Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/ccp/sev-dev.c
54335 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* AMD Secure Encrypted Virtualization (SEV) interface
4
*
5
* Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6
*
7
* Author: Brijesh Singh <[email protected]>
8
*/
9
10
#include <linux/bitfield.h>
11
#include <linux/module.h>
12
#include <linux/kernel.h>
13
#include <linux/kthread.h>
14
#include <linux/sched.h>
15
#include <linux/interrupt.h>
16
#include <linux/spinlock.h>
17
#include <linux/spinlock_types.h>
18
#include <linux/types.h>
19
#include <linux/mutex.h>
20
#include <linux/delay.h>
21
#include <linux/hw_random.h>
22
#include <linux/ccp.h>
23
#include <linux/firmware.h>
24
#include <linux/panic_notifier.h>
25
#include <linux/gfp.h>
26
#include <linux/cpufeature.h>
27
#include <linux/fs.h>
28
#include <linux/fs_struct.h>
29
#include <linux/psp.h>
30
#include <linux/amd-iommu.h>
31
#include <linux/crash_dump.h>
32
33
#include <asm/smp.h>
34
#include <asm/cacheflush.h>
35
#include <asm/e820/types.h>
36
#include <asm/sev.h>
37
#include <asm/msr.h>
38
39
#include "psp-dev.h"
40
#include "sev-dev.h"
41
42
#define DEVICE_NAME "sev"
43
#define SEV_FW_FILE "amd/sev.fw"
44
#define SEV_FW_NAME_SIZE 64
45
46
/* Minimum firmware version required for the SEV-SNP support */
47
#define SNP_MIN_API_MAJOR 1
48
#define SNP_MIN_API_MINOR 51
49
50
/*
51
* Maximum number of firmware-writable buffers that might be specified
52
* in the parameters of a legacy SEV command buffer.
53
*/
54
#define CMD_BUF_FW_WRITABLE_MAX 2
55
56
/* Leave room in the descriptor array for an end-of-list indicator. */
57
#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
58
59
static DEFINE_MUTEX(sev_cmd_mutex);
60
static struct sev_misc_dev *misc_dev;
61
62
static int psp_cmd_timeout = 100;
63
module_param(psp_cmd_timeout, int, 0644);
64
MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
65
66
static int psp_probe_timeout = 5;
67
module_param(psp_probe_timeout, int, 0644);
68
MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
69
70
static char *init_ex_path;
71
module_param(init_ex_path, charp, 0444);
72
MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
73
74
static bool psp_init_on_probe = true;
75
module_param(psp_init_on_probe, bool, 0444);
76
MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
77
78
#if IS_ENABLED(CONFIG_PCI_TSM)
79
static bool sev_tio_enabled = true;
80
module_param_named(tio, sev_tio_enabled, bool, 0444);
81
MODULE_PARM_DESC(tio, "Enables TIO in SNP_INIT_EX");
82
#else
83
static const bool sev_tio_enabled = false;
84
#endif
85
86
MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
87
MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
88
MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
89
MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
90
91
static bool psp_dead;
92
static int psp_timeout;
93
94
enum snp_hv_fixed_pages_state {
95
ALLOCATED,
96
HV_FIXED,
97
};
98
99
struct snp_hv_fixed_pages_entry {
100
struct list_head list;
101
struct page *page;
102
unsigned int order;
103
bool free;
104
enum snp_hv_fixed_pages_state page_state;
105
};
106
107
static LIST_HEAD(snp_hv_fixed_pages);
108
109
/* Trusted Memory Region (TMR):
110
* The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
111
* to allocate the memory, which will return aligned memory for the specified
112
* allocation order.
113
*
114
* When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
115
*/
116
#define SEV_TMR_SIZE (1024 * 1024)
117
#define SNP_TMR_SIZE (2 * 1024 * 1024)
118
119
static void *sev_es_tmr;
120
static size_t sev_es_tmr_size = SEV_TMR_SIZE;
121
122
/* INIT_EX NV Storage:
123
* The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
124
* allocator to allocate the memory, which will return aligned memory for the
125
* specified allocation order.
126
*/
127
#define NV_LENGTH (32 * 1024)
128
static void *sev_init_ex_buffer;
129
130
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic);
131
132
static int snp_shutdown_on_panic(struct notifier_block *nb,
133
unsigned long reason, void *arg);
134
135
static struct notifier_block snp_panic_notifier = {
136
.notifier_call = snp_shutdown_on_panic,
137
};
138
139
static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
140
{
141
struct sev_device *sev = psp_master->sev_data;
142
143
if (sev->api_major > maj)
144
return true;
145
146
if (sev->api_major == maj && sev->api_minor >= min)
147
return true;
148
149
return false;
150
}
151
152
static void sev_irq_handler(int irq, void *data, unsigned int status)
153
{
154
struct sev_device *sev = data;
155
int reg;
156
157
/* Check if it is command completion: */
158
if (!(status & SEV_CMD_COMPLETE))
159
return;
160
161
/* Check if it is SEV command completion: */
162
reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
163
if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
164
sev->int_rcvd = 1;
165
wake_up(&sev->int_queue);
166
}
167
}
168
169
static int sev_wait_cmd_ioc(struct sev_device *sev,
170
unsigned int *reg, unsigned int timeout)
171
{
172
int ret;
173
174
/*
175
* If invoked during panic handling, local interrupts are disabled,
176
* so the PSP command completion interrupt can't be used. Poll for
177
* PSP command completion instead.
178
*/
179
if (irqs_disabled()) {
180
unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
181
182
/* Poll for SEV command completion: */
183
while (timeout_usecs--) {
184
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
185
if (*reg & PSP_CMDRESP_RESP)
186
return 0;
187
188
udelay(10);
189
}
190
return -ETIMEDOUT;
191
}
192
193
ret = wait_event_timeout(sev->int_queue,
194
sev->int_rcvd, timeout * HZ);
195
if (!ret)
196
return -ETIMEDOUT;
197
198
*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
199
200
return 0;
201
}
202
203
static int sev_cmd_buffer_len(int cmd)
204
{
205
switch (cmd) {
206
case SEV_CMD_INIT: return sizeof(struct sev_data_init);
207
case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
208
case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
209
case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
210
case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
211
case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
212
case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
213
case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
214
case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
215
case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
216
case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
217
case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
218
case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
219
case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
220
case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
221
case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
222
case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
223
case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
224
case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
225
case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
226
case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
227
case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
228
case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
229
case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
230
case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
231
case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
232
case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
233
case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
234
case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
235
case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
236
case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
237
case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
238
case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
239
case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
240
case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
241
case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
242
case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
243
case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
244
case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
245
case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
246
case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
247
case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
248
case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
249
case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
250
case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
251
case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
252
case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
253
case SEV_CMD_SNP_FEATURE_INFO: return sizeof(struct sev_data_snp_feature_info);
254
case SEV_CMD_SNP_VLEK_LOAD: return sizeof(struct sev_user_data_snp_vlek_load);
255
default: return sev_tio_cmd_buffer_len(cmd);
256
}
257
258
return 0;
259
}
260
261
static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
262
{
263
struct path root __free(path_put) = {};
264
265
task_lock(&init_task);
266
get_fs_root(init_task.fs, &root);
267
task_unlock(&init_task);
268
269
CLASS(prepare_creds, cred)();
270
if (!cred)
271
return ERR_PTR(-ENOMEM);
272
273
cred->fsuid = GLOBAL_ROOT_UID;
274
275
scoped_with_creds(cred)
276
return file_open_root(&root, filename, flags, mode);
277
}
278
279
static int sev_read_init_ex_file(void)
280
{
281
struct sev_device *sev = psp_master->sev_data;
282
struct file *fp;
283
ssize_t nread;
284
285
lockdep_assert_held(&sev_cmd_mutex);
286
287
if (!sev_init_ex_buffer)
288
return -EOPNOTSUPP;
289
290
fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
291
if (IS_ERR(fp)) {
292
int ret = PTR_ERR(fp);
293
294
if (ret == -ENOENT) {
295
dev_info(sev->dev,
296
"SEV: %s does not exist and will be created later.\n",
297
init_ex_path);
298
ret = 0;
299
} else {
300
dev_err(sev->dev,
301
"SEV: could not open %s for read, error %d\n",
302
init_ex_path, ret);
303
}
304
return ret;
305
}
306
307
nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
308
if (nread != NV_LENGTH) {
309
dev_info(sev->dev,
310
"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
311
NV_LENGTH, nread);
312
}
313
314
dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
315
filp_close(fp, NULL);
316
317
return 0;
318
}
319
320
static int sev_write_init_ex_file(void)
321
{
322
struct sev_device *sev = psp_master->sev_data;
323
struct file *fp;
324
loff_t offset = 0;
325
ssize_t nwrite;
326
327
lockdep_assert_held(&sev_cmd_mutex);
328
329
if (!sev_init_ex_buffer)
330
return 0;
331
332
fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
333
if (IS_ERR(fp)) {
334
int ret = PTR_ERR(fp);
335
336
dev_err(sev->dev,
337
"SEV: could not open file for write, error %d\n",
338
ret);
339
return ret;
340
}
341
342
nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
343
vfs_fsync(fp, 0);
344
filp_close(fp, NULL);
345
346
if (nwrite != NV_LENGTH) {
347
dev_err(sev->dev,
348
"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
349
NV_LENGTH, nwrite);
350
return -EIO;
351
}
352
353
dev_dbg(sev->dev, "SEV: write successful to NV file\n");
354
355
return 0;
356
}
357
358
static int sev_write_init_ex_file_if_required(int cmd_id)
359
{
360
lockdep_assert_held(&sev_cmd_mutex);
361
362
if (!sev_init_ex_buffer)
363
return 0;
364
365
/*
366
* Only a few platform commands modify the SPI/NV area, but none of the
367
* non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
368
* PEK_CERT_IMPORT, and PDH_GEN do.
369
*/
370
switch (cmd_id) {
371
case SEV_CMD_FACTORY_RESET:
372
case SEV_CMD_INIT_EX:
373
case SEV_CMD_PDH_GEN:
374
case SEV_CMD_PEK_CERT_IMPORT:
375
case SEV_CMD_PEK_GEN:
376
break;
377
default:
378
return 0;
379
}
380
381
return sev_write_init_ex_file();
382
}
383
384
int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
385
{
386
int ret, err, i;
387
388
paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
389
390
for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
391
struct sev_data_snp_page_reclaim data = {0};
392
393
data.paddr = paddr;
394
395
if (locked)
396
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
397
else
398
ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
399
400
if (ret)
401
goto cleanup;
402
403
ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
404
if (ret)
405
goto cleanup;
406
}
407
408
return 0;
409
410
cleanup:
411
/*
412
* If there was a failure reclaiming the page then it is no longer safe
413
* to release it back to the system; leak it instead.
414
*/
415
snp_leak_pages(__phys_to_pfn(paddr), npages - i);
416
return ret;
417
}
418
EXPORT_SYMBOL_GPL(snp_reclaim_pages);
419
420
static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
421
{
422
unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
423
int rc, i;
424
425
for (i = 0; i < npages; i++, pfn++) {
426
rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
427
if (rc)
428
goto cleanup;
429
}
430
431
return 0;
432
433
cleanup:
434
/*
435
* Try unrolling the firmware state changes by
436
* reclaiming the pages which were already changed to the
437
* firmware state.
438
*/
439
snp_reclaim_pages(paddr, i, locked);
440
441
return rc;
442
}
443
444
static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order, bool locked)
445
{
446
unsigned long npages = 1ul << order, paddr;
447
struct sev_device *sev;
448
struct page *page;
449
450
if (!psp_master || !psp_master->sev_data)
451
return NULL;
452
453
page = alloc_pages(gfp_mask, order);
454
if (!page)
455
return NULL;
456
457
/* If SEV-SNP is initialized then add the page in RMP table. */
458
sev = psp_master->sev_data;
459
if (!sev->snp_initialized)
460
return page;
461
462
paddr = __pa((unsigned long)page_address(page));
463
if (rmp_mark_pages_firmware(paddr, npages, locked))
464
return NULL;
465
466
return page;
467
}
468
469
void *snp_alloc_firmware_page(gfp_t gfp_mask)
470
{
471
struct page *page;
472
473
page = __snp_alloc_firmware_pages(gfp_mask, 0, false);
474
475
return page ? page_address(page) : NULL;
476
}
477
EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
478
479
static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
480
{
481
struct sev_device *sev = psp_master->sev_data;
482
unsigned long paddr, npages = 1ul << order;
483
484
if (!page)
485
return;
486
487
paddr = __pa((unsigned long)page_address(page));
488
if (sev->snp_initialized &&
489
snp_reclaim_pages(paddr, npages, locked))
490
return;
491
492
__free_pages(page, order);
493
}
494
495
void snp_free_firmware_page(void *addr)
496
{
497
if (!addr)
498
return;
499
500
__snp_free_firmware_pages(virt_to_page(addr), 0, false);
501
}
502
EXPORT_SYMBOL_GPL(snp_free_firmware_page);
503
504
static void *sev_fw_alloc(unsigned long len)
505
{
506
struct page *page;
507
508
page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len), true);
509
if (!page)
510
return NULL;
511
512
return page_address(page);
513
}
514
515
/**
516
* struct cmd_buf_desc - descriptors for managing legacy SEV command address
517
* parameters corresponding to buffers that may be written to by firmware.
518
*
519
* @paddr_ptr: pointer to the address parameter in the command buffer which may
520
* need to be saved/restored depending on whether a bounce buffer
521
* is used. In the case of a bounce buffer, the command buffer
522
* needs to be updated with the address of the new bounce buffer
523
* snp_map_cmd_buf_desc() has allocated specifically for it. Must
524
* be NULL if this descriptor is only an end-of-list indicator.
525
*
526
* @paddr_orig: storage for the original address parameter, which can be used to
527
* restore the original value in @paddr_ptr in cases where it is
528
* replaced with the address of a bounce buffer.
529
*
530
* @len: length of buffer located at the address originally stored at @paddr_ptr
531
*
532
* @guest_owned: true if the address corresponds to guest-owned pages, in which
533
* case bounce buffers are not needed.
534
*/
535
struct cmd_buf_desc {
536
u64 *paddr_ptr;
537
u64 paddr_orig;
538
u32 len;
539
bool guest_owned;
540
};
541
542
/*
543
* If a legacy SEV command parameter is a memory address, those pages in
544
* turn need to be transitioned to/from firmware-owned before/after
545
* executing the firmware command.
546
*
547
* Additionally, in cases where those pages are not guest-owned, a bounce
548
* buffer is needed in place of the original memory address parameter.
549
*
550
* A set of descriptors are used to keep track of this handling, and
551
* initialized here based on the specific commands being executed.
552
*/
553
static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
554
struct cmd_buf_desc *desc_list)
555
{
556
switch (cmd) {
557
case SEV_CMD_PDH_CERT_EXPORT: {
558
struct sev_data_pdh_cert_export *data = cmd_buf;
559
560
desc_list[0].paddr_ptr = &data->pdh_cert_address;
561
desc_list[0].len = data->pdh_cert_len;
562
desc_list[1].paddr_ptr = &data->cert_chain_address;
563
desc_list[1].len = data->cert_chain_len;
564
break;
565
}
566
case SEV_CMD_GET_ID: {
567
struct sev_data_get_id *data = cmd_buf;
568
569
desc_list[0].paddr_ptr = &data->address;
570
desc_list[0].len = data->len;
571
break;
572
}
573
case SEV_CMD_PEK_CSR: {
574
struct sev_data_pek_csr *data = cmd_buf;
575
576
desc_list[0].paddr_ptr = &data->address;
577
desc_list[0].len = data->len;
578
break;
579
}
580
case SEV_CMD_LAUNCH_UPDATE_DATA: {
581
struct sev_data_launch_update_data *data = cmd_buf;
582
583
desc_list[0].paddr_ptr = &data->address;
584
desc_list[0].len = data->len;
585
desc_list[0].guest_owned = true;
586
break;
587
}
588
case SEV_CMD_LAUNCH_UPDATE_VMSA: {
589
struct sev_data_launch_update_vmsa *data = cmd_buf;
590
591
desc_list[0].paddr_ptr = &data->address;
592
desc_list[0].len = data->len;
593
desc_list[0].guest_owned = true;
594
break;
595
}
596
case SEV_CMD_LAUNCH_MEASURE: {
597
struct sev_data_launch_measure *data = cmd_buf;
598
599
desc_list[0].paddr_ptr = &data->address;
600
desc_list[0].len = data->len;
601
break;
602
}
603
case SEV_CMD_LAUNCH_UPDATE_SECRET: {
604
struct sev_data_launch_secret *data = cmd_buf;
605
606
desc_list[0].paddr_ptr = &data->guest_address;
607
desc_list[0].len = data->guest_len;
608
desc_list[0].guest_owned = true;
609
break;
610
}
611
case SEV_CMD_DBG_DECRYPT: {
612
struct sev_data_dbg *data = cmd_buf;
613
614
desc_list[0].paddr_ptr = &data->dst_addr;
615
desc_list[0].len = data->len;
616
desc_list[0].guest_owned = true;
617
break;
618
}
619
case SEV_CMD_DBG_ENCRYPT: {
620
struct sev_data_dbg *data = cmd_buf;
621
622
desc_list[0].paddr_ptr = &data->dst_addr;
623
desc_list[0].len = data->len;
624
desc_list[0].guest_owned = true;
625
break;
626
}
627
case SEV_CMD_ATTESTATION_REPORT: {
628
struct sev_data_attestation_report *data = cmd_buf;
629
630
desc_list[0].paddr_ptr = &data->address;
631
desc_list[0].len = data->len;
632
break;
633
}
634
case SEV_CMD_SEND_START: {
635
struct sev_data_send_start *data = cmd_buf;
636
637
desc_list[0].paddr_ptr = &data->session_address;
638
desc_list[0].len = data->session_len;
639
break;
640
}
641
case SEV_CMD_SEND_UPDATE_DATA: {
642
struct sev_data_send_update_data *data = cmd_buf;
643
644
desc_list[0].paddr_ptr = &data->hdr_address;
645
desc_list[0].len = data->hdr_len;
646
desc_list[1].paddr_ptr = &data->trans_address;
647
desc_list[1].len = data->trans_len;
648
break;
649
}
650
case SEV_CMD_SEND_UPDATE_VMSA: {
651
struct sev_data_send_update_vmsa *data = cmd_buf;
652
653
desc_list[0].paddr_ptr = &data->hdr_address;
654
desc_list[0].len = data->hdr_len;
655
desc_list[1].paddr_ptr = &data->trans_address;
656
desc_list[1].len = data->trans_len;
657
break;
658
}
659
case SEV_CMD_RECEIVE_UPDATE_DATA: {
660
struct sev_data_receive_update_data *data = cmd_buf;
661
662
desc_list[0].paddr_ptr = &data->guest_address;
663
desc_list[0].len = data->guest_len;
664
desc_list[0].guest_owned = true;
665
break;
666
}
667
case SEV_CMD_RECEIVE_UPDATE_VMSA: {
668
struct sev_data_receive_update_vmsa *data = cmd_buf;
669
670
desc_list[0].paddr_ptr = &data->guest_address;
671
desc_list[0].len = data->guest_len;
672
desc_list[0].guest_owned = true;
673
break;
674
}
675
default:
676
break;
677
}
678
}
679
680
static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
681
{
682
unsigned int npages;
683
684
if (!desc->len)
685
return 0;
686
687
/* Allocate a bounce buffer if this isn't a guest owned page. */
688
if (!desc->guest_owned) {
689
struct page *page;
690
691
page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
692
if (!page) {
693
pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
694
return -ENOMEM;
695
}
696
697
desc->paddr_orig = *desc->paddr_ptr;
698
*desc->paddr_ptr = __psp_pa(page_to_virt(page));
699
}
700
701
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
702
703
/* Transition the buffer to firmware-owned. */
704
if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
705
pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
706
return -EFAULT;
707
}
708
709
return 0;
710
}
711
712
static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
713
{
714
unsigned int npages;
715
716
if (!desc->len)
717
return 0;
718
719
npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
720
721
/* Transition the buffers back to hypervisor-owned. */
722
if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
723
pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
724
return -EFAULT;
725
}
726
727
/* Copy data from bounce buffer and then free it. */
728
if (!desc->guest_owned) {
729
void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
730
void *dst_buf = __va(__sme_clr(desc->paddr_orig));
731
732
memcpy(dst_buf, bounce_buf, desc->len);
733
__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
734
735
/* Restore the original address in the command buffer. */
736
*desc->paddr_ptr = desc->paddr_orig;
737
}
738
739
return 0;
740
}
741
742
static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
743
{
744
int i;
745
746
snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
747
748
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
749
struct cmd_buf_desc *desc = &desc_list[i];
750
751
if (!desc->paddr_ptr)
752
break;
753
754
if (snp_map_cmd_buf_desc(desc))
755
goto err_unmap;
756
}
757
758
return 0;
759
760
err_unmap:
761
for (i--; i >= 0; i--)
762
snp_unmap_cmd_buf_desc(&desc_list[i]);
763
764
return -EFAULT;
765
}
766
767
static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
768
{
769
int i, ret = 0;
770
771
for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
772
struct cmd_buf_desc *desc = &desc_list[i];
773
774
if (!desc->paddr_ptr)
775
break;
776
777
if (snp_unmap_cmd_buf_desc(&desc_list[i]))
778
ret = -EFAULT;
779
}
780
781
return ret;
782
}
783
784
static bool sev_cmd_buf_writable(int cmd)
785
{
786
switch (cmd) {
787
case SEV_CMD_PLATFORM_STATUS:
788
case SEV_CMD_GUEST_STATUS:
789
case SEV_CMD_LAUNCH_START:
790
case SEV_CMD_RECEIVE_START:
791
case SEV_CMD_LAUNCH_MEASURE:
792
case SEV_CMD_SEND_START:
793
case SEV_CMD_SEND_UPDATE_DATA:
794
case SEV_CMD_SEND_UPDATE_VMSA:
795
case SEV_CMD_PEK_CSR:
796
case SEV_CMD_PDH_CERT_EXPORT:
797
case SEV_CMD_GET_ID:
798
case SEV_CMD_ATTESTATION_REPORT:
799
return true;
800
default:
801
return false;
802
}
803
}
804
805
/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
806
static bool snp_legacy_handling_needed(int cmd)
807
{
808
struct sev_device *sev = psp_master->sev_data;
809
810
return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
811
}
812
813
static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
814
{
815
if (!snp_legacy_handling_needed(cmd))
816
return 0;
817
818
if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
819
return -EFAULT;
820
821
/*
822
* Before command execution, the command buffer needs to be put into
823
* the firmware-owned state.
824
*/
825
if (sev_cmd_buf_writable(cmd)) {
826
if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
827
return -EFAULT;
828
}
829
830
return 0;
831
}
832
833
static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
834
{
835
if (!snp_legacy_handling_needed(cmd))
836
return 0;
837
838
/*
839
* After command completion, the command buffer needs to be put back
840
* into the hypervisor-owned state.
841
*/
842
if (sev_cmd_buf_writable(cmd))
843
if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
844
return -EFAULT;
845
846
return 0;
847
}
848
849
int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
850
{
851
struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
852
struct psp_device *psp = psp_master;
853
struct sev_device *sev;
854
unsigned int cmdbuff_hi, cmdbuff_lo;
855
unsigned int phys_lsb, phys_msb;
856
unsigned int reg;
857
void *cmd_buf;
858
int buf_len;
859
int ret = 0;
860
861
if (!psp || !psp->sev_data)
862
return -ENODEV;
863
864
if (psp_dead)
865
return -EBUSY;
866
867
sev = psp->sev_data;
868
869
buf_len = sev_cmd_buffer_len(cmd);
870
if (WARN_ON_ONCE(!data != !buf_len))
871
return -EINVAL;
872
873
/*
874
* Copy the incoming data to driver's scratch buffer as __pa() will not
875
* work for some memory, e.g. vmalloc'd addresses, and @data may not be
876
* physically contiguous.
877
*/
878
if (data) {
879
/*
880
* Commands are generally issued one at a time and require the
881
* sev_cmd_mutex, but there could be recursive firmware requests
882
* due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
883
* preparing buffers for another command. This is the only known
884
* case of nesting in the current code, so exactly one
885
* additional command buffer is available for that purpose.
886
*/
887
if (!sev->cmd_buf_active) {
888
cmd_buf = sev->cmd_buf;
889
sev->cmd_buf_active = true;
890
} else if (!sev->cmd_buf_backup_active) {
891
cmd_buf = sev->cmd_buf_backup;
892
sev->cmd_buf_backup_active = true;
893
} else {
894
dev_err(sev->dev,
895
"SEV: too many firmware commands in progress, no command buffers available.\n");
896
return -EBUSY;
897
}
898
899
memcpy(cmd_buf, data, buf_len);
900
901
/*
902
* The behavior of the SEV-legacy commands is altered when the
903
* SNP firmware is in the INIT state.
904
*/
905
ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
906
if (ret) {
907
dev_err(sev->dev,
908
"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
909
cmd, ret);
910
return ret;
911
}
912
} else {
913
cmd_buf = sev->cmd_buf;
914
}
915
916
/* Get the physical address of the command buffer */
917
phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
918
phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
919
920
dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
921
cmd, phys_msb, phys_lsb, psp_timeout);
922
923
print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
924
buf_len, false);
925
926
iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
927
iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
928
929
sev->int_rcvd = 0;
930
931
reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
932
933
/*
934
* If invoked during panic handling, local interrupts are disabled so
935
* the PSP command completion interrupt can't be used.
936
* sev_wait_cmd_ioc() already checks for interrupts disabled and
937
* polls for PSP command completion. Ensure we do not request an
938
* interrupt from the PSP if irqs disabled.
939
*/
940
if (!irqs_disabled())
941
reg |= SEV_CMDRESP_IOC;
942
943
iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
944
945
/* wait for command completion */
946
ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
947
if (ret) {
948
if (psp_ret)
949
*psp_ret = 0;
950
951
dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
952
psp_dead = true;
953
954
return ret;
955
}
956
957
psp_timeout = psp_cmd_timeout;
958
959
if (psp_ret)
960
*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
961
962
if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
963
dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
964
cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
965
966
/*
967
* PSP firmware may report additional error information in the
968
* command buffer registers on error. Print contents of command
969
* buffer registers if they changed.
970
*/
971
cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
972
cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
973
if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
974
dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
975
dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
976
dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
977
}
978
ret = -EIO;
979
} else {
980
ret = sev_write_init_ex_file_if_required(cmd);
981
}
982
983
/*
984
* Copy potential output from the PSP back to data. Do this even on
985
* failure in case the caller wants to glean something from the error.
986
*/
987
if (data) {
988
int ret_reclaim;
989
/*
990
* Restore the page state after the command completes.
991
*/
992
ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
993
if (ret_reclaim) {
994
dev_err(sev->dev,
995
"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
996
cmd, ret_reclaim);
997
return ret_reclaim;
998
}
999
1000
memcpy(data, cmd_buf, buf_len);
1001
1002
if (sev->cmd_buf_backup_active)
1003
sev->cmd_buf_backup_active = false;
1004
else
1005
sev->cmd_buf_active = false;
1006
1007
if (snp_unmap_cmd_buf_desc_list(desc_list))
1008
return -EFAULT;
1009
}
1010
1011
print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
1012
buf_len, false);
1013
1014
return ret;
1015
}
1016
1017
int sev_do_cmd(int cmd, void *data, int *psp_ret)
1018
{
1019
int rc;
1020
1021
mutex_lock(&sev_cmd_mutex);
1022
rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1023
mutex_unlock(&sev_cmd_mutex);
1024
1025
return rc;
1026
}
1027
EXPORT_SYMBOL_GPL(sev_do_cmd);
1028
1029
static int __sev_init_locked(int *error)
1030
{
1031
struct sev_data_init data;
1032
1033
memset(&data, 0, sizeof(data));
1034
if (sev_es_tmr) {
1035
/*
1036
* Do not include the encryption mask on the physical
1037
* address of the TMR (firmware should clear it anyway).
1038
*/
1039
data.tmr_address = __pa(sev_es_tmr);
1040
1041
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1042
data.tmr_len = sev_es_tmr_size;
1043
}
1044
1045
return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1046
}
1047
1048
static int __sev_init_ex_locked(int *error)
1049
{
1050
struct sev_data_init_ex data;
1051
1052
memset(&data, 0, sizeof(data));
1053
data.length = sizeof(data);
1054
data.nv_address = __psp_pa(sev_init_ex_buffer);
1055
data.nv_len = NV_LENGTH;
1056
1057
if (sev_es_tmr) {
1058
/*
1059
* Do not include the encryption mask on the physical
1060
* address of the TMR (firmware should clear it anyway).
1061
*/
1062
data.tmr_address = __pa(sev_es_tmr);
1063
1064
data.flags |= SEV_INIT_FLAGS_SEV_ES;
1065
data.tmr_len = sev_es_tmr_size;
1066
}
1067
1068
return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1069
}
1070
1071
static inline int __sev_do_init_locked(int *psp_ret)
1072
{
1073
if (sev_init_ex_buffer)
1074
return __sev_init_ex_locked(psp_ret);
1075
else
1076
return __sev_init_locked(psp_ret);
1077
}
1078
1079
static void snp_set_hsave_pa(void *arg)
1080
{
1081
wrmsrq(MSR_VM_HSAVE_PA, 0);
1082
}
1083
1084
/* Hypervisor Fixed pages API interface */
1085
static void snp_hv_fixed_pages_state_update(struct sev_device *sev,
1086
enum snp_hv_fixed_pages_state page_state)
1087
{
1088
struct snp_hv_fixed_pages_entry *entry;
1089
1090
/* List is protected by sev_cmd_mutex */
1091
lockdep_assert_held(&sev_cmd_mutex);
1092
1093
if (list_empty(&snp_hv_fixed_pages))
1094
return;
1095
1096
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1097
entry->page_state = page_state;
1098
}
1099
1100
/*
1101
* Allocate HV_FIXED pages in 2MB aligned sizes to ensure the whole
1102
* 2MB pages are marked as HV_FIXED.
1103
*/
1104
struct page *snp_alloc_hv_fixed_pages(unsigned int num_2mb_pages)
1105
{
1106
struct psp_device *psp_master = psp_get_master_device();
1107
struct snp_hv_fixed_pages_entry *entry;
1108
struct sev_device *sev;
1109
unsigned int order;
1110
struct page *page;
1111
1112
if (!psp_master || !psp_master->sev_data)
1113
return NULL;
1114
1115
sev = psp_master->sev_data;
1116
1117
order = get_order(PMD_SIZE * num_2mb_pages);
1118
1119
/*
1120
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1121
* also needs to be protected using the same mutex.
1122
*/
1123
guard(mutex)(&sev_cmd_mutex);
1124
1125
/*
1126
* This API uses SNP_INIT_EX to transition allocated pages to HV_Fixed
1127
* page state, fail if SNP is already initialized.
1128
*/
1129
if (sev->snp_initialized)
1130
return NULL;
1131
1132
/* Re-use freed pages that match the request */
1133
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1134
/* Hypervisor fixed page allocator implements exact fit policy */
1135
if (entry->order == order && entry->free) {
1136
entry->free = false;
1137
memset(page_address(entry->page), 0,
1138
(1 << entry->order) * PAGE_SIZE);
1139
return entry->page;
1140
}
1141
}
1142
1143
page = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1144
if (!page)
1145
return NULL;
1146
1147
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1148
if (!entry) {
1149
__free_pages(page, order);
1150
return NULL;
1151
}
1152
1153
entry->page = page;
1154
entry->order = order;
1155
list_add_tail(&entry->list, &snp_hv_fixed_pages);
1156
1157
return page;
1158
}
1159
1160
void snp_free_hv_fixed_pages(struct page *page)
1161
{
1162
struct psp_device *psp_master = psp_get_master_device();
1163
struct snp_hv_fixed_pages_entry *entry, *nentry;
1164
1165
if (!psp_master || !psp_master->sev_data)
1166
return;
1167
1168
/*
1169
* SNP_INIT_EX is protected by sev_cmd_mutex, therefore this list
1170
* also needs to be protected using the same mutex.
1171
*/
1172
guard(mutex)(&sev_cmd_mutex);
1173
1174
list_for_each_entry_safe(entry, nentry, &snp_hv_fixed_pages, list) {
1175
if (entry->page != page)
1176
continue;
1177
1178
/*
1179
* HV_FIXED page state cannot be changed until reboot
1180
* and they cannot be used by an SNP guest, so they cannot
1181
* be returned back to the page allocator.
1182
* Mark the pages as free internally to allow possible re-use.
1183
*/
1184
if (entry->page_state == HV_FIXED) {
1185
entry->free = true;
1186
} else {
1187
__free_pages(page, entry->order);
1188
list_del(&entry->list);
1189
kfree(entry);
1190
}
1191
return;
1192
}
1193
}
1194
1195
static void snp_add_hv_fixed_pages(struct sev_device *sev, struct sev_data_range_list *range_list)
1196
{
1197
struct snp_hv_fixed_pages_entry *entry;
1198
struct sev_data_range *range;
1199
int num_elements;
1200
1201
lockdep_assert_held(&sev_cmd_mutex);
1202
1203
if (list_empty(&snp_hv_fixed_pages))
1204
return;
1205
1206
num_elements = list_count_nodes(&snp_hv_fixed_pages) +
1207
range_list->num_elements;
1208
1209
/*
1210
* Ensure the list of HV_FIXED pages that will be passed to firmware
1211
* do not exceed the page-sized argument buffer.
1212
*/
1213
if (num_elements * sizeof(*range) + sizeof(*range_list) > PAGE_SIZE) {
1214
dev_warn(sev->dev, "Additional HV_Fixed pages cannot be accommodated, omitting\n");
1215
return;
1216
}
1217
1218
range = &range_list->ranges[range_list->num_elements];
1219
list_for_each_entry(entry, &snp_hv_fixed_pages, list) {
1220
range->base = page_to_pfn(entry->page) << PAGE_SHIFT;
1221
range->page_count = 1 << entry->order;
1222
range++;
1223
}
1224
range_list->num_elements = num_elements;
1225
}
1226
1227
static void snp_leak_hv_fixed_pages(void)
1228
{
1229
struct snp_hv_fixed_pages_entry *entry;
1230
1231
/* List is protected by sev_cmd_mutex */
1232
lockdep_assert_held(&sev_cmd_mutex);
1233
1234
if (list_empty(&snp_hv_fixed_pages))
1235
return;
1236
1237
list_for_each_entry(entry, &snp_hv_fixed_pages, list)
1238
if (entry->page_state == HV_FIXED)
1239
__snp_leak_pages(page_to_pfn(entry->page),
1240
1 << entry->order, false);
1241
}
1242
1243
bool sev_is_snp_ciphertext_hiding_supported(void)
1244
{
1245
struct psp_device *psp = psp_master;
1246
struct sev_device *sev;
1247
1248
if (!psp || !psp->sev_data)
1249
return false;
1250
1251
sev = psp->sev_data;
1252
1253
/*
1254
* Feature information indicates if CipherTextHiding feature is
1255
* supported by the SEV firmware and additionally platform status
1256
* indicates if CipherTextHiding feature is enabled in the
1257
* Platform BIOS.
1258
*/
1259
return ((sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED) &&
1260
sev->snp_plat_status.ciphertext_hiding_cap);
1261
}
1262
EXPORT_SYMBOL_GPL(sev_is_snp_ciphertext_hiding_supported);
1263
1264
static int snp_get_platform_data(struct sev_device *sev, int *error)
1265
{
1266
struct sev_data_snp_feature_info snp_feat_info;
1267
struct snp_feature_info *feat_info;
1268
struct sev_data_snp_addr buf;
1269
struct page *page;
1270
int rc;
1271
1272
/*
1273
* This function is expected to be called before SNP is
1274
* initialized.
1275
*/
1276
if (sev->snp_initialized)
1277
return -EINVAL;
1278
1279
buf.address = __psp_pa(&sev->snp_plat_status);
1280
rc = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, error);
1281
if (rc) {
1282
dev_err(sev->dev, "SNP PLATFORM_STATUS command failed, ret = %d, error = %#x\n",
1283
rc, *error);
1284
return rc;
1285
}
1286
1287
sev->api_major = sev->snp_plat_status.api_major;
1288
sev->api_minor = sev->snp_plat_status.api_minor;
1289
sev->build = sev->snp_plat_status.build_id;
1290
1291
/*
1292
* Do feature discovery of the currently loaded firmware,
1293
* and cache feature information from CPUID 0x8000_0024,
1294
* sub-function 0.
1295
*/
1296
if (!sev->snp_plat_status.feature_info)
1297
return 0;
1298
1299
/*
1300
* Use dynamically allocated structure for the SNP_FEATURE_INFO
1301
* command to ensure structure is 8-byte aligned, and does not
1302
* cross a page boundary.
1303
*/
1304
page = alloc_page(GFP_KERNEL);
1305
if (!page)
1306
return -ENOMEM;
1307
1308
feat_info = page_address(page);
1309
snp_feat_info.length = sizeof(snp_feat_info);
1310
snp_feat_info.ecx_in = 0;
1311
snp_feat_info.feature_info_paddr = __psp_pa(feat_info);
1312
1313
rc = sev_do_cmd(SEV_CMD_SNP_FEATURE_INFO, &snp_feat_info, error);
1314
if (!rc)
1315
sev->snp_feat_info_0 = *feat_info;
1316
else
1317
dev_err(sev->dev, "SNP FEATURE_INFO command failed, ret = %d, error = %#x\n",
1318
rc, *error);
1319
1320
__free_page(page);
1321
1322
return rc;
1323
}
1324
1325
static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1326
{
1327
struct sev_data_range_list *range_list = arg;
1328
struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1329
size_t size;
1330
1331
/*
1332
* Ensure the list of HV_FIXED pages that will be passed to firmware
1333
* do not exceed the page-sized argument buffer.
1334
*/
1335
if ((range_list->num_elements * sizeof(struct sev_data_range) +
1336
sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1337
return -E2BIG;
1338
1339
switch (rs->desc) {
1340
case E820_TYPE_RESERVED:
1341
case E820_TYPE_PMEM:
1342
case E820_TYPE_ACPI:
1343
range->base = rs->start & PAGE_MASK;
1344
size = PAGE_ALIGN((rs->end + 1) - rs->start);
1345
range->page_count = size >> PAGE_SHIFT;
1346
range_list->num_elements++;
1347
break;
1348
default:
1349
break;
1350
}
1351
1352
return 0;
1353
}
1354
1355
static int __sev_snp_init_locked(int *error, unsigned int max_snp_asid)
1356
{
1357
struct sev_data_range_list *snp_range_list __free(kfree) = NULL;
1358
struct psp_device *psp = psp_master;
1359
struct sev_data_snp_init_ex data;
1360
struct sev_device *sev;
1361
void *arg = &data;
1362
int cmd, rc = 0;
1363
1364
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1365
return -ENODEV;
1366
1367
sev = psp->sev_data;
1368
1369
if (sev->snp_initialized)
1370
return 0;
1371
1372
if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1373
dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1374
SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1375
return -EOPNOTSUPP;
1376
}
1377
1378
/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1379
on_each_cpu(snp_set_hsave_pa, NULL, 1);
1380
1381
/*
1382
* Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1383
* of system physical address ranges to convert into HV-fixed page
1384
* states during the RMP initialization. For instance, the memory that
1385
* UEFI reserves should be included in the that list. This allows system
1386
* components that occasionally write to memory (e.g. logging to UEFI
1387
* reserved regions) to not fail due to RMP initialization and SNP
1388
* enablement.
1389
*
1390
*/
1391
if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1392
bool tio_supp = !!(sev->snp_feat_info_0.ebx & SNP_SEV_TIO_SUPPORTED);
1393
1394
/*
1395
* Firmware checks that the pages containing the ranges enumerated
1396
* in the RANGES structure are either in the default page state or in the
1397
* firmware page state.
1398
*/
1399
snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1400
if (!snp_range_list) {
1401
dev_err(sev->dev,
1402
"SEV: SNP_INIT_EX range list memory allocation failed\n");
1403
return -ENOMEM;
1404
}
1405
1406
/*
1407
* Retrieve all reserved memory regions from the e820 memory map
1408
* to be setup as HV-fixed pages.
1409
*/
1410
rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1411
snp_range_list, snp_filter_reserved_mem_regions);
1412
if (rc) {
1413
dev_err(sev->dev,
1414
"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1415
return rc;
1416
}
1417
1418
/*
1419
* Add HV_Fixed pages from other PSP sub-devices, such as SFS to the
1420
* HV_Fixed page list.
1421
*/
1422
snp_add_hv_fixed_pages(sev, snp_range_list);
1423
1424
memset(&data, 0, sizeof(data));
1425
1426
if (max_snp_asid) {
1427
data.ciphertext_hiding_en = 1;
1428
data.max_snp_asid = max_snp_asid;
1429
}
1430
1431
data.init_rmp = 1;
1432
data.list_paddr_en = 1;
1433
data.list_paddr = __psp_pa(snp_range_list);
1434
1435
data.tio_en = tio_supp && sev_tio_enabled && amd_iommu_sev_tio_supported();
1436
1437
/*
1438
* When psp_init_on_probe is disabled, the userspace calling
1439
* SEV ioctl can inadvertently shut down SNP and SEV-TIO causing
1440
* unexpected state loss.
1441
*/
1442
if (data.tio_en && !psp_init_on_probe)
1443
dev_warn(sev->dev, "SEV-TIO as incompatible with psp_init_on_probe=0\n");
1444
1445
cmd = SEV_CMD_SNP_INIT_EX;
1446
} else {
1447
cmd = SEV_CMD_SNP_INIT;
1448
arg = NULL;
1449
}
1450
1451
/*
1452
* The following sequence must be issued before launching the first SNP
1453
* guest to ensure all dirty cache lines are flushed, including from
1454
* updates to the RMP table itself via the RMPUPDATE instruction:
1455
*
1456
* - WBINVD on all running CPUs
1457
* - SEV_CMD_SNP_INIT[_EX] firmware command
1458
* - WBINVD on all running CPUs
1459
* - SEV_CMD_SNP_DF_FLUSH firmware command
1460
*/
1461
wbinvd_on_all_cpus();
1462
1463
rc = __sev_do_cmd_locked(cmd, arg, error);
1464
if (rc) {
1465
dev_err(sev->dev, "SEV-SNP: %s failed rc %d, error %#x\n",
1466
cmd == SEV_CMD_SNP_INIT_EX ? "SNP_INIT_EX" : "SNP_INIT",
1467
rc, *error);
1468
return rc;
1469
}
1470
1471
/* Prepare for first SNP guest launch after INIT. */
1472
wbinvd_on_all_cpus();
1473
rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1474
if (rc) {
1475
dev_err(sev->dev, "SEV-SNP: SNP_DF_FLUSH failed rc %d, error %#x\n",
1476
rc, *error);
1477
return rc;
1478
}
1479
1480
snp_hv_fixed_pages_state_update(sev, HV_FIXED);
1481
sev->snp_initialized = true;
1482
dev_dbg(sev->dev, "SEV-SNP firmware initialized, SEV-TIO is %s\n",
1483
data.tio_en ? "enabled" : "disabled");
1484
1485
dev_info(sev->dev, "SEV-SNP API:%d.%d build:%d\n", sev->api_major,
1486
sev->api_minor, sev->build);
1487
1488
atomic_notifier_chain_register(&panic_notifier_list,
1489
&snp_panic_notifier);
1490
1491
if (data.tio_en) {
1492
/*
1493
* This executes with the sev_cmd_mutex held so down the stack
1494
* snp_reclaim_pages(locked=false) might be needed (which is extremely
1495
* unlikely) but will cause a deadlock.
1496
* Instead of exporting __snp_alloc_firmware_pages(), allocate a page
1497
* for this one call here.
1498
*/
1499
void *tio_status = page_address(__snp_alloc_firmware_pages(
1500
GFP_KERNEL_ACCOUNT | __GFP_ZERO, 0, true));
1501
1502
if (tio_status) {
1503
sev_tsm_init_locked(sev, tio_status);
1504
__snp_free_firmware_pages(virt_to_page(tio_status), 0, true);
1505
}
1506
}
1507
1508
sev_es_tmr_size = SNP_TMR_SIZE;
1509
1510
return 0;
1511
}
1512
1513
static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1514
{
1515
if (sev_es_tmr)
1516
return;
1517
1518
/* Obtain the TMR memory area for SEV-ES use */
1519
sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1520
if (sev_es_tmr) {
1521
/* Must flush the cache before giving it to the firmware */
1522
if (!sev->snp_initialized)
1523
clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1524
} else {
1525
dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1526
}
1527
}
1528
1529
/*
1530
* If an init_ex_path is provided allocate a buffer for the file and
1531
* read in the contents. Additionally, if SNP is initialized, convert
1532
* the buffer pages to firmware pages.
1533
*/
1534
static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1535
{
1536
struct page *page;
1537
int rc;
1538
1539
if (!init_ex_path)
1540
return 0;
1541
1542
if (sev_init_ex_buffer)
1543
return 0;
1544
1545
page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1546
if (!page) {
1547
dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1548
return -ENOMEM;
1549
}
1550
1551
sev_init_ex_buffer = page_address(page);
1552
1553
rc = sev_read_init_ex_file();
1554
if (rc)
1555
return rc;
1556
1557
/* If SEV-SNP is initialized, transition to firmware page. */
1558
if (sev->snp_initialized) {
1559
unsigned long npages;
1560
1561
npages = 1UL << get_order(NV_LENGTH);
1562
if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1563
dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1564
return -ENOMEM;
1565
}
1566
}
1567
1568
return 0;
1569
}
1570
1571
static int __sev_platform_init_locked(int *error)
1572
{
1573
int rc, psp_ret, dfflush_error;
1574
struct sev_device *sev;
1575
1576
psp_ret = dfflush_error = SEV_RET_NO_FW_CALL;
1577
1578
if (!psp_master || !psp_master->sev_data)
1579
return -ENODEV;
1580
1581
sev = psp_master->sev_data;
1582
1583
if (sev->sev_plat_status.state == SEV_STATE_INIT)
1584
return 0;
1585
1586
__sev_platform_init_handle_tmr(sev);
1587
1588
rc = __sev_platform_init_handle_init_ex_path(sev);
1589
if (rc)
1590
return rc;
1591
1592
rc = __sev_do_init_locked(&psp_ret);
1593
if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1594
/*
1595
* Initialization command returned an integrity check failure
1596
* status code, meaning that firmware load and validation of SEV
1597
* related persistent data has failed. Retrying the
1598
* initialization function should succeed by replacing the state
1599
* with a reset state.
1600
*/
1601
dev_err(sev->dev,
1602
"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1603
rc = __sev_do_init_locked(&psp_ret);
1604
}
1605
1606
if (error)
1607
*error = psp_ret;
1608
1609
if (rc) {
1610
dev_err(sev->dev, "SEV: %s failed %#x, rc %d\n",
1611
sev_init_ex_buffer ? "INIT_EX" : "INIT", psp_ret, rc);
1612
return rc;
1613
}
1614
1615
sev->sev_plat_status.state = SEV_STATE_INIT;
1616
1617
/* Prepare for first SEV guest launch after INIT */
1618
wbinvd_on_all_cpus();
1619
rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, &dfflush_error);
1620
if (rc) {
1621
dev_err(sev->dev, "SEV: DF_FLUSH failed %#x, rc %d\n",
1622
dfflush_error, rc);
1623
return rc;
1624
}
1625
1626
dev_dbg(sev->dev, "SEV firmware initialized\n");
1627
1628
dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1629
sev->api_minor, sev->build);
1630
1631
return 0;
1632
}
1633
1634
static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1635
{
1636
struct sev_device *sev;
1637
int rc;
1638
1639
if (!psp_master || !psp_master->sev_data)
1640
return -ENODEV;
1641
1642
/*
1643
* Skip SNP/SEV initialization under a kdump kernel as SEV/SNP
1644
* may already be initialized in the previous kernel. Since no
1645
* SNP/SEV guests are run under a kdump kernel, there is no
1646
* need to initialize SNP or SEV during kdump boot.
1647
*/
1648
if (is_kdump_kernel())
1649
return 0;
1650
1651
sev = psp_master->sev_data;
1652
1653
if (sev->sev_plat_status.state == SEV_STATE_INIT)
1654
return 0;
1655
1656
rc = __sev_snp_init_locked(&args->error, args->max_snp_asid);
1657
if (rc && rc != -ENODEV)
1658
return rc;
1659
1660
/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1661
if (args->probe && !psp_init_on_probe)
1662
return 0;
1663
1664
return __sev_platform_init_locked(&args->error);
1665
}
1666
1667
int sev_platform_init(struct sev_platform_init_args *args)
1668
{
1669
int rc;
1670
1671
mutex_lock(&sev_cmd_mutex);
1672
rc = _sev_platform_init_locked(args);
1673
mutex_unlock(&sev_cmd_mutex);
1674
1675
return rc;
1676
}
1677
EXPORT_SYMBOL_GPL(sev_platform_init);
1678
1679
static int __sev_platform_shutdown_locked(int *error)
1680
{
1681
struct psp_device *psp = psp_master;
1682
struct sev_device *sev;
1683
int ret;
1684
1685
if (!psp || !psp->sev_data)
1686
return 0;
1687
1688
sev = psp->sev_data;
1689
1690
if (sev->sev_plat_status.state == SEV_STATE_UNINIT)
1691
return 0;
1692
1693
ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1694
if (ret) {
1695
dev_err(sev->dev, "SEV: failed to SHUTDOWN error %#x, rc %d\n",
1696
*error, ret);
1697
return ret;
1698
}
1699
1700
sev->sev_plat_status.state = SEV_STATE_UNINIT;
1701
dev_dbg(sev->dev, "SEV firmware shutdown\n");
1702
1703
return ret;
1704
}
1705
1706
static int sev_get_platform_state(int *state, int *error)
1707
{
1708
struct sev_user_data_status data;
1709
int rc;
1710
1711
rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1712
if (rc)
1713
return rc;
1714
1715
*state = data.state;
1716
return rc;
1717
}
1718
1719
static int sev_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1720
{
1721
struct sev_platform_init_args init_args = {0};
1722
int rc;
1723
1724
rc = _sev_platform_init_locked(&init_args);
1725
if (rc) {
1726
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1727
return rc;
1728
}
1729
1730
*shutdown_required = true;
1731
1732
return 0;
1733
}
1734
1735
static int snp_move_to_init_state(struct sev_issue_cmd *argp, bool *shutdown_required)
1736
{
1737
int error, rc;
1738
1739
rc = __sev_snp_init_locked(&error, 0);
1740
if (rc) {
1741
argp->error = SEV_RET_INVALID_PLATFORM_STATE;
1742
return rc;
1743
}
1744
1745
*shutdown_required = true;
1746
1747
return 0;
1748
}
1749
1750
static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1751
{
1752
int state, rc;
1753
1754
if (!writable)
1755
return -EPERM;
1756
1757
/*
1758
* The SEV spec requires that FACTORY_RESET must be issued in
1759
* UNINIT state. Before we go further lets check if any guest is
1760
* active.
1761
*
1762
* If FW is in WORKING state then deny the request otherwise issue
1763
* SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1764
*
1765
*/
1766
rc = sev_get_platform_state(&state, &argp->error);
1767
if (rc)
1768
return rc;
1769
1770
if (state == SEV_STATE_WORKING)
1771
return -EBUSY;
1772
1773
if (state == SEV_STATE_INIT) {
1774
rc = __sev_platform_shutdown_locked(&argp->error);
1775
if (rc)
1776
return rc;
1777
}
1778
1779
return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1780
}
1781
1782
static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1783
{
1784
struct sev_user_data_status data;
1785
int ret;
1786
1787
memset(&data, 0, sizeof(data));
1788
1789
ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1790
if (ret)
1791
return ret;
1792
1793
if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1794
ret = -EFAULT;
1795
1796
return ret;
1797
}
1798
1799
static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1800
{
1801
struct sev_device *sev = psp_master->sev_data;
1802
bool shutdown_required = false;
1803
int rc;
1804
1805
if (!writable)
1806
return -EPERM;
1807
1808
if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1809
rc = sev_move_to_init_state(argp, &shutdown_required);
1810
if (rc)
1811
return rc;
1812
}
1813
1814
rc = __sev_do_cmd_locked(cmd, NULL, &argp->error);
1815
1816
if (shutdown_required)
1817
__sev_firmware_shutdown(sev, false);
1818
1819
return rc;
1820
}
1821
1822
static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1823
{
1824
struct sev_device *sev = psp_master->sev_data;
1825
struct sev_user_data_pek_csr input;
1826
bool shutdown_required = false;
1827
struct sev_data_pek_csr data;
1828
void __user *input_address;
1829
void *blob = NULL;
1830
int ret;
1831
1832
if (!writable)
1833
return -EPERM;
1834
1835
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1836
return -EFAULT;
1837
1838
memset(&data, 0, sizeof(data));
1839
1840
/* userspace wants to query CSR length */
1841
if (!input.address || !input.length)
1842
goto cmd;
1843
1844
/* allocate a physically contiguous buffer to store the CSR blob */
1845
input_address = (void __user *)input.address;
1846
if (input.length > SEV_FW_BLOB_MAX_SIZE)
1847
return -EFAULT;
1848
1849
blob = kzalloc(input.length, GFP_KERNEL);
1850
if (!blob)
1851
return -ENOMEM;
1852
1853
data.address = __psp_pa(blob);
1854
data.len = input.length;
1855
1856
cmd:
1857
if (sev->sev_plat_status.state == SEV_STATE_UNINIT) {
1858
ret = sev_move_to_init_state(argp, &shutdown_required);
1859
if (ret)
1860
goto e_free_blob;
1861
}
1862
1863
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1864
1865
/* If we query the CSR length, FW responded with expected data. */
1866
input.length = data.len;
1867
1868
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1869
ret = -EFAULT;
1870
goto e_free_blob;
1871
}
1872
1873
if (blob) {
1874
if (copy_to_user(input_address, blob, input.length))
1875
ret = -EFAULT;
1876
}
1877
1878
e_free_blob:
1879
if (shutdown_required)
1880
__sev_firmware_shutdown(sev, false);
1881
1882
kfree(blob);
1883
return ret;
1884
}
1885
1886
void *psp_copy_user_blob(u64 uaddr, u32 len)
1887
{
1888
if (!uaddr || !len)
1889
return ERR_PTR(-EINVAL);
1890
1891
/* verify that blob length does not exceed our limit */
1892
if (len > SEV_FW_BLOB_MAX_SIZE)
1893
return ERR_PTR(-EINVAL);
1894
1895
return memdup_user((void __user *)uaddr, len);
1896
}
1897
EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1898
1899
static int sev_get_api_version(void)
1900
{
1901
struct sev_device *sev = psp_master->sev_data;
1902
struct sev_user_data_status status;
1903
int error = 0, ret;
1904
1905
/*
1906
* Cache SNP platform status and SNP feature information
1907
* if SNP is available.
1908
*/
1909
if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) {
1910
ret = snp_get_platform_data(sev, &error);
1911
if (ret)
1912
return 1;
1913
}
1914
1915
ret = sev_platform_status(&status, &error);
1916
if (ret) {
1917
dev_err(sev->dev,
1918
"SEV: failed to get status. Error: %#x\n", error);
1919
return 1;
1920
}
1921
1922
/* Cache SEV platform status */
1923
sev->sev_plat_status = status;
1924
1925
sev->api_major = status.api_major;
1926
sev->api_minor = status.api_minor;
1927
sev->build = status.build;
1928
1929
return 0;
1930
}
1931
1932
static int sev_get_firmware(struct device *dev,
1933
const struct firmware **firmware)
1934
{
1935
char fw_name_specific[SEV_FW_NAME_SIZE];
1936
char fw_name_subset[SEV_FW_NAME_SIZE];
1937
1938
snprintf(fw_name_specific, sizeof(fw_name_specific),
1939
"amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1940
boot_cpu_data.x86, boot_cpu_data.x86_model);
1941
1942
snprintf(fw_name_subset, sizeof(fw_name_subset),
1943
"amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1944
boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1945
1946
/* Check for SEV FW for a particular model.
1947
* Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1948
*
1949
* or
1950
*
1951
* Check for SEV FW common to a subset of models.
1952
* Ex. amd_sev_fam17h_model0xh.sbin for
1953
* Family 17h Model 00h -- Family 17h Model 0Fh
1954
*
1955
* or
1956
*
1957
* Fall-back to using generic name: sev.fw
1958
*/
1959
if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1960
(firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1961
(firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1962
return 0;
1963
1964
return -ENOENT;
1965
}
1966
1967
/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1968
static int sev_update_firmware(struct device *dev)
1969
{
1970
struct sev_data_download_firmware *data;
1971
const struct firmware *firmware;
1972
int ret, error, order;
1973
struct page *p;
1974
u64 data_size;
1975
1976
if (!sev_version_greater_or_equal(0, 15)) {
1977
dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1978
return -1;
1979
}
1980
1981
if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1982
dev_dbg(dev, "No SEV firmware file present\n");
1983
return -1;
1984
}
1985
1986
/*
1987
* SEV FW expects the physical address given to it to be 32
1988
* byte aligned. Memory allocated has structure placed at the
1989
* beginning followed by the firmware being passed to the SEV
1990
* FW. Allocate enough memory for data structure + alignment
1991
* padding + SEV FW.
1992
*/
1993
data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1994
1995
order = get_order(firmware->size + data_size);
1996
p = alloc_pages(GFP_KERNEL, order);
1997
if (!p) {
1998
ret = -1;
1999
goto fw_err;
2000
}
2001
2002
/*
2003
* Copy firmware data to a kernel allocated contiguous
2004
* memory region.
2005
*/
2006
data = page_address(p);
2007
memcpy(page_address(p) + data_size, firmware->data, firmware->size);
2008
2009
data->address = __psp_pa(page_address(p) + data_size);
2010
data->len = firmware->size;
2011
2012
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
2013
2014
/*
2015
* A quirk for fixing the committed TCB version, when upgrading from
2016
* earlier firmware version than 1.50.
2017
*/
2018
if (!ret && !sev_version_greater_or_equal(1, 50))
2019
ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
2020
2021
if (ret)
2022
dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
2023
2024
__free_pages(p, order);
2025
2026
fw_err:
2027
release_firmware(firmware);
2028
2029
return ret;
2030
}
2031
2032
static int __sev_snp_shutdown_locked(int *error, bool panic)
2033
{
2034
struct psp_device *psp = psp_master;
2035
struct sev_device *sev;
2036
struct sev_data_snp_shutdown_ex data;
2037
int ret;
2038
2039
if (!psp || !psp->sev_data)
2040
return 0;
2041
2042
sev = psp->sev_data;
2043
2044
if (!sev->snp_initialized)
2045
return 0;
2046
2047
memset(&data, 0, sizeof(data));
2048
data.len = sizeof(data);
2049
data.iommu_snp_shutdown = 1;
2050
2051
/*
2052
* If invoked during panic handling, local interrupts are disabled
2053
* and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
2054
* In that case, a wbinvd() is done on remote CPUs via the NMI
2055
* callback, so only a local wbinvd() is needed here.
2056
*/
2057
if (!panic)
2058
wbinvd_on_all_cpus();
2059
else
2060
wbinvd();
2061
2062
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
2063
/* SHUTDOWN may require DF_FLUSH */
2064
if (*error == SEV_RET_DFFLUSH_REQUIRED) {
2065
int dfflush_error = SEV_RET_NO_FW_CALL;
2066
2067
ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, &dfflush_error);
2068
if (ret) {
2069
dev_err(sev->dev, "SEV-SNP DF_FLUSH failed, ret = %d, error = %#x\n",
2070
ret, dfflush_error);
2071
return ret;
2072
}
2073
/* reissue the shutdown command */
2074
ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
2075
error);
2076
}
2077
if (ret) {
2078
dev_err(sev->dev, "SEV-SNP firmware shutdown failed, rc %d, error %#x\n",
2079
ret, *error);
2080
return ret;
2081
}
2082
2083
/*
2084
* SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
2085
* enforcement by the IOMMU and also transitions all pages
2086
* associated with the IOMMU to the Reclaim state.
2087
* Firmware was transitioning the IOMMU pages to Hypervisor state
2088
* before version 1.53. But, accounting for the number of assigned
2089
* 4kB pages in a 2M page was done incorrectly by not transitioning
2090
* to the Reclaim state. This resulted in RMP #PF when later accessing
2091
* the 2M page containing those pages during kexec boot. Hence, the
2092
* firmware now transitions these pages to Reclaim state and hypervisor
2093
* needs to transition these pages to shared state. SNP Firmware
2094
* version 1.53 and above are needed for kexec boot.
2095
*/
2096
ret = amd_iommu_snp_disable();
2097
if (ret) {
2098
dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
2099
return ret;
2100
}
2101
2102
snp_leak_hv_fixed_pages();
2103
sev->snp_initialized = false;
2104
dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
2105
2106
/*
2107
* __sev_snp_shutdown_locked() deadlocks when it tries to unregister
2108
* itself during panic as the panic notifier is called with RCU read
2109
* lock held and notifier unregistration does RCU synchronization.
2110
*/
2111
if (!panic)
2112
atomic_notifier_chain_unregister(&panic_notifier_list,
2113
&snp_panic_notifier);
2114
2115
/* Reset TMR size back to default */
2116
sev_es_tmr_size = SEV_TMR_SIZE;
2117
2118
return ret;
2119
}
2120
2121
static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
2122
{
2123
struct sev_device *sev = psp_master->sev_data;
2124
struct sev_user_data_pek_cert_import input;
2125
struct sev_data_pek_cert_import data;
2126
bool shutdown_required = false;
2127
void *pek_blob, *oca_blob;
2128
int ret;
2129
2130
if (!writable)
2131
return -EPERM;
2132
2133
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2134
return -EFAULT;
2135
2136
/* copy PEK certificate blobs from userspace */
2137
pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
2138
if (IS_ERR(pek_blob))
2139
return PTR_ERR(pek_blob);
2140
2141
data.reserved = 0;
2142
data.pek_cert_address = __psp_pa(pek_blob);
2143
data.pek_cert_len = input.pek_cert_len;
2144
2145
/* copy PEK certificate blobs from userspace */
2146
oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
2147
if (IS_ERR(oca_blob)) {
2148
ret = PTR_ERR(oca_blob);
2149
goto e_free_pek;
2150
}
2151
2152
data.oca_cert_address = __psp_pa(oca_blob);
2153
data.oca_cert_len = input.oca_cert_len;
2154
2155
/* If platform is not in INIT state then transition it to INIT */
2156
if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2157
ret = sev_move_to_init_state(argp, &shutdown_required);
2158
if (ret)
2159
goto e_free_oca;
2160
}
2161
2162
ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
2163
2164
e_free_oca:
2165
if (shutdown_required)
2166
__sev_firmware_shutdown(sev, false);
2167
2168
kfree(oca_blob);
2169
e_free_pek:
2170
kfree(pek_blob);
2171
return ret;
2172
}
2173
2174
static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
2175
{
2176
struct sev_user_data_get_id2 input;
2177
struct sev_data_get_id data;
2178
void __user *input_address;
2179
void *id_blob = NULL;
2180
int ret;
2181
2182
/* SEV GET_ID is available from SEV API v0.16 and up */
2183
if (!sev_version_greater_or_equal(0, 16))
2184
return -ENOTSUPP;
2185
2186
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2187
return -EFAULT;
2188
2189
input_address = (void __user *)input.address;
2190
2191
if (input.address && input.length) {
2192
/*
2193
* The length of the ID shouldn't be assumed by software since
2194
* it may change in the future. The allocation size is limited
2195
* to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
2196
* If the allocation fails, simply return ENOMEM rather than
2197
* warning in the kernel log.
2198
*/
2199
id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
2200
if (!id_blob)
2201
return -ENOMEM;
2202
2203
data.address = __psp_pa(id_blob);
2204
data.len = input.length;
2205
} else {
2206
data.address = 0;
2207
data.len = 0;
2208
}
2209
2210
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
2211
2212
/*
2213
* Firmware will return the length of the ID value (either the minimum
2214
* required length or the actual length written), return it to the user.
2215
*/
2216
input.length = data.len;
2217
2218
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2219
ret = -EFAULT;
2220
goto e_free;
2221
}
2222
2223
if (id_blob) {
2224
if (copy_to_user(input_address, id_blob, data.len)) {
2225
ret = -EFAULT;
2226
goto e_free;
2227
}
2228
}
2229
2230
e_free:
2231
kfree(id_blob);
2232
2233
return ret;
2234
}
2235
2236
static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
2237
{
2238
struct sev_data_get_id *data;
2239
u64 data_size, user_size;
2240
void *id_blob, *mem;
2241
int ret;
2242
2243
/* SEV GET_ID available from SEV API v0.16 and up */
2244
if (!sev_version_greater_or_equal(0, 16))
2245
return -ENOTSUPP;
2246
2247
/* SEV FW expects the buffer it fills with the ID to be
2248
* 8-byte aligned. Memory allocated should be enough to
2249
* hold data structure + alignment padding + memory
2250
* where SEV FW writes the ID.
2251
*/
2252
data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
2253
user_size = sizeof(struct sev_user_data_get_id);
2254
2255
mem = kzalloc(data_size + user_size, GFP_KERNEL);
2256
if (!mem)
2257
return -ENOMEM;
2258
2259
data = mem;
2260
id_blob = mem + data_size;
2261
2262
data->address = __psp_pa(id_blob);
2263
data->len = user_size;
2264
2265
ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
2266
if (!ret) {
2267
if (copy_to_user((void __user *)argp->data, id_blob, data->len))
2268
ret = -EFAULT;
2269
}
2270
2271
kfree(mem);
2272
2273
return ret;
2274
}
2275
2276
static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
2277
{
2278
struct sev_device *sev = psp_master->sev_data;
2279
struct sev_user_data_pdh_cert_export input;
2280
void *pdh_blob = NULL, *cert_blob = NULL;
2281
struct sev_data_pdh_cert_export data;
2282
void __user *input_cert_chain_address;
2283
void __user *input_pdh_cert_address;
2284
bool shutdown_required = false;
2285
int ret;
2286
2287
if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
2288
return -EFAULT;
2289
2290
memset(&data, 0, sizeof(data));
2291
2292
input_pdh_cert_address = (void __user *)input.pdh_cert_address;
2293
input_cert_chain_address = (void __user *)input.cert_chain_address;
2294
2295
/* Userspace wants to query the certificate length. */
2296
if (!input.pdh_cert_address ||
2297
!input.pdh_cert_len ||
2298
!input.cert_chain_address)
2299
goto cmd;
2300
2301
/* Allocate a physically contiguous buffer to store the PDH blob. */
2302
if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
2303
return -EFAULT;
2304
2305
/* Allocate a physically contiguous buffer to store the cert chain blob. */
2306
if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
2307
return -EFAULT;
2308
2309
pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
2310
if (!pdh_blob)
2311
return -ENOMEM;
2312
2313
data.pdh_cert_address = __psp_pa(pdh_blob);
2314
data.pdh_cert_len = input.pdh_cert_len;
2315
2316
cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
2317
if (!cert_blob) {
2318
ret = -ENOMEM;
2319
goto e_free_pdh;
2320
}
2321
2322
data.cert_chain_address = __psp_pa(cert_blob);
2323
data.cert_chain_len = input.cert_chain_len;
2324
2325
cmd:
2326
/* If platform is not in INIT state then transition it to INIT. */
2327
if (sev->sev_plat_status.state != SEV_STATE_INIT) {
2328
if (!writable) {
2329
ret = -EPERM;
2330
goto e_free_cert;
2331
}
2332
ret = sev_move_to_init_state(argp, &shutdown_required);
2333
if (ret)
2334
goto e_free_cert;
2335
}
2336
2337
ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
2338
2339
/* If we query the length, FW responded with expected data. */
2340
input.cert_chain_len = data.cert_chain_len;
2341
input.pdh_cert_len = data.pdh_cert_len;
2342
2343
if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
2344
ret = -EFAULT;
2345
goto e_free_cert;
2346
}
2347
2348
if (pdh_blob) {
2349
if (copy_to_user(input_pdh_cert_address,
2350
pdh_blob, input.pdh_cert_len)) {
2351
ret = -EFAULT;
2352
goto e_free_cert;
2353
}
2354
}
2355
2356
if (cert_blob) {
2357
if (copy_to_user(input_cert_chain_address,
2358
cert_blob, input.cert_chain_len))
2359
ret = -EFAULT;
2360
}
2361
2362
e_free_cert:
2363
if (shutdown_required)
2364
__sev_firmware_shutdown(sev, false);
2365
2366
kfree(cert_blob);
2367
e_free_pdh:
2368
kfree(pdh_blob);
2369
return ret;
2370
}
2371
2372
static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
2373
{
2374
struct sev_device *sev = psp_master->sev_data;
2375
struct sev_data_snp_addr buf;
2376
struct page *status_page;
2377
void *data;
2378
int ret;
2379
2380
if (!argp->data)
2381
return -EINVAL;
2382
2383
status_page = alloc_page(GFP_KERNEL_ACCOUNT);
2384
if (!status_page)
2385
return -ENOMEM;
2386
2387
data = page_address(status_page);
2388
2389
/*
2390
* SNP_PLATFORM_STATUS can be executed in any SNP state. But if executed
2391
* when SNP has been initialized, the status page must be firmware-owned.
2392
*/
2393
if (sev->snp_initialized) {
2394
/*
2395
* Firmware expects the status page to be in Firmware state,
2396
* otherwise it will report an error INVALID_PAGE_STATE.
2397
*/
2398
if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
2399
ret = -EFAULT;
2400
goto cleanup;
2401
}
2402
}
2403
2404
buf.address = __psp_pa(data);
2405
ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
2406
2407
if (sev->snp_initialized) {
2408
/*
2409
* The status page will be in Reclaim state on success, or left
2410
* in Firmware state on failure. Use snp_reclaim_pages() to
2411
* transition either case back to Hypervisor-owned state.
2412
*/
2413
if (snp_reclaim_pages(__pa(data), 1, true)) {
2414
snp_leak_pages(__page_to_pfn(status_page), 1);
2415
return -EFAULT;
2416
}
2417
}
2418
2419
if (ret)
2420
goto cleanup;
2421
2422
if (copy_to_user((void __user *)argp->data, data,
2423
sizeof(struct sev_user_data_snp_status)))
2424
ret = -EFAULT;
2425
2426
cleanup:
2427
__free_pages(status_page, 0);
2428
return ret;
2429
}
2430
2431
static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2432
{
2433
struct sev_device *sev = psp_master->sev_data;
2434
struct sev_data_snp_commit buf;
2435
bool shutdown_required = false;
2436
int ret, error;
2437
2438
if (!sev->snp_initialized) {
2439
ret = snp_move_to_init_state(argp, &shutdown_required);
2440
if (ret)
2441
return ret;
2442
}
2443
2444
buf.len = sizeof(buf);
2445
2446
ret = __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2447
2448
if (shutdown_required)
2449
__sev_snp_shutdown_locked(&error, false);
2450
2451
return ret;
2452
}
2453
2454
static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2455
{
2456
struct sev_device *sev = psp_master->sev_data;
2457
struct sev_user_data_snp_config config;
2458
bool shutdown_required = false;
2459
int ret, error;
2460
2461
if (!argp->data)
2462
return -EINVAL;
2463
2464
if (!writable)
2465
return -EPERM;
2466
2467
if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2468
return -EFAULT;
2469
2470
if (!sev->snp_initialized) {
2471
ret = snp_move_to_init_state(argp, &shutdown_required);
2472
if (ret)
2473
return ret;
2474
}
2475
2476
ret = __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2477
2478
if (shutdown_required)
2479
__sev_snp_shutdown_locked(&error, false);
2480
2481
return ret;
2482
}
2483
2484
static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2485
{
2486
struct sev_device *sev = psp_master->sev_data;
2487
struct sev_user_data_snp_vlek_load input;
2488
bool shutdown_required = false;
2489
int ret, error;
2490
void *blob;
2491
2492
if (!argp->data)
2493
return -EINVAL;
2494
2495
if (!writable)
2496
return -EPERM;
2497
2498
if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2499
return -EFAULT;
2500
2501
if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2502
return -EINVAL;
2503
2504
blob = psp_copy_user_blob(input.vlek_wrapped_address,
2505
sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2506
if (IS_ERR(blob))
2507
return PTR_ERR(blob);
2508
2509
input.vlek_wrapped_address = __psp_pa(blob);
2510
2511
if (!sev->snp_initialized) {
2512
ret = snp_move_to_init_state(argp, &shutdown_required);
2513
if (ret)
2514
goto cleanup;
2515
}
2516
2517
ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2518
2519
if (shutdown_required)
2520
__sev_snp_shutdown_locked(&error, false);
2521
2522
cleanup:
2523
kfree(blob);
2524
2525
return ret;
2526
}
2527
2528
static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2529
{
2530
void __user *argp = (void __user *)arg;
2531
struct sev_issue_cmd input;
2532
int ret = -EFAULT;
2533
bool writable = file->f_mode & FMODE_WRITE;
2534
2535
if (!psp_master || !psp_master->sev_data)
2536
return -ENODEV;
2537
2538
if (ioctl != SEV_ISSUE_CMD)
2539
return -EINVAL;
2540
2541
if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2542
return -EFAULT;
2543
2544
if (input.cmd > SEV_MAX)
2545
return -EINVAL;
2546
2547
mutex_lock(&sev_cmd_mutex);
2548
2549
switch (input.cmd) {
2550
2551
case SEV_FACTORY_RESET:
2552
ret = sev_ioctl_do_reset(&input, writable);
2553
break;
2554
case SEV_PLATFORM_STATUS:
2555
ret = sev_ioctl_do_platform_status(&input);
2556
break;
2557
case SEV_PEK_GEN:
2558
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2559
break;
2560
case SEV_PDH_GEN:
2561
ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2562
break;
2563
case SEV_PEK_CSR:
2564
ret = sev_ioctl_do_pek_csr(&input, writable);
2565
break;
2566
case SEV_PEK_CERT_IMPORT:
2567
ret = sev_ioctl_do_pek_import(&input, writable);
2568
break;
2569
case SEV_PDH_CERT_EXPORT:
2570
ret = sev_ioctl_do_pdh_export(&input, writable);
2571
break;
2572
case SEV_GET_ID:
2573
pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2574
ret = sev_ioctl_do_get_id(&input);
2575
break;
2576
case SEV_GET_ID2:
2577
ret = sev_ioctl_do_get_id2(&input);
2578
break;
2579
case SNP_PLATFORM_STATUS:
2580
ret = sev_ioctl_do_snp_platform_status(&input);
2581
break;
2582
case SNP_COMMIT:
2583
ret = sev_ioctl_do_snp_commit(&input);
2584
break;
2585
case SNP_SET_CONFIG:
2586
ret = sev_ioctl_do_snp_set_config(&input, writable);
2587
break;
2588
case SNP_VLEK_LOAD:
2589
ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2590
break;
2591
default:
2592
ret = -EINVAL;
2593
goto out;
2594
}
2595
2596
if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2597
ret = -EFAULT;
2598
out:
2599
mutex_unlock(&sev_cmd_mutex);
2600
2601
return ret;
2602
}
2603
2604
static const struct file_operations sev_fops = {
2605
.owner = THIS_MODULE,
2606
.unlocked_ioctl = sev_ioctl,
2607
};
2608
2609
int sev_platform_status(struct sev_user_data_status *data, int *error)
2610
{
2611
return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2612
}
2613
EXPORT_SYMBOL_GPL(sev_platform_status);
2614
2615
int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2616
{
2617
return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2618
}
2619
EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2620
2621
int sev_guest_activate(struct sev_data_activate *data, int *error)
2622
{
2623
return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2624
}
2625
EXPORT_SYMBOL_GPL(sev_guest_activate);
2626
2627
int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2628
{
2629
return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2630
}
2631
EXPORT_SYMBOL_GPL(sev_guest_decommission);
2632
2633
int sev_guest_df_flush(int *error)
2634
{
2635
return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2636
}
2637
EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2638
2639
static void sev_exit(struct kref *ref)
2640
{
2641
misc_deregister(&misc_dev->misc);
2642
kfree(misc_dev);
2643
misc_dev = NULL;
2644
}
2645
2646
static int sev_misc_init(struct sev_device *sev)
2647
{
2648
struct device *dev = sev->dev;
2649
int ret;
2650
2651
/*
2652
* SEV feature support can be detected on multiple devices but the SEV
2653
* FW commands must be issued on the master. During probe, we do not
2654
* know the master hence we create /dev/sev on the first device probe.
2655
* sev_do_cmd() finds the right master device to which to issue the
2656
* command to the firmware.
2657
*/
2658
if (!misc_dev) {
2659
struct miscdevice *misc;
2660
2661
misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2662
if (!misc_dev)
2663
return -ENOMEM;
2664
2665
misc = &misc_dev->misc;
2666
misc->minor = MISC_DYNAMIC_MINOR;
2667
misc->name = DEVICE_NAME;
2668
misc->fops = &sev_fops;
2669
2670
ret = misc_register(misc);
2671
if (ret)
2672
return ret;
2673
2674
kref_init(&misc_dev->refcount);
2675
} else {
2676
kref_get(&misc_dev->refcount);
2677
}
2678
2679
init_waitqueue_head(&sev->int_queue);
2680
sev->misc = misc_dev;
2681
dev_dbg(dev, "registered SEV device\n");
2682
2683
return 0;
2684
}
2685
2686
int sev_dev_init(struct psp_device *psp)
2687
{
2688
struct device *dev = psp->dev;
2689
struct sev_device *sev;
2690
int ret = -ENOMEM;
2691
2692
if (!boot_cpu_has(X86_FEATURE_SEV)) {
2693
dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2694
return 0;
2695
}
2696
2697
sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2698
if (!sev)
2699
goto e_err;
2700
2701
sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2702
if (!sev->cmd_buf)
2703
goto e_sev;
2704
2705
sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2706
2707
psp->sev_data = sev;
2708
2709
sev->dev = dev;
2710
sev->psp = psp;
2711
2712
sev->io_regs = psp->io_regs;
2713
2714
sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2715
if (!sev->vdata) {
2716
ret = -ENODEV;
2717
dev_err(dev, "sev: missing driver data\n");
2718
goto e_buf;
2719
}
2720
2721
psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2722
2723
ret = sev_misc_init(sev);
2724
if (ret)
2725
goto e_irq;
2726
2727
dev_notice(dev, "sev enabled\n");
2728
2729
return 0;
2730
2731
e_irq:
2732
psp_clear_sev_irq_handler(psp);
2733
e_buf:
2734
devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2735
e_sev:
2736
devm_kfree(dev, sev);
2737
e_err:
2738
psp->sev_data = NULL;
2739
2740
dev_notice(dev, "sev initialization failed\n");
2741
2742
return ret;
2743
}
2744
2745
static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2746
{
2747
int error;
2748
2749
__sev_platform_shutdown_locked(&error);
2750
2751
if (sev_es_tmr) {
2752
/*
2753
* The TMR area was encrypted, flush it from the cache.
2754
*
2755
* If invoked during panic handling, local interrupts are
2756
* disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2757
* can't be used. In that case, wbinvd() is done on remote CPUs
2758
* via the NMI callback, and done for this CPU later during
2759
* SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2760
*/
2761
if (!panic)
2762
wbinvd_on_all_cpus();
2763
2764
__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2765
get_order(sev_es_tmr_size),
2766
true);
2767
sev_es_tmr = NULL;
2768
}
2769
2770
if (sev_init_ex_buffer) {
2771
__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2772
get_order(NV_LENGTH),
2773
true);
2774
sev_init_ex_buffer = NULL;
2775
}
2776
2777
__sev_snp_shutdown_locked(&error, panic);
2778
}
2779
2780
static void sev_firmware_shutdown(struct sev_device *sev)
2781
{
2782
/*
2783
* Calling without sev_cmd_mutex held as TSM will likely try disconnecting
2784
* IDE and this ends up calling sev_do_cmd() which locks sev_cmd_mutex.
2785
*/
2786
if (sev->tio_status)
2787
sev_tsm_uninit(sev);
2788
2789
mutex_lock(&sev_cmd_mutex);
2790
2791
__sev_firmware_shutdown(sev, false);
2792
2793
kfree(sev->tio_status);
2794
sev->tio_status = NULL;
2795
2796
mutex_unlock(&sev_cmd_mutex);
2797
}
2798
2799
void sev_platform_shutdown(void)
2800
{
2801
if (!psp_master || !psp_master->sev_data)
2802
return;
2803
2804
sev_firmware_shutdown(psp_master->sev_data);
2805
}
2806
EXPORT_SYMBOL_GPL(sev_platform_shutdown);
2807
2808
u64 sev_get_snp_policy_bits(void)
2809
{
2810
struct psp_device *psp = psp_master;
2811
struct sev_device *sev;
2812
u64 policy_bits;
2813
2814
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
2815
return 0;
2816
2817
if (!psp || !psp->sev_data)
2818
return 0;
2819
2820
sev = psp->sev_data;
2821
2822
policy_bits = SNP_POLICY_MASK_BASE;
2823
2824
if (sev->snp_plat_status.feature_info) {
2825
if (sev->snp_feat_info_0.ecx & SNP_RAPL_DISABLE_SUPPORTED)
2826
policy_bits |= SNP_POLICY_MASK_RAPL_DIS;
2827
2828
if (sev->snp_feat_info_0.ecx & SNP_CIPHER_TEXT_HIDING_SUPPORTED)
2829
policy_bits |= SNP_POLICY_MASK_CIPHERTEXT_HIDING_DRAM;
2830
2831
if (sev->snp_feat_info_0.ecx & SNP_AES_256_XTS_POLICY_SUPPORTED)
2832
policy_bits |= SNP_POLICY_MASK_MEM_AES_256_XTS;
2833
2834
if (sev->snp_feat_info_0.ecx & SNP_CXL_ALLOW_POLICY_SUPPORTED)
2835
policy_bits |= SNP_POLICY_MASK_CXL_ALLOW;
2836
2837
if (sev_version_greater_or_equal(1, 58))
2838
policy_bits |= SNP_POLICY_MASK_PAGE_SWAP_DISABLE;
2839
}
2840
2841
return policy_bits;
2842
}
2843
EXPORT_SYMBOL_GPL(sev_get_snp_policy_bits);
2844
2845
void sev_dev_destroy(struct psp_device *psp)
2846
{
2847
struct sev_device *sev = psp->sev_data;
2848
2849
if (!sev)
2850
return;
2851
2852
sev_firmware_shutdown(sev);
2853
2854
if (sev->misc)
2855
kref_put(&misc_dev->refcount, sev_exit);
2856
2857
psp_clear_sev_irq_handler(psp);
2858
}
2859
2860
static int snp_shutdown_on_panic(struct notifier_block *nb,
2861
unsigned long reason, void *arg)
2862
{
2863
struct sev_device *sev = psp_master->sev_data;
2864
2865
/*
2866
* If sev_cmd_mutex is already acquired, then it's likely
2867
* another PSP command is in flight and issuing a shutdown
2868
* would fail in unexpected ways. Rather than create even
2869
* more confusion during a panic, just bail out here.
2870
*/
2871
if (mutex_is_locked(&sev_cmd_mutex))
2872
return NOTIFY_DONE;
2873
2874
__sev_firmware_shutdown(sev, true);
2875
2876
return NOTIFY_DONE;
2877
}
2878
2879
int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2880
void *data, int *error)
2881
{
2882
if (!filep || filep->f_op != &sev_fops)
2883
return -EBADF;
2884
2885
return sev_do_cmd(cmd, data, error);
2886
}
2887
EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2888
2889
void sev_pci_init(void)
2890
{
2891
struct sev_device *sev = psp_master->sev_data;
2892
u8 api_major, api_minor, build;
2893
2894
if (!sev)
2895
return;
2896
2897
psp_timeout = psp_probe_timeout;
2898
2899
if (sev_get_api_version())
2900
goto err;
2901
2902
api_major = sev->api_major;
2903
api_minor = sev->api_minor;
2904
build = sev->build;
2905
2906
if (sev_update_firmware(sev->dev) == 0)
2907
sev_get_api_version();
2908
2909
if (api_major != sev->api_major || api_minor != sev->api_minor ||
2910
build != sev->build)
2911
dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2912
api_major, api_minor, build,
2913
sev->api_major, sev->api_minor, sev->build);
2914
2915
return;
2916
2917
err:
2918
sev_dev_destroy(psp_master);
2919
2920
psp_master->sev_data = NULL;
2921
}
2922
2923
void sev_pci_exit(void)
2924
{
2925
struct sev_device *sev = psp_master->sev_data;
2926
2927
if (!sev)
2928
return;
2929
2930
sev_firmware_shutdown(sev);
2931
}
2932
2933