Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/clocksource/arm_global_timer.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* drivers/clocksource/arm_global_timer.c
4
*
5
* Copyright (C) 2013 STMicroelectronics (R&D) Limited.
6
* Author: Stuart Menefy <[email protected]>
7
* Author: Srinivas Kandagatla <[email protected]>
8
*/
9
10
#include <linux/init.h>
11
#include <linux/interrupt.h>
12
#include <linux/bitfield.h>
13
#include <linux/clocksource.h>
14
#include <linux/clockchips.h>
15
#include <linux/cpu.h>
16
#include <linux/clk.h>
17
#include <linux/delay.h>
18
#include <linux/err.h>
19
#include <linux/io.h>
20
#include <linux/of.h>
21
#include <linux/of_irq.h>
22
#include <linux/of_address.h>
23
#include <linux/sched_clock.h>
24
25
#include <asm/cputype.h>
26
27
#define GT_COUNTER0 0x00
28
#define GT_COUNTER1 0x04
29
30
#define GT_CONTROL 0x08
31
#define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */
32
#define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */
33
#define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */
34
#define GT_CONTROL_AUTO_INC BIT(3) /* banked */
35
#define GT_CONTROL_PRESCALER_MASK GENMASK(15, 8)
36
37
#define GT_INT_STATUS 0x0c
38
#define GT_INT_STATUS_EVENT_FLAG BIT(0)
39
40
#define GT_COMP0 0x10
41
#define GT_COMP1 0x14
42
#define GT_AUTO_INC 0x18
43
44
#define MAX_F_ERR 50
45
/*
46
* We are expecting to be clocked by the ARM peripheral clock.
47
*
48
* Note: it is assumed we are using a prescaler value of zero, so this is
49
* the units for all operations.
50
*/
51
static void __iomem *gt_base;
52
static struct notifier_block gt_clk_rate_change_nb;
53
static u32 gt_psv_new, gt_psv_bck;
54
static unsigned long gt_target_rate;
55
static int gt_ppi;
56
static struct clock_event_device __percpu *gt_evt;
57
58
/*
59
* To get the value from the Global Timer Counter register proceed as follows:
60
* 1. Read the upper 32-bit timer counter register
61
* 2. Read the lower 32-bit timer counter register
62
* 3. Read the upper 32-bit timer counter register again. If the value is
63
* different to the 32-bit upper value read previously, go back to step 2.
64
* Otherwise the 64-bit timer counter value is correct.
65
*/
66
static u64 notrace _gt_counter_read(void)
67
{
68
u64 counter;
69
u32 lower;
70
u32 upper, old_upper;
71
72
upper = readl_relaxed(gt_base + GT_COUNTER1);
73
do {
74
old_upper = upper;
75
lower = readl_relaxed(gt_base + GT_COUNTER0);
76
upper = readl_relaxed(gt_base + GT_COUNTER1);
77
} while (upper != old_upper);
78
79
counter = upper;
80
counter <<= 32;
81
counter |= lower;
82
return counter;
83
}
84
85
static u64 gt_counter_read(void)
86
{
87
return _gt_counter_read();
88
}
89
90
/*
91
* To ensure that updates to comparator value register do not set the
92
* Interrupt Status Register proceed as follows:
93
* 1. Clear the Comp Enable bit in the Timer Control Register.
94
* 2. Write the lower 32-bit Comparator Value Register.
95
* 3. Write the upper 32-bit Comparator Value Register.
96
* 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
97
*/
98
static void gt_compare_set(unsigned long delta, int periodic)
99
{
100
u64 counter = gt_counter_read();
101
unsigned long ctrl;
102
103
counter += delta;
104
ctrl = readl(gt_base + GT_CONTROL);
105
ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
106
GT_CONTROL_AUTO_INC);
107
ctrl |= GT_CONTROL_TIMER_ENABLE;
108
writel_relaxed(ctrl, gt_base + GT_CONTROL);
109
writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
110
writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
111
112
if (periodic) {
113
writel_relaxed(delta, gt_base + GT_AUTO_INC);
114
ctrl |= GT_CONTROL_AUTO_INC;
115
}
116
117
ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
118
writel_relaxed(ctrl, gt_base + GT_CONTROL);
119
}
120
121
static int gt_clockevent_shutdown(struct clock_event_device *evt)
122
{
123
unsigned long ctrl;
124
125
ctrl = readl(gt_base + GT_CONTROL);
126
ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
127
GT_CONTROL_AUTO_INC);
128
writel(ctrl, gt_base + GT_CONTROL);
129
return 0;
130
}
131
132
static int gt_clockevent_set_periodic(struct clock_event_device *evt)
133
{
134
gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1);
135
return 0;
136
}
137
138
static int gt_clockevent_set_next_event(unsigned long evt,
139
struct clock_event_device *unused)
140
{
141
gt_compare_set(evt, 0);
142
return 0;
143
}
144
145
static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
146
{
147
struct clock_event_device *evt = dev_id;
148
149
if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
150
GT_INT_STATUS_EVENT_FLAG))
151
return IRQ_NONE;
152
153
/**
154
* ERRATA 740657( Global Timer can send 2 interrupts for
155
* the same event in single-shot mode)
156
* Workaround:
157
* Either disable single-shot mode.
158
* Or
159
* Modify the Interrupt Handler to avoid the
160
* offending sequence. This is achieved by clearing
161
* the Global Timer flag _after_ having incremented
162
* the Comparator register value to a higher value.
163
*/
164
if (clockevent_state_oneshot(evt))
165
gt_compare_set(ULONG_MAX, 0);
166
167
writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
168
evt->event_handler(evt);
169
170
return IRQ_HANDLED;
171
}
172
173
static int gt_starting_cpu(unsigned int cpu)
174
{
175
struct clock_event_device *clk = this_cpu_ptr(gt_evt);
176
177
clk->name = "arm_global_timer";
178
clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
179
CLOCK_EVT_FEAT_PERCPU;
180
clk->set_state_shutdown = gt_clockevent_shutdown;
181
clk->set_state_periodic = gt_clockevent_set_periodic;
182
clk->set_state_oneshot = gt_clockevent_shutdown;
183
clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
184
clk->set_next_event = gt_clockevent_set_next_event;
185
clk->cpumask = cpumask_of(cpu);
186
clk->rating = 300;
187
clk->irq = gt_ppi;
188
clockevents_config_and_register(clk, gt_target_rate,
189
1, 0xffffffff);
190
enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
191
return 0;
192
}
193
194
static int gt_dying_cpu(unsigned int cpu)
195
{
196
struct clock_event_device *clk = this_cpu_ptr(gt_evt);
197
198
disable_percpu_irq(clk->irq);
199
return 0;
200
}
201
202
static u64 gt_clocksource_read(struct clocksource *cs)
203
{
204
return gt_counter_read();
205
}
206
207
static void gt_resume(struct clocksource *cs)
208
{
209
unsigned long ctrl;
210
211
ctrl = readl(gt_base + GT_CONTROL);
212
if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
213
/* re-enable timer on resume */
214
writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
215
}
216
217
static struct clocksource gt_clocksource = {
218
.name = "arm_global_timer",
219
.rating = 300,
220
.read = gt_clocksource_read,
221
.mask = CLOCKSOURCE_MASK(64),
222
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
223
.resume = gt_resume,
224
};
225
226
#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
227
static u64 notrace gt_sched_clock_read(void)
228
{
229
return _gt_counter_read();
230
}
231
#endif
232
233
static unsigned long gt_read_long(void)
234
{
235
return readl_relaxed(gt_base + GT_COUNTER0);
236
}
237
238
static struct delay_timer gt_delay_timer = {
239
.read_current_timer = gt_read_long,
240
};
241
242
static void gt_write_presc(u32 psv)
243
{
244
u32 reg;
245
246
reg = readl(gt_base + GT_CONTROL);
247
reg &= ~GT_CONTROL_PRESCALER_MASK;
248
reg |= FIELD_PREP(GT_CONTROL_PRESCALER_MASK, psv);
249
writel(reg, gt_base + GT_CONTROL);
250
}
251
252
static u32 gt_read_presc(void)
253
{
254
u32 reg;
255
256
reg = readl(gt_base + GT_CONTROL);
257
return FIELD_GET(GT_CONTROL_PRESCALER_MASK, reg);
258
}
259
260
static void __init gt_delay_timer_init(void)
261
{
262
gt_delay_timer.freq = gt_target_rate;
263
register_current_timer_delay(&gt_delay_timer);
264
}
265
266
static int __init gt_clocksource_init(unsigned int psv)
267
{
268
writel(0, gt_base + GT_CONTROL);
269
writel(0, gt_base + GT_COUNTER0);
270
writel(0, gt_base + GT_COUNTER1);
271
/* set prescaler and enable timer on all the cores */
272
writel(FIELD_PREP(GT_CONTROL_PRESCALER_MASK, psv - 1) |
273
GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
274
275
#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
276
sched_clock_register(gt_sched_clock_read, 64, gt_target_rate);
277
#endif
278
return clocksource_register_hz(&gt_clocksource, gt_target_rate);
279
}
280
281
static int gt_clk_rate_change_cb(struct notifier_block *nb,
282
unsigned long event, void *data)
283
{
284
struct clk_notifier_data *ndata = data;
285
286
switch (event) {
287
case PRE_RATE_CHANGE:
288
{
289
unsigned long psv;
290
291
psv = DIV_ROUND_CLOSEST(ndata->new_rate, gt_target_rate);
292
if (!psv ||
293
abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR)
294
return NOTIFY_BAD;
295
296
psv--;
297
298
/* prescaler within legal range? */
299
if (!FIELD_FIT(GT_CONTROL_PRESCALER_MASK, psv))
300
return NOTIFY_BAD;
301
302
/*
303
* store timer clock ctrl register so we can restore it in case
304
* of an abort.
305
*/
306
gt_psv_bck = gt_read_presc();
307
gt_psv_new = psv;
308
/* scale down: adjust divider in post-change notification */
309
if (ndata->new_rate < ndata->old_rate)
310
return NOTIFY_DONE;
311
312
/* scale up: adjust divider now - before frequency change */
313
gt_write_presc(psv);
314
break;
315
}
316
case POST_RATE_CHANGE:
317
/* scale up: pre-change notification did the adjustment */
318
if (ndata->new_rate > ndata->old_rate)
319
return NOTIFY_OK;
320
321
/* scale down: adjust divider now - after frequency change */
322
gt_write_presc(gt_psv_new);
323
break;
324
325
case ABORT_RATE_CHANGE:
326
/* we have to undo the adjustment in case we scale up */
327
if (ndata->new_rate < ndata->old_rate)
328
return NOTIFY_OK;
329
330
/* restore original register value */
331
gt_write_presc(gt_psv_bck);
332
break;
333
default:
334
return NOTIFY_DONE;
335
}
336
337
return NOTIFY_DONE;
338
}
339
340
struct gt_prescaler_config {
341
const char *compatible;
342
unsigned long prescaler;
343
};
344
345
static const struct gt_prescaler_config gt_prescaler_configs[] = {
346
/*
347
* On am43 the global timer clock is a child of the clock used for CPU
348
* OPPs, so the initial prescaler has to be compatible with all OPPs
349
* which are 300, 600, 720, 800 and 1000 with a fixed divider of 2, this
350
* gives us a GCD of 10. Initial frequency is 1000, so the prescaler is
351
* 50.
352
*/
353
{ .compatible = "ti,am43", .prescaler = 50 },
354
{ .compatible = "xlnx,zynq-7000", .prescaler = 2 },
355
{ .compatible = NULL }
356
};
357
358
static unsigned long gt_get_initial_prescaler_value(struct device_node *np)
359
{
360
const struct gt_prescaler_config *config;
361
362
if (CONFIG_ARM_GT_INITIAL_PRESCALER_VAL != 0)
363
return CONFIG_ARM_GT_INITIAL_PRESCALER_VAL;
364
365
for (config = gt_prescaler_configs; config->compatible; config++) {
366
if (of_machine_is_compatible(config->compatible))
367
return config->prescaler;
368
}
369
370
return 1;
371
}
372
373
static int __init global_timer_of_register(struct device_node *np)
374
{
375
struct clk *gt_clk;
376
static unsigned long gt_clk_rate;
377
int err;
378
unsigned long psv;
379
380
/*
381
* In A9 r2p0 the comparators for each processor with the global timer
382
* fire when the timer value is greater than or equal to. In previous
383
* revisions the comparators fired when the timer value was equal to.
384
*/
385
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
386
&& (read_cpuid_id() & 0xf0000f) < 0x200000) {
387
pr_warn("global-timer: non support for this cpu version.\n");
388
return -ENOSYS;
389
}
390
391
gt_ppi = irq_of_parse_and_map(np, 0);
392
if (!gt_ppi) {
393
pr_warn("global-timer: unable to parse irq\n");
394
return -EINVAL;
395
}
396
397
gt_base = of_iomap(np, 0);
398
if (!gt_base) {
399
pr_warn("global-timer: invalid base address\n");
400
return -ENXIO;
401
}
402
403
gt_clk = of_clk_get(np, 0);
404
if (!IS_ERR(gt_clk)) {
405
err = clk_prepare_enable(gt_clk);
406
if (err)
407
goto out_unmap;
408
} else {
409
pr_warn("global-timer: clk not found\n");
410
err = -EINVAL;
411
goto out_unmap;
412
}
413
414
psv = gt_get_initial_prescaler_value(np);
415
gt_clk_rate = clk_get_rate(gt_clk);
416
gt_target_rate = gt_clk_rate / psv;
417
gt_clk_rate_change_nb.notifier_call =
418
gt_clk_rate_change_cb;
419
err = clk_notifier_register(gt_clk, &gt_clk_rate_change_nb);
420
if (err) {
421
pr_warn("Unable to register clock notifier\n");
422
goto out_clk;
423
}
424
425
gt_evt = alloc_percpu(struct clock_event_device);
426
if (!gt_evt) {
427
pr_warn("global-timer: can't allocate memory\n");
428
err = -ENOMEM;
429
goto out_clk_nb;
430
}
431
432
err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
433
"gt", gt_evt);
434
if (err) {
435
pr_warn("global-timer: can't register interrupt %d (%d)\n",
436
gt_ppi, err);
437
goto out_free;
438
}
439
440
/* Register and immediately configure the timer on the boot CPU */
441
err = gt_clocksource_init(psv);
442
if (err)
443
goto out_irq;
444
445
err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
446
"clockevents/arm/global_timer:starting",
447
gt_starting_cpu, gt_dying_cpu);
448
if (err)
449
goto out_irq;
450
451
gt_delay_timer_init();
452
453
return 0;
454
455
out_irq:
456
free_percpu_irq(gt_ppi, gt_evt);
457
out_free:
458
free_percpu(gt_evt);
459
out_clk_nb:
460
clk_notifier_unregister(gt_clk, &gt_clk_rate_change_nb);
461
out_clk:
462
clk_disable_unprepare(gt_clk);
463
out_unmap:
464
iounmap(gt_base);
465
WARN(err, "ARM Global timer register failed (%d)\n", err);
466
467
return err;
468
}
469
470
/* Only tested on r2p2 and r3p0 */
471
TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
472
global_timer_of_register);
473
474