Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/sev-dev.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Secure Encrypted Virtualization (SEV) interface
4
*
5
* Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Brijesh Singh <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <linux/module.h>
12
#include <linux/kernel.h>
13
#include <linux/kthread.h>
14
#include <linux/sched.h>
15
#include <linux/interrupt.h>
16
#include <linux/spinlock.h>
17
#include <linux/spinlock_types.h>
18
#include <linux/types.h>
19
#include <linux/mutex.h>
20
#include <linux/delay.h>
21
#include <linux/hw_random.h>
22
#include <linux/ccp.h>
23
#include <linux/firmware.h>
24
#include <linux/panic_notifier.h>
25
#include <linux/gfp.h>
26
#include <linux/cpufeature.h>
27
#include <linux/fs.h>
28
#include <linux/fs_struct.h>
29
#include <linux/psp.h>
30
#include <linux/amd-iommu.h>
31
#include <linux/crash_dump.h>
32
33
#include <asm/smp.h>
34
#include <asm/cacheflush.h>
35
#include <asm/e820/types.h>
36
#include <asm/sev.h>
37
#include <asm/msr.h>
38
39
#include "psp-dev.h"
40
#include "sev-dev.h"
41
42
#define DEVICE_NAME "sev"
43
#define SEV_FW_FILE "amd/sev.fw"
44
#define SEV_FW_NAME_SIZE 64
45
46
/* Minimum firmware version required for the SEV-SNP support */
47
#define SNP_MIN_API_MAJOR 1
48
#define SNP_MIN_API_MINOR 51
49
50
/*
51
* Maximum number of firmware-writable buffers that might be specified
52
* in the parameters of a legacy SEV command buffer.
53
*/
54
#define CMD_BUF_FW_WRITABLE_MAX 2
55
56
/* Leave room in the descriptor array for an end-of-list indicator. */
57
#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
58
59
static DEFINE_MUTEX(sev_cmd_mutex);
60
static struct sev_misc_dev *misc_dev;
61
62
static int psp_cmd_timeout = 100;
63
module_param(psp_cmd_timeout, int, 0644);
64
MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
65
66
static int psp_probe_timeout = 5;
67
module_param(psp_probe_timeout, int, 0644);
68
MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
69
70
static char *init_ex_path;
71
module_param(init_ex_path, charp, 0444);
72
MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
73
74
static bool psp_init_on_probe = true;
75
module_param(psp_init_on_probe, bool, 0444);
76
MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
77
78
MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
79
MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
80
MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
81
MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
82
83
static bool psp_dead;
84
static int psp_timeout;
85
86
enum snp_hv_fixed_pages_state {
87
ALLOCATED,
88
HV_FIXED,
89
};
90
91
struct snp_hv_fixed_pages_entry {
92
struct list_head list;
93
struct page *page;
94
unsigned int order;
95
bool free;
96
enum snp_hv_fixed_pages_state page_state;
97
};
98
99
static LIST_HEAD(snp_hv_fixed_pages);
100
101
/* Trusted Memory Region (TMR):
102
* The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
103
* to allocate the memory, which will return aligned memory for the specified
104
* allocation order.
105
*
106
* When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
107
*/
108
#define SEV_TMR_SIZE (1024 * 1024)
109
#define SNP_TMR_SIZE (2 * 1024 * 1024)
110
111
static void *sev_es_tmr;
112
static size_t sev_es_tmr_size = SEV_TMR_SIZE;
113
114
/* INIT_EX NV Storage:
115
* The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
116
* allocator to allocate the memory, which will return aligned memory for the
117
* specified allocation order.
118
*/
119
#define NV_LENGTH (32 * 1024)
120
static void *sev_init_ex_buffer;
121
122
/*
123
* SEV_DATA_RANGE_LIST:
124
* Array containing range of pages that firmware transitions to HV-fixed
125
* page state.
126
*/
127
static struct sev_data_range_list *snp_range_list;
128
129
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
130
131
static int snp_shutdown_on_panic(struct notifier_block *nb,
132
unsigned long reason, void *arg);
133
134
static struct notifier_block snp_panic_notifier = {
135
.notifier_call = snp_shutdown_on_panic,
136
};
137
138
static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
139
{
140
struct sev_device *sev = psp_master->sev_data;
141
142
if (sev->api_major > maj)
143
return true;
144
145
if (sev->api_major == maj && sev->api_minor >= min)
146
return true;
147
148
return false;
149
}
150
151
static void sev_irq_handler(int irq, void *data, unsigned int status)
152
{
153
struct sev_device *sev = data;
154
int reg;
155
156
/* Check if it is command completion: */
157
if (!(status & SEV_CMD_COMPLETE))
158
return;
159
160
/* Check if it is SEV command completion: */
161
reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
162
if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
163
sev->int_rcvd = 1;
164
wake_up(&sev->int_queue);
165
}
166
}
167
168
static int sev_wait_cmd_ioc(struct sev_device *sev,
169
unsigned int *reg, unsigned int timeout)
170
{
171
int ret;
172
173
/*
174
* If invoked during panic handling, local interrupts are disabled,
175
* so the PSP command completion interrupt can't be used. Poll for
176
* PSP command completion instead.
177
*/
178
if (irqs_disabled()) {
179
unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
180
181
/* Poll for SEV command completion: */
182
while (timeout_usecs--) {
183
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
184
if (*reg & PSP_CMDRESP_RESP)
185
return 0;
186
187
udelay(10);
188
}
189
return -ETIMEDOUT;
190
}
191
192
ret = wait_event_timeout(sev->int_queue,
193
sev->int_rcvd, timeout * HZ);
194
if (!ret)
195
return -ETIMEDOUT;
196
197
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
198
199
return 0;
200
}
201
202
static int sev_cmd_buffer_len(int cmd)
203
{
204
switch (cmd) {
205
case SEV_CMD_INIT: return sizeof(struct sev_data_init);
206
case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
207
case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
208
case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
209
case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
210
case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
211
case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
212
case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
213
case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
214
case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
215
case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
216
case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
217
case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
218
case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
219
case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
220
case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
221
case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
222
case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
223
case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
224
case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
225
case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
226
case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
227
case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
228
case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
229
case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
230
case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
231
case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
232
case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
233
case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
234
case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
235
case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
236
case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
237
case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
238
case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
239
case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
240
case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
241
case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
242
case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
243
case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
244
case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
245
case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
246
case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
247
case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
248
case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
249
case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
250
case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
251
case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
252
default: return 0;
253
}
254
255
return 0;
256
}
257
258
static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
259
{
260
struct file *fp;
261
struct path root;
262
struct cred *cred;
263
const struct cred *old_cred;
264
265
task_lock(&init_task);
266
get_fs_root(init_task.fs, &root);
267
task_unlock(&init_task);
268
269
cred = prepare_creds();
270
if (!cred)
271
return ERR_PTR(-ENOMEM);
272
cred->fsuid = GLOBAL_ROOT_UID;
273
old_cred = override_creds(cred);
274
275
fp = file_open_root(&root, filename, flags, mode);
276
path_put(&root);
277
278
put_cred(revert_creds(old_cred));
279
280
return fp;
281
}
282
283
static int sev_read_init_ex_file(void)
284
{
285
struct sev_device *sev = psp_master->sev_data;
286
struct file *fp;
287
ssize_t nread;
288
289
lockdep_assert_held(&sev_cmd_mutex);
290
291
if (!sev_init_ex_buffer)
292
return -EOPNOTSUPP;
293
294
fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
295
if (IS_ERR(fp)) {
296
int ret = PTR_ERR(fp);
297
298
if (ret == -ENOENT) {
299
dev_info(sev->dev,
300
"SEV: %s does not exist and will be created later.\n",
301
init_ex_path);
302
ret = 0;
303
} else {
304
dev_err(sev->dev,
305
"SEV: could not open %s for read, error %d\n",
306
init_ex_path, ret);
307
}
308
return ret;
309
}
310
311
nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
312
if (nread != NV_LENGTH) {
313
dev_info(sev->dev,
314
"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
315
NV_LENGTH, nread);
316
}
317
318
dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
319
filp_close(fp, NULL);
320
321
return 0;
322
}
323
324
static int sev_write_init_ex_file(void)
325
{
326
struct sev_device *sev = psp_master->sev_data;
327
struct file *fp;
328
loff_t offset = 0;
329
ssize_t nwrite;
330
331
lockdep_assert_held(&sev_cmd_mutex);
332
333
if (!sev_init_ex_buffer)
334
return 0;
335
336
fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
337
if (IS_ERR(fp)) {
338
int ret = PTR_ERR(fp);
339
340
dev_err(sev->dev,
341
"SEV: could not open file for write, error %d\n",
342
ret);
343
return ret;
344
}
345
346
nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
347
vfs_fsync(fp, 0);
348
filp_close(fp, NULL);
349
350
if (nwrite != NV_LENGTH) {
351
dev_err(sev->dev,
352
"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
353
NV_LENGTH, nwrite);
354
return -EIO;
355
}
356
357
dev_dbg(sev->dev, "SEV: write successful to NV file\n");
358
359
return 0;
360
}
361
362
static int sev_write_init_ex_file_if_required(int cmd_id)
363
{
364
lockdep_assert_held(&sev_cmd_mutex);
365
366
if (!sev_init_ex_buffer)
367
return 0;
368
369
/*
370
* Only a few platform commands modify the SPI/NV area, but none of the
371
* non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
372
* PEK_CERT_IMPORT, and PDH_GEN do.
373
*/
374
switch (cmd_id) {
375
case SEV_CMD_FACTORY_RESET:
376
case SEV_CMD_INIT_EX:
377
case SEV_CMD_PDH_GEN:
378
case SEV_CMD_PEK_CERT_IMPORT:
379
case SEV_CMD_PEK_GEN:
380
break;
381
default:
382
return 0;
383
}
384
385
return sev_write_init_ex_file();
386
}
387
388
/*
389
* snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
390
* needs snp_reclaim_pages(), so a forward declaration is needed.
391
*/
392
static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
393
394
static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
395
{
396
int ret, err, i;
397
398
paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
399
400
for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
401
struct sev_data_snp_page_reclaim data = {0};
402
403
data.paddr = paddr;
404
405
if (locked)
406
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
407
else
408
ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
409
410
if (ret)
411
goto cleanup;
412
413
ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
414
if (ret)
415
goto cleanup;
416
}
417
418
return 0;
419
420
cleanup:
421
/*
422
* If there was a failure reclaiming the page then it is no longer safe
423
* to release it back to the system; leak it instead.
424
*/
425
snp_leak_pages(__phys_to_pfn(paddr), npages - i);
426
return ret;
427
}
428
429
static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
430
{
431
unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
432
int rc, i;
433
434
for (i = 0; i < npages; i++, pfn++) {
435
rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
436
if (rc)
437
goto cleanup;
438
}
439
440
return 0;
441
442
cleanup:
443
/*
444
* Try unrolling the firmware state changes by
445
* reclaiming the pages which were already changed to the
446
* firmware state.
447
*/
448
snp_reclaim_pages(paddr, i, locked);
449
450
return rc;
451
}
452
453
static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
454
{
455
unsigned long npages = 1ul << order, paddr;
456
struct sev_device *sev;
457
struct page *page;
458
459
if (!psp_master || !psp_master->sev_data)
460
return NULL;
461
462
page = alloc_pages(gfp_mask, order);
463
if (!page)
464
return NULL;
465
466
/* If SEV-SNP is initialized then add the page in RMP table. */
467
sev = psp_master->sev_data;
468
if (!sev->snp_initialized)
469
return page;
470
471
paddr = __pa((unsigned long)page_address(page));
472
if (rmp_mark_pages_firmware(paddr, npages, locked))
473
return NULL;
474
475
return page;
476
}
477
478
void *snp_alloc_firmware_page(gfp_t gfp_mask)
479
{
480
struct page *page;
481
482
page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
483
484
return page ? page_address(page) : NULL;
485
}
486
EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
487
488
static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
489
{
490
struct sev_device *sev = psp_master->sev_data;
491
unsigned long paddr, npages = 1ul << order;
492
493
if (!page)
494
return;
495
496
paddr = __pa((unsigned long)page_address(page));
497
if (sev->snp_initialized &&
498
snp_reclaim_pages(paddr, npages, locked))
499
return;
500
501
__free_pages(page, order);
502
}
503
504
void snp_free_firmware_page(void *addr)
505
{
506
if (!addr)
507
return;
508
509
__snp_free_firmware_pages(virt_to_page(addr), 0, false);
510
}
511
EXPORT_SYMBOL_GPL(snp_free_firmware_page);
512
513
static void *sev_fw_alloc(unsigned long len)
514
{
515
struct page *page;
516
517
page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
518
if (!page)
519
return NULL;
520
521
return page_address(page);
522
}
523
524
/**
525
* struct cmd_buf_desc - descriptors for managing legacy SEV command address
526
* parameters corresponding to buffers that may be written to by firmware.
527
*
528
* @paddr_ptr: pointer to the address parameter in the command buffer which may
529
* need to be saved/restored depending on whether a bounce buffer
530
* is used. In the case of a bounce buffer, the command buffer
531
* needs to be updated with the address of the new bounce buffer
532
* snp_map_cmd_buf_desc() has allocated specifically for it. Must
533
* be NULL if this descriptor is only an end-of-list indicator.
534
*
535
* @paddr_orig: storage for the original address parameter, which can be used to
536
* restore the original value in @paddr_ptr in cases where it is
537
* replaced with the address of a bounce buffer.
538
*
539
* @len: length of buffer located at the address originally stored at @paddr_ptr
540
*
541
* @guest_owned: true if the address corresponds to guest-owned pages, in which
542
* case bounce buffers are not needed.
543
*/
544
struct cmd_buf_desc {
545
u64 *paddr_ptr;
546
u64 paddr_orig;
547
u32 len;
548
bool guest_owned;
549
};
550
551
/*
552
* If a legacy SEV command parameter is a memory address, those pages in
553
* turn need to be transitioned to/from firmware-owned before/after
554
* executing the firmware command.
555
*
556
* Additionally, in cases where those pages are not guest-owned, a bounce
557
* buffer is needed in place of the original memory address parameter.
558
*
559
* A set of descriptors are used to keep track of this handling, and
560
* initialized here based on the specific commands being executed.
561
*/
562
static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
563
struct cmd_buf_desc *desc_list)
564
{
565
switch (cmd) {
566
case SEV_CMD_PDH_CERT_EXPORT: {
567
struct sev_data_pdh_cert_export *data = cmd_buf;
568
569
desc_list[0].paddr_ptr = &data->pdh_cert_address;
570
desc_list[0].len = data->pdh_cert_len;
571
desc_list[1].paddr_ptr = &data->cert_chain_address;
572
desc_list[1].len = data->cert_chain_len;
573
break;
574
}
575
case SEV_CMD_GET_ID: {
576
struct sev_data_get_id *data = cmd_buf;
577
578
desc_list[0].paddr_ptr = &data->address;
579
desc_list[0].len = data->len;
580
break;
581
}
582
case SEV_CMD_PEK_CSR: {
583
struct sev_data_pek_csr *data = cmd_buf;
584
585
desc_list[0].paddr_ptr = &data->address;
586
desc_list[0].len = data->len;
587
break;
588
}
589
case SEV_CMD_LAUNCH_UPDATE_DATA: {
590
struct sev_data_launch_update_data *data = cmd_buf;
591
592
desc_list[0].paddr_ptr = &data->address;
593
desc_list[0].len = data->len;
594
desc_list[0].guest_owned = true;
595
break;
596
}
597
case SEV_CMD_LAUNCH_UPDATE_VMSA: {
598
struct sev_data_launch_update_vmsa *data = cmd_buf;
599
600
desc_list[0].paddr_ptr = &data->address;
601
desc_list[0].len = data->len;
602
desc_list[0].guest_owned = true;
603
break;
604
}
605
case SEV_CMD_LAUNCH_MEASURE: {
606
struct sev_data_launch_measure *data = cmd_buf;
607
608
desc_list[0].paddr_ptr = &data->address;
609
desc_list[0].len = data->len;
610
break;
611
}
612
case SEV_CMD_LAUNCH_UPDATE_SECRET: {
613
struct sev_data_launch_secret *data = cmd_buf;
614
615
desc_list[0].paddr_ptr = &data->guest_address;
616
desc_list[0].len = data->guest_len;
617
desc_list[0].guest_owned = true;
618
break;
619
}
620
case SEV_CMD_DBG_DECRYPT: {
621
struct sev_data_dbg *data = cmd_buf;
622
623
desc_list[0].paddr_ptr = &data->dst_addr;
624
desc_list[0].len = data->len;
625
desc_list[0].guest_owned = true;
626
break;
627
}
628
case SEV_CMD_DBG_ENCRYPT: {
629
struct sev_data_dbg *data = cmd_buf;
630
631
desc_list[0].paddr_ptr = &data->dst_addr;
632
desc_list[0].len = data->len;
633
desc_list[0].guest_owned = true;
634
break;
635
}
636
case SEV_CMD_ATTESTATION_REPORT: {
637
struct sev_data_attestation_report *data = cmd_buf;
638
639
desc_list[0].paddr_ptr = &data->address;
640
desc_list[0].len = data->len;
641
break;
642
}
643
case SEV_CMD_SEND_START: {
644
struct sev_data_send_start *data = cmd_buf;
645
646
desc_list[0].paddr_ptr = &data->session_address;
647
desc_list[0].len = data->session_len;
648
break;
649
}
650
case SEV_CMD_SEND_UPDATE_DATA: {
651
struct sev_data_send_update_data *data = cmd_buf;
652
653
desc_list[0].paddr_ptr = &data->hdr_address;
654
desc_list[0].len = data->hdr_len;
655
desc_list[1].paddr_ptr = &data->trans_address;
656
desc_list[1].len = data->trans_len;
657
break;
658
}
659
case SEV_CMD_SEND_UPDATE_VMSA: {
660
struct sev_data_send_update_vmsa *data = cmd_buf;
661
662
desc_list[0].paddr_ptr = &data->hdr_address;
663
desc_list[0].len = data->hdr_len;
664
desc_list[1].paddr_ptr = &data->trans_address;
665
desc_list[1].len = data->trans_len;
666
break;
667
}
668
case SEV_CMD_RECEIVE_UPDATE_DATA: {
669
struct sev_data_receive_update_data *data = cmd_buf;
670
671
desc_list[0].paddr_ptr = &data->guest_address;
672
desc_list[0].len = data->guest_len;
673
desc_list[0].guest_owned = true;
674
break;
675
}
676
case SEV_CMD_RECEIVE_UPDATE_VMSA: {
677
struct sev_data_receive_update_vmsa *data = cmd_buf;
678
679
desc_list[0].paddr_ptr = &data->guest_address;
680
desc_list[0].len = data->guest_len;
681
desc_list[0].guest_owned = true;
682
break;
683
}
684
default:
685
break;
686
}
687
}
688
689
static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
690
{
691
unsigned int npages;
692
693
if (!desc->len)
694
return 0;
695
696
/* Allocate a bounce buffer if this isn't a guest owned page. */
697
if (!desc->guest_owned) {
698
struct page *page;
699
700
page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
701
if (!page) {
702
pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
703
return -ENOMEM;
704
}
705
706
desc->paddr_orig = *desc->paddr_ptr;
707
*desc->paddr_ptr = __psp_pa(page_to_virt(page));
708
}
709
710
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
711
712
/* Transition the buffer to firmware-owned. */
713
if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
714
pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
715
return -EFAULT;
716
}
717
718
return 0;
719
}
720
721
static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
722
{
723
unsigned int npages;
724
725
if (!desc->len)
726
return 0;
727
728
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
729
730
/* Transition the buffers back to hypervisor-owned. */
731
if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
732
pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
733
return -EFAULT;
734
}
735
736
/* Copy data from bounce buffer and then free it. */
737
if (!desc->guest_owned) {
738
void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
739
void *dst_buf = __va(__sme_clr(desc->paddr_orig));
740
741
memcpy(dst_buf, bounce_buf, desc->len);
742
__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
743
744
/* Restore the original address in the command buffer. */
745
*desc->paddr_ptr = desc->paddr_orig;
746
}
747
748
return 0;
749
}
750
751
static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
752
{
753
int i;
754
755
snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
756
757
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
758
struct cmd_buf_desc *desc = &desc_list[i];
759
760
if (!desc->paddr_ptr)
761
break;
762
763
if (snp_map_cmd_buf_desc(desc))
764
goto err_unmap;
765
}
766
767
return 0;
768
769
err_unmap:
770
for (i--; i >= 0; i--)
771
snp_unmap_cmd_buf_desc(&desc_list[i]);
772
773
return -EFAULT;
774
}
775
776
static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
777
{
778
int i, ret = 0;
779
780
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
781
struct cmd_buf_desc *desc = &desc_list[i];
782
783
if (!desc->paddr_ptr)
784
break;
785
786
if (snp_unmap_cmd_buf_desc(&desc_list[i]))
787
ret = -EFAULT;
788
}
789
790
return ret;
791
}
792
793
static bool sev_cmd_buf_writable(int cmd)
794
{
795
switch (cmd) {
796
case SEV_CMD_PLATFORM_STATUS:
797
case SEV_CMD_GUEST_STATUS:
798
case SEV_CMD_LAUNCH_START:
799
case SEV_CMD_RECEIVE_START:
800
case SEV_CMD_LAUNCH_MEASURE:
801
case SEV_CMD_SEND_START:
802
case SEV_CMD_SEND_UPDATE_DATA:
803
case SEV_CMD_SEND_UPDATE_VMSA:
804
case SEV_CMD_PEK_CSR:
805
case SEV_CMD_PDH_CERT_EXPORT:
806
case SEV_CMD_GET_ID:
807
case SEV_CMD_ATTESTATION_REPORT:
808
return true;
809
default:
810
return false;
811
}
812
}
813
814
/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
815
static bool snp_legacy_handling_needed(int cmd)
816
{
817
struct sev_device *sev = psp_master->sev_data;
818
819
return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
820
}
821
822
static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
823
{
824
if (!snp_legacy_handling_needed(cmd))
825
return 0;
826
827
if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
828
return -EFAULT;
829
830
/*
831
* Before command execution, the command buffer needs to be put into
832
* the firmware-owned state.
833
*/
834
if (sev_cmd_buf_writable(cmd)) {
835
if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
836
return -EFAULT;
837
}
838
839
return 0;
840
}
841
842
static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
843
{
844
if (!snp_legacy_handling_needed(cmd))
845
return 0;
846
847
/*
848
* After command completion, the command buffer needs to be put back
849
* into the hypervisor-owned state.
850
*/
851
if (sev_cmd_buf_writable(cmd))
852
if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
853
return -EFAULT;
854
855
return 0;
856
}
857
858
static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
859
{
860
struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
861
struct psp_device *psp = psp_master;
862
struct sev_device *sev;
863
unsigned int cmdbuff_hi, cmdbuff_lo;
864
unsigned int phys_lsb, phys_msb;
865
unsigned int reg, ret = 0;
866
void *cmd_buf;
867
int buf_len;
868
869
if (!psp || !psp->sev_data)
870
return -ENODEV;
871
872
if (psp_dead)
873
return -EBUSY;
874
875
sev = psp->sev_data;
876
877
buf_len = sev_cmd_buffer_len(cmd);
878
if (WARN_ON_ONCE(!data != !buf_len))
879
return -EINVAL;
880
881
/*
882
* Copy the incoming data to driver's scratch buffer as __pa() will not
883
* work for some memory, e.g. vmalloc'd addresses, and @data may not be
884
* physically contiguous.
885
*/
886
if (data) {
887
/*
888
* Commands are generally issued one at a time and require the
889
* sev_cmd_mutex, but there could be recursive firmware requests
890
* due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
891
* preparing buffers for another command. This is the only known
892
* case of nesting in the current code, so exactly one
893
* additional command buffer is available for that purpose.
894
*/
895
if (!sev->cmd_buf_active) {
896
cmd_buf = sev->cmd_buf;
897
sev->cmd_buf_active = true;
898
} else if (!sev->cmd_buf_backup_active) {
899
cmd_buf = sev->cmd_buf_backup;
900
sev->cmd_buf_backup_active = true;
901
} else {
902
dev_err(sev->dev,
903
"SEV: too many firmware commands in progress, no command buffers available.\n");
904
return -EBUSY;
905
}
906
907
memcpy(cmd_buf, data, buf_len);
908
909
/*
910
* The behavior of the SEV-legacy commands is altered when the
911
* SNP firmware is in the INIT state.
912
*/
913
ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
914
if (ret) {
915
dev_err(sev->dev,
916
"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
917
cmd, ret);
918
return ret;
919
}
920
} else {
921
cmd_buf = sev->cmd_buf;
922
}
923
924
/* Get the physical address of the command buffer */
925
phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
926
phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
927
928
dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
929
cmd, phys_msb, phys_lsb, psp_timeout);
930
931
print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
932
buf_len, false);
933
934
iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
935
iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
936
937
sev->int_rcvd = 0;
938
939
reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
940
941
/*
942
* If invoked during panic handling, local interrupts are disabled so
943
* the PSP command completion interrupt can't be used.
944
* sev_wait_cmd_ioc() already checks for interrupts disabled and
945
* polls for PSP command completion. Ensure we do not request an
946
* interrupt from the PSP if irqs disabled.
947
*/
948
if (!irqs_disabled())
949
reg |= SEV_CMDRESP_IOC;
950
951
iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
952
953
/* wait for command completion */
954
ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
955
if (ret) {
956
if (psp_ret)
957
*psp_ret = 0;
958
959
dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
960
psp_dead = true;
961
962
return ret;
963
}
964
965
psp_timeout = psp_cmd_timeout;
966
967
if (psp_ret)
968
*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
969
970
if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
971
dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
972
cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
973
974
/*
975
* PSP firmware may report additional error information in the
976
* command buffer registers on error. Print contents of command
977
* buffer registers if they changed.
978
*/
979
cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
980
cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
981
if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
982
dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
983
dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
984
dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
985
}
986
ret = -EIO;
987
} else {
988
ret = sev_write_init_ex_file_if_required(cmd);
989
}
990
991
/*
992
* Copy potential output from the PSP back to data. Do this even on
993
* failure in case the caller wants to glean something from the error.
994
*/
995
if (data) {
996
int ret_reclaim;
997
/*
998
* Restore the page state after the command completes.
999
*/
1000
ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
1001
if (ret_reclaim) {
1002
dev_err(sev->dev,
1003
"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
1004
cmd, ret_reclaim);
1005
return ret_reclaim;
1006
}
1007
1008
memcpy(data, cmd_buf, buf_len);
1009
1010
if (sev->cmd_buf_backup_active)
1011
sev->cmd_buf_backup_active = false;
1012
else
1013
sev->cmd_buf_active = false;
1014
1015
if (snp_unmap_cmd_buf_desc_list(desc_list))
1016
return -EFAULT;
1017
}
1018
1019
print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1020
buf_len, false);
1021
1022
return ret;
1023
}
1024
1025
int sev_do_cmd(int cmd, void *data, int *psp_ret)
1026
{
1027
int rc;
1028
1029
mutex_lock(&sev_cmd_mutex);
1030
rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1031
mutex_unlock(&sev_cmd_mutex);
1032
1033
return rc;
1034
}
1035
EXPORT_SYMBOL_GPL(sev_do_cmd);
1036
1037
static int __sev_init_locked(int *error)
1038
{
1039
struct sev_data_init data;
1040
1041
memset(&data, 0, sizeof(data));
1042
if (sev_es_tmr) {
1043
/*
1044
* Do not include the encryption mask on the physical
1045
* address of the TMR (firmware should clear it anyway).
1046
*/
1047
data.tmr_address = __pa(sev_es_tmr);
1048
1049
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1050
data.tmr_len = sev_es_tmr_size;
1051
}
1052
1053
return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1054
}
1055
1056
static int __sev_init_ex_locked(int *error)
1057
{
1058
struct sev_data_init_ex data;
1059
1060
memset(&data, 0, sizeof(data));
1061
data.length = sizeof(data);
1062
data.nv_address = __psp_pa(sev_init_ex_buffer);
1063
data.nv_len = NV_LENGTH;
1064
1065
if (sev_es_tmr) {
1066
/*
1067
* Do not include the encryption mask on the physical
1068
* address of the TMR (firmware should clear it anyway).
1069
*/
1070
data.tmr_address = __pa(sev_es_tmr);
1071
1072
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1073
data.tmr_len = sev_es_tmr_size;
1074
}
1075
1076
return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1077
}
1078
1079
static inline int __sev_do_init_locked(int *psp_ret)
1080
{
1081
if (sev_init_ex_buffer)
1082
return __sev_init_ex_locked(psp_ret);
1083
else
1084
return __sev_init_locked(psp_ret);
1085
}
1086
1087
static void snp_set_hsave_pa(void *arg)
1088
{
1089
wrmsrq(MSR_VM_HSAVE_PA, 0);
1090
}
1091
1092
/* Hypervisor Fixed pages API interface */
1093
static void snp_hv_fixed_pages_state_update(struct sev_device *sev,
1094
enum snp_hv_fixed_pages_state page_state)
1095
{
1096
struct snp_hv_fixed_pages_entry *entry;
1097
1098
/* List is protected by sev_cmd_mutex */
1099
lockdep_assert_held(&sev_cmd_mutex);
1100
1101
if (list_empty(&snp_hv_fixed_pages))
1102
return;
1103
1104
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1105
entry->page_state = page_state;
1106
}
1107
1108
/*
1109
* Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole
1110
* 2MB pages are marked as HV_FIXED.
1111
*/
1112
struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages)
1113
{
1114
struct psp_device *psp_master = psp_get_master_device();
1115
struct snp_hv_fixed_pages_entry *entry;
1116
struct sev_device *sev;
1117
unsigned int order;
1118
struct page *page;
1119
1120
if (!psp_master || !psp_master->sev_data)
1121
return NULL;
1122
1123
sev = psp_master->sev_data;
1124
1125
order = get_order(PMD_SIZE * num_2mb_pages);
1126
1127
/*
1128
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1129
* also needs to be protected using the same mutex.
1130
*/
1131
guard(mutex)(&sev_cmd_mutex);
1132
1133
/*
1134
* This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed
1135
* page state, fail if SNP is already initialized.
1136
*/
1137
if (sev->snp_initialized)
1138
return NULL;
1139
1140
/* Re-use freed pages that match the request */
1141
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1142
/* Hypervisor fixed page allocator implements exact fit policy */
1143
if (entry->order == order && entry->free) {
1144
entry->free = false;
1145
memset(page_address(entry->page), 0,
1146
(1 << entry->order) * PAGE_SIZE);
1147
return entry->page;
1148
}
1149
}
1150
1151
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1152
if (!page)
1153
return NULL;
1154
1155
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1156
if (!entry) {
1157
__free_pages(page, order);
1158
return NULL;
1159
}
1160
1161
entry->page = page;
1162
entry->order = order;
1163
list_add_tail(&entry->list, &snp_hv_fixed_pages);
1164
1165
return page;
1166
}
1167
1168
void snp_free_hv_fixed_pages(struct page *page)
1169
{
1170
struct psp_device *psp_master = psp_get_master_device();
1171
struct snp_hv_fixed_pages_entry *entry, *nentry;
1172
1173
if (!psp_master || !psp_master->sev_data)
1174
return;
1175
1176
/*
1177
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1178
* also needs to be protected using the same mutex.
1179
*/
1180
guard(mutex)(&sev_cmd_mutex);
1181
1182
list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) {
1183
if (entry->page != page)
1184
continue;
1185
1186
/*
1187
* HV_FIXED page state cannot be changed until reboot
1188
* and they cannot be used by an SNP guest, so they cannot
1189
* be returned back to the page allocator.
1190
* Mark the pages as free internally to allow possible re-use.
1191
*/
1192
if (entry->page_state == HV_FIXED) {
1193
entry->free = true;
1194
} else {
1195
__free_pages(page, entry->order);
1196
list_del(&entry->list);
1197
kfree(entry);
1198
}
1199
return;
1200
}
1201
}
1202
1203
static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list)
1204
{
1205
struct snp_hv_fixed_pages_entry *entry;
1206
struct sev_data_range *range;
1207
int num_elements;
1208
1209
lockdep_assert_held(&sev_cmd_mutex);
1210
1211
if (list_empty(&snp_hv_fixed_pages))
1212
return;
1213
1214
num_elements = list_count_nodes(&snp_hv_fixed_pages) +
1215
range_list->num_elements;
1216
1217
/*
1218
* Ensure the list of HV_FIXED pages that will be passed to firmware
1219
* do not exceed the page-sized argument buffer.
1220
*/
1221
if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) {
1222
dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n");
1223
return;
1224
}
1225
1226
range = &range_list->ranges[range_list->num_elements];
1227
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1228
range->base = page_to_pfn(entry->page) << PAGE_SHIFT;
1229
range->page_count = 1 << entry->order;
1230
range++;
1231
}
1232
range_list->num_elements = num_elements;
1233
}
1234
1235
static void snp_leak_hv_fixed_pages(void)
1236
{
1237
struct snp_hv_fixed_pages_entry *entry;
1238
1239
/* List is protected by sev_cmd_mutex */
1240
lockdep_assert_held(&sev_cmd_mutex);
1241
1242
if (list_empty(&snp_hv_fixed_pages))
1243
return;
1244
1245
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1246
if (entry->page_state == HV_FIXED)
1247
__snp_leak_pages(page_to_pfn(entry->page),
1248
1 << entry->order, false);
1249
}
1250
1251
static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1252
{
1253
struct sev_data_range_list *range_list = arg;
1254
struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1255
size_t size;
1256
1257
/*
1258
* Ensure the list of HV_FIXED pages that will be passed to firmware
1259
* do not exceed the page-sized argument buffer.
1260
*/
1261
if ((range_list->num_elements * sizeof(struct sev_data_range) +
1262
sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1263
return -E2BIG;
1264
1265
switch (rs->desc) {
1266
case E820_TYPE_RESERVED:
1267
case E820_TYPE_PMEM:
1268
case E820_TYPE_ACPI:
1269
range->base = rs->start & PAGE_MASK;
1270
size = PAGE_ALIGN((rs->end + 1) - rs->start);
1271
range->page_count = size >> PAGE_SHIFT;
1272
range_list->num_elements++;
1273
break;
1274
default:
1275
break;
1276
}
1277
1278
return 0;
1279
}
1280
1281
static int __sev_snp_init_locked(int *error)
1282
{
1283
struct psp_device *psp = psp_master;
1284
struct sev_data_snp_init_ex data;
1285
struct sev_device *sev;
1286
void *arg = &data;
1287
int cmd, rc = 0;
1288
1289
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1290
return -ENODEV;
1291
1292
sev = psp->sev_data;
1293
1294
if (sev->snp_initialized)
1295
return 0;
1296
1297
if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1298
dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1299
SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1300
return -EOPNOTSUPP;
1301
}
1302
1303
/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1304
on_each_cpu(snp_set_hsave_pa, NULL, 1);
1305
1306
/*
1307
* Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1308
* of system physical address ranges to convert into HV-fixed page
1309
* states during the RMP initialization. For instance, the memory that
1310
* UEFI reserves should be included in the that list. This allows system
1311
* components that occasionally write to memory (e.g. logging to UEFI
1312
* reserved regions) to not fail due to RMP initialization and SNP
1313
* enablement.
1314
*
1315
*/
1316
if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1317
/*
1318
* Firmware checks that the pages containing the ranges enumerated
1319
* in the RANGES structure are either in the default page state or in the
1320
* firmware page state.
1321
*/
1322
snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1323
if (!snp_range_list) {
1324
dev_err(sev->dev,
1325
"SEV: SNP_INIT_EX range list memory allocation failed\n");
1326
return -ENOMEM;
1327
}
1328
1329
/*
1330
* Retrieve all reserved memory regions from the e820 memory map
1331
* to be setup as HV-fixed pages.
1332
*/
1333
rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1334
snp_range_list, snp_filter_reserved_mem_regions);
1335
if (rc) {
1336
dev_err(sev->dev,
1337
"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1338
return rc;
1339
}
1340
1341
/*
1342
* Add HV_Fixed pages from other PSP sub-devices, such as SFS to the
1343
* HV_Fixed page list.
1344
*/
1345
snp_add_hv_fixed_pages(sev, snp_range_list);
1346
1347
memset(&data, 0, sizeof(data));
1348
data.init_rmp = 1;
1349
data.list_paddr_en = 1;
1350
data.list_paddr = __psp_pa(snp_range_list);
1351
cmd = SEV_CMD_SNP_INIT_EX;
1352
} else {
1353
cmd = SEV_CMD_SNP_INIT;
1354
arg = NULL;
1355
}
1356
1357
/*
1358
* The following sequence must be issued before launching the first SNP
1359
* guest to ensure all dirty cache lines are flushed, including from
1360
* updates to the RMP table itself via the RMPUPDATE instruction:
1361
*
1362
* - WBINVD on all running CPUs
1363
* - SEV_CMD_SNP_INIT[_EX] firmware command
1364
* - WBINVD on all running CPUs
1365
* - SEV_CMD_SNP_DF_FLUSH firmware command
1366
*/
1367
wbinvd_on_all_cpus();
1368
1369
rc = __sev_do_cmd_locked(cmd, arg, error);
1370
if (rc) {
1371
dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1372
cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1373
rc, *error);
1374
return rc;
1375
}
1376
1377
/* Prepare for first SNP guest launch after INIT. */
1378
wbinvd_on_all_cpus();
1379
rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1380
if (rc) {
1381
dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1382
rc, *error);
1383
return rc;
1384
}
1385
1386
snp_hv_fixed_pages_state_update(sev, HV_FIXED);
1387
sev->snp_initialized = true;
1388
dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1389
1390
dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1391
sev->api_minor, sev->build);
1392
1393
atomic_notifier_chain_register(&panic_notifier_list,
1394
&snp_panic_notifier);
1395
1396
sev_es_tmr_size = SNP_TMR_SIZE;
1397
1398
return 0;
1399
}
1400
1401
static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1402
{
1403
if (sev_es_tmr)
1404
return;
1405
1406
/* Obtain the TMR memory area for SEV-ES use */
1407
sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1408
if (sev_es_tmr) {
1409
/* Must flush the cache before giving it to the firmware */
1410
if (!sev->snp_initialized)
1411
clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1412
} else {
1413
dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1414
}
1415
}
1416
1417
/*
1418
* If an init_ex_path is provided allocate a buffer for the file and
1419
* read in the contents. Additionally, if SNP is initialized, convert
1420
* the buffer pages to firmware pages.
1421
*/
1422
static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1423
{
1424
struct page *page;
1425
int rc;
1426
1427
if (!init_ex_path)
1428
return 0;
1429
1430
if (sev_init_ex_buffer)
1431
return 0;
1432
1433
page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1434
if (!page) {
1435
dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1436
return -ENOMEM;
1437
}
1438
1439
sev_init_ex_buffer = page_address(page);
1440
1441
rc = sev_read_init_ex_file();
1442
if (rc)
1443
return rc;
1444
1445
/* If SEV-SNP is initialized, transition to firmware page. */
1446
if (sev->snp_initialized) {
1447
unsigned long npages;
1448
1449
npages = 1UL << get_order(NV_LENGTH);
1450
if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1451
dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1452
return -ENOMEM;
1453
}
1454
}
1455
1456
return 0;
1457
}
1458
1459
static int __sev_platform_init_locked(int *error)
1460
{
1461
int rc, psp_ret, dfflush_error;
1462
struct sev_device *sev;
1463
1464
psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1465
1466
if (!psp_master || !psp_master->sev_data)
1467
return -ENODEV;
1468
1469
sev = psp_master->sev_data;
1470
1471
if (sev->state == SEV_STATE_INIT)
1472
return 0;
1473
1474
__sev_platform_init_handle_tmr(sev);
1475
1476
rc = __sev_platform_init_handle_init_ex_path(sev);
1477
if (rc)
1478
return rc;
1479
1480
rc = __sev_do_init_locked(&psp_ret);
1481
if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1482
/*
1483
* Initialization command returned an integrity check failure
1484
* status code, meaning that firmware load and validation of SEV
1485
* related persistent data has failed. Retrying the
1486
* initialization function should succeed by replacing the state
1487
* with a reset state.
1488
*/
1489
dev_err(sev->dev,
1490
"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1491
rc = __sev_do_init_locked(&psp_ret);
1492
}
1493
1494
if (error)
1495
*error = psp_ret;
1496
1497
if (rc) {
1498
dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1499
sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1500
return rc;
1501
}
1502
1503
sev->state = SEV_STATE_INIT;
1504
1505
/* Prepare for first SEV guest launch after INIT */
1506
wbinvd_on_all_cpus();
1507
rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1508
if (rc) {
1509
dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1510
dfflush_error, rc);
1511
return rc;
1512
}
1513
1514
dev_dbg(sev->dev, "SEV firmware initialized\n");
1515
1516
dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1517
sev->api_minor, sev->build);
1518
1519
return 0;
1520
}
1521
1522
static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1523
{
1524
struct sev_device *sev;
1525
int rc;
1526
1527
if (!psp_master || !psp_master->sev_data)
1528
return -ENODEV;
1529
1530
/*
1531
* Skip SNP/SEV initialization under a kdump kernel as SEV/SNP
1532
* may already be initialized in the previous kernel. Since no
1533
* SNP/SEV guests are run under a kdump kernel, there is no
1534
* need to initialize SNP or SEV during kdump boot.
1535
*/
1536
if (is_kdump_kernel())
1537
return 0;
1538
1539
sev = psp_master->sev_data;
1540
1541
if (sev->state == SEV_STATE_INIT)
1542
return 0;
1543
1544
rc = __sev_snp_init_locked(&args->error);
1545
if (rc && rc != -ENODEV)
1546
return rc;
1547
1548
/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1549
if (args->probe && !psp_init_on_probe)
1550
return 0;
1551
1552
return __sev_platform_init_locked(&args->error);
1553
}
1554
1555
int sev_platform_init(struct sev_platform_init_args *args)
1556
{
1557
int rc;
1558
1559
mutex_lock(&sev_cmd_mutex);
1560
rc = _sev_platform_init_locked(args);
1561
mutex_unlock(&sev_cmd_mutex);
1562
1563
return rc;
1564
}
1565
EXPORT_SYMBOL_GPL(sev_platform_init);
1566
1567
static int __sev_platform_shutdown_locked(int *error)
1568
{
1569
struct psp_device *psp = psp_master;
1570
struct sev_device *sev;
1571
int ret;
1572
1573
if (!psp || !psp->sev_data)
1574
return 0;
1575
1576
sev = psp->sev_data;
1577
1578
if (sev->state == SEV_STATE_UNINIT)
1579
return 0;
1580
1581
ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1582
if (ret) {
1583
dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1584
*error, ret);
1585
return ret;
1586
}
1587
1588
sev->state = SEV_STATE_UNINIT;
1589
dev_dbg(sev->dev, "SEV firmware shutdown\n");
1590
1591
return ret;
1592
}
1593
1594
static int sev_get_platform_state(int *state, int *error)
1595
{
1596
struct sev_user_data_status data;
1597
int rc;
1598
1599
rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1600
if (rc)
1601
return rc;
1602
1603
*state = data.state;
1604
return rc;
1605
}
1606
1607
static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1608
{
1609
struct sev_platform_init_args init_args = {0};
1610
int rc;
1611
1612
rc = _sev_platform_init_locked(&init_args);
1613
if (rc) {
1614
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1615
return rc;
1616
}
1617
1618
*shutdown_required = true;
1619
1620
return 0;
1621
}
1622
1623
static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1624
{
1625
int error, rc;
1626
1627
rc = __sev_snp_init_locked(&error);
1628
if (rc) {
1629
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1630
return rc;
1631
}
1632
1633
*shutdown_required = true;
1634
1635
return 0;
1636
}
1637
1638
static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1639
{
1640
int state, rc;
1641
1642
if (!writable)
1643
return -EPERM;
1644
1645
/*
1646
* The SEV spec requires that FACTORY_RESET must be issued in
1647
* UNINIT state. Before we go further lets check if any guest is
1648
* active.
1649
*
1650
* If FW is in WORKING state then deny the request otherwise issue
1651
* SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1652
*
1653
*/
1654
rc = sev_get_platform_state(&state, &argp->error);
1655
if (rc)
1656
return rc;
1657
1658
if (state == SEV_STATE_WORKING)
1659
return -EBUSY;
1660
1661
if (state == SEV_STATE_INIT) {
1662
rc = __sev_platform_shutdown_locked(&argp->error);
1663
if (rc)
1664
return rc;
1665
}
1666
1667
return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1668
}
1669
1670
static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1671
{
1672
struct sev_user_data_status data;
1673
int ret;
1674
1675
memset(&data, 0, sizeof(data));
1676
1677
ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1678
if (ret)
1679
return ret;
1680
1681
if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1682
ret = -EFAULT;
1683
1684
return ret;
1685
}
1686
1687
static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1688
{
1689
struct sev_device *sev = psp_master->sev_data;
1690
bool shutdown_required = false;
1691
int rc;
1692
1693
if (!writable)
1694
return -EPERM;
1695
1696
if (sev->state == SEV_STATE_UNINIT) {
1697
rc = sev_move_to_init_state(argp, &shutdown_required);
1698
if (rc)
1699
return rc;
1700
}
1701
1702
rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1703
1704
if (shutdown_required)
1705
__sev_firmware_shutdown(sev, false);
1706
1707
return rc;
1708
}
1709
1710
static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1711
{
1712
struct sev_device *sev = psp_master->sev_data;
1713
struct sev_user_data_pek_csr input;
1714
bool shutdown_required = false;
1715
struct sev_data_pek_csr data;
1716
void __user *input_address;
1717
void *blob = NULL;
1718
int ret;
1719
1720
if (!writable)
1721
return -EPERM;
1722
1723
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1724
return -EFAULT;
1725
1726
memset(&data, 0, sizeof(data));
1727
1728
/* userspace wants to query CSR length */
1729
if (!input.address || !input.length)
1730
goto cmd;
1731
1732
/* allocate a physically contiguous buffer to store the CSR blob */
1733
input_address = (void __user *)input.address;
1734
if (input.length > SEV_FW_BLOB_MAX_SIZE)
1735
return -EFAULT;
1736
1737
blob = kzalloc(input.length, GFP_KERNEL);
1738
if (!blob)
1739
return -ENOMEM;
1740
1741
data.address = __psp_pa(blob);
1742
data.len = input.length;
1743
1744
cmd:
1745
if (sev->state == SEV_STATE_UNINIT) {
1746
ret = sev_move_to_init_state(argp, &shutdown_required);
1747
if (ret)
1748
goto e_free_blob;
1749
}
1750
1751
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1752
1753
/* If we query the CSR length, FW responded with expected data. */
1754
input.length = data.len;
1755
1756
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1757
ret = -EFAULT;
1758
goto e_free_blob;
1759
}
1760
1761
if (blob) {
1762
if (copy_to_user(input_address, blob, input.length))
1763
ret = -EFAULT;
1764
}
1765
1766
e_free_blob:
1767
if (shutdown_required)
1768
__sev_firmware_shutdown(sev, false);
1769
1770
kfree(blob);
1771
return ret;
1772
}
1773
1774
void *psp_copy_user_blob(u64 uaddr, u32 len)
1775
{
1776
if (!uaddr || !len)
1777
return ERR_PTR(-EINVAL);
1778
1779
/* verify that blob length does not exceed our limit */
1780
if (len > SEV_FW_BLOB_MAX_SIZE)
1781
return ERR_PTR(-EINVAL);
1782
1783
return memdup_user((void __user *)uaddr, len);
1784
}
1785
EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1786
1787
static int sev_get_api_version(void)
1788
{
1789
struct sev_device *sev = psp_master->sev_data;
1790
struct sev_user_data_status status;
1791
int error = 0, ret;
1792
1793
ret = sev_platform_status(&status, &error);
1794
if (ret) {
1795
dev_err(sev->dev,
1796
"SEV: failed to get status. Error: %#x\n", error);
1797
return 1;
1798
}
1799
1800
sev->api_major = status.api_major;
1801
sev->api_minor = status.api_minor;
1802
sev->build = status.build;
1803
sev->state = status.state;
1804
1805
return 0;
1806
}
1807
1808
static int sev_get_firmware(struct device *dev,
1809
const struct firmware **firmware)
1810
{
1811
char fw_name_specific[SEV_FW_NAME_SIZE];
1812
char fw_name_subset[SEV_FW_NAME_SIZE];
1813
1814
snprintf(fw_name_specific, sizeof(fw_name_specific),
1815
"amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1816
boot_cpu_data.x86, boot_cpu_data.x86_model);
1817
1818
snprintf(fw_name_subset, sizeof(fw_name_subset),
1819
"amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1820
boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1821
1822
/* Check for SEV FW for a particular model.
1823
* Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1824
*
1825
* or
1826
*
1827
* Check for SEV FW common to a subset of models.
1828
* Ex. amd_sev_fam17h_model0xh.sbin for
1829
* Family 17h Model 00h -- Family 17h Model 0Fh
1830
*
1831
* or
1832
*
1833
* Fall-back to using generic name: sev.fw
1834
*/
1835
if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1836
(firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1837
(firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1838
return 0;
1839
1840
return -ENOENT;
1841
}
1842
1843
/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1844
static int sev_update_firmware(struct device *dev)
1845
{
1846
struct sev_data_download_firmware *data;
1847
const struct firmware *firmware;
1848
int ret, error, order;
1849
struct page *p;
1850
u64 data_size;
1851
1852
if (!sev_version_greater_or_equal(0, 15)) {
1853
dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1854
return -1;
1855
}
1856
1857
if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1858
dev_dbg(dev, "No SEV firmware file present\n");
1859
return -1;
1860
}
1861
1862
/*
1863
* SEV FW expects the physical address given to it to be 32
1864
* byte aligned. Memory allocated has structure placed at the
1865
* beginning followed by the firmware being passed to the SEV
1866
* FW. Allocate enough memory for data structure + alignment
1867
* padding + SEV FW.
1868
*/
1869
data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1870
1871
order = get_order(firmware->size + data_size);
1872
p = alloc_pages(GFP_KERNEL, order);
1873
if (!p) {
1874
ret = -1;
1875
goto fw_err;
1876
}
1877
1878
/*
1879
* Copy firmware data to a kernel allocated contiguous
1880
* memory region.
1881
*/
1882
data = page_address(p);
1883
memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1884
1885
data->address = __psp_pa(page_address(p) + data_size);
1886
data->len = firmware->size;
1887
1888
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1889
1890
/*
1891
* A quirk for fixing the committed TCB version, when upgrading from
1892
* earlier firmware version than 1.50.
1893
*/
1894
if (!ret && !sev_version_greater_or_equal(1, 50))
1895
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1896
1897
if (ret)
1898
dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1899
1900
__free_pages(p, order);
1901
1902
fw_err:
1903
release_firmware(firmware);
1904
1905
return ret;
1906
}
1907
1908
static int __sev_snp_shutdown_locked(int *error, bool panic)
1909
{
1910
struct psp_device *psp = psp_master;
1911
struct sev_device *sev;
1912
struct sev_data_snp_shutdown_ex data;
1913
int ret;
1914
1915
if (!psp || !psp->sev_data)
1916
return 0;
1917
1918
sev = psp->sev_data;
1919
1920
if (!sev->snp_initialized)
1921
return 0;
1922
1923
memset(&data, 0, sizeof(data));
1924
data.len = sizeof(data);
1925
data.iommu_snp_shutdown = 1;
1926
1927
/*
1928
* If invoked during panic handling, local interrupts are disabled
1929
* and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1930
* In that case, a wbinvd() is done on remote CPUs via the NMI
1931
* callback, so only a local wbinvd() is needed here.
1932
*/
1933
if (!panic)
1934
wbinvd_on_all_cpus();
1935
else
1936
wbinvd();
1937
1938
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1939
/* SHUTDOWN may require DF_FLUSH */
1940
if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1941
int dfflush_error = SEV_RET_NO_FW_CALL;
1942
1943
ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
1944
if (ret) {
1945
dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
1946
ret, dfflush_error);
1947
return ret;
1948
}
1949
/* reissue the shutdown command */
1950
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1951
error);
1952
}
1953
if (ret) {
1954
dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
1955
ret, *error);
1956
return ret;
1957
}
1958
1959
/*
1960
* SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1961
* enforcement by the IOMMU and also transitions all pages
1962
* associated with the IOMMU to the Reclaim state.
1963
* Firmware was transitioning the IOMMU pages to Hypervisor state
1964
* before version 1.53. But, accounting for the number of assigned
1965
* 4kB pages in a 2M page was done incorrectly by not transitioning
1966
* to the Reclaim state. This resulted in RMP #PF when later accessing
1967
* the 2M page containing those pages during kexec boot. Hence, the
1968
* firmware now transitions these pages to Reclaim state and hypervisor
1969
* needs to transition these pages to shared state. SNP Firmware
1970
* version 1.53 and above are needed for kexec boot.
1971
*/
1972
ret = amd_iommu_snp_disable();
1973
if (ret) {
1974
dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1975
return ret;
1976
}
1977
1978
snp_leak_hv_fixed_pages();
1979
sev->snp_initialized = false;
1980
dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1981
1982
/*
1983
* __sev_snp_shutdown_locked() deadlocks when it tries to unregister
1984
* itself during panic as the panic notifier is called with RCU read
1985
* lock held and notifier unregistration does RCU synchronization.
1986
*/
1987
if (!panic)
1988
atomic_notifier_chain_unregister(&panic_notifier_list,
1989
&snp_panic_notifier);
1990
1991
/* Reset TMR size back to default */
1992
sev_es_tmr_size = SEV_TMR_SIZE;
1993
1994
return ret;
1995
}
1996
1997
static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1998
{
1999
struct sev_device *sev = psp_master->sev_data;
2000
struct sev_user_data_pek_cert_import input;
2001
struct sev_data_pek_cert_import data;
2002
bool shutdown_required = false;
2003
void *pek_blob, *oca_blob;
2004
int ret;
2005
2006
if (!writable)
2007
return -EPERM;
2008
2009
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2010
return -EFAULT;
2011
2012
/* copy PEK certificate blobs from userspace */
2013
pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
2014
if (IS_ERR(pek_blob))
2015
return PTR_ERR(pek_blob);
2016
2017
data.reserved = 0;
2018
data.pek_cert_address = __psp_pa(pek_blob);
2019
data.pek_cert_len = input.pek_cert_len;
2020
2021
/* copy PEK certificate blobs from userspace */
2022
oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
2023
if (IS_ERR(oca_blob)) {
2024
ret = PTR_ERR(oca_blob);
2025
goto e_free_pek;
2026
}
2027
2028
data.oca_cert_address = __psp_pa(oca_blob);
2029
data.oca_cert_len = input.oca_cert_len;
2030
2031
/* If platform is not in INIT state then transition it to INIT */
2032
if (sev->state != SEV_STATE_INIT) {
2033
ret = sev_move_to_init_state(argp, &shutdown_required);
2034
if (ret)
2035
goto e_free_oca;
2036
}
2037
2038
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
2039
2040
e_free_oca:
2041
if (shutdown_required)
2042
__sev_firmware_shutdown(sev, false);
2043
2044
kfree(oca_blob);
2045
e_free_pek:
2046
kfree(pek_blob);
2047
return ret;
2048
}
2049
2050
static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
2051
{
2052
struct sev_user_data_get_id2 input;
2053
struct sev_data_get_id data;
2054
void __user *input_address;
2055
void *id_blob = NULL;
2056
int ret;
2057
2058
/* SEV GET_ID is available from SEV API v0.16 and up */
2059
if (!sev_version_greater_or_equal(0, 16))
2060
return -ENOTSUPP;
2061
2062
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2063
return -EFAULT;
2064
2065
input_address = (void __user *)input.address;
2066
2067
if (input.address && input.length) {
2068
/*
2069
* The length of the ID shouldn't be assumed by software since
2070
* it may change in the future. The allocation size is limited
2071
* to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
2072
* If the allocation fails, simply return ENOMEM rather than
2073
* warning in the kernel log.
2074
*/
2075
id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
2076
if (!id_blob)
2077
return -ENOMEM;
2078
2079
data.address = __psp_pa(id_blob);
2080
data.len = input.length;
2081
} else {
2082
data.address = 0;
2083
data.len = 0;
2084
}
2085
2086
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
2087
2088
/*
2089
* Firmware will return the length of the ID value (either the minimum
2090
* required length or the actual length written), return it to the user.
2091
*/
2092
input.length = data.len;
2093
2094
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2095
ret = -EFAULT;
2096
goto e_free;
2097
}
2098
2099
if (id_blob) {
2100
if (copy_to_user(input_address, id_blob, data.len)) {
2101
ret = -EFAULT;
2102
goto e_free;
2103
}
2104
}
2105
2106
e_free:
2107
kfree(id_blob);
2108
2109
return ret;
2110
}
2111
2112
static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2113
{
2114
struct sev_data_get_id *data;
2115
u64 data_size, user_size;
2116
void *id_blob, *mem;
2117
int ret;
2118
2119
/* SEV GET_ID available from SEV API v0.16 and up */
2120
if (!sev_version_greater_or_equal(0, 16))
2121
return -ENOTSUPP;
2122
2123
/* SEV FW expects the buffer it fills with the ID to be
2124
* 8-byte aligned. Memory allocated should be enough to
2125
* hold data structure + alignment padding + memory
2126
* where SEV FW writes the ID.
2127
*/
2128
data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2129
user_size = sizeof(struct sev_user_data_get_id);
2130
2131
mem = kzalloc(data_size + user_size, GFP_KERNEL);
2132
if (!mem)
2133
return -ENOMEM;
2134
2135
data = mem;
2136
id_blob = mem + data_size;
2137
2138
data->address = __psp_pa(id_blob);
2139
data->len = user_size;
2140
2141
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2142
if (!ret) {
2143
if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2144
ret = -EFAULT;
2145
}
2146
2147
kfree(mem);
2148
2149
return ret;
2150
}
2151
2152
static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2153
{
2154
struct sev_device *sev = psp_master->sev_data;
2155
struct sev_user_data_pdh_cert_export input;
2156
void *pdh_blob = NULL, *cert_blob = NULL;
2157
struct sev_data_pdh_cert_export data;
2158
void __user *input_cert_chain_address;
2159
void __user *input_pdh_cert_address;
2160
bool shutdown_required = false;
2161
int ret;
2162
2163
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2164
return -EFAULT;
2165
2166
memset(&data, 0, sizeof(data));
2167
2168
input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2169
input_cert_chain_address = (void __user *)input.cert_chain_address;
2170
2171
/* Userspace wants to query the certificate length. */
2172
if (!input.pdh_cert_address ||
2173
!input.pdh_cert_len ||
2174
!input.cert_chain_address)
2175
goto cmd;
2176
2177
/* Allocate a physically contiguous buffer to store the PDH blob. */
2178
if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2179
return -EFAULT;
2180
2181
/* Allocate a physically contiguous buffer to store the cert chain blob. */
2182
if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2183
return -EFAULT;
2184
2185
pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2186
if (!pdh_blob)
2187
return -ENOMEM;
2188
2189
data.pdh_cert_address = __psp_pa(pdh_blob);
2190
data.pdh_cert_len = input.pdh_cert_len;
2191
2192
cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2193
if (!cert_blob) {
2194
ret = -ENOMEM;
2195
goto e_free_pdh;
2196
}
2197
2198
data.cert_chain_address = __psp_pa(cert_blob);
2199
data.cert_chain_len = input.cert_chain_len;
2200
2201
cmd:
2202
/* If platform is not in INIT state then transition it to INIT. */
2203
if (sev->state != SEV_STATE_INIT) {
2204
if (!writable) {
2205
ret = -EPERM;
2206
goto e_free_cert;
2207
}
2208
ret = sev_move_to_init_state(argp, &shutdown_required);
2209
if (ret)
2210
goto e_free_cert;
2211
}
2212
2213
ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2214
2215
/* If we query the length, FW responded with expected data. */
2216
input.cert_chain_len = data.cert_chain_len;
2217
input.pdh_cert_len = data.pdh_cert_len;
2218
2219
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2220
ret = -EFAULT;
2221
goto e_free_cert;
2222
}
2223
2224
if (pdh_blob) {
2225
if (copy_to_user(input_pdh_cert_address,
2226
pdh_blob, input.pdh_cert_len)) {
2227
ret = -EFAULT;
2228
goto e_free_cert;
2229
}
2230
}
2231
2232
if (cert_blob) {
2233
if (copy_to_user(input_cert_chain_address,
2234
cert_blob, input.cert_chain_len))
2235
ret = -EFAULT;
2236
}
2237
2238
e_free_cert:
2239
if (shutdown_required)
2240
__sev_firmware_shutdown(sev, false);
2241
2242
kfree(cert_blob);
2243
e_free_pdh:
2244
kfree(pdh_blob);
2245
return ret;
2246
}
2247
2248
static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2249
{
2250
struct sev_device *sev = psp_master->sev_data;
2251
bool shutdown_required = false;
2252
struct sev_data_snp_addr buf;
2253
struct page *status_page;
2254
int ret, error;
2255
void *data;
2256
2257
if (!argp->data)
2258
return -EINVAL;
2259
2260
status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2261
if (!status_page)
2262
return -ENOMEM;
2263
2264
data = page_address(status_page);
2265
2266
if (!sev->snp_initialized) {
2267
ret = snp_move_to_init_state(argp, &shutdown_required);
2268
if (ret)
2269
goto cleanup;
2270
}
2271
2272
/*
2273
* Firmware expects status page to be in firmware-owned state, otherwise
2274
* it will report firmware error code INVALID_PAGE_STATE (0x1A).
2275
*/
2276
if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2277
ret = -EFAULT;
2278
goto cleanup;
2279
}
2280
2281
buf.address = __psp_pa(data);
2282
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2283
2284
/*
2285
* Status page will be transitioned to Reclaim state upon success, or
2286
* left in Firmware state in failure. Use snp_reclaim_pages() to
2287
* transition either case back to Hypervisor-owned state.
2288
*/
2289
if (snp_reclaim_pages(__pa(data), 1, true))
2290
return -EFAULT;
2291
2292
if (ret)
2293
goto cleanup;
2294
2295
if (copy_to_user((void __user *)argp->data, data,
2296
sizeof(struct sev_user_data_snp_status)))
2297
ret = -EFAULT;
2298
2299
cleanup:
2300
if (shutdown_required)
2301
__sev_snp_shutdown_locked(&error, false);
2302
2303
__free_pages(status_page, 0);
2304
return ret;
2305
}
2306
2307
static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2308
{
2309
struct sev_device *sev = psp_master->sev_data;
2310
struct sev_data_snp_commit buf;
2311
bool shutdown_required = false;
2312
int ret, error;
2313
2314
if (!sev->snp_initialized) {
2315
ret = snp_move_to_init_state(argp, &shutdown_required);
2316
if (ret)
2317
return ret;
2318
}
2319
2320
buf.len = sizeof(buf);
2321
2322
ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2323
2324
if (shutdown_required)
2325
__sev_snp_shutdown_locked(&error, false);
2326
2327
return ret;
2328
}
2329
2330
static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2331
{
2332
struct sev_device *sev = psp_master->sev_data;
2333
struct sev_user_data_snp_config config;
2334
bool shutdown_required = false;
2335
int ret, error;
2336
2337
if (!argp->data)
2338
return -EINVAL;
2339
2340
if (!writable)
2341
return -EPERM;
2342
2343
if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2344
return -EFAULT;
2345
2346
if (!sev->snp_initialized) {
2347
ret = snp_move_to_init_state(argp, &shutdown_required);
2348
if (ret)
2349
return ret;
2350
}
2351
2352
ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2353
2354
if (shutdown_required)
2355
__sev_snp_shutdown_locked(&error, false);
2356
2357
return ret;
2358
}
2359
2360
static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2361
{
2362
struct sev_device *sev = psp_master->sev_data;
2363
struct sev_user_data_snp_vlek_load input;
2364
bool shutdown_required = false;
2365
int ret, error;
2366
void *blob;
2367
2368
if (!argp->data)
2369
return -EINVAL;
2370
2371
if (!writable)
2372
return -EPERM;
2373
2374
if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2375
return -EFAULT;
2376
2377
if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2378
return -EINVAL;
2379
2380
blob = psp_copy_user_blob(input.vlek_wrapped_address,
2381
sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2382
if (IS_ERR(blob))
2383
return PTR_ERR(blob);
2384
2385
input.vlek_wrapped_address = __psp_pa(blob);
2386
2387
if (!sev->snp_initialized) {
2388
ret = snp_move_to_init_state(argp, &shutdown_required);
2389
if (ret)
2390
goto cleanup;
2391
}
2392
2393
ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2394
2395
if (shutdown_required)
2396
__sev_snp_shutdown_locked(&error, false);
2397
2398
cleanup:
2399
kfree(blob);
2400
2401
return ret;
2402
}
2403
2404
static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2405
{
2406
void __user *argp = (void __user *)arg;
2407
struct sev_issue_cmd input;
2408
int ret = -EFAULT;
2409
bool writable = file->f_mode & FMODE_WRITE;
2410
2411
if (!psp_master || !psp_master->sev_data)
2412
return -ENODEV;
2413
2414
if (ioctl != SEV_ISSUE_CMD)
2415
return -EINVAL;
2416
2417
if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2418
return -EFAULT;
2419
2420
if (input.cmd > SEV_MAX)
2421
return -EINVAL;
2422
2423
mutex_lock(&sev_cmd_mutex);
2424
2425
switch (input.cmd) {
2426
2427
case SEV_FACTORY_RESET:
2428
ret = sev_ioctl_do_reset(&input, writable);
2429
break;
2430
case SEV_PLATFORM_STATUS:
2431
ret = sev_ioctl_do_platform_status(&input);
2432
break;
2433
case SEV_PEK_GEN:
2434
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2435
break;
2436
case SEV_PDH_GEN:
2437
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2438
break;
2439
case SEV_PEK_CSR:
2440
ret = sev_ioctl_do_pek_csr(&input, writable);
2441
break;
2442
case SEV_PEK_CERT_IMPORT:
2443
ret = sev_ioctl_do_pek_import(&input, writable);
2444
break;
2445
case SEV_PDH_CERT_EXPORT:
2446
ret = sev_ioctl_do_pdh_export(&input, writable);
2447
break;
2448
case SEV_GET_ID:
2449
pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2450
ret = sev_ioctl_do_get_id(&input);
2451
break;
2452
case SEV_GET_ID2:
2453
ret = sev_ioctl_do_get_id2(&input);
2454
break;
2455
case SNP_PLATFORM_STATUS:
2456
ret = sev_ioctl_do_snp_platform_status(&input);
2457
break;
2458
case SNP_COMMIT:
2459
ret = sev_ioctl_do_snp_commit(&input);
2460
break;
2461
case SNP_SET_CONFIG:
2462
ret = sev_ioctl_do_snp_set_config(&input, writable);
2463
break;
2464
case SNP_VLEK_LOAD:
2465
ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2466
break;
2467
default:
2468
ret = -EINVAL;
2469
goto out;
2470
}
2471
2472
if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2473
ret = -EFAULT;
2474
out:
2475
mutex_unlock(&sev_cmd_mutex);
2476
2477
return ret;
2478
}
2479
2480
static const struct file_operations sev_fops = {
2481
.owner = THIS_MODULE,
2482
.unlocked_ioctl = sev_ioctl,
2483
};
2484
2485
int sev_platform_status(struct sev_user_data_status *data, int *error)
2486
{
2487
return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2488
}
2489
EXPORT_SYMBOL_GPL(sev_platform_status);
2490
2491
int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2492
{
2493
return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2494
}
2495
EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2496
2497
int sev_guest_activate(struct sev_data_activate *data, int *error)
2498
{
2499
return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2500
}
2501
EXPORT_SYMBOL_GPL(sev_guest_activate);
2502
2503
int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2504
{
2505
return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2506
}
2507
EXPORT_SYMBOL_GPL(sev_guest_decommission);
2508
2509
int sev_guest_df_flush(int *error)
2510
{
2511
return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2512
}
2513
EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2514
2515
static void sev_exit(struct kref *ref)
2516
{
2517
misc_deregister(&misc_dev->misc);
2518
kfree(misc_dev);
2519
misc_dev = NULL;
2520
}
2521
2522
static int sev_misc_init(struct sev_device *sev)
2523
{
2524
struct device *dev = sev->dev;
2525
int ret;
2526
2527
/*
2528
* SEV feature support can be detected on multiple devices but the SEV
2529
* FW commands must be issued on the master. During probe, we do not
2530
* know the master hence we create /dev/sev on the first device probe.
2531
* sev_do_cmd() finds the right master device to which to issue the
2532
* command to the firmware.
2533
*/
2534
if (!misc_dev) {
2535
struct miscdevice *misc;
2536
2537
misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2538
if (!misc_dev)
2539
return -ENOMEM;
2540
2541
misc = &misc_dev->misc;
2542
misc->minor = MISC_DYNAMIC_MINOR;
2543
misc->name = DEVICE_NAME;
2544
misc->fops = &sev_fops;
2545
2546
ret = misc_register(misc);
2547
if (ret)
2548
return ret;
2549
2550
kref_init(&misc_dev->refcount);
2551
} else {
2552
kref_get(&misc_dev->refcount);
2553
}
2554
2555
init_waitqueue_head(&sev->int_queue);
2556
sev->misc = misc_dev;
2557
dev_dbg(dev, "registered SEV device\n");
2558
2559
return 0;
2560
}
2561
2562
int sev_dev_init(struct psp_device *psp)
2563
{
2564
struct device *dev = psp->dev;
2565
struct sev_device *sev;
2566
int ret = -ENOMEM;
2567
2568
if (!boot_cpu_has(X86_FEATURE_SEV)) {
2569
dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2570
return 0;
2571
}
2572
2573
sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2574
if (!sev)
2575
goto e_err;
2576
2577
sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2578
if (!sev->cmd_buf)
2579
goto e_sev;
2580
2581
sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2582
2583
psp->sev_data = sev;
2584
2585
sev->dev = dev;
2586
sev->psp = psp;
2587
2588
sev->io_regs = psp->io_regs;
2589
2590
sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2591
if (!sev->vdata) {
2592
ret = -ENODEV;
2593
dev_err(dev, "sev: missing driver data\n");
2594
goto e_buf;
2595
}
2596
2597
psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2598
2599
ret = sev_misc_init(sev);
2600
if (ret)
2601
goto e_irq;
2602
2603
dev_notice(dev, "sev enabled\n");
2604
2605
return 0;
2606
2607
e_irq:
2608
psp_clear_sev_irq_handler(psp);
2609
e_buf:
2610
devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2611
e_sev:
2612
devm_kfree(dev, sev);
2613
e_err:
2614
psp->sev_data = NULL;
2615
2616
dev_notice(dev, "sev initialization failed\n");
2617
2618
return ret;
2619
}
2620
2621
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2622
{
2623
int error;
2624
2625
__sev_platform_shutdown_locked(&error);
2626
2627
if (sev_es_tmr) {
2628
/*
2629
* The TMR area was encrypted, flush it from the cache.
2630
*
2631
* If invoked during panic handling, local interrupts are
2632
* disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2633
* can't be used. In that case, wbinvd() is done on remote CPUs
2634
* via the NMI callback, and done for this CPU later during
2635
* SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2636
*/
2637
if (!panic)
2638
wbinvd_on_all_cpus();
2639
2640
__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2641
get_order(sev_es_tmr_size),
2642
true);
2643
sev_es_tmr = NULL;
2644
}
2645
2646
if (sev_init_ex_buffer) {
2647
__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2648
get_order(NV_LENGTH),
2649
true);
2650
sev_init_ex_buffer = NULL;
2651
}
2652
2653
if (snp_range_list) {
2654
kfree(snp_range_list);
2655
snp_range_list = NULL;
2656
}
2657
2658
__sev_snp_shutdown_locked(&error, panic);
2659
}
2660
2661
static void sev_firmware_shutdown(struct sev_device *sev)
2662
{
2663
mutex_lock(&sev_cmd_mutex);
2664
__sev_firmware_shutdown(sev, false);
2665
mutex_unlock(&sev_cmd_mutex);
2666
}
2667
2668
void sev_platform_shutdown(void)
2669
{
2670
if (!psp_master || !psp_master->sev_data)
2671
return;
2672
2673
sev_firmware_shutdown(psp_master->sev_data);
2674
}
2675
EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2676
2677
void sev_dev_destroy(struct psp_device *psp)
2678
{
2679
struct sev_device *sev = psp->sev_data;
2680
2681
if (!sev)
2682
return;
2683
2684
sev_firmware_shutdown(sev);
2685
2686
if (sev->misc)
2687
kref_put(&misc_dev->refcount, sev_exit);
2688
2689
psp_clear_sev_irq_handler(psp);
2690
}
2691
2692
static int snp_shutdown_on_panic(struct notifier_block *nb,
2693
unsigned long reason, void *arg)
2694
{
2695
struct sev_device *sev = psp_master->sev_data;
2696
2697
/*
2698
* If sev_cmd_mutex is already acquired, then it's likely
2699
* another PSP command is in flight and issuing a shutdown
2700
* would fail in unexpected ways. Rather than create even
2701
* more confusion during a panic, just bail out here.
2702
*/
2703
if (mutex_is_locked(&sev_cmd_mutex))
2704
return NOTIFY_DONE;
2705
2706
__sev_firmware_shutdown(sev, true);
2707
2708
return NOTIFY_DONE;
2709
}
2710
2711
int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2712
void *data, int *error)
2713
{
2714
if (!filep || filep->f_op != &sev_fops)
2715
return -EBADF;
2716
2717
return sev_do_cmd(cmd, data, error);
2718
}
2719
EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2720
2721
void sev_pci_init(void)
2722
{
2723
struct sev_device *sev = psp_master->sev_data;
2724
u8 api_major, api_minor, build;
2725
2726
if (!sev)
2727
return;
2728
2729
psp_timeout = psp_probe_timeout;
2730
2731
if (sev_get_api_version())
2732
goto err;
2733
2734
api_major = sev->api_major;
2735
api_minor = sev->api_minor;
2736
build = sev->build;
2737
2738
if (sev_update_firmware(sev->dev) == 0)
2739
sev_get_api_version();
2740
2741
if (api_major != sev->api_major || api_minor != sev->api_minor ||
2742
build != sev->build)
2743
dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2744
api_major, api_minor, build,
2745
sev->api_major, sev->api_minor, sev->build);
2746
2747
return;
2748
2749
err:
2750
sev_dev_destroy(psp_master);
2751
2752
psp_master->sev_data = NULL;
2753
}
2754
2755
void sev_pci_exit(void)
2756
{
2757
struct sev_device *sev = psp_master->sev_data;
2758
2759
if (!sev)
2760
return;
2761
2762
sev_firmware_shutdown(sev);
2763
}
2764
2765