Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/hisilicon/hpre/hpre_crypto.c
29268 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* Copyright (c) 2019 HiSilicon Limited. */
3
#include <crypto/akcipher.h>
4
#include <crypto/dh.h>
5
#include <crypto/ecc_curve.h>
6
#include <crypto/ecdh.h>
7
#include <crypto/rng.h>
8
#include <crypto/internal/akcipher.h>
9
#include <crypto/internal/kpp.h>
10
#include <crypto/internal/rsa.h>
11
#include <crypto/kpp.h>
12
#include <crypto/scatterwalk.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/fips.h>
15
#include <linux/module.h>
16
#include <linux/time.h>
17
#include "hpre.h"
18
19
struct hpre_ctx;
20
21
#define HPRE_CRYPTO_ALG_PRI 1000
22
#define HPRE_ALIGN_SZ 64
23
#define HPRE_BITS_2_BYTES_SHIFT 3
24
#define HPRE_RSA_512BITS_KSZ 64
25
#define HPRE_RSA_1536BITS_KSZ 192
26
#define HPRE_CRT_PRMS 5
27
#define HPRE_CRT_Q 2
28
#define HPRE_CRT_P 3
29
#define HPRE_CRT_INV 4
30
#define HPRE_DH_G_FLAG 0x02
31
#define HPRE_TRY_SEND_TIMES 100
32
#define HPRE_INVLD_REQ_ID (-1)
33
34
#define HPRE_SQE_ALG_BITS 5
35
#define HPRE_SQE_DONE_SHIFT 30
36
#define HPRE_DH_MAX_P_SZ 512
37
38
#define HPRE_DFX_SEC_TO_US 1000000
39
#define HPRE_DFX_US_TO_NS 1000
40
41
#define HPRE_ENABLE_HPCORE_SHIFT 7
42
43
/* due to nist p521 */
44
#define HPRE_ECC_MAX_KSZ 66
45
46
/* size in bytes of the n prime */
47
#define HPRE_ECC_NIST_P192_N_SIZE 24
48
#define HPRE_ECC_NIST_P256_N_SIZE 32
49
#define HPRE_ECC_NIST_P384_N_SIZE 48
50
51
/* size in bytes */
52
#define HPRE_ECC_HW256_KSZ_B 32
53
#define HPRE_ECC_HW384_KSZ_B 48
54
55
/* capability register mask of driver */
56
#define HPRE_DRV_RSA_MASK_CAP BIT(0)
57
#define HPRE_DRV_DH_MASK_CAP BIT(1)
58
#define HPRE_DRV_ECDH_MASK_CAP BIT(2)
59
#define HPRE_DRV_X25519_MASK_CAP BIT(5)
60
61
static DEFINE_MUTEX(hpre_algs_lock);
62
static unsigned int hpre_available_devs;
63
64
typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);
65
66
struct hpre_rsa_ctx {
67
/* low address: e--->n */
68
char *pubkey;
69
dma_addr_t dma_pubkey;
70
71
/* low address: d--->n */
72
char *prikey;
73
dma_addr_t dma_prikey;
74
75
/* low address: dq->dp->q->p->qinv */
76
char *crt_prikey;
77
dma_addr_t dma_crt_prikey;
78
79
struct crypto_akcipher *soft_tfm;
80
};
81
82
struct hpre_dh_ctx {
83
/*
84
* If base is g we compute the public key
85
* ya = g^xa mod p; [RFC2631 sec 2.1.1]
86
* else if base if the counterpart public key we
87
* compute the shared secret
88
* ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
89
* low address: d--->n, please refer to Hisilicon HPRE UM
90
*/
91
char *xa_p;
92
dma_addr_t dma_xa_p;
93
94
char *g; /* m */
95
dma_addr_t dma_g;
96
};
97
98
struct hpre_ecdh_ctx {
99
/* low address: p->a->k->b */
100
unsigned char *p;
101
dma_addr_t dma_p;
102
103
/* low address: x->y */
104
unsigned char *g;
105
dma_addr_t dma_g;
106
};
107
108
struct hpre_ctx {
109
struct hisi_qp *qp;
110
struct device *dev;
111
struct hpre_asym_request **req_list;
112
struct hpre *hpre;
113
spinlock_t req_lock;
114
unsigned int key_sz;
115
bool crt_g2_mode;
116
struct idr req_idr;
117
union {
118
struct hpre_rsa_ctx rsa;
119
struct hpre_dh_ctx dh;
120
struct hpre_ecdh_ctx ecdh;
121
};
122
/* for ecc algorithms */
123
unsigned int curve_id;
124
/* for high performance core */
125
u8 enable_hpcore;
126
};
127
128
struct hpre_asym_request {
129
char *src;
130
char *dst;
131
struct hpre_sqe req;
132
struct hpre_ctx *ctx;
133
union {
134
struct akcipher_request *rsa;
135
struct kpp_request *dh;
136
struct kpp_request *ecdh;
137
} areq;
138
int err;
139
int req_id;
140
hpre_cb cb;
141
struct timespec64 req_time;
142
};
143
144
static inline unsigned int hpre_align_sz(void)
145
{
146
return ((crypto_dma_align() - 1) | (HPRE_ALIGN_SZ - 1)) + 1;
147
}
148
149
static inline unsigned int hpre_align_pd(void)
150
{
151
return (hpre_align_sz() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
152
}
153
154
static int hpre_alloc_req_id(struct hpre_ctx *ctx)
155
{
156
unsigned long flags;
157
int id;
158
159
spin_lock_irqsave(&ctx->req_lock, flags);
160
id = idr_alloc(&ctx->req_idr, NULL, 0, ctx->qp->sq_depth, GFP_ATOMIC);
161
spin_unlock_irqrestore(&ctx->req_lock, flags);
162
163
return id;
164
}
165
166
static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id)
167
{
168
unsigned long flags;
169
170
spin_lock_irqsave(&ctx->req_lock, flags);
171
idr_remove(&ctx->req_idr, req_id);
172
spin_unlock_irqrestore(&ctx->req_lock, flags);
173
}
174
175
static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req)
176
{
177
struct hpre_ctx *ctx;
178
struct hpre_dfx *dfx;
179
int id;
180
181
ctx = hpre_req->ctx;
182
id = hpre_alloc_req_id(ctx);
183
if (unlikely(id < 0))
184
return -EINVAL;
185
186
ctx->req_list[id] = hpre_req;
187
hpre_req->req_id = id;
188
189
dfx = ctx->hpre->debug.dfx;
190
if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value))
191
ktime_get_ts64(&hpre_req->req_time);
192
193
return id;
194
}
195
196
static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req)
197
{
198
struct hpre_ctx *ctx = hpre_req->ctx;
199
int id = hpre_req->req_id;
200
201
if (hpre_req->req_id >= 0) {
202
hpre_req->req_id = HPRE_INVLD_REQ_ID;
203
ctx->req_list[id] = NULL;
204
hpre_free_req_id(ctx, id);
205
}
206
}
207
208
static struct hisi_qp *hpre_get_qp_and_start(u8 type)
209
{
210
struct hisi_qp *qp;
211
int ret;
212
213
qp = hpre_create_qp(type);
214
if (!qp) {
215
pr_err("Can not create hpre qp!\n");
216
return ERR_PTR(-ENODEV);
217
}
218
219
ret = hisi_qm_start_qp(qp, 0);
220
if (ret < 0) {
221
hisi_qm_free_qps(&qp, 1);
222
pci_err(qp->qm->pdev, "Can not start qp!\n");
223
return ERR_PTR(-EINVAL);
224
}
225
226
return qp;
227
}
228
229
static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req,
230
struct scatterlist *data, unsigned int len,
231
int is_src, dma_addr_t *tmp)
232
{
233
struct device *dev = hpre_req->ctx->dev;
234
enum dma_data_direction dma_dir;
235
236
if (is_src) {
237
hpre_req->src = NULL;
238
dma_dir = DMA_TO_DEVICE;
239
} else {
240
hpre_req->dst = NULL;
241
dma_dir = DMA_FROM_DEVICE;
242
}
243
*tmp = dma_map_single(dev, sg_virt(data), len, dma_dir);
244
if (unlikely(dma_mapping_error(dev, *tmp))) {
245
dev_err(dev, "dma map data err!\n");
246
return -ENOMEM;
247
}
248
249
return 0;
250
}
251
252
static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req,
253
struct scatterlist *data, unsigned int len,
254
int is_src, dma_addr_t *tmp)
255
{
256
struct hpre_ctx *ctx = hpre_req->ctx;
257
struct device *dev = ctx->dev;
258
void *ptr;
259
int shift;
260
261
shift = ctx->key_sz - len;
262
if (unlikely(shift < 0))
263
return -EINVAL;
264
265
ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_ATOMIC);
266
if (unlikely(!ptr))
267
return -ENOMEM;
268
269
if (is_src) {
270
scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0);
271
hpre_req->src = ptr;
272
} else {
273
hpre_req->dst = ptr;
274
}
275
276
return 0;
277
}
278
279
static int hpre_hw_data_init(struct hpre_asym_request *hpre_req,
280
struct scatterlist *data, unsigned int len,
281
int is_src, int is_dh)
282
{
283
struct hpre_sqe *msg = &hpre_req->req;
284
struct hpre_ctx *ctx = hpre_req->ctx;
285
dma_addr_t tmp = 0;
286
int ret;
287
288
/* when the data is dh's source, we should format it */
289
if ((sg_is_last(data) && len == ctx->key_sz) &&
290
((is_dh && !is_src) || !is_dh))
291
ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp);
292
else
293
ret = hpre_prepare_dma_buf(hpre_req, data, len, is_src, &tmp);
294
295
if (unlikely(ret))
296
return ret;
297
298
if (is_src)
299
msg->in = cpu_to_le64(tmp);
300
else
301
msg->out = cpu_to_le64(tmp);
302
303
return 0;
304
}
305
306
static void hpre_hw_data_clr_all(struct hpre_ctx *ctx,
307
struct hpre_asym_request *req,
308
struct scatterlist *dst,
309
struct scatterlist *src)
310
{
311
struct device *dev = ctx->dev;
312
struct hpre_sqe *sqe = &req->req;
313
dma_addr_t tmp;
314
315
tmp = le64_to_cpu(sqe->in);
316
if (unlikely(dma_mapping_error(dev, tmp)))
317
return;
318
319
if (src) {
320
if (req->src)
321
dma_free_coherent(dev, ctx->key_sz, req->src, tmp);
322
else
323
dma_unmap_single(dev, tmp, ctx->key_sz, DMA_TO_DEVICE);
324
}
325
326
tmp = le64_to_cpu(sqe->out);
327
if (unlikely(dma_mapping_error(dev, tmp)))
328
return;
329
330
if (req->dst) {
331
if (dst)
332
scatterwalk_map_and_copy(req->dst, dst, 0,
333
ctx->key_sz, 1);
334
dma_free_coherent(dev, ctx->key_sz, req->dst, tmp);
335
} else {
336
dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE);
337
}
338
}
339
340
static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe,
341
void **kreq)
342
{
343
struct hpre_asym_request *req;
344
unsigned int err, done, alg;
345
int id;
346
347
#define HPRE_NO_HW_ERR 0
348
#define HPRE_HW_TASK_DONE 3
349
#define HREE_HW_ERR_MASK GENMASK(10, 0)
350
#define HREE_SQE_DONE_MASK GENMASK(1, 0)
351
#define HREE_ALG_TYPE_MASK GENMASK(4, 0)
352
id = (int)le16_to_cpu(sqe->tag);
353
req = ctx->req_list[id];
354
hpre_rm_req_from_ctx(req);
355
*kreq = req;
356
357
err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) &
358
HREE_HW_ERR_MASK;
359
360
done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) &
361
HREE_SQE_DONE_MASK;
362
363
if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE))
364
return 0;
365
366
alg = le32_to_cpu(sqe->dw0) & HREE_ALG_TYPE_MASK;
367
dev_err_ratelimited(ctx->dev, "alg[0x%x] error: done[0x%x], etype[0x%x]\n",
368
alg, done, err);
369
370
return -EINVAL;
371
}
372
373
static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen)
374
{
375
struct hpre *hpre;
376
377
if (!ctx || !qp || qlen < 0)
378
return -EINVAL;
379
380
spin_lock_init(&ctx->req_lock);
381
ctx->qp = qp;
382
ctx->dev = &qp->qm->pdev->dev;
383
384
hpre = container_of(ctx->qp->qm, struct hpre, qm);
385
ctx->hpre = hpre;
386
ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL);
387
if (!ctx->req_list)
388
return -ENOMEM;
389
ctx->key_sz = 0;
390
ctx->crt_g2_mode = false;
391
idr_init(&ctx->req_idr);
392
393
return 0;
394
}
395
396
static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all)
397
{
398
if (is_clear_all) {
399
idr_destroy(&ctx->req_idr);
400
kfree(ctx->req_list);
401
hisi_qm_free_qps(&ctx->qp, 1);
402
}
403
404
ctx->crt_g2_mode = false;
405
ctx->key_sz = 0;
406
}
407
408
static bool hpre_is_bd_timeout(struct hpre_asym_request *req,
409
u64 overtime_thrhld)
410
{
411
struct timespec64 reply_time;
412
u64 time_use_us;
413
414
ktime_get_ts64(&reply_time);
415
time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) *
416
HPRE_DFX_SEC_TO_US +
417
(reply_time.tv_nsec - req->req_time.tv_nsec) /
418
HPRE_DFX_US_TO_NS;
419
420
if (time_use_us <= overtime_thrhld)
421
return false;
422
423
return true;
424
}
425
426
static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp)
427
{
428
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
429
struct hpre_asym_request *req;
430
struct kpp_request *areq;
431
u64 overtime_thrhld;
432
int ret;
433
434
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
435
areq = req->areq.dh;
436
areq->dst_len = ctx->key_sz;
437
438
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
439
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
440
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
441
442
hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
443
kpp_request_complete(areq, ret);
444
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
445
}
446
447
static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp)
448
{
449
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
450
struct hpre_asym_request *req;
451
struct akcipher_request *areq;
452
u64 overtime_thrhld;
453
int ret;
454
455
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
456
457
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
458
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
459
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
460
461
areq = req->areq.rsa;
462
areq->dst_len = ctx->key_sz;
463
hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
464
akcipher_request_complete(areq, ret);
465
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
466
}
467
468
static void hpre_alg_cb(struct hisi_qp *qp, void *resp)
469
{
470
struct hpre_ctx *ctx = qp->qp_ctx;
471
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
472
struct hpre_sqe *sqe = resp;
473
struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)];
474
475
if (unlikely(!req)) {
476
atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value);
477
return;
478
}
479
480
req->cb(ctx, resp);
481
}
482
483
static void hpre_stop_qp_and_put(struct hisi_qp *qp)
484
{
485
hisi_qm_stop_qp(qp);
486
hisi_qm_free_qps(&qp, 1);
487
}
488
489
static int hpre_ctx_init(struct hpre_ctx *ctx, u8 type)
490
{
491
struct hisi_qp *qp;
492
int ret;
493
494
qp = hpre_get_qp_and_start(type);
495
if (IS_ERR(qp))
496
return PTR_ERR(qp);
497
498
qp->qp_ctx = ctx;
499
qp->req_cb = hpre_alg_cb;
500
501
ret = hpre_ctx_set(ctx, qp, qp->sq_depth);
502
if (ret)
503
hpre_stop_qp_and_put(qp);
504
505
return ret;
506
}
507
508
static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa)
509
{
510
struct hpre_asym_request *h_req;
511
struct hpre_sqe *msg;
512
int req_id;
513
void *tmp;
514
515
if (is_rsa) {
516
struct akcipher_request *akreq = req;
517
518
if (akreq->dst_len < ctx->key_sz) {
519
akreq->dst_len = ctx->key_sz;
520
return -EOVERFLOW;
521
}
522
523
tmp = akcipher_request_ctx(akreq);
524
h_req = PTR_ALIGN(tmp, hpre_align_sz());
525
h_req->cb = hpre_rsa_cb;
526
h_req->areq.rsa = akreq;
527
msg = &h_req->req;
528
memset(msg, 0, sizeof(*msg));
529
} else {
530
struct kpp_request *kreq = req;
531
532
if (kreq->dst_len < ctx->key_sz) {
533
kreq->dst_len = ctx->key_sz;
534
return -EOVERFLOW;
535
}
536
537
tmp = kpp_request_ctx(kreq);
538
h_req = PTR_ALIGN(tmp, hpre_align_sz());
539
h_req->cb = hpre_dh_cb;
540
h_req->areq.dh = kreq;
541
msg = &h_req->req;
542
memset(msg, 0, sizeof(*msg));
543
msg->key = cpu_to_le64(ctx->dh.dma_xa_p);
544
}
545
546
msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
547
msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
548
msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT);
549
msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
550
h_req->ctx = ctx;
551
552
req_id = hpre_add_req_to_ctx(h_req);
553
if (req_id < 0)
554
return -EBUSY;
555
556
msg->tag = cpu_to_le16((u16)req_id);
557
558
return 0;
559
}
560
561
static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg)
562
{
563
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
564
int ctr = 0;
565
int ret;
566
567
do {
568
atomic64_inc(&dfx[HPRE_SEND_CNT].value);
569
spin_lock_bh(&ctx->req_lock);
570
ret = hisi_qp_send(ctx->qp, msg);
571
spin_unlock_bh(&ctx->req_lock);
572
if (ret != -EBUSY)
573
break;
574
atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value);
575
} while (ctr++ < HPRE_TRY_SEND_TIMES);
576
577
if (likely(!ret))
578
return ret;
579
580
if (ret != -EBUSY)
581
atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value);
582
583
return ret;
584
}
585
586
static int hpre_dh_compute_value(struct kpp_request *req)
587
{
588
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
589
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
590
void *tmp = kpp_request_ctx(req);
591
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
592
struct hpre_sqe *msg = &hpre_req->req;
593
int ret;
594
595
ret = hpre_msg_request_set(ctx, req, false);
596
if (unlikely(ret))
597
return ret;
598
599
if (req->src) {
600
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1);
601
if (unlikely(ret))
602
goto clear_all;
603
} else {
604
msg->in = cpu_to_le64(ctx->dh.dma_g);
605
}
606
607
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1);
608
if (unlikely(ret))
609
goto clear_all;
610
611
if (ctx->crt_g2_mode && !req->src)
612
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2);
613
else
614
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH);
615
616
/* success */
617
ret = hpre_send(ctx, msg);
618
if (likely(!ret))
619
return -EINPROGRESS;
620
621
clear_all:
622
hpre_rm_req_from_ctx(hpre_req);
623
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
624
625
return ret;
626
}
627
628
static int hpre_is_dh_params_length_valid(unsigned int key_sz)
629
{
630
#define _HPRE_DH_GRP1 768
631
#define _HPRE_DH_GRP2 1024
632
#define _HPRE_DH_GRP5 1536
633
#define _HPRE_DH_GRP14 2048
634
#define _HPRE_DH_GRP15 3072
635
#define _HPRE_DH_GRP16 4096
636
switch (key_sz) {
637
case _HPRE_DH_GRP1:
638
case _HPRE_DH_GRP2:
639
case _HPRE_DH_GRP5:
640
case _HPRE_DH_GRP14:
641
case _HPRE_DH_GRP15:
642
case _HPRE_DH_GRP16:
643
return 0;
644
default:
645
return -EINVAL;
646
}
647
}
648
649
static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params)
650
{
651
struct device *dev = ctx->dev;
652
unsigned int sz;
653
654
if (params->p_size > HPRE_DH_MAX_P_SZ)
655
return -EINVAL;
656
657
if (hpre_is_dh_params_length_valid(params->p_size <<
658
HPRE_BITS_2_BYTES_SHIFT))
659
return -EINVAL;
660
661
sz = ctx->key_sz = params->p_size;
662
ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1,
663
&ctx->dh.dma_xa_p, GFP_KERNEL);
664
if (!ctx->dh.xa_p)
665
return -ENOMEM;
666
667
memcpy(ctx->dh.xa_p + sz, params->p, sz);
668
669
/* If g equals 2 don't copy it */
670
if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) {
671
ctx->crt_g2_mode = true;
672
return 0;
673
}
674
675
ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL);
676
if (!ctx->dh.g) {
677
dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
678
ctx->dh.dma_xa_p);
679
ctx->dh.xa_p = NULL;
680
return -ENOMEM;
681
}
682
683
memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size);
684
685
return 0;
686
}
687
688
static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
689
{
690
struct device *dev = ctx->dev;
691
unsigned int sz = ctx->key_sz;
692
693
if (is_clear_all)
694
hisi_qm_stop_qp(ctx->qp);
695
696
if (ctx->dh.g) {
697
dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g);
698
ctx->dh.g = NULL;
699
}
700
701
if (ctx->dh.xa_p) {
702
memzero_explicit(ctx->dh.xa_p, sz);
703
dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
704
ctx->dh.dma_xa_p);
705
ctx->dh.xa_p = NULL;
706
}
707
708
hpre_ctx_clear(ctx, is_clear_all);
709
}
710
711
static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf,
712
unsigned int len)
713
{
714
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
715
struct dh params;
716
int ret;
717
718
if (crypto_dh_decode_key(buf, len, &params) < 0)
719
return -EINVAL;
720
721
/* Free old secret if any */
722
hpre_dh_clear_ctx(ctx, false);
723
724
ret = hpre_dh_set_params(ctx, &params);
725
if (ret < 0)
726
goto err_clear_ctx;
727
728
memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key,
729
params.key_size);
730
731
return 0;
732
733
err_clear_ctx:
734
hpre_dh_clear_ctx(ctx, false);
735
return ret;
736
}
737
738
static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm)
739
{
740
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
741
742
return ctx->key_sz;
743
}
744
745
static int hpre_dh_init_tfm(struct crypto_kpp *tfm)
746
{
747
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
748
749
kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
750
751
return hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
752
}
753
754
static void hpre_dh_exit_tfm(struct crypto_kpp *tfm)
755
{
756
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
757
758
hpre_dh_clear_ctx(ctx, true);
759
}
760
761
static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len)
762
{
763
while (!**ptr && *len) {
764
(*ptr)++;
765
(*len)--;
766
}
767
}
768
769
static bool hpre_rsa_key_size_is_support(unsigned int len)
770
{
771
unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT;
772
773
#define _RSA_1024BITS_KEY_WDTH 1024
774
#define _RSA_2048BITS_KEY_WDTH 2048
775
#define _RSA_3072BITS_KEY_WDTH 3072
776
#define _RSA_4096BITS_KEY_WDTH 4096
777
778
switch (bits) {
779
case _RSA_1024BITS_KEY_WDTH:
780
case _RSA_2048BITS_KEY_WDTH:
781
case _RSA_3072BITS_KEY_WDTH:
782
case _RSA_4096BITS_KEY_WDTH:
783
return true;
784
default:
785
return false;
786
}
787
}
788
789
static int hpre_rsa_enc(struct akcipher_request *req)
790
{
791
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
792
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
793
void *tmp = akcipher_request_ctx(req);
794
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
795
struct hpre_sqe *msg = &hpre_req->req;
796
int ret;
797
798
/* For 512 and 1536 bits key size, use soft tfm instead */
799
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
800
ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
801
akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
802
ret = crypto_akcipher_encrypt(req);
803
akcipher_request_set_tfm(req, tfm);
804
return ret;
805
}
806
807
if (unlikely(!ctx->rsa.pubkey))
808
return -EINVAL;
809
810
ret = hpre_msg_request_set(ctx, req, true);
811
if (unlikely(ret))
812
return ret;
813
814
msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT);
815
msg->key = cpu_to_le64(ctx->rsa.dma_pubkey);
816
817
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
818
if (unlikely(ret))
819
goto clear_all;
820
821
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
822
if (unlikely(ret))
823
goto clear_all;
824
825
/* success */
826
ret = hpre_send(ctx, msg);
827
if (likely(!ret))
828
return -EINPROGRESS;
829
830
clear_all:
831
hpre_rm_req_from_ctx(hpre_req);
832
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
833
834
return ret;
835
}
836
837
static int hpre_rsa_dec(struct akcipher_request *req)
838
{
839
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
840
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
841
void *tmp = akcipher_request_ctx(req);
842
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
843
struct hpre_sqe *msg = &hpre_req->req;
844
int ret;
845
846
/* For 512 and 1536 bits key size, use soft tfm instead */
847
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
848
ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
849
akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
850
ret = crypto_akcipher_decrypt(req);
851
akcipher_request_set_tfm(req, tfm);
852
return ret;
853
}
854
855
if (unlikely(!ctx->rsa.prikey))
856
return -EINVAL;
857
858
ret = hpre_msg_request_set(ctx, req, true);
859
if (unlikely(ret))
860
return ret;
861
862
if (ctx->crt_g2_mode) {
863
msg->key = cpu_to_le64(ctx->rsa.dma_crt_prikey);
864
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
865
HPRE_ALG_NC_CRT);
866
} else {
867
msg->key = cpu_to_le64(ctx->rsa.dma_prikey);
868
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
869
HPRE_ALG_NC_NCRT);
870
}
871
872
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
873
if (unlikely(ret))
874
goto clear_all;
875
876
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
877
if (unlikely(ret))
878
goto clear_all;
879
880
/* success */
881
ret = hpre_send(ctx, msg);
882
if (likely(!ret))
883
return -EINPROGRESS;
884
885
clear_all:
886
hpre_rm_req_from_ctx(hpre_req);
887
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
888
889
return ret;
890
}
891
892
static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value,
893
size_t vlen, bool private)
894
{
895
const char *ptr = value;
896
897
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
898
899
ctx->key_sz = vlen;
900
901
/* if invalid key size provided, we use software tfm */
902
if (!hpre_rsa_key_size_is_support(ctx->key_sz))
903
return 0;
904
905
ctx->rsa.pubkey = dma_alloc_coherent(ctx->dev, vlen << 1,
906
&ctx->rsa.dma_pubkey,
907
GFP_KERNEL);
908
if (!ctx->rsa.pubkey)
909
return -ENOMEM;
910
911
if (private) {
912
ctx->rsa.prikey = dma_alloc_coherent(ctx->dev, vlen << 1,
913
&ctx->rsa.dma_prikey,
914
GFP_KERNEL);
915
if (!ctx->rsa.prikey) {
916
dma_free_coherent(ctx->dev, vlen << 1,
917
ctx->rsa.pubkey,
918
ctx->rsa.dma_pubkey);
919
ctx->rsa.pubkey = NULL;
920
return -ENOMEM;
921
}
922
memcpy(ctx->rsa.prikey + vlen, ptr, vlen);
923
}
924
memcpy(ctx->rsa.pubkey + vlen, ptr, vlen);
925
926
/* Using hardware HPRE to do RSA */
927
return 1;
928
}
929
930
static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value,
931
size_t vlen)
932
{
933
const char *ptr = value;
934
935
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
936
937
if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
938
return -EINVAL;
939
940
memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen);
941
942
return 0;
943
}
944
945
static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value,
946
size_t vlen)
947
{
948
const char *ptr = value;
949
950
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
951
952
if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
953
return -EINVAL;
954
955
memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen);
956
957
return 0;
958
}
959
960
static int hpre_crt_para_get(char *para, size_t para_sz,
961
const char *raw, size_t raw_sz)
962
{
963
const char *ptr = raw;
964
size_t len = raw_sz;
965
966
hpre_rsa_drop_leading_zeros(&ptr, &len);
967
if (!len || len > para_sz)
968
return -EINVAL;
969
970
memcpy(para + para_sz - len, ptr, len);
971
972
return 0;
973
}
974
975
static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key)
976
{
977
unsigned int hlf_ksz = ctx->key_sz >> 1;
978
struct device *dev = ctx->dev;
979
u64 offset;
980
int ret;
981
982
ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS,
983
&ctx->rsa.dma_crt_prikey,
984
GFP_KERNEL);
985
if (!ctx->rsa.crt_prikey)
986
return -ENOMEM;
987
988
ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz,
989
rsa_key->dq, rsa_key->dq_sz);
990
if (ret)
991
goto free_key;
992
993
offset = hlf_ksz;
994
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
995
rsa_key->dp, rsa_key->dp_sz);
996
if (ret)
997
goto free_key;
998
999
offset = hlf_ksz * HPRE_CRT_Q;
1000
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1001
rsa_key->q, rsa_key->q_sz);
1002
if (ret)
1003
goto free_key;
1004
1005
offset = hlf_ksz * HPRE_CRT_P;
1006
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1007
rsa_key->p, rsa_key->p_sz);
1008
if (ret)
1009
goto free_key;
1010
1011
offset = hlf_ksz * HPRE_CRT_INV;
1012
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1013
rsa_key->qinv, rsa_key->qinv_sz);
1014
if (ret)
1015
goto free_key;
1016
1017
ctx->crt_g2_mode = true;
1018
1019
return 0;
1020
1021
free_key:
1022
offset = hlf_ksz * HPRE_CRT_PRMS;
1023
memzero_explicit(ctx->rsa.crt_prikey, offset);
1024
dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey,
1025
ctx->rsa.dma_crt_prikey);
1026
ctx->rsa.crt_prikey = NULL;
1027
ctx->crt_g2_mode = false;
1028
1029
return ret;
1030
}
1031
1032
/* If it is clear all, all the resources of the QP will be cleaned. */
1033
static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
1034
{
1035
unsigned int half_key_sz = ctx->key_sz >> 1;
1036
struct device *dev = ctx->dev;
1037
1038
if (is_clear_all)
1039
hisi_qm_stop_qp(ctx->qp);
1040
1041
if (ctx->rsa.pubkey) {
1042
dma_free_coherent(dev, ctx->key_sz << 1,
1043
ctx->rsa.pubkey, ctx->rsa.dma_pubkey);
1044
ctx->rsa.pubkey = NULL;
1045
}
1046
1047
if (ctx->rsa.crt_prikey) {
1048
memzero_explicit(ctx->rsa.crt_prikey,
1049
half_key_sz * HPRE_CRT_PRMS);
1050
dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS,
1051
ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey);
1052
ctx->rsa.crt_prikey = NULL;
1053
}
1054
1055
if (ctx->rsa.prikey) {
1056
memzero_explicit(ctx->rsa.prikey, ctx->key_sz);
1057
dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey,
1058
ctx->rsa.dma_prikey);
1059
ctx->rsa.prikey = NULL;
1060
}
1061
1062
hpre_ctx_clear(ctx, is_clear_all);
1063
}
1064
1065
/*
1066
* we should judge if it is CRT or not,
1067
* CRT: return true, N-CRT: return false .
1068
*/
1069
static bool hpre_is_crt_key(struct rsa_key *key)
1070
{
1071
u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz +
1072
key->qinv_sz;
1073
1074
#define LEN_OF_NCRT_PARA 5
1075
1076
/* N-CRT less than 5 parameters */
1077
return len > LEN_OF_NCRT_PARA;
1078
}
1079
1080
static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key,
1081
unsigned int keylen, bool private)
1082
{
1083
struct rsa_key rsa_key;
1084
int ret;
1085
1086
hpre_rsa_clear_ctx(ctx, false);
1087
1088
if (private)
1089
ret = rsa_parse_priv_key(&rsa_key, key, keylen);
1090
else
1091
ret = rsa_parse_pub_key(&rsa_key, key, keylen);
1092
if (ret < 0)
1093
return ret;
1094
1095
ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private);
1096
if (ret <= 0)
1097
return ret;
1098
1099
if (private) {
1100
ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz);
1101
if (ret < 0)
1102
goto free;
1103
1104
if (hpre_is_crt_key(&rsa_key)) {
1105
ret = hpre_rsa_setkey_crt(ctx, &rsa_key);
1106
if (ret < 0)
1107
goto free;
1108
}
1109
}
1110
1111
ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz);
1112
if (ret < 0)
1113
goto free;
1114
1115
if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) {
1116
ret = -EINVAL;
1117
goto free;
1118
}
1119
1120
return 0;
1121
1122
free:
1123
hpre_rsa_clear_ctx(ctx, false);
1124
return ret;
1125
}
1126
1127
static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
1128
unsigned int keylen)
1129
{
1130
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1131
int ret;
1132
1133
ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen);
1134
if (ret)
1135
return ret;
1136
1137
return hpre_rsa_setkey(ctx, key, keylen, false);
1138
}
1139
1140
static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
1141
unsigned int keylen)
1142
{
1143
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1144
int ret;
1145
1146
ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen);
1147
if (ret)
1148
return ret;
1149
1150
return hpre_rsa_setkey(ctx, key, keylen, true);
1151
}
1152
1153
static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm)
1154
{
1155
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1156
1157
/* For 512 and 1536 bits key size, use soft tfm instead */
1158
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
1159
ctx->key_sz == HPRE_RSA_1536BITS_KSZ)
1160
return crypto_akcipher_maxsize(ctx->rsa.soft_tfm);
1161
1162
return ctx->key_sz;
1163
}
1164
1165
static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm)
1166
{
1167
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1168
int ret;
1169
1170
ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0);
1171
if (IS_ERR(ctx->rsa.soft_tfm)) {
1172
pr_err("Can not alloc_akcipher!\n");
1173
return PTR_ERR(ctx->rsa.soft_tfm);
1174
}
1175
1176
akcipher_set_reqsize(tfm, sizeof(struct hpre_asym_request) +
1177
hpre_align_pd());
1178
1179
ret = hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
1180
if (ret)
1181
crypto_free_akcipher(ctx->rsa.soft_tfm);
1182
1183
return ret;
1184
}
1185
1186
static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
1187
{
1188
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1189
1190
hpre_rsa_clear_ctx(ctx, true);
1191
crypto_free_akcipher(ctx->rsa.soft_tfm);
1192
}
1193
1194
static void hpre_key_to_big_end(u8 *data, int len)
1195
{
1196
int i, j;
1197
1198
for (i = 0; i < len / 2; i++) {
1199
j = len - i - 1;
1200
swap(data[j], data[i]);
1201
}
1202
}
1203
1204
static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
1205
{
1206
struct device *dev = ctx->dev;
1207
unsigned int sz = ctx->key_sz;
1208
unsigned int shift = sz << 1;
1209
1210
if (is_clear_all)
1211
hisi_qm_stop_qp(ctx->qp);
1212
1213
if (ctx->ecdh.p) {
1214
/* ecdh: p->a->k->b */
1215
memzero_explicit(ctx->ecdh.p + shift, sz);
1216
dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1217
ctx->ecdh.p = NULL;
1218
}
1219
1220
hpre_ctx_clear(ctx, is_clear_all);
1221
}
1222
1223
/*
1224
* The bits of 192/224/256/384/521 are supported by HPRE,
1225
* and convert the bits like:
1226
* bits<=256, bits=256; 256<bits<=384, bits=384; 384<bits<=576, bits=576;
1227
* If the parameter bit width is insufficient, then we fill in the
1228
* high-order zeros by soft, so TASK_LENGTH1 is 0x3/0x5/0x8;
1229
*/
1230
static unsigned int hpre_ecdh_supported_curve(unsigned short id)
1231
{
1232
switch (id) {
1233
case ECC_CURVE_NIST_P192:
1234
case ECC_CURVE_NIST_P256:
1235
return HPRE_ECC_HW256_KSZ_B;
1236
case ECC_CURVE_NIST_P384:
1237
return HPRE_ECC_HW384_KSZ_B;
1238
default:
1239
break;
1240
}
1241
1242
return 0;
1243
}
1244
1245
static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits)
1246
{
1247
unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64);
1248
u8 i = 0;
1249
1250
while (i < ndigits - 1) {
1251
memcpy(addr + sizeof(u64) * i, &param[i], sizeof(u64));
1252
i++;
1253
}
1254
1255
memcpy(addr + sizeof(u64) * i, &param[ndigits - 1], sz);
1256
hpre_key_to_big_end((u8 *)addr, cur_sz);
1257
}
1258
1259
static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params,
1260
unsigned int cur_sz)
1261
{
1262
unsigned int shifta = ctx->key_sz << 1;
1263
unsigned int shiftb = ctx->key_sz << 2;
1264
void *p = ctx->ecdh.p + ctx->key_sz - cur_sz;
1265
void *a = ctx->ecdh.p + shifta - cur_sz;
1266
void *b = ctx->ecdh.p + shiftb - cur_sz;
1267
void *x = ctx->ecdh.g + ctx->key_sz - cur_sz;
1268
void *y = ctx->ecdh.g + shifta - cur_sz;
1269
const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id);
1270
char *n;
1271
1272
if (unlikely(!curve))
1273
return -EINVAL;
1274
1275
n = kzalloc(ctx->key_sz, GFP_KERNEL);
1276
if (!n)
1277
return -ENOMEM;
1278
1279
fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits);
1280
fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits);
1281
fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits);
1282
fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits);
1283
fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits);
1284
fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits);
1285
1286
if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) {
1287
kfree(n);
1288
return -EINVAL;
1289
}
1290
1291
kfree(n);
1292
return 0;
1293
}
1294
1295
static unsigned int hpre_ecdh_get_curvesz(unsigned short id)
1296
{
1297
switch (id) {
1298
case ECC_CURVE_NIST_P192:
1299
return HPRE_ECC_NIST_P192_N_SIZE;
1300
case ECC_CURVE_NIST_P256:
1301
return HPRE_ECC_NIST_P256_N_SIZE;
1302
case ECC_CURVE_NIST_P384:
1303
return HPRE_ECC_NIST_P384_N_SIZE;
1304
default:
1305
break;
1306
}
1307
1308
return 0;
1309
}
1310
1311
static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params)
1312
{
1313
struct device *dev = ctx->dev;
1314
unsigned int sz, shift, curve_sz;
1315
int ret;
1316
1317
ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id);
1318
if (!ctx->key_sz)
1319
return -EINVAL;
1320
1321
curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1322
if (!curve_sz || params->key_size > curve_sz)
1323
return -EINVAL;
1324
1325
sz = ctx->key_sz;
1326
1327
if (!ctx->ecdh.p) {
1328
ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p,
1329
GFP_KERNEL);
1330
if (!ctx->ecdh.p)
1331
return -ENOMEM;
1332
}
1333
1334
shift = sz << 2;
1335
ctx->ecdh.g = ctx->ecdh.p + shift;
1336
ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift;
1337
1338
ret = hpre_ecdh_fill_curve(ctx, params, curve_sz);
1339
if (ret) {
1340
dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret);
1341
dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1342
ctx->ecdh.p = NULL;
1343
return ret;
1344
}
1345
1346
return 0;
1347
}
1348
1349
static bool hpre_key_is_zero(char *key, unsigned short key_sz)
1350
{
1351
int i;
1352
1353
for (i = 0; i < key_sz; i++)
1354
if (key[i])
1355
return false;
1356
1357
return true;
1358
}
1359
1360
static int ecdh_gen_privkey(struct hpre_ctx *ctx, struct ecdh *params)
1361
{
1362
struct device *dev = ctx->dev;
1363
int ret;
1364
1365
ret = crypto_get_default_rng();
1366
if (ret) {
1367
dev_err(dev, "failed to get default rng, ret = %d!\n", ret);
1368
return ret;
1369
}
1370
1371
ret = crypto_rng_get_bytes(crypto_default_rng, (u8 *)params->key,
1372
params->key_size);
1373
crypto_put_default_rng();
1374
if (ret)
1375
dev_err(dev, "failed to get rng, ret = %d!\n", ret);
1376
1377
return ret;
1378
}
1379
1380
static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
1381
unsigned int len)
1382
{
1383
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1384
unsigned int sz, sz_shift, curve_sz;
1385
struct device *dev = ctx->dev;
1386
char key[HPRE_ECC_MAX_KSZ];
1387
struct ecdh params;
1388
int ret;
1389
1390
if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
1391
dev_err(dev, "failed to decode ecdh key!\n");
1392
return -EINVAL;
1393
}
1394
1395
/* Use stdrng to generate private key */
1396
if (!params.key || !params.key_size) {
1397
params.key = key;
1398
curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1399
if (!curve_sz) {
1400
dev_err(dev, "Invalid curve size!\n");
1401
return -EINVAL;
1402
}
1403
1404
params.key_size = curve_sz - 1;
1405
ret = ecdh_gen_privkey(ctx, &params);
1406
if (ret)
1407
return ret;
1408
}
1409
1410
if (hpre_key_is_zero(params.key, params.key_size)) {
1411
dev_err(dev, "Invalid hpre key!\n");
1412
return -EINVAL;
1413
}
1414
1415
hpre_ecc_clear_ctx(ctx, false);
1416
1417
ret = hpre_ecdh_set_param(ctx, &params);
1418
if (ret < 0) {
1419
dev_err(dev, "failed to set hpre param, ret = %d!\n", ret);
1420
return ret;
1421
}
1422
1423
sz = ctx->key_sz;
1424
sz_shift = (sz << 1) + sz - params.key_size;
1425
memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size);
1426
1427
return 0;
1428
}
1429
1430
static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx,
1431
struct hpre_asym_request *req,
1432
struct scatterlist *dst,
1433
struct scatterlist *src)
1434
{
1435
struct device *dev = ctx->dev;
1436
struct hpre_sqe *sqe = &req->req;
1437
dma_addr_t dma;
1438
1439
dma = le64_to_cpu(sqe->in);
1440
if (unlikely(dma_mapping_error(dev, dma)))
1441
return;
1442
1443
if (src && req->src)
1444
dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma);
1445
1446
dma = le64_to_cpu(sqe->out);
1447
if (unlikely(dma_mapping_error(dev, dma)))
1448
return;
1449
1450
if (req->dst)
1451
dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma);
1452
if (dst)
1453
dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE);
1454
}
1455
1456
static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp)
1457
{
1458
unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1459
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
1460
struct hpre_asym_request *req = NULL;
1461
struct kpp_request *areq;
1462
u64 overtime_thrhld;
1463
char *p;
1464
int ret;
1465
1466
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
1467
areq = req->areq.ecdh;
1468
areq->dst_len = ctx->key_sz << 1;
1469
1470
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
1471
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
1472
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
1473
1474
/* Do unmap before data processing */
1475
hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src);
1476
1477
p = sg_virt(areq->dst);
1478
memmove(p, p + ctx->key_sz - curve_sz, curve_sz);
1479
memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz);
1480
1481
kpp_request_complete(areq, ret);
1482
1483
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
1484
}
1485
1486
static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx,
1487
struct kpp_request *req)
1488
{
1489
struct hpre_asym_request *h_req;
1490
struct hpre_sqe *msg;
1491
int req_id;
1492
void *tmp;
1493
1494
if (req->dst_len < ctx->key_sz << 1) {
1495
req->dst_len = ctx->key_sz << 1;
1496
return -EINVAL;
1497
}
1498
1499
tmp = kpp_request_ctx(req);
1500
h_req = PTR_ALIGN(tmp, hpre_align_sz());
1501
h_req->cb = hpre_ecdh_cb;
1502
h_req->areq.ecdh = req;
1503
msg = &h_req->req;
1504
memset(msg, 0, sizeof(*msg));
1505
msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
1506
msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1507
msg->key = cpu_to_le64(ctx->ecdh.dma_p);
1508
1509
msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
1510
msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
1511
h_req->ctx = ctx;
1512
1513
req_id = hpre_add_req_to_ctx(h_req);
1514
if (req_id < 0)
1515
return -EBUSY;
1516
1517
msg->tag = cpu_to_le16((u16)req_id);
1518
return 0;
1519
}
1520
1521
static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req,
1522
struct scatterlist *data, unsigned int len)
1523
{
1524
struct hpre_sqe *msg = &hpre_req->req;
1525
struct hpre_ctx *ctx = hpre_req->ctx;
1526
struct device *dev = ctx->dev;
1527
unsigned int tmpshift;
1528
dma_addr_t dma = 0;
1529
void *ptr;
1530
int shift;
1531
1532
/* Src_data include gx and gy. */
1533
shift = ctx->key_sz - (len >> 1);
1534
if (unlikely(shift < 0))
1535
return -EINVAL;
1536
1537
ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL);
1538
if (unlikely(!ptr))
1539
return -ENOMEM;
1540
1541
tmpshift = ctx->key_sz << 1;
1542
scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0);
1543
memcpy(ptr + shift, ptr + tmpshift, len >> 1);
1544
memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1);
1545
1546
hpre_req->src = ptr;
1547
msg->in = cpu_to_le64(dma);
1548
return 0;
1549
}
1550
1551
static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req,
1552
struct scatterlist *data, unsigned int len)
1553
{
1554
struct hpre_sqe *msg = &hpre_req->req;
1555
struct hpre_ctx *ctx = hpre_req->ctx;
1556
struct device *dev = ctx->dev;
1557
dma_addr_t dma;
1558
1559
if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) {
1560
dev_err(dev, "data or data length is illegal!\n");
1561
return -EINVAL;
1562
}
1563
1564
hpre_req->dst = NULL;
1565
dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
1566
if (unlikely(dma_mapping_error(dev, dma))) {
1567
dev_err(dev, "dma map data err!\n");
1568
return -ENOMEM;
1569
}
1570
1571
msg->out = cpu_to_le64(dma);
1572
return 0;
1573
}
1574
1575
static int hpre_ecdh_compute_value(struct kpp_request *req)
1576
{
1577
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
1578
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1579
struct device *dev = ctx->dev;
1580
void *tmp = kpp_request_ctx(req);
1581
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
1582
struct hpre_sqe *msg = &hpre_req->req;
1583
int ret;
1584
1585
ret = hpre_ecdh_msg_request_set(ctx, req);
1586
if (unlikely(ret)) {
1587
dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret);
1588
return ret;
1589
}
1590
1591
if (req->src) {
1592
ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len);
1593
if (unlikely(ret)) {
1594
dev_err(dev, "failed to init src data, ret = %d!\n", ret);
1595
goto clear_all;
1596
}
1597
} else {
1598
msg->in = cpu_to_le64(ctx->ecdh.dma_g);
1599
}
1600
1601
ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len);
1602
if (unlikely(ret)) {
1603
dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
1604
goto clear_all;
1605
}
1606
1607
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL);
1608
msg->resv1 = ctx->enable_hpcore << HPRE_ENABLE_HPCORE_SHIFT;
1609
1610
ret = hpre_send(ctx, msg);
1611
if (likely(!ret))
1612
return -EINPROGRESS;
1613
1614
clear_all:
1615
hpre_rm_req_from_ctx(hpre_req);
1616
hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
1617
return ret;
1618
}
1619
1620
static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm)
1621
{
1622
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1623
1624
/* max size is the pub_key_size, include x and y */
1625
return ctx->key_sz << 1;
1626
}
1627
1628
static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm)
1629
{
1630
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1631
1632
ctx->curve_id = ECC_CURVE_NIST_P192;
1633
1634
kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1635
1636
return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1637
}
1638
1639
static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
1640
{
1641
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1642
1643
ctx->curve_id = ECC_CURVE_NIST_P256;
1644
ctx->enable_hpcore = 1;
1645
1646
kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1647
1648
return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1649
}
1650
1651
static int hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
1652
{
1653
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1654
1655
ctx->curve_id = ECC_CURVE_NIST_P384;
1656
1657
kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1658
1659
return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1660
}
1661
1662
static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm)
1663
{
1664
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1665
1666
hpre_ecc_clear_ctx(ctx, true);
1667
}
1668
1669
static struct akcipher_alg rsa = {
1670
.encrypt = hpre_rsa_enc,
1671
.decrypt = hpre_rsa_dec,
1672
.set_pub_key = hpre_rsa_setpubkey,
1673
.set_priv_key = hpre_rsa_setprivkey,
1674
.max_size = hpre_rsa_max_size,
1675
.init = hpre_rsa_init_tfm,
1676
.exit = hpre_rsa_exit_tfm,
1677
.base = {
1678
.cra_ctxsize = sizeof(struct hpre_ctx),
1679
.cra_priority = HPRE_CRYPTO_ALG_PRI,
1680
.cra_name = "rsa",
1681
.cra_driver_name = "hpre-rsa",
1682
.cra_module = THIS_MODULE,
1683
},
1684
};
1685
1686
static struct kpp_alg dh = {
1687
.set_secret = hpre_dh_set_secret,
1688
.generate_public_key = hpre_dh_compute_value,
1689
.compute_shared_secret = hpre_dh_compute_value,
1690
.max_size = hpre_dh_max_size,
1691
.init = hpre_dh_init_tfm,
1692
.exit = hpre_dh_exit_tfm,
1693
.base = {
1694
.cra_ctxsize = sizeof(struct hpre_ctx),
1695
.cra_priority = HPRE_CRYPTO_ALG_PRI,
1696
.cra_name = "dh",
1697
.cra_driver_name = "hpre-dh",
1698
.cra_module = THIS_MODULE,
1699
},
1700
};
1701
1702
static struct kpp_alg ecdh_curves[] = {
1703
{
1704
.set_secret = hpre_ecdh_set_secret,
1705
.generate_public_key = hpre_ecdh_compute_value,
1706
.compute_shared_secret = hpre_ecdh_compute_value,
1707
.max_size = hpre_ecdh_max_size,
1708
.init = hpre_ecdh_nist_p192_init_tfm,
1709
.exit = hpre_ecdh_exit_tfm,
1710
.base = {
1711
.cra_ctxsize = sizeof(struct hpre_ctx),
1712
.cra_priority = HPRE_CRYPTO_ALG_PRI,
1713
.cra_name = "ecdh-nist-p192",
1714
.cra_driver_name = "hpre-ecdh-nist-p192",
1715
.cra_module = THIS_MODULE,
1716
},
1717
}, {
1718
.set_secret = hpre_ecdh_set_secret,
1719
.generate_public_key = hpre_ecdh_compute_value,
1720
.compute_shared_secret = hpre_ecdh_compute_value,
1721
.max_size = hpre_ecdh_max_size,
1722
.init = hpre_ecdh_nist_p256_init_tfm,
1723
.exit = hpre_ecdh_exit_tfm,
1724
.base = {
1725
.cra_ctxsize = sizeof(struct hpre_ctx),
1726
.cra_priority = HPRE_CRYPTO_ALG_PRI,
1727
.cra_name = "ecdh-nist-p256",
1728
.cra_driver_name = "hpre-ecdh-nist-p256",
1729
.cra_module = THIS_MODULE,
1730
},
1731
}, {
1732
.set_secret = hpre_ecdh_set_secret,
1733
.generate_public_key = hpre_ecdh_compute_value,
1734
.compute_shared_secret = hpre_ecdh_compute_value,
1735
.max_size = hpre_ecdh_max_size,
1736
.init = hpre_ecdh_nist_p384_init_tfm,
1737
.exit = hpre_ecdh_exit_tfm,
1738
.base = {
1739
.cra_ctxsize = sizeof(struct hpre_ctx),
1740
.cra_priority = HPRE_CRYPTO_ALG_PRI,
1741
.cra_name = "ecdh-nist-p384",
1742
.cra_driver_name = "hpre-ecdh-nist-p384",
1743
.cra_module = THIS_MODULE,
1744
},
1745
}
1746
};
1747
1748
static int hpre_register_rsa(struct hisi_qm *qm)
1749
{
1750
int ret;
1751
1752
if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
1753
return 0;
1754
1755
rsa.base.cra_flags = 0;
1756
ret = crypto_register_akcipher(&rsa);
1757
if (ret)
1758
dev_err(&qm->pdev->dev, "failed to register rsa (%d)!\n", ret);
1759
1760
return ret;
1761
}
1762
1763
static void hpre_unregister_rsa(struct hisi_qm *qm)
1764
{
1765
if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
1766
return;
1767
1768
crypto_unregister_akcipher(&rsa);
1769
}
1770
1771
static int hpre_register_dh(struct hisi_qm *qm)
1772
{
1773
int ret;
1774
1775
if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
1776
return 0;
1777
1778
ret = crypto_register_kpp(&dh);
1779
if (ret)
1780
dev_err(&qm->pdev->dev, "failed to register dh (%d)!\n", ret);
1781
1782
return ret;
1783
}
1784
1785
static void hpre_unregister_dh(struct hisi_qm *qm)
1786
{
1787
if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
1788
return;
1789
1790
crypto_unregister_kpp(&dh);
1791
}
1792
1793
static int hpre_register_ecdh(struct hisi_qm *qm)
1794
{
1795
int ret, i;
1796
1797
if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
1798
return 0;
1799
1800
for (i = 0; i < ARRAY_SIZE(ecdh_curves); i++) {
1801
ret = crypto_register_kpp(&ecdh_curves[i]);
1802
if (ret) {
1803
dev_err(&qm->pdev->dev, "failed to register %s (%d)!\n",
1804
ecdh_curves[i].base.cra_name, ret);
1805
goto unreg_kpp;
1806
}
1807
}
1808
1809
return 0;
1810
1811
unreg_kpp:
1812
for (--i; i >= 0; --i)
1813
crypto_unregister_kpp(&ecdh_curves[i]);
1814
1815
return ret;
1816
}
1817
1818
static void hpre_unregister_ecdh(struct hisi_qm *qm)
1819
{
1820
int i;
1821
1822
if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
1823
return;
1824
1825
for (i = ARRAY_SIZE(ecdh_curves) - 1; i >= 0; --i)
1826
crypto_unregister_kpp(&ecdh_curves[i]);
1827
}
1828
1829
int hpre_algs_register(struct hisi_qm *qm)
1830
{
1831
int ret = 0;
1832
1833
mutex_lock(&hpre_algs_lock);
1834
if (hpre_available_devs) {
1835
hpre_available_devs++;
1836
goto unlock;
1837
}
1838
1839
ret = hpre_register_rsa(qm);
1840
if (ret)
1841
goto unlock;
1842
1843
ret = hpre_register_dh(qm);
1844
if (ret)
1845
goto unreg_rsa;
1846
1847
ret = hpre_register_ecdh(qm);
1848
if (ret)
1849
goto unreg_dh;
1850
1851
hpre_available_devs++;
1852
mutex_unlock(&hpre_algs_lock);
1853
1854
return ret;
1855
1856
unreg_dh:
1857
hpre_unregister_dh(qm);
1858
unreg_rsa:
1859
hpre_unregister_rsa(qm);
1860
unlock:
1861
mutex_unlock(&hpre_algs_lock);
1862
return ret;
1863
}
1864
1865
void hpre_algs_unregister(struct hisi_qm *qm)
1866
{
1867
mutex_lock(&hpre_algs_lock);
1868
if (--hpre_available_devs)
1869
goto unlock;
1870
1871
hpre_unregister_ecdh(qm);
1872
hpre_unregister_dh(qm);
1873
hpre_unregister_rsa(qm);
1874
1875
unlock:
1876
mutex_unlock(&hpre_algs_lock);
1877
}
1878
1879