, "Failed to send firmware signature (%d)", err);
986
goto done;
987
}
988
989
done:
990
return err;
991
}
992
993
static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev,
994
const struct firmware *fw)
995
{
996
int err;
997
998
/* Start the firmware download transaction with the Init fragment
999
* represented by the 128 bytes of CSS header.
1000
*/
1001
err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644);
1002
if (err < 0) {
1003
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
1004
return err;
1005
}
1006
1007
/* Send the 96 bytes of public key information from the firmware
1008
* as the PKey fragment.
1009
*/
1010
err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128);
1011
if (err < 0) {
1012
bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err);
1013
return err;
1014
}
1015
1016
/* Send the 96 bytes of signature information from the firmware
1017
* as the Sign fragment
1018
*/
1019
err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224);
1020
if (err < 0) {
1021
bt_dev_err(hdev, "Failed to send firmware signature (%d)",
1022
err);
1023
return err;
1024
}
1025
return 0;
1026
}
1027
1028
static int btintel_download_firmware_payload(struct hci_dev *hdev,
1029
const struct firmware *fw,
1030
size_t offset)
1031
{
1032
int err;
1033
const u8 *fw_ptr;
1034
u32 frag_len;
1035
1036
fw_ptr = fw->data + offset;
1037
frag_len = 0;
1038
err = -EINVAL;
1039
1040
while (fw_ptr - fw->data < fw->size) {
1041
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
1042
1043
frag_len += sizeof(*cmd) + cmd->plen;
1044
1045
/* The parameter length of the secure send command requires
1046
* a 4 byte alignment. It happens so that the firmware file
1047
* contains proper Intel_NOP commands to align the fragments
1048
* as needed.
1049
*
1050
* Send set of commands with 4 byte alignment from the
1051
* firmware data buffer as a single Data fragment.
1052
*/
1053
if (!(frag_len % 4)) {
1054
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
1055
if (err < 0) {
1056
bt_dev_err(hdev,
1057
"Failed to send firmware data (%d)",
1058
err);
1059
goto done;
1060
}
1061
1062
fw_ptr += frag_len;
1063
frag_len = 0;
1064
}
1065
}
1066
1067
done:
1068
return err;
1069
}
1070
1071
static bool btintel_firmware_version(struct hci_dev *hdev,
1072
u8 num, u8 ww, u8 yy,
1073
const struct firmware *fw,
1074
u32 *boot_addr)
1075
{
1076
const u8 *fw_ptr;
1077
1078
fw_ptr = fw->data;
1079
1080
while (fw_ptr - fw->data < fw->size) {
1081
struct hci_command_hdr *cmd = (void *)(fw_ptr);
1082
1083
/* Each SKU has a different reset parameter to use in the
1084
* HCI_Intel_Reset command and it is embedded in the firmware
1085
* data. So, instead of using static value per SKU, check
1086
* the firmware data and save it for later use.
1087
*/
1088
if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) {
1089
struct cmd_write_boot_params *params;
1090
1091
params = (void *)(fw_ptr + sizeof(*cmd));
1092
1093
*boot_addr = le32_to_cpu(params->boot_addr);
1094
1095
bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr);
1096
1097
bt_dev_info(hdev, "Firmware Version: %u-%u.%u",
1098
params->fw_build_num, params->fw_build_ww,
1099
params->fw_build_yy);
1100
1101
return (num == params->fw_build_num &&
1102
ww == params->fw_build_ww &&
1103
yy == params->fw_build_yy);
1104
}
1105
1106
fw_ptr += sizeof(*cmd) + cmd->plen;
1107
}
1108
1109
return false;
1110
}
1111
1112
int btintel_download_firmware(struct hci_dev *hdev,
1113
struct intel_version *ver,
1114
const struct firmware *fw,
1115
u32 *boot_param)
1116
{
1117
int err;
1118
1119
/* SfP and WsP don't seem to update the firmware version on file
1120
* so version checking is currently not possible.
1121
*/
1122
switch (ver->hw_variant) {
1123
case 0x0b: /* SfP */
1124
case 0x0c: /* WsP */
1125
/* Skip version checking */
1126
break;
1127
default:
1128
1129
/* Skip download if firmware has the same version */
1130
if (btintel_firmware_version(hdev, ver->fw_build_num,
1131
ver->fw_build_ww, ver->fw_build_yy,
1132
fw, boot_param)) {
1133
bt_dev_info(hdev, "Firmware already loaded");
1134
/* Return -EALREADY to indicate that the firmware has
1135
* already been loaded.
1136
*/
1137
return -EALREADY;
1138
}
1139
}
1140
1141
/* The firmware variant determines if the device is in bootloader
1142
* mode or is running operational firmware. The value 0x06 identifies
1143
* the bootloader and the value 0x23 identifies the operational
1144
* firmware.
1145
*
1146
* If the firmware version has changed that means it needs to be reset
1147
* to bootloader when operational so the new firmware can be loaded.
1148
*/
1149
if (ver->fw_variant == 0x23)
1150
return -EINVAL;
1151
1152
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1153
if (err)
1154
return err;
1155
1156
return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1157
}
1158
EXPORT_SYMBOL_GPL(btintel_download_firmware);
1159
1160
static int btintel_download_fw_tlv(struct hci_dev *hdev,
1161
struct intel_version_tlv *ver,
1162
const struct firmware *fw, u32 *boot_param,
1163
u8 hw_variant, u8 sbe_type)
1164
{
1165
int err;
1166
u32 css_header_ver;
1167
1168
/* Skip download if firmware has the same version */
1169
if (btintel_firmware_version(hdev, ver->min_fw_build_nn,
1170
ver->min_fw_build_cw,
1171
ver->min_fw_build_yy,
1172
fw, boot_param)) {
1173
bt_dev_info(hdev, "Firmware already loaded");
1174
/* Return -EALREADY to indicate that firmware has
1175
* already been loaded.
1176
*/
1177
return -EALREADY;
1178
}
1179
1180
/* The firmware variant determines if the device is in bootloader
1181
* mode or is running operational firmware. The value 0x01 identifies
1182
* the bootloader and the value 0x03 identifies the operational
1183
* firmware.
1184
*
1185
* If the firmware version has changed that means it needs to be reset
1186
* to bootloader when operational so the new firmware can be loaded.
1187
*/
1188
if (ver->img_type == BTINTEL_IMG_OP)
1189
return -EINVAL;
1190
1191
/* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support
1192
* only RSA secure boot engine. Hence, the corresponding sfi file will
1193
* have RSA header of 644 bytes followed by Command Buffer.
1194
*
1195
* iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA
1196
* secure boot engine. As a result, the corresponding sfi file will
1197
* have RSA header of 644, ECDSA header of 320 bytes followed by
1198
* Command Buffer.
1199
*
1200
* CSS Header byte positions 0x08 to 0x0B represent the CSS Header
1201
* version: RSA(0x00010000) , ECDSA (0x00020000)
1202
*/
1203
css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET);
1204
if (css_header_ver != 0x00010000) {
1205
bt_dev_err(hdev, "Invalid CSS Header version");
1206
return -EINVAL;
1207
}
1208
1209
if (hw_variant <= 0x14) {
1210
if (sbe_type != 0x00) {
1211
bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)",
1212
hw_variant);
1213
return -EINVAL;
1214
}
1215
1216
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1217
if (err)
1218
return err;
1219
1220
err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN);
1221
if (err)
1222
return err;
1223
} else if (hw_variant >= 0x17) {
1224
/* Check if CSS header for ECDSA follows the RSA header */
1225
if (fw->data[ECDSA_OFFSET] != 0x06)
1226
return -EINVAL;
1227
1228
/* Check if the CSS Header version is ECDSA(0x00020000) */
1229
css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET);
1230
if (css_header_ver != 0x00020000) {
1231
bt_dev_err(hdev, "Invalid CSS Header version");
1232
return -EINVAL;
1233
}
1234
1235
if (sbe_type == 0x00) {
1236
err = btintel_sfi_rsa_header_secure_send(hdev, fw);
1237
if (err)
1238
return err;
1239
1240
err = btintel_download_firmware_payload(hdev, fw,
1241
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1242
if (err)
1243
return err;
1244
} else if (sbe_type == 0x01) {
1245
err = btintel_sfi_ecdsa_header_secure_send(hdev, fw);
1246
if (err)
1247
return err;
1248
1249
err = btintel_download_firmware_payload(hdev, fw,
1250
RSA_HEADER_LEN + ECDSA_HEADER_LEN);
1251
if (err)
1252
return err;
1253
}
1254
}
1255
return 0;
1256
}
1257
1258
static void btintel_reset_to_bootloader(struct hci_dev *hdev)
1259
{
1260
struct intel_reset params;
1261
struct sk_buff *skb;
1262
1263
/* PCIe transport uses shared hardware reset mechanism for recovery
1264
* which gets triggered in pcie *setup* function on error.
1265
*/
1266
if (hdev->bus == HCI_PCI)
1267
return;
1268
1269
/* Send Intel Reset command. This will result in
1270
* re-enumeration of BT controller.
1271
*
1272
* Intel Reset parameter description:
1273
* reset_type : 0x00 (Soft reset),
1274
* 0x01 (Hard reset)
1275
* patch_enable : 0x00 (Do not enable),
1276
* 0x01 (Enable)
1277
* ddc_reload : 0x00 (Do not reload),
1278
* 0x01 (Reload)
1279
* boot_option: 0x00 (Current image),
1280
* 0x01 (Specified boot address)
1281
* boot_param: Boot address
1282
*
1283
*/
1284
1285
params.reset_type = 0x01;
1286
params.patch_enable = 0x01;
1287
params.ddc_reload = 0x01;
1288
params.boot_option = 0x00;
1289
params.boot_param = cpu_to_le32(0x00000000);
1290
1291
skb = __hci_cmd_sync(hdev, BTINTEL_HCI_OP_RESET, sizeof(params),
1292
&params, HCI_INIT_TIMEOUT);
1293
if (IS_ERR(skb)) {
1294
bt_dev_err(hdev, "FW download error recovery failed (%ld)",
1295
PTR_ERR(skb));
1296
return;
1297
}
1298
bt_dev_info(hdev, "Intel reset sent to retry FW download");
1299
kfree_skb(skb);
1300
1301
/* Current Intel BT controllers(ThP/JfP) hold the USB reset
1302
* lines for 2ms when it receives Intel Reset in bootloader mode.
1303
* Whereas, the upcoming Intel BT controllers will hold USB reset
1304
* for 150ms. To keep the delay generic, 150ms is chosen here.
1305
*/
1306
msleep(150);
1307
}
1308
1309
static int btintel_read_debug_features(struct hci_dev *hdev,
1310
struct intel_debug_features *features)
1311
{
1312
struct sk_buff *skb;
1313
u8 page_no = 1;
1314
1315
/* Intel controller supports two pages, each page is of 128-bit
1316
* feature bit mask. And each bit defines specific feature support
1317
*/
1318
skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no,
1319
HCI_INIT_TIMEOUT);
1320
if (IS_ERR(skb)) {
1321
bt_dev_err(hdev, "Reading supported features failed (%ld)",
1322
PTR_ERR(skb));
1323
return PTR_ERR(skb);
1324
}
1325
1326
if (skb->len != (sizeof(features->page1) + 3)) {
1327
bt_dev_err(hdev, "Supported features event size mismatch");
1328
kfree_skb(skb);
1329
return -EILSEQ;
1330
}
1331
1332
memcpy(features->page1, skb->data + 3, sizeof(features->page1));
1333
1334
/* Read the supported features page2 if required in future.
1335
*/
1336
kfree_skb(skb);
1337
return 0;
1338
}
1339
1340
static int btintel_set_debug_features(struct hci_dev *hdev,
1341
const struct intel_debug_features *features)
1342
{
1343
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00,
1344
0x00, 0x00, 0x00 };
1345
u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 };
1346
u8 trace_enable = 0x02;
1347
struct sk_buff *skb;
1348
1349
if (!features) {
1350
bt_dev_warn(hdev, "Debug features not read");
1351
return -EINVAL;
1352
}
1353
1354
if (!(features->page1[0] & 0x3f)) {
1355
bt_dev_info(hdev, "Telemetry exception format not supported");
1356
return 0;
1357
}
1358
1359
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1360
if (IS_ERR(skb)) {
1361
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1362
PTR_ERR(skb));
1363
return PTR_ERR(skb);
1364
}
1365
kfree_skb(skb);
1366
1367
skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT);
1368
if (IS_ERR(skb)) {
1369
bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)",
1370
PTR_ERR(skb));
1371
return PTR_ERR(skb);
1372
}
1373
kfree_skb(skb);
1374
1375
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1376
if (IS_ERR(skb)) {
1377
bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)",
1378
PTR_ERR(skb));
1379
return PTR_ERR(skb);
1380
}
1381
kfree_skb(skb);
1382
1383
bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x",
1384
trace_enable, mask[3]);
1385
1386
return 0;
1387
}
1388
1389
static int btintel_reset_debug_features(struct hci_dev *hdev,
1390
const struct intel_debug_features *features)
1391
{
1392
u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
1393
0x00, 0x00, 0x00 };
1394
u8 trace_enable = 0x00;
1395
struct sk_buff *skb;
1396
1397
if (!features) {
1398
bt_dev_warn(hdev, "Debug features not read");
1399
return -EINVAL;
1400
}
1401
1402
if (!(features->page1[0] & 0x3f)) {
1403
bt_dev_info(hdev, "Telemetry exception format not supported");
1404
return 0;
1405
}
1406
1407
/* Should stop the trace before writing ddc event mask. */
1408
skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT);
1409
if (IS_ERR(skb)) {
1410
bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)",
1411
PTR_ERR(skb));
1412
return PTR_ERR(skb);
1413
}
1414
kfree_skb(skb);
1415
1416
skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT);
1417
if (IS_ERR(skb)) {
1418
bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)",
1419
PTR_ERR(skb));
1420
return PTR_ERR(skb);
1421
}
1422
kfree_skb(skb);
1423
1424
bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x",
1425
trace_enable, mask[3]);
1426
1427
return 0;
1428
}
1429
1430
int btintel_set_quality_report(struct hci_dev *hdev, bool enable)
1431
{
1432
struct intel_debug_features features;
1433
int err;
1434
1435
bt_dev_dbg(hdev, "enable %d", enable);
1436
1437
/* Read the Intel supported features and if new exception formats
1438
* supported, need to load the additional DDC config to enable.
1439
*/
1440
err = btintel_read_debug_features(hdev, &features);
1441
if (err)
1442
return err;
1443
1444
/* Set or reset the debug features. */
1445
if (enable)
1446
err = btintel_set_debug_features(hdev, &features);
1447
else
1448
err = btintel_reset_debug_features(hdev, &features);
1449
1450
return err;
1451
}
1452
EXPORT_SYMBOL_GPL(btintel_set_quality_report);
1453
1454
static void btintel_coredump(struct hci_dev *hdev)
1455
{
1456
struct sk_buff *skb;
1457
1458
skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT);
1459
if (IS_ERR(skb)) {
1460
bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb));
1461
return;
1462
}
1463
1464
kfree_skb(skb);
1465
}
1466
1467
static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
1468
{
1469
char buf[80];
1470
1471
snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n",
1472
coredump_info.hw_variant);
1473
skb_put_data(skb, buf, strlen(buf));
1474
1475
snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n",
1476
coredump_info.fw_build_num);
1477
skb_put_data(skb, buf, strlen(buf));
1478
1479
snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name);
1480
skb_put_data(skb, buf, strlen(buf));
1481
1482
snprintf(buf, sizeof(buf), "Vendor: Intel\n");
1483
skb_put_data(skb, buf, strlen(buf));
1484
}
1485
1486
static int btintel_register_devcoredump_support(struct hci_dev *hdev)
1487
{
1488
struct intel_debug_features features;
1489
int err;
1490
1491
err = btintel_read_debug_features(hdev, &features);
1492
if (err) {
1493
bt_dev_info(hdev, "Error reading debug features");
1494
return err;
1495
}
1496
1497
if (!(features.page1[0] & 0x3f)) {
1498
bt_dev_dbg(hdev, "Telemetry exception format not supported");
1499
return -EOPNOTSUPP;
1500
}
1501
1502
hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL);
1503
1504
return err;
1505
}
1506
1507
static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev,
1508
struct intel_version *ver)
1509
{
1510
const struct firmware *fw;
1511
char fwname[64];
1512
int ret;
1513
1514
snprintf(fwname, sizeof(fwname),
1515
"intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq",
1516
ver->hw_platform, ver->hw_variant, ver->hw_revision,
1517
ver->fw_variant, ver->fw_revision, ver->fw_build_num,
1518
ver->fw_build_ww, ver->fw_build_yy);
1519
1520
ret = request_firmware(&fw, fwname, &hdev->dev);
1521
if (ret < 0) {
1522
if (ret == -EINVAL) {
1523
bt_dev_err(hdev, "Intel firmware file request failed (%d)",
1524
ret);
1525
return NULL;
1526
}
1527
1528
bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)",
1529
fwname, ret);
1530
1531
/* If the correct firmware patch file is not found, use the
1532
* default firmware patch file instead
1533
*/
1534
snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq",
1535
ver->hw_platform, ver->hw_variant);
1536
if (request_firmware(&fw, fwname, &hdev->dev) < 0) {
1537
bt_dev_err(hdev, "failed to open default fw file: %s",
1538
fwname);
1539
return NULL;
1540
}
1541
}
1542
1543
bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname);
1544
1545
return fw;
1546
}
1547
1548
static int btintel_legacy_rom_patching(struct hci_dev *hdev,
1549
const struct firmware *fw,
1550
const u8 **fw_ptr, int *disable_patch)
1551
{
1552
struct sk_buff *skb;
1553
struct hci_command_hdr *cmd;
1554
const u8 *cmd_param;
1555
struct hci_event_hdr *evt = NULL;
1556
const u8 *evt_param = NULL;
1557
int remain = fw->size - (*fw_ptr - fw->data);
1558
1559
/* The first byte indicates the types of the patch command or event.
1560
* 0x01 means HCI command and 0x02 is HCI event. If the first bytes
1561
* in the current firmware buffer doesn't start with 0x01 or
1562
* the size of remain buffer is smaller than HCI command header,
1563
* the firmware file is corrupted and it should stop the patching
1564
* process.
1565
*/
1566
if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) {
1567
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read");
1568
return -EINVAL;
1569
}
1570
(*fw_ptr)++;
1571
remain--;
1572
1573
cmd = (struct hci_command_hdr *)(*fw_ptr);
1574
*fw_ptr += sizeof(*cmd);
1575
remain -= sizeof(*cmd);
1576
1577
/* Ensure that the remain firmware data is long enough than the length
1578
* of command parameter. If not, the firmware file is corrupted.
1579
*/
1580
if (remain < cmd->plen) {
1581
bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len");
1582
return -EFAULT;
1583
}
1584
1585
/* If there is a command that loads a patch in the firmware
1586
* file, then enable the patch upon success, otherwise just
1587
* disable the manufacturer mode, for example patch activation
1588
* is not required when the default firmware patch file is used
1589
* because there are no patch data to load.
1590
*/
1591
if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e)
1592
*disable_patch = 0;
1593
1594
cmd_param = *fw_ptr;
1595
*fw_ptr += cmd->plen;
1596
remain -= cmd->plen;
1597
1598
/* This reads the expected events when the above command is sent to the
1599
* device. Some vendor commands expects more than one events, for
1600
* example command status event followed by vendor specific event.
1601
* For this case, it only keeps the last expected event. so the command
1602
* can be sent with __hci_cmd_sync_ev() which returns the sk_buff of
1603
* last expected event.
1604
*/
1605
while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) {
1606
(*fw_ptr)++;
1607
remain--;
1608
1609
evt = (struct hci_event_hdr *)(*fw_ptr);
1610
*fw_ptr += sizeof(*evt);
1611
remain -= sizeof(*evt);
1612
1613
if (remain < evt->plen) {
1614
bt_dev_err(hdev, "Intel fw corrupted: invalid evt len");
1615
return -EFAULT;
1616
}
1617
1618
evt_param = *fw_ptr;
1619
*fw_ptr += evt->plen;
1620
remain -= evt->plen;
1621
}
1622
1623
/* Every HCI commands in the firmware file has its correspond event.
1624
* If event is not found or remain is smaller than zero, the firmware
1625
* file is corrupted.
1626
*/
1627
if (!evt || !evt_param || remain < 0) {
1628
bt_dev_err(hdev, "Intel fw corrupted: invalid evt read");
1629
return -EFAULT;
1630
}
1631
1632
skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen,
1633
cmd_param, evt->evt, HCI_INIT_TIMEOUT);
1634
if (IS_ERR(skb)) {
1635
bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)",
1636
cmd->opcode, PTR_ERR(skb));
1637
return PTR_ERR(skb);
1638
}
1639
1640
/* It ensures that the returned event matches the event data read from
1641
* the firmware file. At fist, it checks the length and then
1642
* the contents of the event.
1643
*/
1644
if (skb->len != evt->plen) {
1645
bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)",
1646
le16_to_cpu(cmd->opcode));
1647
kfree_skb(skb);
1648
return -EFAULT;
1649
}
1650
1651
if (memcmp(skb->data, evt_param, evt->plen)) {
1652
bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)",
1653
le16_to_cpu(cmd->opcode));
1654
kfree_skb(skb);
1655
return -EFAULT;
1656
}
1657
kfree_skb(skb);
1658
1659
return 0;
1660
}
1661
1662
static int btintel_legacy_rom_setup(struct hci_dev *hdev,
1663
struct intel_version *ver)
1664
{
1665
const struct firmware *fw;
1666
const u8 *fw_ptr;
1667
int disable_patch, err;
1668
struct intel_version new_ver;
1669
1670
BT_DBG("%s", hdev->name);
1671
1672
/* fw_patch_num indicates the version of patch the device currently
1673
* have. If there is no patch data in the device, it is always 0x00.
1674
* So, if it is other than 0x00, no need to patch the device again.
1675
*/
1676
if (ver->fw_patch_num) {
1677
bt_dev_info(hdev,
1678
"Intel device is already patched. patch num: %02x",
1679
ver->fw_patch_num);
1680
goto complete;
1681
}
1682
1683
/* Opens the firmware patch file based on the firmware version read
1684
* from the controller. If it fails to open the matching firmware
1685
* patch file, it tries to open the default firmware patch file.
1686
* If no patch file is found, allow the device to operate without
1687
* a patch.
1688
*/
1689
fw = btintel_legacy_rom_get_fw(hdev, ver);
1690
if (!fw)
1691
goto complete;
1692
fw_ptr = fw->data;
1693
1694
/* Enable the manufacturer mode of the controller.
1695
* Only while this mode is enabled, the driver can download the
1696
* firmware patch data and configuration parameters.
1697
*/
1698
err = btintel_enter_mfg(hdev);
1699
if (err) {
1700
release_firmware(fw);
1701
return err;
1702
}
1703
1704
disable_patch = 1;
1705
1706
/* The firmware data file consists of list of Intel specific HCI
1707
* commands and its expected events. The first byte indicates the
1708
* type of the message, either HCI command or HCI event.
1709
*
1710
* It reads the command and its expected event from the firmware file,
1711
* and send to the controller. Once __hci_cmd_sync_ev() returns,
1712
* the returned event is compared with the event read from the firmware
1713
* file and it will continue until all the messages are downloaded to
1714
* the controller.
1715
*
1716
* Once the firmware patching is completed successfully,
1717
* the manufacturer mode is disabled with reset and activating the
1718
* downloaded patch.
1719
*
1720
* If the firmware patching fails, the manufacturer mode is
1721
* disabled with reset and deactivating the patch.
1722
*
1723
* If the default patch file is used, no reset is done when disabling
1724
* the manufacturer.
1725
*/
1726
while (fw->size > fw_ptr - fw->data) {
1727
int ret;
1728
1729
ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr,
1730
&disable_patch);
1731
if (ret < 0)
1732
goto exit_mfg_deactivate;
1733
}
1734
1735
release_firmware(fw);
1736
1737
if (disable_patch)
1738
goto exit_mfg_disable;
1739
1740
/* Patching completed successfully and disable the manufacturer mode
1741
* with reset and activate the downloaded firmware patches.
1742
*/
1743
err = btintel_exit_mfg(hdev, true, true);
1744
if (err)
1745
return err;
1746
1747
/* Need build number for downloaded fw patches in
1748
* every power-on boot
1749
*/
1750
err = btintel_read_version(hdev, &new_ver);
1751
if (err)
1752
return err;
1753
1754
bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated",
1755
new_ver.fw_patch_num);
1756
1757
goto complete;
1758
1759
exit_mfg_disable:
1760
/* Disable the manufacturer mode without reset */
1761
err = btintel_exit_mfg(hdev, false, false);
1762
if (err)
1763
return err;
1764
1765
bt_dev_info(hdev, "Intel firmware patch completed");
1766
1767
goto complete;
1768
1769
exit_mfg_deactivate:
1770
release_firmware(fw);
1771
1772
/* Patching failed. Disable the manufacturer mode with reset and
1773
* deactivate the downloaded firmware patches.
1774
*/
1775
err = btintel_exit_mfg(hdev, true, false);
1776
if (err)
1777
return err;
1778
1779
bt_dev_info(hdev, "Intel firmware patch completed and deactivated");
1780
1781
complete:
1782
/* Set the event mask for Intel specific vendor events. This enables
1783
* a few extra events that are useful during general operation.
1784
*/
1785
btintel_set_event_mask_mfg(hdev, false);
1786
1787
btintel_check_bdaddr(hdev);
1788
1789
return 0;
1790
}
1791
1792
static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1793
{
1794
ktime_t delta, rettime;
1795
unsigned long long duration;
1796
int err;
1797
1798
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
1799
1800
bt_dev_info(hdev, "Waiting for firmware download to complete");
1801
1802
err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING,
1803
TASK_INTERRUPTIBLE,
1804
msecs_to_jiffies(msec));
1805
if (err == -EINTR) {
1806
bt_dev_err(hdev, "Firmware loading interrupted");
1807
return err;
1808
}
1809
1810
if (err) {
1811
bt_dev_err(hdev, "Firmware loading timeout");
1812
return -ETIMEDOUT;
1813
}
1814
1815
if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) {
1816
bt_dev_err(hdev, "Firmware loading failed");
1817
return -ENOEXEC;
1818
}
1819
1820
rettime = ktime_get();
1821
delta = ktime_sub(rettime, calltime);
1822
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1823
1824
bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
1825
1826
return 0;
1827
}
1828
1829
static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec)
1830
{
1831
ktime_t delta, rettime;
1832
unsigned long long duration;
1833
int err;
1834
1835
bt_dev_info(hdev, "Waiting for device to boot");
1836
1837
err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING,
1838
TASK_INTERRUPTIBLE,
1839
msecs_to_jiffies(msec));
1840
if (err == -EINTR) {
1841
bt_dev_err(hdev, "Device boot interrupted");
1842
return -EINTR;
1843
}
1844
1845
if (err) {
1846
bt_dev_err(hdev, "Device boot timeout");
1847
return -ETIMEDOUT;
1848
}
1849
1850
rettime = ktime_get();
1851
delta = ktime_sub(rettime, calltime);
1852
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
1853
1854
bt_dev_info(hdev, "Device booted in %llu usecs", duration);
1855
1856
return 0;
1857
}
1858
1859
static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime,
1860
int msec)
1861
{
1862
ktime_t delta, rettime;
1863
unsigned long long duration;
1864
int err;
1865
1866
bt_dev_info(hdev, "Waiting for device transition to d0");
1867
1868
err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0,
1869
TASK_INTERRUPTIBLE,
1870
msecs_to_jiffies(msec));
1871
if (err == -EINTR) {
1872
bt_dev_err(hdev, "Device d0 move interrupted");
1873
return -EINTR;
1874
}
1875
1876
if (err) {
1877
bt_dev_err(hdev, "Device d0 move timeout");
1878
return -ETIMEDOUT;
1879
}
1880
1881
rettime = ktime_get();
1882
delta = ktime_sub(rettime, calltime);
1883
duration = (unsigned long long)ktime_to_ns(delta) >> 10;
1884
1885
bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration);
1886
1887
return 0;
1888
}
1889
1890
static int btintel_boot(struct hci_dev *hdev, u32 boot_addr)
1891
{
1892
ktime_t calltime;
1893
int err;
1894
1895
calltime = ktime_get();
1896
1897
btintel_set_flag(hdev, INTEL_BOOTING);
1898
btintel_set_flag(hdev, INTEL_WAIT_FOR_D0);
1899
1900
err = btintel_send_intel_reset(hdev, boot_addr);
1901
if (err) {
1902
bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err);
1903
btintel_reset_to_bootloader(hdev);
1904
return err;
1905
}
1906
1907
/* The bootloader will not indicate when the device is ready. This
1908
* is done by the operational firmware sending bootup notification.
1909
*
1910
* Booting into operational firmware should not take longer than
1911
* 5 second. However if that happens, then just fail the setup
1912
* since something went wrong.
1913
*/
1914
err = btintel_boot_wait(hdev, calltime, 5000);
1915
if (err == -ETIMEDOUT) {
1916
btintel_reset_to_bootloader(hdev);
1917
goto exit_error;
1918
}
1919
1920
if (hdev->bus == HCI_PCI) {
1921
/* In case of PCIe, after receiving bootup event, driver performs
1922
* D0 entry by writing 0 to sleep control register (check
1923
* btintel_pcie_recv_event())
1924
* Firmware acks with alive interrupt indicating host is full ready to
1925
* perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0
1926
* bit is cleared.
1927
*/
1928
calltime = ktime_get();
1929
err = btintel_boot_wait_d0(hdev, calltime, 2000);
1930
}
1931
1932
exit_error:
1933
return err;
1934
}
1935
1936
static int btintel_get_fw_name(struct intel_version *ver,
1937
struct intel_boot_params *params,
1938
char *fw_name, size_t len,
1939
const char *suffix)
1940
{
1941
switch (ver->hw_variant) {
1942
case 0x0b: /* SfP */
1943
case 0x0c: /* WsP */
1944
snprintf(fw_name, len, "intel/ibt-%u-%u.%s",
1945
ver->hw_variant,
1946
le16_to_cpu(params->dev_revid),
1947
suffix);
1948
break;
1949
case 0x11: /* JfP */
1950
case 0x12: /* ThP */
1951
case 0x13: /* HrP */
1952
case 0x14: /* CcP */
1953
snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s",
1954
ver->hw_variant,
1955
ver->hw_revision,
1956
ver->fw_revision,
1957
suffix);
1958
break;
1959
default:
1960
return -EINVAL;
1961
}
1962
1963
return 0;
1964
}
1965
1966
static int btintel_download_fw(struct hci_dev *hdev,
1967
struct intel_version *ver,
1968
struct intel_boot_params *params,
1969
u32 *boot_param)
1970
{
1971
const struct firmware *fw;
1972
char fwname[64];
1973
int err;
1974
ktime_t calltime;
1975
1976
if (!ver || !params)
1977
return -EINVAL;
1978
1979
/* The firmware variant determines if the device is in bootloader
1980
* mode or is running operational firmware. The value 0x06 identifies
1981
* the bootloader and the value 0x23 identifies the operational
1982
* firmware.
1983
*
1984
* When the operational firmware is already present, then only
1985
* the check for valid Bluetooth device address is needed. This
1986
* determines if the device will be added as configured or
1987
* unconfigured controller.
1988
*
1989
* It is not possible to use the Secure Boot Parameters in this
1990
* case since that command is only available in bootloader mode.
1991
*/
1992
if (ver->fw_variant == 0x23) {
1993
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
1994
btintel_check_bdaddr(hdev);
1995
1996
/* SfP and WsP don't seem to update the firmware version on file
1997
* so version checking is currently possible.
1998
*/
1999
switch (ver->hw_variant) {
2000
case 0x0b: /* SfP */
2001
case 0x0c: /* WsP */
2002
return 0;
2003
}
2004
2005
/* Proceed to download to check if the version matches */
2006
goto download;
2007
}
2008
2009
/* Read the secure boot parameters to identify the operating
2010
* details of the bootloader.
2011
*/
2012
err = btintel_read_boot_params(hdev, params);
2013
if (err)
2014
return err;
2015
2016
/* It is required that every single firmware fragment is acknowledged
2017
* with a command complete event. If the boot parameters indicate
2018
* that this bootloader does not send them, then abort the setup.
2019
*/
2020
if (params->limited_cce != 0x00) {
2021
bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
2022
params->limited_cce);
2023
return -EINVAL;
2024
}
2025
2026
/* If the OTP has no valid Bluetooth device address, then there will
2027
* also be no valid address for the operational firmware.
2028
*/
2029
if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
2030
bt_dev_info(hdev, "No device address configured");
2031
hci_set_quirk(hdev, HCI_QUIRK_INVALID_BDADDR);
2032
}
2033
2034
download:
2035
/* With this Intel bootloader only the hardware variant and device
2036
* revision information are used to select the right firmware for SfP
2037
* and WsP.
2038
*
2039
* The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
2040
*
2041
* Currently the supported hardware variants are:
2042
* 11 (0x0b) for iBT3.0 (LnP/SfP)
2043
* 12 (0x0c) for iBT3.5 (WsP)
2044
*
2045
* For ThP/JfP and for future SKU's, the FW name varies based on HW
2046
* variant, HW revision and FW revision, as these are dependent on CNVi
2047
* and RF Combination.
2048
*
2049
* 17 (0x11) for iBT3.5 (JfP)
2050
* 18 (0x12) for iBT3.5 (ThP)
2051
*
2052
* The firmware file name for these will be
2053
* ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
2054
*
2055
*/
2056
err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi");
2057
if (err < 0) {
2058
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2059
/* Firmware has already been loaded */
2060
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2061
return 0;
2062
}
2063
2064
bt_dev_err(hdev, "Unsupported Intel firmware naming");
2065
return -EINVAL;
2066
}
2067
2068
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2069
if (err < 0) {
2070
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2071
/* Firmware has already been loaded */
2072
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2073
return 0;
2074
}
2075
2076
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2077
fwname, err);
2078
return err;
2079
}
2080
2081
bt_dev_info(hdev, "Found device firmware: %s", fwname);
2082
2083
if (fw->size < 644) {
2084
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2085
fw->size);
2086
err = -EBADF;
2087
goto done;
2088
}
2089
2090
calltime = ktime_get();
2091
2092
btintel_set_flag(hdev, INTEL_DOWNLOADING);
2093
2094
/* Start firmware downloading and get boot parameter */
2095
err = btintel_download_firmware(hdev, ver, fw, boot_param);
2096
if (err < 0) {
2097
if (err == -EALREADY) {
2098
/* Firmware has already been loaded */
2099
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2100
err = 0;
2101
goto done;
2102
}
2103
2104
/* When FW download fails, send Intel Reset to retry
2105
* FW download.
2106
*/
2107
btintel_reset_to_bootloader(hdev);
2108
goto done;
2109
}
2110
2111
/* Before switching the device into operational mode and with that
2112
* booting the loaded firmware, wait for the bootloader notification
2113
* that all fragments have been successfully received.
2114
*
2115
* When the event processing receives the notification, then the
2116
* INTEL_DOWNLOADING flag will be cleared.
2117
*
2118
* The firmware loading should not take longer than 5 seconds
2119
* and thus just timeout if that happens and fail the setup
2120
* of this device.
2121
*/
2122
err = btintel_download_wait(hdev, calltime, 5000);
2123
if (err == -ETIMEDOUT)
2124
btintel_reset_to_bootloader(hdev);
2125
2126
done:
2127
release_firmware(fw);
2128
return err;
2129
}
2130
2131
static int btintel_bootloader_setup(struct hci_dev *hdev,
2132
struct intel_version *ver)
2133
{
2134
struct intel_version new_ver;
2135
struct intel_boot_params params;
2136
u32 boot_param;
2137
char ddcname[64];
2138
int err;
2139
2140
BT_DBG("%s", hdev->name);
2141
2142
/* Set the default boot parameter to 0x0 and it is updated to
2143
* SKU specific boot parameter after reading Intel_Write_Boot_Params
2144
* command while downloading the firmware.
2145
*/
2146
boot_param = 0x00000000;
2147
2148
btintel_set_flag(hdev, INTEL_BOOTLOADER);
2149
2150
err = btintel_download_fw(hdev, ver, &params, &boot_param);
2151
if (err)
2152
return err;
2153
2154
/* controller is already having an operational firmware */
2155
if (ver->fw_variant == 0x23)
2156
goto finish;
2157
2158
err = btintel_boot(hdev, boot_param);
2159
if (err)
2160
return err;
2161
2162
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2163
2164
err = btintel_get_fw_name(ver, &params, ddcname,
2165
sizeof(ddcname), "ddc");
2166
2167
if (err < 0) {
2168
bt_dev_err(hdev, "Unsupported Intel firmware naming");
2169
} else {
2170
/* Once the device is running in operational mode, it needs to
2171
* apply the device configuration (DDC) parameters.
2172
*
2173
* The device can work without DDC parameters, so even if it
2174
* fails to load the file, no need to fail the setup.
2175
*/
2176
btintel_load_ddc_config(hdev, ddcname);
2177
}
2178
2179
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
2180
2181
/* Read the Intel version information after loading the FW */
2182
err = btintel_read_version(hdev, &new_ver);
2183
if (err)
2184
return err;
2185
2186
btintel_version_info(hdev, &new_ver);
2187
2188
finish:
2189
/* Set the event mask for Intel specific vendor events. This enables
2190
* a few extra events that are useful during general operation. It
2191
* does not enable any debugging related events.
2192
*
2193
* The device will function correctly without these events enabled
2194
* and thus no need to fail the setup.
2195
*/
2196
btintel_set_event_mask(hdev, false);
2197
2198
return 0;
2199
}
2200
2201
static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver,
2202
char *fw_name, size_t len,
2203
const char *suffix)
2204
{
2205
const char *format;
2206
u32 cnvi, cnvr;
2207
2208
cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2209
INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2210
2211
cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2212
INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2213
2214
/* Only Blazar product supports downloading of intermediate loader
2215
* image
2216
*/
2217
if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) {
2218
u8 zero[BTINTEL_FWID_MAXLEN];
2219
2220
if (ver->img_type == BTINTEL_IMG_BOOTLOADER) {
2221
format = "intel/ibt-%04x-%04x-iml.%s";
2222
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2223
return;
2224
}
2225
2226
memset(zero, 0, sizeof(zero));
2227
2228
/* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step-fw_id> */
2229
if (memcmp(ver->fw_id, zero, sizeof(zero))) {
2230
format = "intel/ibt-%04x-%04x-%s.%s";
2231
snprintf(fw_name, len, format, cnvi, cnvr,
2232
ver->fw_id, suffix);
2233
return;
2234
}
2235
/* If firmware id is not present, fallback to legacy naming
2236
* convention
2237
*/
2238
}
2239
/* Fallback to legacy naming convention for other controllers
2240
* ibt-<cnvi_top type+cnvi_top step>-<cnvr_top type+cnvr_top step>
2241
*/
2242
format = "intel/ibt-%04x-%04x.%s";
2243
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2244
}
2245
2246
static void btintel_get_iml_tlv(const struct intel_version_tlv *ver,
2247
char *fw_name, size_t len,
2248
const char *suffix)
2249
{
2250
const char *format;
2251
u32 cnvi, cnvr;
2252
2253
cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top),
2254
INTEL_CNVX_TOP_STEP(ver->cnvi_top));
2255
2256
cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top),
2257
INTEL_CNVX_TOP_STEP(ver->cnvr_top));
2258
2259
format = "intel/ibt-%04x-%04x-iml.%s";
2260
snprintf(fw_name, len, format, cnvi, cnvr, suffix);
2261
}
2262
2263
static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev,
2264
struct intel_version_tlv *ver,
2265
u32 *boot_param)
2266
{
2267
const struct firmware *fw;
2268
char fwname[128];
2269
int err;
2270
ktime_t calltime;
2271
2272
if (!ver || !boot_param)
2273
return -EINVAL;
2274
2275
/* The firmware variant determines if the device is in bootloader
2276
* mode or is running operational firmware. The value 0x03 identifies
2277
* the bootloader and the value 0x23 identifies the operational
2278
* firmware.
2279
*
2280
* When the operational firmware is already present, then only
2281
* the check for valid Bluetooth device address is needed. This
2282
* determines if the device will be added as configured or
2283
* unconfigured controller.
2284
*
2285
* It is not possible to use the Secure Boot Parameters in this
2286
* case since that command is only available in bootloader mode.
2287
*/
2288
if (ver->img_type == BTINTEL_IMG_OP) {
2289
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
2290
btintel_check_bdaddr(hdev);
2291
} else {
2292
/*
2293
* Check for valid bd address in boot loader mode. Device
2294
* will be marked as unconfigured if empty bd address is
2295
* found.
2296
*/
2297
if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) {
2298
bt_dev_info(hdev, "No device address configured");
2299
hci_set_quirk(hdev, HCI_QUIRK_INVALID_BDADDR);
2300
}
2301
}
2302
2303
if (ver->img_type == BTINTEL_IMG_OP) {
2304
/* Controller running OP image. In case of FW downgrade,
2305
* FWID TLV may not be present and driver may attempt to load
2306
* firmware image which doesn't exist. Lets compare the version
2307
* of IML image
2308
*/
2309
if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e)
2310
btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi");
2311
else
2312
btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2313
} else {
2314
btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi");
2315
}
2316
2317
err = firmware_request_nowarn(&fw, fwname, &hdev->dev);
2318
if (err < 0) {
2319
if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
2320
/* Firmware has already been loaded */
2321
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2322
return 0;
2323
}
2324
2325
bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)",
2326
fwname, err);
2327
2328
return err;
2329
}
2330
2331
bt_dev_info(hdev, "Found device firmware: %s", fwname);
2332
2333
if (fw->size < 644) {
2334
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
2335
fw->size);
2336
err = -EBADF;
2337
goto done;
2338
}
2339
2340
calltime = ktime_get();
2341
2342
btintel_set_flag(hdev, INTEL_DOWNLOADING);
2343
2344
/* Start firmware downloading and get boot parameter */
2345
err = btintel_download_fw_tlv(hdev, ver, fw, boot_param,
2346
INTEL_HW_VARIANT(ver->cnvi_bt),
2347
ver->sbe_type);
2348
if (err < 0) {
2349
if (err == -EALREADY) {
2350
/* Firmware has already been loaded */
2351
btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED);
2352
err = 0;
2353
goto done;
2354
}
2355
2356
/* When FW download fails, send Intel Reset to retry
2357
* FW download.
2358
*/
2359
btintel_reset_to_bootloader(hdev);
2360
goto done;
2361
}
2362
2363
/* Before switching the device into operational mode and with that
2364
* booting the loaded firmware, wait for the bootloader notification
2365
* that all fragments have been successfully received.
2366
*
2367
* When the event processing receives the notification, then the
2368
* BTUSB_DOWNLOADING flag will be cleared.
2369
*
2370
* The firmware loading should not take longer than 5 seconds
2371
* and thus just timeout if that happens and fail the setup
2372
* of this device.
2373
*/
2374
err = btintel_download_wait(hdev, calltime, 5000);
2375
if (err == -ETIMEDOUT)
2376
btintel_reset_to_bootloader(hdev);
2377
2378
done:
2379
release_firmware(fw);
2380
return err;
2381
}
2382
2383
static int btintel_get_codec_config_data(struct hci_dev *hdev,
2384
__u8 link, struct bt_codec *codec,
2385
__u8 *ven_len, __u8 **ven_data)
2386
{
2387
int err = 0;
2388
2389
if (!ven_data || !ven_len)
2390
return -EINVAL;
2391
2392
*ven_len = 0;
2393
*ven_data = NULL;
2394
2395
if (link != ESCO_LINK) {
2396
bt_dev_err(hdev, "Invalid link type(%u)", link);
2397
return -EINVAL;
2398
}
2399
2400
*ven_data = kmalloc(sizeof(__u8), GFP_KERNEL);
2401
if (!*ven_data) {
2402
err = -ENOMEM;
2403
goto error;
2404
}
2405
2406
/* supports only CVSD and mSBC offload codecs */
2407
switch (codec->id) {
2408
case 0x02:
2409
**ven_data = 0x00;
2410
break;
2411
case 0x05:
2412
**ven_data = 0x01;
2413
break;
2414
default:
2415
err = -EINVAL;
2416
bt_dev_err(hdev, "Invalid codec id(%u)", codec->id);
2417
goto error;
2418
}
2419
/* codec and its capabilities are pre-defined to ids
2420
* preset id = 0x00 represents CVSD codec with sampling rate 8K
2421
* preset id = 0x01 represents mSBC codec with sampling rate 16K
2422
*/
2423
*ven_len = sizeof(__u8);
2424
return err;
2425
2426
error:
2427
kfree(*ven_data);
2428
*ven_data = NULL;
2429
return err;
2430
}
2431
2432
static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id)
2433
{
2434
/* Intel uses 1 as data path id for all the usecases */
2435
*data_path_id = 1;
2436
return 0;
2437
}
2438
2439
static int btintel_configure_offload(struct hci_dev *hdev)
2440
{
2441
struct sk_buff *skb;
2442
int err = 0;
2443
struct intel_offload_use_cases *use_cases;
2444
2445
skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT);
2446
if (IS_ERR(skb)) {
2447
bt_dev_err(hdev, "Reading offload use cases failed (%ld)",
2448
PTR_ERR(skb));
2449
return PTR_ERR(skb);
2450
}
2451
2452
if (skb->len < sizeof(*use_cases)) {
2453
err = -EIO;
2454
goto error;
2455
}
2456
2457
use_cases = (void *)skb->data;
2458
2459
if (use_cases->status) {
2460
err = -bt_to_errno(skb->data[0]);
2461
goto error;
2462
}
2463
2464
if (use_cases->preset[0] & 0x03) {
2465
hdev->get_data_path_id = btintel_get_data_path_id;
2466
hdev->get_codec_config_data = btintel_get_codec_config_data;
2467
}
2468
error:
2469
kfree_skb(skb);
2470
return err;
2471
}
2472
2473
static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver)
2474
{
2475
struct sk_buff *skb;
2476
struct hci_ppag_enable_cmd ppag_cmd;
2477
acpi_handle handle;
2478
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
2479
union acpi_object *p, *elements;
2480
u32 domain, mode;
2481
acpi_status status;
2482
2483
/* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */
2484
switch (ver->cnvr_top & 0xFFF) {
2485
case 0x504: /* Hrp2 */
2486
case 0x202: /* Jfp2 */
2487
case 0x201: /* Jfp1 */
2488
bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)",
2489
ver->cnvr_top & 0xFFF);
2490
return;
2491
}
2492
2493
handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2494
if (!handle) {
2495
bt_dev_info(hdev, "No support for BT device in ACPI firmware");
2496
return;
2497
}
2498
2499
status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer);
2500
if (ACPI_FAILURE(status)) {
2501
if (status == AE_NOT_FOUND) {
2502
bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found");
2503
return;
2504
}
2505
bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status));
2506
return;
2507
}
2508
2509
p = buffer.pointer;
2510
if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) {
2511
bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d",
2512
p->type, p->package.count);
2513
kfree(buffer.pointer);
2514
return;
2515
}
2516
2517
elements = p->package.elements;
2518
2519
/* PPAG table is located at element[1] */
2520
p = &elements[1];
2521
2522
domain = (u32)p->package.elements[0].integer.value;
2523
mode = (u32)p->package.elements[1].integer.value;
2524
kfree(buffer.pointer);
2525
2526
if (domain != 0x12) {
2527
bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware");
2528
return;
2529
}
2530
2531
/* PPAG mode
2532
* BIT 0 : 0 Disabled in EU
2533
* 1 Enabled in EU
2534
* BIT 1 : 0 Disabled in China
2535
* 1 Enabled in China
2536
*/
2537
mode &= 0x03;
2538
2539
if (!mode) {
2540
bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS");
2541
return;
2542
}
2543
2544
ppag_cmd.ppag_enable_flags = cpu_to_le32(mode);
2545
2546
skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd),
2547
&ppag_cmd, HCI_CMD_TIMEOUT);
2548
if (IS_ERR(skb)) {
2549
bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb));
2550
return;
2551
}
2552
bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode);
2553
kfree_skb(skb);
2554
}
2555
2556
static int btintel_acpi_reset_method(struct hci_dev *hdev)
2557
{
2558
int ret = 0;
2559
acpi_status status;
2560
union acpi_object *p, *ref;
2561
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2562
2563
status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer);
2564
if (ACPI_FAILURE(status)) {
2565
bt_dev_err(hdev, "Failed to run _PRR method");
2566
ret = -ENODEV;
2567
return ret;
2568
}
2569
p = buffer.pointer;
2570
2571
if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) {
2572
bt_dev_err(hdev, "Invalid arguments");
2573
ret = -EINVAL;
2574
goto exit_on_error;
2575
}
2576
2577
ref = &p->package.elements[0];
2578
if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) {
2579
bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type);
2580
ret = -EINVAL;
2581
goto exit_on_error;
2582
}
2583
2584
status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL);
2585
if (ACPI_FAILURE(status)) {
2586
bt_dev_err(hdev, "Failed to run_RST method");
2587
ret = -ENODEV;
2588
goto exit_on_error;
2589
}
2590
2591
exit_on_error:
2592
kfree(buffer.pointer);
2593
return ret;
2594
}
2595
2596
static void btintel_set_dsm_reset_method(struct hci_dev *hdev,
2597
struct intel_version_tlv *ver_tlv)
2598
{
2599
struct btintel_data *data = hci_get_priv(hdev);
2600
acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2601
u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00};
2602
union acpi_object *obj, argv4;
2603
enum {
2604
RESET_TYPE_WDISABLE2,
2605
RESET_TYPE_VSEC
2606
};
2607
2608
handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2609
2610
if (!handle) {
2611
bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware");
2612
return;
2613
}
2614
2615
if (!acpi_has_method(handle, "_PRR")) {
2616
bt_dev_err(hdev, "No support for _PRR ACPI method");
2617
return;
2618
}
2619
2620
switch (ver_tlv->cnvi_top & 0xfff) {
2621
case 0x910: /* GalePeak2 */
2622
reset_payload[2] = RESET_TYPE_VSEC;
2623
break;
2624
default:
2625
/* WDISABLE2 is the default reset method */
2626
reset_payload[2] = RESET_TYPE_WDISABLE2;
2627
2628
if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2629
BIT(DSM_SET_WDISABLE2_DELAY))) {
2630
bt_dev_err(hdev, "No dsm support to set reset delay");
2631
return;
2632
}
2633
argv4.integer.type = ACPI_TYPE_INTEGER;
2634
/* delay required to toggle BT power */
2635
argv4.integer.value = 160;
2636
obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2637
DSM_SET_WDISABLE2_DELAY, &argv4);
2638
if (!obj) {
2639
bt_dev_err(hdev, "Failed to call dsm to set reset delay");
2640
return;
2641
}
2642
ACPI_FREE(obj);
2643
}
2644
2645
bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]);
2646
2647
if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0,
2648
DSM_SET_RESET_METHOD)) {
2649
bt_dev_warn(hdev, "No support for dsm to set reset method");
2650
return;
2651
}
2652
argv4.buffer.type = ACPI_TYPE_BUFFER;
2653
argv4.buffer.length = sizeof(reset_payload);
2654
argv4.buffer.pointer = reset_payload;
2655
2656
obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0,
2657
DSM_SET_RESET_METHOD, &argv4);
2658
if (!obj) {
2659
bt_dev_err(hdev, "Failed to call dsm to set reset method");
2660
return;
2661
}
2662
ACPI_FREE(obj);
2663
data->acpi_reset_method = btintel_acpi_reset_method;
2664
}
2665
2666
#define BTINTEL_ISODATA_HANDLE_BASE 0x900
2667
2668
static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2669
{
2670
/*
2671
* Distinguish ISO data packets form ACL data packets
2672
* based on their connection handle value range.
2673
*/
2674
if (iso_capable(hdev) && hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) {
2675
__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2676
2677
if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE)
2678
return HCI_ISODATA_PKT;
2679
}
2680
2681
return hci_skb_pkt_type(skb);
2682
}
2683
2684
/*
2685
* UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms
2686
* if they have replaced the BRI (Bluetooth Radio Interface) resistor to
2687
* overcome the potential STEP errors on their designs. Based on the
2688
* configauration, bluetooth firmware shall adjust the BRI response line drive
2689
* strength. The below structure represents DSBR data.
2690
* struct {
2691
* u8 header;
2692
* u32 dsbr;
2693
* } __packed;
2694
*
2695
* header - defines revision number of the structure
2696
* dsbr - defines drive strength BRI response
2697
* bit0
2698
* 0 - instructs bluetooth firmware to use default values
2699
* 1 - instructs bluetooth firmware to override default values
2700
* bit3:1
2701
* Reserved
2702
* bit7:4
2703
* DSBR override values (only if bit0 is set. Default value is 0xF
2704
* bit31:7
2705
* Reserved
2706
* Expected values for dsbr field:
2707
* 1. 0xF1 - indicates that the resistor on board is 33 Ohm
2708
* 2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm
2709
* 3. Non existing UEFI variable or invalid (none of the above) - indicates
2710
* that the resistor on board is 10 Ohm
2711
* Even if uefi variable is not present, driver shall send 0xfc0a command to
2712
* firmware to use default values.
2713
*
2714
*/
2715
static int btintel_uefi_get_dsbr(u32 *dsbr_var)
2716
{
2717
struct btintel_dsbr {
2718
u8 header;
2719
u32 dsbr;
2720
} __packed data;
2721
2722
efi_status_t status;
2723
unsigned long data_size = sizeof(data);
2724
efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03,
2725
0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31);
2726
2727
if (!IS_ENABLED(CONFIG_EFI))
2728
return -EOPNOTSUPP;
2729
2730
if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE))
2731
return -EOPNOTSUPP;
2732
2733
status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size,
2734
&data);
2735
2736
if (status != EFI_SUCCESS || data_size != sizeof(data))
2737
return -ENXIO;
2738
2739
*dsbr_var = data.dsbr;
2740
return 0;
2741
}
2742
2743
static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver)
2744
{
2745
struct btintel_dsbr_cmd {
2746
u8 enable;
2747
u8 dsbr;
2748
} __packed;
2749
2750
struct btintel_dsbr_cmd cmd;
2751
struct sk_buff *skb;
2752
u32 dsbr, cnvi;
2753
u8 status;
2754
int err;
2755
2756
cnvi = ver->cnvi_top & 0xfff;
2757
/* DSBR command needs to be sent for,
2758
* 1. BlazarI or BlazarIW + B0 step product in IML image.
2759
* 2. Gale Peak2 or BlazarU in OP image.
2760
* 3. Scorpious Peak in IML image.
2761
*/
2762
2763
switch (cnvi) {
2764
case BTINTEL_CNVI_BLAZARI:
2765
case BTINTEL_CNVI_BLAZARIW:
2766
if (ver->img_type == BTINTEL_IMG_IML &&
2767
INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01)
2768
break;
2769
return 0;
2770
case BTINTEL_CNVI_GAP:
2771
case BTINTEL_CNVI_BLAZARU:
2772
if (ver->img_type == BTINTEL_IMG_OP &&
2773
hdev->bus == HCI_USB)
2774
break;
2775
return 0;
2776
case BTINTEL_CNVI_SCP:
2777
if (ver->img_type == BTINTEL_IMG_IML)
2778
break;
2779
return 0;
2780
default:
2781
return 0;
2782
}
2783
2784
dsbr = 0;
2785
err = btintel_uefi_get_dsbr(&dsbr);
2786
if (err < 0)
2787
bt_dev_dbg(hdev, "Error reading efi: %ls (%d)",
2788
BTINTEL_EFI_DSBR, err);
2789
2790
cmd.enable = dsbr & BIT(0);
2791
cmd.dsbr = dsbr >> 4 & 0xF;
2792
2793
bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable,
2794
cmd.dsbr);
2795
2796
skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd, HCI_CMD_TIMEOUT);
2797
if (IS_ERR(skb))
2798
return -bt_to_errno(PTR_ERR(skb));
2799
2800
status = skb->data[0];
2801
kfree_skb(skb);
2802
2803
if (status)
2804
return -bt_to_errno(status);
2805
2806
return 0;
2807
}
2808
2809
#ifdef CONFIG_ACPI
2810
static acpi_status btintel_evaluate_acpi_method(struct hci_dev *hdev,
2811
acpi_string method,
2812
union acpi_object **ptr,
2813
u8 pkg_size)
2814
{
2815
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2816
union acpi_object *p;
2817
acpi_status status;
2818
acpi_handle handle;
2819
2820
handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev));
2821
if (!handle) {
2822
bt_dev_dbg(hdev, "ACPI-BT: No ACPI support for Bluetooth device");
2823
return AE_NOT_EXIST;
2824
}
2825
2826
status = acpi_evaluate_object(handle, method, NULL, &buffer);
2827
2828
if (ACPI_FAILURE(status)) {
2829
bt_dev_dbg(hdev, "ACPI-BT: ACPI Failure: %s method: %s",
2830
acpi_format_exception(status), method);
2831
return status;
2832
}
2833
2834
p = buffer.pointer;
2835
2836
if (p->type != ACPI_TYPE_PACKAGE || p->package.count < pkg_size) {
2837
bt_dev_warn(hdev, "ACPI-BT: Invalid object type: %d or package count: %d",
2838
p->type, p->package.count);
2839
kfree(buffer.pointer);
2840
return AE_ERROR;
2841
}
2842
2843
*ptr = buffer.pointer;
2844
return 0;
2845
}
2846
2847
static union acpi_object *btintel_acpi_get_bt_pkg(union acpi_object *buffer)
2848
{
2849
union acpi_object *domain, *bt_pkg;
2850
int i;
2851
2852
for (i = 1; i < buffer->package.count; i++) {
2853
bt_pkg = &buffer->package.elements[i];
2854
domain = &bt_pkg->package.elements[0];
2855
if (domain->type == ACPI_TYPE_INTEGER &&
2856
domain->integer.value == BTINTEL_BT_DOMAIN)
2857
return bt_pkg;
2858
}
2859
return ERR_PTR(-ENOENT);
2860
}
2861
2862
static int btintel_send_sar_ddc(struct hci_dev *hdev, struct btintel_cp_ddc_write *data, u8 len)
2863
{
2864
struct sk_buff *skb;
2865
2866
skb = __hci_cmd_sync(hdev, 0xfc8b, len, data, HCI_CMD_TIMEOUT);
2867
if (IS_ERR(skb)) {
2868
bt_dev_warn(hdev, "Failed to send sar ddc id:0x%4.4x (%ld)",
2869
le16_to_cpu(data->id), PTR_ERR(skb));
2870
return PTR_ERR(skb);
2871
}
2872
kfree_skb(skb);
2873
return 0;
2874
}
2875
2876
static int btintel_send_edr(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2877
int id, struct btintel_sar_inc_pwr *sar)
2878
{
2879
cmd->len = 5;
2880
cmd->id = cpu_to_le16(id);
2881
cmd->data[0] = sar->br >> 3;
2882
cmd->data[1] = sar->edr2 >> 3;
2883
cmd->data[2] = sar->edr3 >> 3;
2884
return btintel_send_sar_ddc(hdev, cmd, 6);
2885
}
2886
2887
static int btintel_send_le(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2888
int id, struct btintel_sar_inc_pwr *sar)
2889
{
2890
cmd->len = 3;
2891
cmd->id = cpu_to_le16(id);
2892
cmd->data[0] = min3(sar->le, sar->le_lr, sar->le_2mhz) >> 3;
2893
return btintel_send_sar_ddc(hdev, cmd, 4);
2894
}
2895
2896
static int btintel_send_br(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2897
int id, struct btintel_sar_inc_pwr *sar)
2898
{
2899
cmd->len = 3;
2900
cmd->id = cpu_to_le16(id);
2901
cmd->data[0] = sar->br >> 3;
2902
return btintel_send_sar_ddc(hdev, cmd, 4);
2903
}
2904
2905
static int btintel_send_br_mutual(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2906
int id, struct btintel_sar_inc_pwr *sar)
2907
{
2908
cmd->len = 3;
2909
cmd->id = cpu_to_le16(id);
2910
cmd->data[0] = sar->br;
2911
return btintel_send_sar_ddc(hdev, cmd, 4);
2912
}
2913
2914
static int btintel_send_edr2(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2915
int id, struct btintel_sar_inc_pwr *sar)
2916
{
2917
cmd->len = 3;
2918
cmd->id = cpu_to_le16(id);
2919
cmd->data[0] = sar->edr2;
2920
return btintel_send_sar_ddc(hdev, cmd, 4);
2921
}
2922
2923
static int btintel_send_edr3(struct hci_dev *hdev, struct btintel_cp_ddc_write *cmd,
2924
int id, struct btintel_sar_inc_pwr *sar)
2925
{
2926
cmd->len = 3;
2927
cmd->id = cpu_to_le16(id);
2928
cmd->data[0] = sar->edr3;
2929
return btintel_send_sar_ddc(hdev, cmd, 4);
2930
}
2931
2932
static int btintel_set_legacy_sar(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar)
2933
{
2934
struct btintel_cp_ddc_write *cmd;
2935
u8 buffer[64];
2936
int ret;
2937
2938
cmd = (void *)buffer;
2939
ret = btintel_send_br(hdev, cmd, 0x0131, sar);
2940
if (ret)
2941
return ret;
2942
2943
ret = btintel_send_br(hdev, cmd, 0x0132, sar);
2944
if (ret)
2945
return ret;
2946
2947
ret = btintel_send_le(hdev, cmd, 0x0133, sar);
2948
if (ret)
2949
return ret;
2950
2951
ret = btintel_send_edr(hdev, cmd, 0x0137, sar);
2952
if (ret)
2953
return ret;
2954
2955
ret = btintel_send_edr(hdev, cmd, 0x0138, sar);
2956
if (ret)
2957
return ret;
2958
2959
ret = btintel_send_edr(hdev, cmd, 0x013b, sar);
2960
if (ret)
2961
return ret;
2962
2963
ret = btintel_send_edr(hdev, cmd, 0x013c, sar);
2964
2965
return ret;
2966
}
2967
2968
static int btintel_set_mutual_sar(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar)
2969
{
2970
struct btintel_cp_ddc_write *cmd;
2971
struct sk_buff *skb;
2972
u8 buffer[64];
2973
bool enable;
2974
int ret;
2975
2976
cmd = (void *)buffer;
2977
2978
cmd->len = 3;
2979
cmd->id = cpu_to_le16(0x019e);
2980
2981
if (sar->revision == BTINTEL_SAR_INC_PWR &&
2982
sar->inc_power_mode == BTINTEL_SAR_INC_PWR_SUPPORTED)
2983
cmd->data[0] = 0x01;
2984
else
2985
cmd->data[0] = 0x00;
2986
2987
ret = btintel_send_sar_ddc(hdev, cmd, 4);
2988
if (ret)
2989
return ret;
2990
2991
if (sar->revision == BTINTEL_SAR_INC_PWR &&
2992
sar->inc_power_mode == BTINTEL_SAR_INC_PWR_SUPPORTED) {
2993
cmd->len = 3;
2994
cmd->id = cpu_to_le16(0x019f);
2995
cmd->data[0] = sar->sar_2400_chain_a;
2996
2997
ret = btintel_send_sar_ddc(hdev, cmd, 4);
2998
if (ret)
2999
return ret;
3000
}
3001
3002
ret = btintel_send_br_mutual(hdev, cmd, 0x01a0, sar);
3003
if (ret)
3004
return ret;
3005
3006
ret = btintel_send_edr2(hdev, cmd, 0x01a1, sar);
3007
if (ret)
3008
return ret;
3009
3010
ret = btintel_send_edr3(hdev, cmd, 0x01a2, sar);
3011
if (ret)
3012
return ret;
3013
3014
ret = btintel_send_le(hdev, cmd, 0x01a3, sar);
3015
if (ret)
3016
return ret;
3017
3018
enable = true;
3019
skb = __hci_cmd_sync(hdev, 0xfe25, 1, &enable, HCI_CMD_TIMEOUT);
3020
if (IS_ERR(skb)) {
3021
bt_dev_warn(hdev, "Failed to send Intel SAR Enable (%ld)", PTR_ERR(skb));
3022
return PTR_ERR(skb);
3023
}
3024
3025
kfree_skb(skb);
3026
return 0;
3027
}
3028
3029
static int btintel_sar_send_to_device(struct hci_dev *hdev, struct btintel_sar_inc_pwr *sar,
3030
struct intel_version_tlv *ver)
3031
{
3032
u16 cnvi, cnvr;
3033
int ret;
3034
3035
cnvi = ver->cnvi_top & 0xfff;
3036
cnvr = ver->cnvr_top & 0xfff;
3037
3038
if (cnvi < BTINTEL_CNVI_BLAZARI && cnvr < BTINTEL_CNVR_FMP2) {
3039
bt_dev_info(hdev, "Applying legacy Bluetooth SAR");
3040
ret = btintel_set_legacy_sar(hdev, sar);
3041
} else if (cnvi == BTINTEL_CNVI_GAP || cnvr == BTINTEL_CNVR_FMP2) {
3042
bt_dev_info(hdev, "Applying mutual Bluetooth SAR");
3043
ret = btintel_set_mutual_sar(hdev, sar);
3044
} else {
3045
ret = -EOPNOTSUPP;
3046
}
3047
3048
return ret;
3049
}
3050
3051
static int btintel_acpi_set_sar(struct hci_dev *hdev, struct intel_version_tlv *ver)
3052
{
3053
union acpi_object *bt_pkg, *buffer = NULL;
3054
struct btintel_sar_inc_pwr sar;
3055
acpi_status status;
3056
u8 revision;
3057
int ret;
3058
3059
status = btintel_evaluate_acpi_method(hdev, "BRDS", &buffer, 2);
3060
if (ACPI_FAILURE(status))
3061
return -ENOENT;
3062
3063
bt_pkg = btintel_acpi_get_bt_pkg(buffer);
3064
3065
if (IS_ERR(bt_pkg)) {
3066
ret = PTR_ERR(bt_pkg);
3067
goto error;
3068
}
3069
3070
if (!bt_pkg->package.count) {
3071
ret = -EINVAL;
3072
goto error;
3073
}
3074
3075
revision = buffer->package.elements[0].integer.value;
3076
3077
if (revision > BTINTEL_SAR_INC_PWR) {
3078
bt_dev_dbg(hdev, "BT_SAR: revision: 0x%2.2x not supported", revision);
3079
ret = -EOPNOTSUPP;
3080
goto error;
3081
}
3082
3083
memset(&sar, 0, sizeof(sar));
3084
3085
if (revision == BTINTEL_SAR_LEGACY && bt_pkg->package.count == 8) {
3086
sar.revision = revision;
3087
sar.bt_sar_bios = bt_pkg->package.elements[1].integer.value;
3088
sar.br = bt_pkg->package.elements[2].integer.value;
3089
sar.edr2 = bt_pkg->package.elements[3].integer.value;
3090
sar.edr3 = bt_pkg->package.elements[4].integer.value;
3091
sar.le = bt_pkg->package.elements[5].integer.value;
3092
sar.le_2mhz = bt_pkg->package.elements[6].integer.value;
3093
sar.le_lr = bt_pkg->package.elements[7].integer.value;
3094
3095
} else if (revision == BTINTEL_SAR_INC_PWR && bt_pkg->package.count == 10) {
3096
sar.revision = revision;
3097
sar.bt_sar_bios = bt_pkg->package.elements[1].integer.value;
3098
sar.inc_power_mode = bt_pkg->package.elements[2].integer.value;
3099
sar.sar_2400_chain_a = bt_pkg->package.elements[3].integer.value;
3100
sar.br = bt_pkg->package.elements[4].integer.value;
3101
sar.edr2 = bt_pkg->package.elements[5].integer.value;
3102
sar.edr3 = bt_pkg->package.elements[6].integer.value;
3103
sar.le = bt_pkg->package.elements[7].integer.value;
3104
sar.le_2mhz = bt_pkg->package.elements[8].integer.value;
3105
sar.le_lr = bt_pkg->package.elements[9].integer.value;
3106
} else {
3107
ret = -EINVAL;
3108
goto error;
3109
}
3110
3111
/* Apply only if it is enabled in BIOS */
3112
if (sar.bt_sar_bios != 1) {
3113
bt_dev_dbg(hdev, "Bluetooth SAR is not enabled");
3114
ret = -EOPNOTSUPP;
3115
goto error;
3116
}
3117
3118
ret = btintel_sar_send_to_device(hdev, &sar, ver);
3119
error:
3120
kfree(buffer);
3121
return ret;
3122
}
3123
#endif /* CONFIG_ACPI */
3124
3125
static int btintel_set_specific_absorption_rate(struct hci_dev *hdev,
3126
struct intel_version_tlv *ver)
3127
{
3128
#ifdef CONFIG_ACPI
3129
return btintel_acpi_set_sar(hdev, ver);
3130
#endif
3131
return 0;
3132
}
3133
3134
int btintel_bootloader_setup_tlv(struct hci_dev *hdev,
3135
struct intel_version_tlv *ver)
3136
{
3137
u32 boot_param;
3138
char ddcname[64];
3139
int err;
3140
struct intel_version_tlv new_ver;
3141
3142
bt_dev_dbg(hdev, "");
3143
3144
/* Set the default boot parameter to 0x0 and it is updated to
3145
* SKU specific boot parameter after reading Intel_Write_Boot_Params
3146
* command while downloading the firmware.
3147
*/
3148
boot_param = 0x00000000;
3149
3150
/* In case of PCIe, this function might get called multiple times with
3151
* same hdev instance if there is any error on firmware download.
3152
* Need to clear stale bits of previous firmware download attempt.
3153
*/
3154
for (int i = 0; i < __INTEL_NUM_FLAGS; i++)
3155
btintel_clear_flag(hdev, i);
3156
3157
btintel_set_flag(hdev, INTEL_BOOTLOADER);
3158
3159
err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
3160
if (err)
3161
return err;
3162
3163
/* check if controller is already having an operational firmware */
3164
if (ver->img_type == BTINTEL_IMG_OP)
3165
goto finish;
3166
3167
err = btintel_boot(hdev, boot_param);
3168
if (err)
3169
return err;
3170
3171
err = btintel_read_version_tlv(hdev, ver);
3172
if (err)
3173
return err;
3174
3175
/* set drive strength of BRI response */
3176
err = btintel_set_dsbr(hdev, ver);
3177
if (err) {
3178
bt_dev_err(hdev, "Failed to send dsbr command (%d)", err);
3179
return err;
3180
}
3181
3182
/* If image type returned is BTINTEL_IMG_IML, then controller supports
3183
* intermediate loader image
3184
*/
3185
if (ver->img_type == BTINTEL_IMG_IML) {
3186
err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param);
3187
if (err)
3188
return err;
3189
3190
err = btintel_boot(hdev, boot_param);
3191
if (err)
3192
return err;
3193
}
3194
3195
btintel_clear_flag(hdev, INTEL_BOOTLOADER);
3196
3197
btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc");
3198
/* Once the device is running in operational mode, it needs to
3199
* apply the device configuration (DDC) parameters.
3200
*
3201
* The device can work without DDC parameters, so even if it
3202
* fails to load the file, no need to fail the setup.
3203
*/
3204
btintel_load_ddc_config(hdev, ddcname);
3205
3206
/* Read supported use cases and set callbacks to fetch datapath id */
3207
btintel_configure_offload(hdev);
3208
3209
hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT);
3210
3211
/* Send sar values to controller */
3212
btintel_set_specific_absorption_rate(hdev, ver);
3213
3214
/* Set PPAG feature */
3215
btintel_set_ppag(hdev, ver);
3216
3217
/* Read the Intel version information after loading the FW */
3218
err = btintel_read_version_tlv(hdev, &new_ver);
3219
if (err)
3220
return err;
3221
3222
btintel_version_info_tlv(hdev, &new_ver);
3223
3224
finish:
3225
/* Set the event mask for Intel specific vendor events. This enables
3226
* a few extra events that are useful during general operation. It
3227
* does not enable any debugging related events.
3228
*
3229
* The device will function correctly without these events enabled
3230
* and thus no need to fail the setup.
3231
*/
3232
btintel_set_event_mask(hdev, false);
3233
3234
return 0;
3235
}
3236
EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv);
3237
3238
void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant)
3239
{
3240
switch (hw_variant) {
3241
/* Legacy bootloader devices that supports MSFT Extension */
3242
case 0x11: /* JfP */
3243
case 0x12: /* ThP */
3244
case 0x13: /* HrP */
3245
case 0x14: /* CcP */
3246
/* All Intel new generation controllers support the Microsoft vendor
3247
* extension are using 0xFC1E for VsMsftOpCode.
3248
*/
3249
case 0x17:
3250
case 0x18:
3251
case 0x19:
3252
case 0x1b:
3253
case 0x1c:
3254
case 0x1d:
3255
case 0x1e:
3256
case 0x1f:
3257
case 0x22:
3258
hci_set_msft_opcode(hdev, 0xFC1E);
3259
break;
3260
default:
3261
/* Not supported */
3262
break;
3263
}
3264
}
3265
EXPORT_SYMBOL_GPL(btintel_set_msft_opcode);
3266
3267
void btintel_print_fseq_info(struct hci_dev *hdev)
3268
{
3269
struct sk_buff *skb;
3270
u8 *p;
3271
u32 val;
3272
const char *str;
3273
3274
skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT);
3275
if (IS_ERR(skb)) {
3276
bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)",
3277
PTR_ERR(skb));
3278
return;
3279
}
3280
3281
if (skb->len < (sizeof(u32) * 16 + 2)) {
3282
bt_dev_dbg(hdev, "Malformed packet of length %u received",
3283
skb->len);
3284
kfree_skb(skb);
3285
return;
3286
}
3287
3288
p = skb_pull_data(skb, 1);
3289
if (*p) {
3290
bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p);
3291
kfree_skb(skb);
3292
return;
3293
}
3294
3295
p = skb_pull_data(skb, 1);
3296
switch (*p) {
3297
case 0:
3298
str = "Success";
3299
break;
3300
case 1:
3301
str = "Fatal error";
3302
break;
3303
case 2:
3304
str = "Semaphore acquire error";
3305
break;
3306
default:
3307
str = "Unknown error";
3308
break;
3309
}
3310
3311
if (*p) {
3312
bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
3313
kfree_skb(skb);
3314
return;
3315
}
3316
3317
bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p);
3318
3319
val = get_unaligned_le32(skb_pull_data(skb, 4));
3320
bt_dev_dbg(hdev, "Reason: 0x%8.8x", val);
3321
3322
val = get_unaligned_le32(skb_pull_data(skb, 4));
3323
bt_dev_dbg(hdev, "Global version: 0x%8.8x", val);
3324
3325
val = get_unaligned_le32(skb_pull_data(skb, 4));
3326
bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val);
3327
3328
p = skb->data;
3329
skb_pull_data(skb, 4);
3330
bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
3331
p[2], p[3]);
3332
3333
p = skb->data;
3334
skb_pull_data(skb, 4);
3335
bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1],
3336
p[2], p[3]);
3337
3338
val = get_unaligned_le32(skb_pull_data(skb, 4));
3339
bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val);
3340
3341
val = get_unaligned_le32(skb_pull_data(skb, 4));
3342
bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val);
3343
3344
val = get_unaligned_le32(skb_pull_data(skb, 4));
3345
bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val);
3346
3347
val = get_unaligned_le32(skb_pull_data(skb, 4));
3348
bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val);
3349
3350
val = get_unaligned_le32(skb_pull_data(skb, 4));
3351
bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val);
3352
3353
val = get_unaligned_le32(skb_pull_data(skb, 4));
3354
bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val);
3355
3356
val = get_unaligned_le32(skb_pull_data(skb, 4));
3357
bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val);
3358
3359
val = get_unaligned_le32(skb_pull_data(skb, 4));
3360
bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val);
3361
3362
val = get_unaligned_le32(skb_pull_data(skb, 4));
3363
bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val);
3364
3365
val = get_unaligned_le32(skb_pull_data(skb, 4));
3366
bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val);
3367
3368
val = get_unaligned_le32(skb_pull_data(skb, 4));
3369
bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val);
3370
3371
val = get_unaligned_le32(skb_pull_data(skb, 4));
3372
bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val);
3373
3374
val = get_unaligned_le32(skb_pull_data(skb, 4));
3375
bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val);
3376
3377
kfree_skb(skb);
3378
}
3379
EXPORT_SYMBOL_GPL(btintel_print_fseq_info);
3380
3381
static int btintel_setup_combined(struct hci_dev *hdev)
3382
{
3383
const u8 param[1] = { 0xFF };
3384
struct intel_version ver;
3385
struct intel_version_tlv ver_tlv;
3386
struct sk_buff *skb;
3387
int err;
3388
3389
BT_DBG("%s", hdev->name);
3390
3391
/* The some controllers have a bug with the first HCI command sent to it
3392
* returning number of completed commands as zero. This would stall the
3393
* command processing in the Bluetooth core.
3394
*
3395
* As a workaround, send HCI Reset command first which will reset the
3396
* number of completed commands and allow normal command processing
3397
* from now on.
3398
*
3399
* Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe
3400
* in the SW_RFKILL ON state as a workaround of fixing LED issue during
3401
* the shutdown() procedure, and once the device is in SW_RFKILL ON
3402
* state, the only way to exit out of it is sending the HCI_Reset
3403
* command.
3404
*/
3405
if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) ||
3406
btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3407
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
3408
HCI_INIT_TIMEOUT);
3409
if (IS_ERR(skb)) {
3410
bt_dev_err(hdev,
3411
"sending initial HCI reset failed (%ld)",
3412
PTR_ERR(skb));
3413
return PTR_ERR(skb);
3414
}
3415
kfree_skb(skb);
3416
}
3417
3418
/* Starting from TyP device, the command parameter and response are
3419
* changed even though the OCF for HCI_Intel_Read_Version command
3420
* remains same. The legacy devices can handle even if the
3421
* command has a parameter and returns a correct version information.
3422
* So, it uses new format to support both legacy and new format.
3423
*/
3424
skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
3425
if (IS_ERR(skb)) {
3426
bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
3427
PTR_ERR(skb));
3428
return PTR_ERR(skb);
3429
}
3430
3431
/* Check the status */
3432
if (skb->data[0]) {
3433
bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
3434
skb->data[0]);
3435
err = -EIO;
3436
goto exit_error;
3437
}
3438
3439
/* Apply the common HCI quirks for Intel device */
3440
hci_set_quirk(hdev, HCI_QUIRK_STRICT_DUPLICATE_FILTER);
3441
hci_set_quirk(hdev, HCI_QUIRK_SIMULTANEOUS_DISCOVERY);
3442
hci_set_quirk(hdev, HCI_QUIRK_NON_PERSISTENT_DIAG);
3443
3444
/* Set up the quality report callback for Intel devices */
3445
hdev->set_quality_report = btintel_set_quality_report;
3446
3447
/* For Legacy device, check the HW platform value and size */
3448
if (skb->len == sizeof(ver) && skb->data[1] == 0x37) {
3449
bt_dev_dbg(hdev, "Read the legacy Intel version information");
3450
3451
memcpy(&ver, skb->data, sizeof(ver));
3452
3453
/* Display version information */
3454
btintel_version_info(hdev, &ver);
3455
3456
/* Check for supported iBT hardware variants of this firmware
3457
* loading method.
3458
*
3459
* This check has been put in place to ensure correct forward
3460
* compatibility options when newer hardware variants come
3461
* along.
3462
*/
3463
switch (ver.hw_variant) {
3464
case 0x07: /* WP */
3465
case 0x08: /* StP */
3466
/* Legacy ROM product */
3467
btintel_set_flag(hdev, INTEL_ROM_LEGACY);
3468
3469
/* Apply the device specific HCI quirks
3470
*
3471
* WBS for SdP - For the Legacy ROM products, only SdP
3472
* supports the WBS. But the version information is not
3473
* enough to use here because the StP2 and SdP have same
3474
* hw_variant and fw_variant. So, this flag is set by
3475
* the transport driver (btusb) based on the HW info
3476
* (idProduct)
3477
*/
3478
if (!btintel_test_flag(hdev,
3479
INTEL_ROM_LEGACY_NO_WBS_SUPPORT))
3480
hci_set_quirk(hdev,
3481
HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
3482
3483
err = btintel_legacy_rom_setup(hdev, &ver);
3484
break;
3485
case 0x0b: /* SfP */
3486
case 0x11: /* JfP */
3487
case 0x12: /* ThP */
3488
case 0x13: /* HrP */
3489
case 0x14: /* CcP */
3490
fallthrough;
3491
case 0x0c: /* WsP */
3492
/* Apply the device specific HCI quirks
3493
*
3494
* All Legacy bootloader devices support WBS
3495
*/
3496
hci_set_quirk(hdev,
3497
HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
3498
3499
/* These variants don't seem to support LE Coded PHY */
3500
hci_set_quirk(hdev, HCI_QUIRK_BROKEN_LE_CODED);
3501
3502
/* Setup MSFT Extension support */
3503
btintel_set_msft_opcode(hdev, ver.hw_variant);
3504
3505
err = btintel_bootloader_setup(hdev, &ver);
3506
btintel_register_devcoredump_support(hdev);
3507
break;
3508
default:
3509
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3510
ver.hw_variant);
3511
err = -EINVAL;
3512
}
3513
3514
hci_set_hw_info(hdev,
3515
"INTEL platform=%u variant=%u revision=%u",
3516
ver.hw_platform, ver.hw_variant,
3517
ver.hw_revision);
3518
3519
goto exit_error;
3520
}
3521
3522
/* memset ver_tlv to start with clean state as few fields are exclusive
3523
* to bootloader mode and are not populated in operational mode
3524
*/
3525
memset(&ver_tlv, 0, sizeof(ver_tlv));
3526
/* For TLV type device, parse the tlv data */
3527
err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
3528
if (err) {
3529
bt_dev_err(hdev, "Failed to parse TLV version information");
3530
goto exit_error;
3531
}
3532
3533
if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) {
3534
bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
3535
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
3536
err = -EINVAL;
3537
goto exit_error;
3538
}
3539
3540
/* Check for supported iBT hardware variants of this firmware
3541
* loading method.
3542
*
3543
* This check has been put in place to ensure correct forward
3544
* compatibility options when newer hardware variants come
3545
* along.
3546
*/
3547
switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
3548
case 0x11: /* JfP */
3549
case 0x12: /* ThP */
3550
case 0x13: /* HrP */
3551
case 0x14: /* CcP */
3552
/* Some legacy bootloader devices starting from JfP,
3553
* the operational firmware supports both old and TLV based
3554
* HCI_Intel_Read_Version command based on the command
3555
* parameter.
3556
*
3557
* For upgrading firmware case, the TLV based version cannot
3558
* be used because the firmware filename for legacy bootloader
3559
* is based on the old format.
3560
*
3561
* Also, it is not easy to convert TLV based version from the
3562
* legacy version format.
3563
*
3564
* So, as a workaround for those devices, use the legacy
3565
* HCI_Intel_Read_Version to get the version information and
3566
* run the legacy bootloader setup.
3567
*/
3568
err = btintel_read_version(hdev, &ver);
3569
if (err)
3570
break;
3571
3572
/* Apply the device specific HCI quirks
3573
*
3574
* All Legacy bootloader devices support WBS
3575
*/
3576
hci_set_quirk(hdev, HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
3577
3578
/* These variants don't seem to support LE Coded PHY */
3579
hci_set_quirk(hdev, HCI_QUIRK_BROKEN_LE_CODED);
3580
3581
/* Setup MSFT Extension support */
3582
btintel_set_msft_opcode(hdev, ver.hw_variant);
3583
3584
err = btintel_bootloader_setup(hdev, &ver);
3585
btintel_register_devcoredump_support(hdev);
3586
break;
3587
case 0x18: /* GfP2 */
3588
case 0x1c: /* GaP */
3589
/* Re-classify packet type for controllers with LE audio */
3590
hdev->classify_pkt_type = btintel_classify_pkt_type;
3591
fallthrough;
3592
case 0x17:
3593
case 0x19:
3594
case 0x1b:
3595
case 0x1d:
3596
case 0x1e:
3597
case 0x1f:
3598
case 0x22:
3599
/* Display version information of TLV type */
3600
btintel_version_info_tlv(hdev, &ver_tlv);
3601
3602
/* Apply the device specific HCI quirks for TLV based devices
3603
*
3604
* All TLV based devices support WBS
3605
*/
3606
hci_set_quirk(hdev, HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED);
3607
3608
/* Setup MSFT Extension support */
3609
btintel_set_msft_opcode(hdev,
3610
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3611
btintel_set_dsm_reset_method(hdev, &ver_tlv);
3612
3613
err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
3614
if (err)
3615
goto exit_error;
3616
3617
btintel_register_devcoredump_support(hdev);
3618
btintel_print_fseq_info(hdev);
3619
break;
3620
default:
3621
bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
3622
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3623
err = -EINVAL;
3624
break;
3625
}
3626
3627
hci_set_hw_info(hdev, "INTEL platform=%u variant=%u",
3628
INTEL_HW_PLATFORM(ver_tlv.cnvi_bt),
3629
INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
3630
3631
exit_error:
3632
kfree_skb(skb);
3633
3634
return err;
3635
}
3636
3637
int btintel_shutdown_combined(struct hci_dev *hdev)
3638
{
3639
struct sk_buff *skb;
3640
int ret;
3641
3642
/* Send HCI Reset to the controller to stop any BT activity which
3643
* were triggered. This will help to save power and maintain the
3644
* sync b/w Host and controller
3645
*/
3646
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT);
3647
if (IS_ERR(skb)) {
3648
bt_dev_err(hdev, "HCI reset during shutdown failed");
3649
return PTR_ERR(skb);
3650
}
3651
kfree_skb(skb);
3652
3653
3654
/* Some platforms have an issue with BT LED when the interface is
3655
* down or BT radio is turned off, which takes 5 seconds to BT LED
3656
* goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the
3657
* device in the RFKILL ON state which turns off the BT LED immediately.
3658
*/
3659
if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) {
3660
skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT);
3661
if (IS_ERR(skb)) {
3662
ret = PTR_ERR(skb);
3663
bt_dev_err(hdev, "turning off Intel device LED failed");
3664
return ret;
3665
}
3666
kfree_skb(skb);
3667
}
3668
3669
return 0;
3670
}
3671
EXPORT_SYMBOL_GPL(btintel_shutdown_combined);
3672
3673
int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name)
3674
{
3675
hdev->manufacturer = 2;
3676
hdev->setup = btintel_setup_combined;
3677
hdev->shutdown = btintel_shutdown_combined;
3678
hdev->hw_error = btintel_hw_error;
3679
hdev->set_diag = btintel_set_diag_combined;
3680
hdev->set_bdaddr = btintel_set_bdaddr;
3681
3682
coredump_info.driver_name = driver_name;
3683
3684
return 0;
3685
}
3686
EXPORT_SYMBOL_GPL(btintel_configure_setup);
3687
3688
static int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb)
3689
{
3690
struct intel_tlv *tlv = (void *)&skb->data[5];
3691
3692
/* The first event is always an event type TLV */
3693
if (tlv->type != INTEL_TLV_TYPE_ID)
3694
goto recv_frame;
3695
3696
switch (tlv->val[0]) {
3697
case INTEL_TLV_SYSTEM_EXCEPTION:
3698
case INTEL_TLV_FATAL_EXCEPTION:
3699
case INTEL_TLV_DEBUG_EXCEPTION:
3700
case INTEL_TLV_TEST_EXCEPTION:
3701
/* Generate devcoredump from exception */
3702
if (!hci_devcd_init(hdev, skb->len)) {
3703
hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC));
3704
hci_devcd_complete(hdev);
3705
} else {
3706
bt_dev_err(hdev, "Failed to generate devcoredump");
3707
}
3708
break;
3709
default:
3710
bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]);
3711
}
3712
3713
recv_frame:
3714
return hci_recv_frame(hdev, skb);
3715
}
3716
3717
int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
3718
{
3719
struct hci_event_hdr *hdr = (void *)skb->data;
3720
const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
3721
3722
if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
3723
hdr->plen > 0) {
3724
const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
3725
unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
3726
3727
if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
3728
switch (skb->data[2]) {
3729
case 0x02:
3730
/* When switching to the operational firmware
3731
* the device sends a vendor specific event
3732
* indicating that the bootup completed.
3733
*/
3734
btintel_bootup(hdev, ptr, len);
3735
kfree_skb(skb);
3736
return 0;
3737
case 0x06:
3738
/* When the firmware loading completes the
3739
* device sends out a vendor specific event
3740
* indicating the result of the firmware
3741
* loading.
3742
*/
3743
btintel_secure_send_result(hdev, ptr, len);
3744
kfree_skb(skb);
3745
return 0;
3746
}
3747
}
3748
3749
/* Handle all diagnostics events separately. May still call
3750
* hci_recv_frame.
3751
*/
3752
if (len >= sizeof(diagnostics_hdr) &&
3753
memcmp(&skb->data[2], diagnostics_hdr,
3754
sizeof(diagnostics_hdr)) == 0) {
3755
return btintel_diagnostics(hdev, skb);
3756
}
3757
}
3758
3759
return hci_recv_frame(hdev, skb);
3760
}
3761
EXPORT_SYMBOL_GPL(btintel_recv_event);
3762
3763
void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len)
3764
{
3765
const struct intel_bootup *evt = ptr;
3766
3767
if (len != sizeof(*evt))
3768
return;
3769
3770
if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING))
3771
btintel_wake_up_flag(hdev, INTEL_BOOTING);
3772
}
3773
EXPORT_SYMBOL_GPL(btintel_bootup);
3774
3775
void btintel_secure_send_result(struct hci_dev *hdev,
3776
const void *ptr, unsigned int len)
3777
{
3778
const struct intel_secure_send_result *evt = ptr;
3779
3780
if (len != sizeof(*evt))
3781
return;
3782
3783
if (evt->result)
3784
btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED);
3785
3786
if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) &&
3787
btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED))
3788
btintel_wake_up_flag(hdev, INTEL_DOWNLOADING);
3789
}
3790
EXPORT_SYMBOL_GPL(btintel_secure_send_result);
3791
3792
MODULE_AUTHOR("Marcel Holtmann <[email protected]>");
3793
MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION);
3794
MODULE_VERSION(VERSION);
3795
MODULE_LICENSE("GPL");
3796
MODULE_FIRMWARE("intel/ibt-11-5.sfi");
3797
MODULE_FIRMWARE("intel/ibt-11-5.ddc");
3798
MODULE_FIRMWARE("intel/ibt-12-16.sfi");
3799
MODULE_FIRMWARE("intel/ibt-12-16.ddc");
3800
3801