Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/cpufreq/cppc_cpufreq.c
29265 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* CPPC (Collaborative Processor Performance Control) driver for
4
* interfacing with the CPUfreq layer and governors. See
5
* cppc_acpi.c for CPPC specific methods.
6
*
7
* (C) Copyright 2014, 2015 Linaro Ltd.
8
* Author: Ashwin Chaugule <[email protected]>
9
*/
10
11
#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13
#include <linux/arch_topology.h>
14
#include <linux/kernel.h>
15
#include <linux/module.h>
16
#include <linux/delay.h>
17
#include <linux/cpu.h>
18
#include <linux/cpufreq.h>
19
#include <linux/irq_work.h>
20
#include <linux/kthread.h>
21
#include <linux/time.h>
22
#include <linux/vmalloc.h>
23
#include <uapi/linux/sched/types.h>
24
25
#include <linux/unaligned.h>
26
27
#include <acpi/cppc_acpi.h>
28
29
static struct cpufreq_driver cppc_cpufreq_driver;
30
31
#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
32
static enum {
33
FIE_UNSET = -1,
34
FIE_ENABLED,
35
FIE_DISABLED
36
} fie_disabled = FIE_UNSET;
37
38
module_param(fie_disabled, int, 0444);
39
MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
40
41
/* Frequency invariance support */
42
struct cppc_freq_invariance {
43
int cpu;
44
struct irq_work irq_work;
45
struct kthread_work work;
46
struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
47
struct cppc_cpudata *cpu_data;
48
};
49
50
static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
51
static struct kthread_worker *kworker_fie;
52
53
static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
54
struct cppc_perf_fb_ctrs *fb_ctrs_t1);
55
56
/**
57
* cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
58
* @work: The work item.
59
*
60
* The CPPC driver register itself with the topology core to provide its own
61
* implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
62
* gets called by the scheduler on every tick.
63
*
64
* Note that the arch specific counters have higher priority than CPPC counters,
65
* if available, though the CPPC driver doesn't need to have any special
66
* handling for that.
67
*
68
* On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
69
* reach here from hard-irq context), which then schedules a normal work item
70
* and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
71
* based on the counter updates since the last tick.
72
*/
73
static void cppc_scale_freq_workfn(struct kthread_work *work)
74
{
75
struct cppc_freq_invariance *cppc_fi;
76
struct cppc_perf_fb_ctrs fb_ctrs = {0};
77
struct cppc_cpudata *cpu_data;
78
unsigned long local_freq_scale;
79
u64 perf;
80
81
cppc_fi = container_of(work, struct cppc_freq_invariance, work);
82
cpu_data = cppc_fi->cpu_data;
83
84
if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
85
pr_warn("%s: failed to read perf counters\n", __func__);
86
return;
87
}
88
89
perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs);
90
if (!perf)
91
return;
92
93
cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
94
95
perf <<= SCHED_CAPACITY_SHIFT;
96
local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
97
98
/* This can happen due to counter's overflow */
99
if (unlikely(local_freq_scale > 1024))
100
local_freq_scale = 1024;
101
102
per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
103
}
104
105
static void cppc_irq_work(struct irq_work *irq_work)
106
{
107
struct cppc_freq_invariance *cppc_fi;
108
109
cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
110
kthread_queue_work(kworker_fie, &cppc_fi->work);
111
}
112
113
static void cppc_scale_freq_tick(void)
114
{
115
struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
116
117
/*
118
* cppc_get_perf_ctrs() can potentially sleep, call that from the right
119
* context.
120
*/
121
irq_work_queue(&cppc_fi->irq_work);
122
}
123
124
static struct scale_freq_data cppc_sftd = {
125
.source = SCALE_FREQ_SOURCE_CPPC,
126
.set_freq_scale = cppc_scale_freq_tick,
127
};
128
129
static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
130
{
131
struct cppc_freq_invariance *cppc_fi;
132
int cpu, ret;
133
134
if (fie_disabled)
135
return;
136
137
for_each_cpu(cpu, policy->cpus) {
138
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
139
cppc_fi->cpu = cpu;
140
cppc_fi->cpu_data = policy->driver_data;
141
kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
142
init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
143
144
ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
145
if (ret) {
146
pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
147
__func__, cpu, ret);
148
149
/*
150
* Don't abort if the CPU was offline while the driver
151
* was getting registered.
152
*/
153
if (cpu_online(cpu))
154
return;
155
}
156
}
157
158
/* Register for freq-invariance */
159
topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
160
}
161
162
/*
163
* We free all the resources on policy's removal and not on CPU removal as the
164
* irq-work are per-cpu and the hotplug core takes care of flushing the pending
165
* irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
166
* fires on another CPU after the concerned CPU is removed, it won't harm.
167
*
168
* We just need to make sure to remove them all on policy->exit().
169
*/
170
static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
171
{
172
struct cppc_freq_invariance *cppc_fi;
173
int cpu;
174
175
if (fie_disabled)
176
return;
177
178
/* policy->cpus will be empty here, use related_cpus instead */
179
topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
180
181
for_each_cpu(cpu, policy->related_cpus) {
182
cppc_fi = &per_cpu(cppc_freq_inv, cpu);
183
irq_work_sync(&cppc_fi->irq_work);
184
kthread_cancel_work_sync(&cppc_fi->work);
185
}
186
}
187
188
static void __init cppc_freq_invariance_init(void)
189
{
190
struct sched_attr attr = {
191
.size = sizeof(struct sched_attr),
192
.sched_policy = SCHED_DEADLINE,
193
.sched_nice = 0,
194
.sched_priority = 0,
195
/*
196
* Fake (unused) bandwidth; workaround to "fix"
197
* priority inheritance.
198
*/
199
.sched_runtime = NSEC_PER_MSEC,
200
.sched_deadline = 10 * NSEC_PER_MSEC,
201
.sched_period = 10 * NSEC_PER_MSEC,
202
};
203
int ret;
204
205
if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
206
fie_disabled = FIE_ENABLED;
207
if (cppc_perf_ctrs_in_pcc()) {
208
pr_info("FIE not enabled on systems with registers in PCC\n");
209
fie_disabled = FIE_DISABLED;
210
}
211
}
212
213
if (fie_disabled)
214
return;
215
216
kworker_fie = kthread_run_worker(0, "cppc_fie");
217
if (IS_ERR(kworker_fie)) {
218
pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
219
PTR_ERR(kworker_fie));
220
fie_disabled = FIE_DISABLED;
221
return;
222
}
223
224
ret = sched_setattr_nocheck(kworker_fie->task, &attr);
225
if (ret) {
226
pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
227
ret);
228
kthread_destroy_worker(kworker_fie);
229
fie_disabled = FIE_DISABLED;
230
}
231
}
232
233
static void cppc_freq_invariance_exit(void)
234
{
235
if (fie_disabled)
236
return;
237
238
kthread_destroy_worker(kworker_fie);
239
}
240
241
#else
242
static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
243
{
244
}
245
246
static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
247
{
248
}
249
250
static inline void cppc_freq_invariance_init(void)
251
{
252
}
253
254
static inline void cppc_freq_invariance_exit(void)
255
{
256
}
257
#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
258
259
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
260
unsigned int target_freq,
261
unsigned int relation)
262
{
263
struct cppc_cpudata *cpu_data = policy->driver_data;
264
unsigned int cpu = policy->cpu;
265
struct cpufreq_freqs freqs;
266
int ret = 0;
267
268
cpu_data->perf_ctrls.desired_perf =
269
cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
270
freqs.old = policy->cur;
271
freqs.new = target_freq;
272
273
cpufreq_freq_transition_begin(policy, &freqs);
274
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
275
cpufreq_freq_transition_end(policy, &freqs, ret != 0);
276
277
if (ret)
278
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
279
cpu, ret);
280
281
return ret;
282
}
283
284
static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
285
unsigned int target_freq)
286
{
287
struct cppc_cpudata *cpu_data = policy->driver_data;
288
unsigned int cpu = policy->cpu;
289
u32 desired_perf;
290
int ret;
291
292
desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
293
cpu_data->perf_ctrls.desired_perf = desired_perf;
294
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
295
296
if (ret) {
297
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
298
cpu, ret);
299
return 0;
300
}
301
302
return target_freq;
303
}
304
305
static int cppc_verify_policy(struct cpufreq_policy_data *policy)
306
{
307
cpufreq_verify_within_cpu_limits(policy);
308
return 0;
309
}
310
311
/*
312
* The PCC subspace describes the rate at which platform can accept commands
313
* on the shared PCC channel (including READs which do not count towards freq
314
* transition requests), so ideally we need to use the PCC values as a fallback
315
* if we don't have a platform specific transition_delay_us
316
*/
317
#ifdef CONFIG_ARM64
318
#include <asm/cputype.h>
319
320
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
321
{
322
unsigned long implementor = read_cpuid_implementor();
323
unsigned long part_num = read_cpuid_part_number();
324
325
switch (implementor) {
326
case ARM_CPU_IMP_QCOM:
327
switch (part_num) {
328
case QCOM_CPU_PART_FALKOR_V1:
329
case QCOM_CPU_PART_FALKOR:
330
return 10000;
331
}
332
}
333
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
334
}
335
#else
336
static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
337
{
338
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
339
}
340
#endif
341
342
#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
343
344
static DEFINE_PER_CPU(unsigned int, efficiency_class);
345
346
/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
347
#define CPPC_EM_CAP_STEP (20)
348
/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
349
#define CPPC_EM_COST_STEP (1)
350
/* Add a cost gap correspnding to the energy of 4 CPUs. */
351
#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
352
/ CPPC_EM_CAP_STEP)
353
354
static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
355
{
356
struct cppc_perf_caps *perf_caps;
357
unsigned int min_cap, max_cap;
358
struct cppc_cpudata *cpu_data;
359
int cpu = policy->cpu;
360
361
cpu_data = policy->driver_data;
362
perf_caps = &cpu_data->perf_caps;
363
max_cap = arch_scale_cpu_capacity(cpu);
364
min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
365
perf_caps->highest_perf);
366
if ((min_cap == 0) || (max_cap < min_cap))
367
return 0;
368
return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
369
}
370
371
/*
372
* The cost is defined as:
373
* cost = power * max_frequency / frequency
374
*/
375
static inline unsigned long compute_cost(int cpu, int step)
376
{
377
return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
378
step * CPPC_EM_COST_STEP;
379
}
380
381
static int cppc_get_cpu_power(struct device *cpu_dev,
382
unsigned long *power, unsigned long *KHz)
383
{
384
unsigned long perf_step, perf_prev, perf, perf_check;
385
unsigned int min_step, max_step, step, step_check;
386
unsigned long prev_freq = *KHz;
387
unsigned int min_cap, max_cap;
388
struct cpufreq_policy *policy;
389
390
struct cppc_perf_caps *perf_caps;
391
struct cppc_cpudata *cpu_data;
392
393
policy = cpufreq_cpu_get_raw(cpu_dev->id);
394
if (!policy)
395
return -EINVAL;
396
397
cpu_data = policy->driver_data;
398
perf_caps = &cpu_data->perf_caps;
399
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
400
min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
401
perf_caps->highest_perf);
402
perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
403
max_cap);
404
min_step = min_cap / CPPC_EM_CAP_STEP;
405
max_step = max_cap / CPPC_EM_CAP_STEP;
406
407
perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
408
step = perf_prev / perf_step;
409
410
if (step > max_step)
411
return -EINVAL;
412
413
if (min_step == max_step) {
414
step = max_step;
415
perf = perf_caps->highest_perf;
416
} else if (step < min_step) {
417
step = min_step;
418
perf = perf_caps->lowest_perf;
419
} else {
420
step++;
421
if (step == max_step)
422
perf = perf_caps->highest_perf;
423
else
424
perf = step * perf_step;
425
}
426
427
*KHz = cppc_perf_to_khz(perf_caps, perf);
428
perf_check = cppc_khz_to_perf(perf_caps, *KHz);
429
step_check = perf_check / perf_step;
430
431
/*
432
* To avoid bad integer approximation, check that new frequency value
433
* increased and that the new frequency will be converted to the
434
* desired step value.
435
*/
436
while ((*KHz == prev_freq) || (step_check != step)) {
437
perf++;
438
*KHz = cppc_perf_to_khz(perf_caps, perf);
439
perf_check = cppc_khz_to_perf(perf_caps, *KHz);
440
step_check = perf_check / perf_step;
441
}
442
443
/*
444
* With an artificial EM, only the cost value is used. Still the power
445
* is populated such as 0 < power < EM_MAX_POWER. This allows to add
446
* more sense to the artificial performance states.
447
*/
448
*power = compute_cost(cpu_dev->id, step);
449
450
return 0;
451
}
452
453
static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
454
unsigned long *cost)
455
{
456
unsigned long perf_step, perf_prev;
457
struct cppc_perf_caps *perf_caps;
458
struct cpufreq_policy *policy;
459
struct cppc_cpudata *cpu_data;
460
unsigned int max_cap;
461
int step;
462
463
policy = cpufreq_cpu_get_raw(cpu_dev->id);
464
if (!policy)
465
return -EINVAL;
466
467
cpu_data = policy->driver_data;
468
perf_caps = &cpu_data->perf_caps;
469
max_cap = arch_scale_cpu_capacity(cpu_dev->id);
470
471
perf_prev = cppc_khz_to_perf(perf_caps, KHz);
472
perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
473
step = perf_prev / perf_step;
474
475
*cost = compute_cost(cpu_dev->id, step);
476
477
return 0;
478
}
479
480
static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
481
{
482
struct cppc_cpudata *cpu_data;
483
struct em_data_callback em_cb =
484
EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
485
486
cpu_data = policy->driver_data;
487
em_dev_register_perf_domain(get_cpu_device(policy->cpu),
488
get_perf_level_count(policy), &em_cb,
489
cpu_data->shared_cpu_map, 0);
490
}
491
492
static void populate_efficiency_class(void)
493
{
494
struct acpi_madt_generic_interrupt *gicc;
495
DECLARE_BITMAP(used_classes, 256) = {};
496
int class, cpu, index;
497
498
for_each_possible_cpu(cpu) {
499
gicc = acpi_cpu_get_madt_gicc(cpu);
500
class = gicc->efficiency_class;
501
bitmap_set(used_classes, class, 1);
502
}
503
504
if (bitmap_weight(used_classes, 256) <= 1) {
505
pr_debug("Efficiency classes are all equal (=%d). "
506
"No EM registered", class);
507
return;
508
}
509
510
/*
511
* Squeeze efficiency class values on [0:#efficiency_class-1].
512
* Values are per spec in [0:255].
513
*/
514
index = 0;
515
for_each_set_bit(class, used_classes, 256) {
516
for_each_possible_cpu(cpu) {
517
gicc = acpi_cpu_get_madt_gicc(cpu);
518
if (gicc->efficiency_class == class)
519
per_cpu(efficiency_class, cpu) = index;
520
}
521
index++;
522
}
523
cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
524
}
525
526
#else
527
static void populate_efficiency_class(void)
528
{
529
}
530
#endif
531
532
static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
533
{
534
struct cppc_cpudata *cpu_data;
535
int ret;
536
537
cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
538
if (!cpu_data)
539
goto out;
540
541
if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
542
goto free_cpu;
543
544
ret = acpi_get_psd_map(cpu, cpu_data);
545
if (ret) {
546
pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
547
goto free_mask;
548
}
549
550
ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
551
if (ret) {
552
pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
553
goto free_mask;
554
}
555
556
return cpu_data;
557
558
free_mask:
559
free_cpumask_var(cpu_data->shared_cpu_map);
560
free_cpu:
561
kfree(cpu_data);
562
out:
563
return NULL;
564
}
565
566
static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
567
{
568
struct cppc_cpudata *cpu_data = policy->driver_data;
569
570
free_cpumask_var(cpu_data->shared_cpu_map);
571
kfree(cpu_data);
572
policy->driver_data = NULL;
573
}
574
575
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
576
{
577
unsigned int cpu = policy->cpu;
578
struct cppc_cpudata *cpu_data;
579
struct cppc_perf_caps *caps;
580
int ret;
581
582
cpu_data = cppc_cpufreq_get_cpu_data(cpu);
583
if (!cpu_data) {
584
pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
585
return -ENODEV;
586
}
587
caps = &cpu_data->perf_caps;
588
policy->driver_data = cpu_data;
589
590
/*
591
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see
592
* Section 8.4.7.1.1.5 of ACPI 6.1 spec)
593
*/
594
policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
595
policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ?
596
caps->highest_perf : caps->nominal_perf);
597
598
/*
599
* Set cpuinfo.min_freq to Lowest to make the full range of performance
600
* available if userspace wants to use any perf between lowest & lowest
601
* nonlinear perf
602
*/
603
policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
604
policy->cpuinfo.max_freq = policy->max;
605
606
policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
607
policy->shared_type = cpu_data->shared_type;
608
609
switch (policy->shared_type) {
610
case CPUFREQ_SHARED_TYPE_HW:
611
case CPUFREQ_SHARED_TYPE_NONE:
612
/* Nothing to be done - we'll have a policy for each CPU */
613
break;
614
case CPUFREQ_SHARED_TYPE_ANY:
615
/*
616
* All CPUs in the domain will share a policy and all cpufreq
617
* operations will use a single cppc_cpudata structure stored
618
* in policy->driver_data.
619
*/
620
cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
621
break;
622
default:
623
pr_debug("Unsupported CPU co-ord type: %d\n",
624
policy->shared_type);
625
ret = -EFAULT;
626
goto out;
627
}
628
629
policy->fast_switch_possible = cppc_allow_fast_switch();
630
policy->dvfs_possible_from_any_cpu = true;
631
632
/*
633
* If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
634
* is supported.
635
*/
636
if (caps->highest_perf > caps->nominal_perf)
637
policy->boost_supported = true;
638
639
/* Set policy->cur to max now. The governors will adjust later. */
640
policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
641
cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
642
643
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
644
if (ret) {
645
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
646
caps->highest_perf, cpu, ret);
647
goto out;
648
}
649
650
cppc_cpufreq_cpu_fie_init(policy);
651
return 0;
652
653
out:
654
cppc_cpufreq_put_cpu_data(policy);
655
return ret;
656
}
657
658
static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
659
{
660
struct cppc_cpudata *cpu_data = policy->driver_data;
661
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
662
unsigned int cpu = policy->cpu;
663
int ret;
664
665
cppc_cpufreq_cpu_fie_exit(policy);
666
667
cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
668
669
ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
670
if (ret)
671
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
672
caps->lowest_perf, cpu, ret);
673
674
cppc_cpufreq_put_cpu_data(policy);
675
}
676
677
static inline u64 get_delta(u64 t1, u64 t0)
678
{
679
if (t1 > t0 || t0 > ~(u32)0)
680
return t1 - t0;
681
682
return (u32)t1 - (u32)t0;
683
}
684
685
static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0,
686
struct cppc_perf_fb_ctrs *fb_ctrs_t1)
687
{
688
u64 delta_reference, delta_delivered;
689
u64 reference_perf;
690
691
reference_perf = fb_ctrs_t0->reference_perf;
692
693
delta_reference = get_delta(fb_ctrs_t1->reference,
694
fb_ctrs_t0->reference);
695
delta_delivered = get_delta(fb_ctrs_t1->delivered,
696
fb_ctrs_t0->delivered);
697
698
/*
699
* Avoid divide-by zero and unchanged feedback counters.
700
* Leave it for callers to handle.
701
*/
702
if (!delta_reference || !delta_delivered)
703
return 0;
704
705
return (reference_perf * delta_delivered) / delta_reference;
706
}
707
708
static int cppc_get_perf_ctrs_sample(int cpu,
709
struct cppc_perf_fb_ctrs *fb_ctrs_t0,
710
struct cppc_perf_fb_ctrs *fb_ctrs_t1)
711
{
712
int ret;
713
714
ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
715
if (ret)
716
return ret;
717
718
udelay(2); /* 2usec delay between sampling */
719
720
return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
721
}
722
723
static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
724
{
725
struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
726
struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
727
struct cppc_cpudata *cpu_data;
728
u64 delivered_perf;
729
int ret;
730
731
if (!policy)
732
return 0;
733
734
cpu_data = policy->driver_data;
735
736
ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
737
if (ret) {
738
if (ret == -EFAULT)
739
/* Any of the associated CPPC regs is 0. */
740
goto out_invalid_counters;
741
else
742
return 0;
743
}
744
745
delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1);
746
if (!delivered_perf)
747
goto out_invalid_counters;
748
749
return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
750
751
out_invalid_counters:
752
/*
753
* Feedback counters could be unchanged or 0 when a cpu enters a
754
* low-power idle state, e.g. clock-gated or power-gated.
755
* Use desired perf for reflecting frequency. Get the latest register
756
* value first as some platforms may update the actual delivered perf
757
* there; if failed, resort to the cached desired perf.
758
*/
759
if (cppc_get_desired_perf(cpu, &delivered_perf))
760
delivered_perf = cpu_data->perf_ctrls.desired_perf;
761
762
return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
763
}
764
765
static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
766
{
767
struct cppc_cpudata *cpu_data = policy->driver_data;
768
struct cppc_perf_caps *caps = &cpu_data->perf_caps;
769
int ret;
770
771
if (state)
772
policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
773
else
774
policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
775
policy->cpuinfo.max_freq = policy->max;
776
777
ret = freq_qos_update_request(policy->max_freq_req, policy->max);
778
if (ret < 0)
779
return ret;
780
781
return 0;
782
}
783
784
static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
785
{
786
struct cppc_cpudata *cpu_data = policy->driver_data;
787
788
return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
789
}
790
791
static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf)
792
{
793
bool val;
794
int ret;
795
796
ret = cppc_get_auto_sel(policy->cpu, &val);
797
798
/* show "<unsupported>" when this register is not supported by cpc */
799
if (ret == -EOPNOTSUPP)
800
return sysfs_emit(buf, "<unsupported>\n");
801
802
if (ret)
803
return ret;
804
805
return sysfs_emit(buf, "%d\n", val);
806
}
807
808
static ssize_t store_auto_select(struct cpufreq_policy *policy,
809
const char *buf, size_t count)
810
{
811
bool val;
812
int ret;
813
814
ret = kstrtobool(buf, &val);
815
if (ret)
816
return ret;
817
818
ret = cppc_set_auto_sel(policy->cpu, val);
819
if (ret)
820
return ret;
821
822
return count;
823
}
824
825
static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf)
826
{
827
u64 val;
828
int ret;
829
830
ret = cppc_get_auto_act_window(policy->cpu, &val);
831
832
/* show "<unsupported>" when this register is not supported by cpc */
833
if (ret == -EOPNOTSUPP)
834
return sysfs_emit(buf, "<unsupported>\n");
835
836
if (ret)
837
return ret;
838
839
return sysfs_emit(buf, "%llu\n", val);
840
}
841
842
static ssize_t store_auto_act_window(struct cpufreq_policy *policy,
843
const char *buf, size_t count)
844
{
845
u64 usec;
846
int ret;
847
848
ret = kstrtou64(buf, 0, &usec);
849
if (ret)
850
return ret;
851
852
ret = cppc_set_auto_act_window(policy->cpu, usec);
853
if (ret)
854
return ret;
855
856
return count;
857
}
858
859
static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf)
860
{
861
u64 val;
862
int ret;
863
864
ret = cppc_get_epp_perf(policy->cpu, &val);
865
866
/* show "<unsupported>" when this register is not supported by cpc */
867
if (ret == -EOPNOTSUPP)
868
return sysfs_emit(buf, "<unsupported>\n");
869
870
if (ret)
871
return ret;
872
873
return sysfs_emit(buf, "%llu\n", val);
874
}
875
876
static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy,
877
const char *buf, size_t count)
878
{
879
u64 val;
880
int ret;
881
882
ret = kstrtou64(buf, 0, &val);
883
if (ret)
884
return ret;
885
886
ret = cppc_set_epp(policy->cpu, val);
887
if (ret)
888
return ret;
889
890
return count;
891
}
892
893
cpufreq_freq_attr_ro(freqdomain_cpus);
894
cpufreq_freq_attr_rw(auto_select);
895
cpufreq_freq_attr_rw(auto_act_window);
896
cpufreq_freq_attr_rw(energy_performance_preference_val);
897
898
static struct freq_attr *cppc_cpufreq_attr[] = {
899
&freqdomain_cpus,
900
&auto_select,
901
&auto_act_window,
902
&energy_performance_preference_val,
903
NULL,
904
};
905
906
static struct cpufreq_driver cppc_cpufreq_driver = {
907
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
908
.verify = cppc_verify_policy,
909
.target = cppc_cpufreq_set_target,
910
.get = cppc_cpufreq_get_rate,
911
.fast_switch = cppc_cpufreq_fast_switch,
912
.init = cppc_cpufreq_cpu_init,
913
.exit = cppc_cpufreq_cpu_exit,
914
.set_boost = cppc_cpufreq_set_boost,
915
.attr = cppc_cpufreq_attr,
916
.name = "cppc_cpufreq",
917
};
918
919
static int __init cppc_cpufreq_init(void)
920
{
921
int ret;
922
923
if (!acpi_cpc_valid())
924
return -ENODEV;
925
926
cppc_freq_invariance_init();
927
populate_efficiency_class();
928
929
ret = cpufreq_register_driver(&cppc_cpufreq_driver);
930
if (ret)
931
cppc_freq_invariance_exit();
932
933
return ret;
934
}
935
936
static void __exit cppc_cpufreq_exit(void)
937
{
938
cpufreq_unregister_driver(&cppc_cpufreq_driver);
939
cppc_freq_invariance_exit();
940
}
941
942
module_exit(cppc_cpufreq_exit);
943
MODULE_AUTHOR("Ashwin Chaugule");
944
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
945
MODULE_LICENSE("GPL");
946
947
late_initcall(cppc_cpufreq_init);
948
949
static const struct acpi_device_id cppc_acpi_ids[] __used = {
950
{ACPI_PROCESSOR_DEVICE_HID, },
951
{}
952
};
953
954
MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
955
956