Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/crypto/intel/ixp4xx/ixp4xx_crypto.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Intel IXP4xx NPE-C crypto driver
4
*
5
* Copyright (C) 2008 Christian Hohnstaedt <[email protected]>
6
*/
7
8
#include <linux/platform_device.h>
9
#include <linux/dma-mapping.h>
10
#include <linux/dmapool.h>
11
#include <linux/crypto.h>
12
#include <linux/kernel.h>
13
#include <linux/rtnetlink.h>
14
#include <linux/interrupt.h>
15
#include <linux/spinlock.h>
16
#include <linux/gfp.h>
17
#include <linux/module.h>
18
#include <linux/of.h>
19
20
#include <crypto/ctr.h>
21
#include <crypto/internal/des.h>
22
#include <crypto/aes.h>
23
#include <crypto/hmac.h>
24
#include <crypto/sha1.h>
25
#include <crypto/algapi.h>
26
#include <crypto/internal/aead.h>
27
#include <crypto/internal/skcipher.h>
28
#include <crypto/authenc.h>
29
#include <crypto/scatterwalk.h>
30
31
#include <linux/soc/ixp4xx/npe.h>
32
#include <linux/soc/ixp4xx/qmgr.h>
33
34
/* Intermittent includes, delete this after v5.14-rc1 */
35
#include <linux/soc/ixp4xx/cpu.h>
36
37
#define MAX_KEYLEN 32
38
39
/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
40
#define NPE_CTX_LEN 80
41
#define AES_BLOCK128 16
42
43
#define NPE_OP_HASH_VERIFY 0x01
44
#define NPE_OP_CCM_ENABLE 0x04
45
#define NPE_OP_CRYPT_ENABLE 0x08
46
#define NPE_OP_HASH_ENABLE 0x10
47
#define NPE_OP_NOT_IN_PLACE 0x20
48
#define NPE_OP_HMAC_DISABLE 0x40
49
#define NPE_OP_CRYPT_ENCRYPT 0x80
50
51
#define NPE_OP_CCM_GEN_MIC 0xcc
52
#define NPE_OP_HASH_GEN_ICV 0x50
53
#define NPE_OP_ENC_GEN_KEY 0xc9
54
55
#define MOD_ECB 0x0000
56
#define MOD_CTR 0x1000
57
#define MOD_CBC_ENC 0x2000
58
#define MOD_CBC_DEC 0x3000
59
#define MOD_CCM_ENC 0x4000
60
#define MOD_CCM_DEC 0x5000
61
62
#define KEYLEN_128 4
63
#define KEYLEN_192 6
64
#define KEYLEN_256 8
65
66
#define CIPH_DECR 0x0000
67
#define CIPH_ENCR 0x0400
68
69
#define MOD_DES 0x0000
70
#define MOD_TDEA2 0x0100
71
#define MOD_3DES 0x0200
72
#define MOD_AES 0x0800
73
#define MOD_AES128 (0x0800 | KEYLEN_128)
74
#define MOD_AES192 (0x0900 | KEYLEN_192)
75
#define MOD_AES256 (0x0a00 | KEYLEN_256)
76
77
#define MAX_IVLEN 16
78
#define NPE_QLEN 16
79
/* Space for registering when the first
80
* NPE_QLEN crypt_ctl are busy */
81
#define NPE_QLEN_TOTAL 64
82
83
#define CTL_FLAG_UNUSED 0x0000
84
#define CTL_FLAG_USED 0x1000
85
#define CTL_FLAG_PERFORM_ABLK 0x0001
86
#define CTL_FLAG_GEN_ICV 0x0002
87
#define CTL_FLAG_GEN_REVAES 0x0004
88
#define CTL_FLAG_PERFORM_AEAD 0x0008
89
#define CTL_FLAG_MASK 0x000f
90
91
#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93
#define MD5_DIGEST_SIZE 16
94
95
struct buffer_desc {
96
u32 phys_next;
97
#ifdef __ARMEB__
98
u16 buf_len;
99
u16 pkt_len;
100
#else
101
u16 pkt_len;
102
u16 buf_len;
103
#endif
104
dma_addr_t phys_addr;
105
u32 __reserved[4];
106
struct buffer_desc *next;
107
enum dma_data_direction dir;
108
};
109
110
struct crypt_ctl {
111
#ifdef __ARMEB__
112
u8 mode; /* NPE_OP_* operation mode */
113
u8 init_len;
114
u16 reserved;
115
#else
116
u16 reserved;
117
u8 init_len;
118
u8 mode; /* NPE_OP_* operation mode */
119
#endif
120
u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
121
u32 icv_rev_aes; /* icv or rev aes */
122
u32 src_buf;
123
u32 dst_buf;
124
#ifdef __ARMEB__
125
u16 auth_offs; /* Authentication start offset */
126
u16 auth_len; /* Authentication data length */
127
u16 crypt_offs; /* Cryption start offset */
128
u16 crypt_len; /* Cryption data length */
129
#else
130
u16 auth_len; /* Authentication data length */
131
u16 auth_offs; /* Authentication start offset */
132
u16 crypt_len; /* Cryption data length */
133
u16 crypt_offs; /* Cryption start offset */
134
#endif
135
u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
136
u32 crypto_ctx; /* NPE Crypto Param structure address */
137
138
/* Used by Host: 4*4 bytes*/
139
unsigned int ctl_flags;
140
union {
141
struct skcipher_request *ablk_req;
142
struct aead_request *aead_req;
143
struct crypto_tfm *tfm;
144
} data;
145
struct buffer_desc *regist_buf;
146
u8 *regist_ptr;
147
};
148
149
struct ablk_ctx {
150
struct buffer_desc *src;
151
struct buffer_desc *dst;
152
u8 iv[MAX_IVLEN];
153
bool encrypt;
154
struct skcipher_request fallback_req; // keep at the end
155
};
156
157
struct aead_ctx {
158
struct buffer_desc *src;
159
struct buffer_desc *dst;
160
struct scatterlist ivlist;
161
/* used when the hmac is not on one sg entry */
162
u8 *hmac_virt;
163
int encrypt;
164
};
165
166
struct ix_hash_algo {
167
u32 cfgword;
168
unsigned char *icv;
169
};
170
171
struct ix_sa_dir {
172
unsigned char *npe_ctx;
173
dma_addr_t npe_ctx_phys;
174
int npe_ctx_idx;
175
u8 npe_mode;
176
};
177
178
struct ixp_ctx {
179
struct ix_sa_dir encrypt;
180
struct ix_sa_dir decrypt;
181
int authkey_len;
182
u8 authkey[MAX_KEYLEN];
183
int enckey_len;
184
u8 enckey[MAX_KEYLEN];
185
u8 salt[MAX_IVLEN];
186
u8 nonce[CTR_RFC3686_NONCE_SIZE];
187
unsigned int salted;
188
atomic_t configuring;
189
struct completion completion;
190
struct crypto_skcipher *fallback_tfm;
191
};
192
193
struct ixp_alg {
194
struct skcipher_alg crypto;
195
const struct ix_hash_algo *hash;
196
u32 cfg_enc;
197
u32 cfg_dec;
198
199
int registered;
200
};
201
202
struct ixp_aead_alg {
203
struct aead_alg crypto;
204
const struct ix_hash_algo *hash;
205
u32 cfg_enc;
206
u32 cfg_dec;
207
208
int registered;
209
};
210
211
static const struct ix_hash_algo hash_alg_md5 = {
212
.cfgword = 0xAA010004,
213
.icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214
"\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215
};
216
217
static const struct ix_hash_algo hash_alg_sha1 = {
218
.cfgword = 0x00000005,
219
.icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
220
"\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
221
};
222
223
static struct npe *npe_c;
224
225
static unsigned int send_qid;
226
static unsigned int recv_qid;
227
static struct dma_pool *buffer_pool;
228
static struct dma_pool *ctx_pool;
229
230
static struct crypt_ctl *crypt_virt;
231
static dma_addr_t crypt_phys;
232
233
static int support_aes = 1;
234
235
static struct platform_device *pdev;
236
237
static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
238
{
239
return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
240
}
241
242
static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
243
{
244
return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
245
}
246
247
static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
248
{
249
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250
}
251
252
static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
253
{
254
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255
}
256
257
static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
258
{
259
return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260
}
261
262
static int setup_crypt_desc(void)
263
{
264
struct device *dev = &pdev->dev;
265
266
BUILD_BUG_ON(!(IS_ENABLED(CONFIG_COMPILE_TEST) &&
267
IS_ENABLED(CONFIG_64BIT)) &&
268
sizeof(struct crypt_ctl) != 64);
269
crypt_virt = dma_alloc_coherent(dev,
270
NPE_QLEN * sizeof(struct crypt_ctl),
271
&crypt_phys, GFP_ATOMIC);
272
if (!crypt_virt)
273
return -ENOMEM;
274
return 0;
275
}
276
277
static DEFINE_SPINLOCK(desc_lock);
278
static struct crypt_ctl *get_crypt_desc(void)
279
{
280
int i;
281
static int idx;
282
unsigned long flags;
283
284
spin_lock_irqsave(&desc_lock, flags);
285
286
if (unlikely(!crypt_virt))
287
setup_crypt_desc();
288
if (unlikely(!crypt_virt)) {
289
spin_unlock_irqrestore(&desc_lock, flags);
290
return NULL;
291
}
292
i = idx;
293
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
294
if (++idx >= NPE_QLEN)
295
idx = 0;
296
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
297
spin_unlock_irqrestore(&desc_lock, flags);
298
return crypt_virt + i;
299
} else {
300
spin_unlock_irqrestore(&desc_lock, flags);
301
return NULL;
302
}
303
}
304
305
static DEFINE_SPINLOCK(emerg_lock);
306
static struct crypt_ctl *get_crypt_desc_emerg(void)
307
{
308
int i;
309
static int idx = NPE_QLEN;
310
struct crypt_ctl *desc;
311
unsigned long flags;
312
313
desc = get_crypt_desc();
314
if (desc)
315
return desc;
316
if (unlikely(!crypt_virt))
317
return NULL;
318
319
spin_lock_irqsave(&emerg_lock, flags);
320
i = idx;
321
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
322
if (++idx >= NPE_QLEN_TOTAL)
323
idx = NPE_QLEN;
324
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
325
spin_unlock_irqrestore(&emerg_lock, flags);
326
return crypt_virt + i;
327
} else {
328
spin_unlock_irqrestore(&emerg_lock, flags);
329
return NULL;
330
}
331
}
332
333
static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
334
dma_addr_t phys)
335
{
336
while (buf) {
337
struct buffer_desc *buf1;
338
u32 phys1;
339
340
buf1 = buf->next;
341
phys1 = buf->phys_next;
342
dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
343
dma_pool_free(buffer_pool, buf, phys);
344
buf = buf1;
345
phys = phys1;
346
}
347
}
348
349
static struct tasklet_struct crypto_done_tasklet;
350
351
static void finish_scattered_hmac(struct crypt_ctl *crypt)
352
{
353
struct aead_request *req = crypt->data.aead_req;
354
struct aead_ctx *req_ctx = aead_request_ctx(req);
355
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
356
int authsize = crypto_aead_authsize(tfm);
357
int decryptlen = req->assoclen + req->cryptlen - authsize;
358
359
if (req_ctx->encrypt) {
360
scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
361
decryptlen, authsize, 1);
362
}
363
dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
364
}
365
366
static void one_packet(dma_addr_t phys)
367
{
368
struct device *dev = &pdev->dev;
369
struct crypt_ctl *crypt;
370
struct ixp_ctx *ctx;
371
int failed;
372
373
failed = phys & 0x1 ? -EBADMSG : 0;
374
phys &= ~0x3;
375
crypt = crypt_phys2virt(phys);
376
377
switch (crypt->ctl_flags & CTL_FLAG_MASK) {
378
case CTL_FLAG_PERFORM_AEAD: {
379
struct aead_request *req = crypt->data.aead_req;
380
struct aead_ctx *req_ctx = aead_request_ctx(req);
381
382
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
383
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
384
if (req_ctx->hmac_virt)
385
finish_scattered_hmac(crypt);
386
387
aead_request_complete(req, failed);
388
break;
389
}
390
case CTL_FLAG_PERFORM_ABLK: {
391
struct skcipher_request *req = crypt->data.ablk_req;
392
struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
393
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
394
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
395
unsigned int offset;
396
397
if (ivsize > 0) {
398
offset = req->cryptlen - ivsize;
399
if (req_ctx->encrypt) {
400
scatterwalk_map_and_copy(req->iv, req->dst,
401
offset, ivsize, 0);
402
} else {
403
memcpy(req->iv, req_ctx->iv, ivsize);
404
memzero_explicit(req_ctx->iv, ivsize);
405
}
406
}
407
408
if (req_ctx->dst)
409
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
410
411
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
412
skcipher_request_complete(req, failed);
413
break;
414
}
415
case CTL_FLAG_GEN_ICV:
416
ctx = crypto_tfm_ctx(crypt->data.tfm);
417
dma_pool_free(ctx_pool, crypt->regist_ptr,
418
crypt->regist_buf->phys_addr);
419
dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
420
if (atomic_dec_and_test(&ctx->configuring))
421
complete(&ctx->completion);
422
break;
423
case CTL_FLAG_GEN_REVAES:
424
ctx = crypto_tfm_ctx(crypt->data.tfm);
425
*(__be32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
426
if (atomic_dec_and_test(&ctx->configuring))
427
complete(&ctx->completion);
428
break;
429
default:
430
BUG();
431
}
432
crypt->ctl_flags = CTL_FLAG_UNUSED;
433
}
434
435
static void irqhandler(void *_unused)
436
{
437
tasklet_schedule(&crypto_done_tasklet);
438
}
439
440
static void crypto_done_action(unsigned long arg)
441
{
442
int i;
443
444
for (i = 0; i < 4; i++) {
445
dma_addr_t phys = qmgr_get_entry(recv_qid);
446
if (!phys)
447
return;
448
one_packet(phys);
449
}
450
tasklet_schedule(&crypto_done_tasklet);
451
}
452
453
static int init_ixp_crypto(struct device *dev)
454
{
455
struct device_node *np = dev->of_node;
456
u32 msg[2] = { 0, 0 };
457
int ret = -ENODEV;
458
u32 npe_id;
459
460
dev_info(dev, "probing...\n");
461
462
/* Locate the NPE and queue manager to use from device tree */
463
if (IS_ENABLED(CONFIG_OF) && np) {
464
struct of_phandle_args queue_spec;
465
struct of_phandle_args npe_spec;
466
467
ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
468
1, 0, &npe_spec);
469
if (ret) {
470
dev_err(dev, "no NPE engine specified\n");
471
return -ENODEV;
472
}
473
npe_id = npe_spec.args[0];
474
of_node_put(npe_spec.np);
475
476
ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
477
&queue_spec);
478
if (ret) {
479
dev_err(dev, "no rx queue phandle\n");
480
return -ENODEV;
481
}
482
recv_qid = queue_spec.args[0];
483
of_node_put(queue_spec.np);
484
485
ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
486
&queue_spec);
487
if (ret) {
488
dev_err(dev, "no txready queue phandle\n");
489
return -ENODEV;
490
}
491
send_qid = queue_spec.args[0];
492
of_node_put(queue_spec.np);
493
} else {
494
/*
495
* Hardcoded engine when using platform data, this goes away
496
* when we switch to using DT only.
497
*/
498
npe_id = 2;
499
send_qid = 29;
500
recv_qid = 30;
501
}
502
503
npe_c = npe_request(npe_id);
504
if (!npe_c)
505
return ret;
506
507
if (!npe_running(npe_c)) {
508
ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
509
if (ret)
510
goto npe_release;
511
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
512
goto npe_error;
513
} else {
514
if (npe_send_message(npe_c, msg, "STATUS_MSG"))
515
goto npe_error;
516
517
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
518
goto npe_error;
519
}
520
521
switch ((msg[1] >> 16) & 0xff) {
522
case 3:
523
dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
524
support_aes = 0;
525
break;
526
case 4:
527
case 5:
528
support_aes = 1;
529
break;
530
default:
531
dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
532
ret = -ENODEV;
533
goto npe_release;
534
}
535
/* buffer_pool will also be used to sometimes store the hmac,
536
* so assure it is large enough
537
*/
538
BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
539
buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
540
32, 0);
541
ret = -ENOMEM;
542
if (!buffer_pool)
543
goto err;
544
545
ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
546
if (!ctx_pool)
547
goto err;
548
549
ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
550
"ixp_crypto:out", NULL);
551
if (ret)
552
goto err;
553
ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
554
"ixp_crypto:in", NULL);
555
if (ret) {
556
qmgr_release_queue(send_qid);
557
goto err;
558
}
559
qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
560
tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
561
562
qmgr_enable_irq(recv_qid);
563
return 0;
564
565
npe_error:
566
dev_err(dev, "%s not responding\n", npe_name(npe_c));
567
ret = -EIO;
568
err:
569
dma_pool_destroy(ctx_pool);
570
dma_pool_destroy(buffer_pool);
571
npe_release:
572
npe_release(npe_c);
573
return ret;
574
}
575
576
static void release_ixp_crypto(struct device *dev)
577
{
578
qmgr_disable_irq(recv_qid);
579
tasklet_kill(&crypto_done_tasklet);
580
581
qmgr_release_queue(send_qid);
582
qmgr_release_queue(recv_qid);
583
584
dma_pool_destroy(ctx_pool);
585
dma_pool_destroy(buffer_pool);
586
587
npe_release(npe_c);
588
589
if (crypt_virt)
590
dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
591
crypt_virt, crypt_phys);
592
}
593
594
static void reset_sa_dir(struct ix_sa_dir *dir)
595
{
596
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
597
dir->npe_ctx_idx = 0;
598
dir->npe_mode = 0;
599
}
600
601
static int init_sa_dir(struct ix_sa_dir *dir)
602
{
603
dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
604
if (!dir->npe_ctx)
605
return -ENOMEM;
606
607
reset_sa_dir(dir);
608
return 0;
609
}
610
611
static void free_sa_dir(struct ix_sa_dir *dir)
612
{
613
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
614
dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
615
}
616
617
static int init_tfm(struct crypto_tfm *tfm)
618
{
619
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
620
int ret;
621
622
atomic_set(&ctx->configuring, 0);
623
ret = init_sa_dir(&ctx->encrypt);
624
if (ret)
625
return ret;
626
ret = init_sa_dir(&ctx->decrypt);
627
if (ret)
628
free_sa_dir(&ctx->encrypt);
629
630
return ret;
631
}
632
633
static int init_tfm_ablk(struct crypto_skcipher *tfm)
634
{
635
struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
636
struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
637
const char *name = crypto_tfm_alg_name(ctfm);
638
639
ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
640
if (IS_ERR(ctx->fallback_tfm)) {
641
pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
642
name, PTR_ERR(ctx->fallback_tfm));
643
return PTR_ERR(ctx->fallback_tfm);
644
}
645
646
pr_info("Fallback for %s is %s\n",
647
crypto_tfm_alg_driver_name(&tfm->base),
648
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
649
);
650
651
crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
652
return init_tfm(crypto_skcipher_tfm(tfm));
653
}
654
655
static int init_tfm_aead(struct crypto_aead *tfm)
656
{
657
crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
658
return init_tfm(crypto_aead_tfm(tfm));
659
}
660
661
static void exit_tfm(struct crypto_tfm *tfm)
662
{
663
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
664
665
free_sa_dir(&ctx->encrypt);
666
free_sa_dir(&ctx->decrypt);
667
}
668
669
static void exit_tfm_ablk(struct crypto_skcipher *tfm)
670
{
671
struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
672
struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
673
674
crypto_free_skcipher(ctx->fallback_tfm);
675
exit_tfm(crypto_skcipher_tfm(tfm));
676
}
677
678
static void exit_tfm_aead(struct crypto_aead *tfm)
679
{
680
exit_tfm(crypto_aead_tfm(tfm));
681
}
682
683
static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
684
int init_len, u32 ctx_addr, const u8 *key,
685
int key_len)
686
{
687
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
688
struct crypt_ctl *crypt;
689
struct buffer_desc *buf;
690
int i;
691
u8 *pad;
692
dma_addr_t pad_phys, buf_phys;
693
694
BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
695
pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
696
if (!pad)
697
return -ENOMEM;
698
buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
699
if (!buf) {
700
dma_pool_free(ctx_pool, pad, pad_phys);
701
return -ENOMEM;
702
}
703
crypt = get_crypt_desc_emerg();
704
if (!crypt) {
705
dma_pool_free(ctx_pool, pad, pad_phys);
706
dma_pool_free(buffer_pool, buf, buf_phys);
707
return -EAGAIN;
708
}
709
710
memcpy(pad, key, key_len);
711
memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
712
for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
713
pad[i] ^= xpad;
714
715
crypt->data.tfm = tfm;
716
crypt->regist_ptr = pad;
717
crypt->regist_buf = buf;
718
719
crypt->auth_offs = 0;
720
crypt->auth_len = HMAC_PAD_BLOCKLEN;
721
crypt->crypto_ctx = ctx_addr;
722
crypt->src_buf = buf_phys;
723
crypt->icv_rev_aes = target;
724
crypt->mode = NPE_OP_HASH_GEN_ICV;
725
crypt->init_len = init_len;
726
crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
727
728
buf->next = NULL;
729
buf->buf_len = HMAC_PAD_BLOCKLEN;
730
buf->pkt_len = 0;
731
buf->phys_addr = pad_phys;
732
733
atomic_inc(&ctx->configuring);
734
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
735
BUG_ON(qmgr_stat_overflow(send_qid));
736
return 0;
737
}
738
739
static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
740
const u8 *key, int key_len, unsigned int digest_len)
741
{
742
u32 itarget, otarget, npe_ctx_addr;
743
unsigned char *cinfo;
744
int init_len, ret = 0;
745
u32 cfgword;
746
struct ix_sa_dir *dir;
747
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
748
const struct ix_hash_algo *algo;
749
750
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
751
cinfo = dir->npe_ctx + dir->npe_ctx_idx;
752
algo = ix_hash(tfm);
753
754
/* write cfg word to cryptinfo */
755
cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
756
#ifndef __ARMEB__
757
cfgword ^= 0xAA000000; /* change the "byte swap" flags */
758
#endif
759
*(__be32 *)cinfo = cpu_to_be32(cfgword);
760
cinfo += sizeof(cfgword);
761
762
/* write ICV to cryptinfo */
763
memcpy(cinfo, algo->icv, digest_len);
764
cinfo += digest_len;
765
766
itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
767
+ sizeof(algo->cfgword);
768
otarget = itarget + digest_len;
769
init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
770
npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
771
772
dir->npe_ctx_idx += init_len;
773
dir->npe_mode |= NPE_OP_HASH_ENABLE;
774
775
if (!encrypt)
776
dir->npe_mode |= NPE_OP_HASH_VERIFY;
777
778
ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
779
init_len, npe_ctx_addr, key, key_len);
780
if (ret)
781
return ret;
782
return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
783
init_len, npe_ctx_addr, key, key_len);
784
}
785
786
static int gen_rev_aes_key(struct crypto_tfm *tfm)
787
{
788
struct crypt_ctl *crypt;
789
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
790
struct ix_sa_dir *dir = &ctx->decrypt;
791
792
crypt = get_crypt_desc_emerg();
793
if (!crypt)
794
return -EAGAIN;
795
796
*(__be32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
797
798
crypt->data.tfm = tfm;
799
crypt->crypt_offs = 0;
800
crypt->crypt_len = AES_BLOCK128;
801
crypt->src_buf = 0;
802
crypt->crypto_ctx = dir->npe_ctx_phys;
803
crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
804
crypt->mode = NPE_OP_ENC_GEN_KEY;
805
crypt->init_len = dir->npe_ctx_idx;
806
crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
807
808
atomic_inc(&ctx->configuring);
809
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
810
BUG_ON(qmgr_stat_overflow(send_qid));
811
return 0;
812
}
813
814
static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
815
int key_len)
816
{
817
u8 *cinfo;
818
u32 cipher_cfg;
819
u32 keylen_cfg = 0;
820
struct ix_sa_dir *dir;
821
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
822
int err;
823
824
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
825
cinfo = dir->npe_ctx;
826
827
if (encrypt) {
828
cipher_cfg = cipher_cfg_enc(tfm);
829
dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
830
} else {
831
cipher_cfg = cipher_cfg_dec(tfm);
832
}
833
if (cipher_cfg & MOD_AES) {
834
switch (key_len) {
835
case 16:
836
keylen_cfg = MOD_AES128;
837
break;
838
case 24:
839
keylen_cfg = MOD_AES192;
840
break;
841
case 32:
842
keylen_cfg = MOD_AES256;
843
break;
844
default:
845
return -EINVAL;
846
}
847
cipher_cfg |= keylen_cfg;
848
} else {
849
err = crypto_des_verify_key(tfm, key);
850
if (err)
851
return err;
852
}
853
/* write cfg word to cryptinfo */
854
*(__be32 *)cinfo = cpu_to_be32(cipher_cfg);
855
cinfo += sizeof(cipher_cfg);
856
857
/* write cipher key to cryptinfo */
858
memcpy(cinfo, key, key_len);
859
/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
860
if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
861
memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
862
key_len = DES3_EDE_KEY_SIZE;
863
}
864
dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
865
dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
866
if ((cipher_cfg & MOD_AES) && !encrypt)
867
return gen_rev_aes_key(tfm);
868
869
return 0;
870
}
871
872
static struct buffer_desc *chainup_buffers(struct device *dev,
873
struct scatterlist *sg, unsigned int nbytes,
874
struct buffer_desc *buf, gfp_t flags,
875
enum dma_data_direction dir)
876
{
877
for (; nbytes > 0; sg = sg_next(sg)) {
878
unsigned int len = min(nbytes, sg->length);
879
struct buffer_desc *next_buf;
880
dma_addr_t next_buf_phys;
881
void *ptr;
882
883
nbytes -= len;
884
ptr = sg_virt(sg);
885
next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
886
if (!next_buf) {
887
buf = NULL;
888
break;
889
}
890
sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
891
buf->next = next_buf;
892
buf->phys_next = next_buf_phys;
893
buf = next_buf;
894
895
buf->phys_addr = sg_dma_address(sg);
896
buf->buf_len = len;
897
buf->dir = dir;
898
}
899
buf->next = NULL;
900
buf->phys_next = 0;
901
return buf;
902
}
903
904
static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
905
unsigned int key_len)
906
{
907
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
908
int ret;
909
910
init_completion(&ctx->completion);
911
atomic_inc(&ctx->configuring);
912
913
reset_sa_dir(&ctx->encrypt);
914
reset_sa_dir(&ctx->decrypt);
915
916
ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
917
ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
918
919
ret = setup_cipher(&tfm->base, 0, key, key_len);
920
if (ret)
921
goto out;
922
ret = setup_cipher(&tfm->base, 1, key, key_len);
923
out:
924
if (!atomic_dec_and_test(&ctx->configuring))
925
wait_for_completion(&ctx->completion);
926
if (ret)
927
return ret;
928
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
929
crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
930
931
return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
932
}
933
934
static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
935
unsigned int key_len)
936
{
937
return verify_skcipher_des3_key(tfm, key) ?:
938
ablk_setkey(tfm, key, key_len);
939
}
940
941
static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
942
unsigned int key_len)
943
{
944
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
945
946
/* the nonce is stored in bytes at end of key */
947
if (key_len < CTR_RFC3686_NONCE_SIZE)
948
return -EINVAL;
949
950
memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
951
CTR_RFC3686_NONCE_SIZE);
952
953
key_len -= CTR_RFC3686_NONCE_SIZE;
954
return ablk_setkey(tfm, key, key_len);
955
}
956
957
static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
958
{
959
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
960
struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
961
struct ablk_ctx *rctx = skcipher_request_ctx(areq);
962
int err;
963
964
skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
965
skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
966
areq->base.complete, areq->base.data);
967
skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
968
areq->cryptlen, areq->iv);
969
if (encrypt)
970
err = crypto_skcipher_encrypt(&rctx->fallback_req);
971
else
972
err = crypto_skcipher_decrypt(&rctx->fallback_req);
973
return err;
974
}
975
976
static int ablk_perform(struct skcipher_request *req, int encrypt)
977
{
978
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
979
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
980
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
981
struct ix_sa_dir *dir;
982
struct crypt_ctl *crypt;
983
unsigned int nbytes = req->cryptlen;
984
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
985
struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
986
struct buffer_desc src_hook;
987
struct device *dev = &pdev->dev;
988
unsigned int offset;
989
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
990
GFP_KERNEL : GFP_ATOMIC;
991
992
if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
993
return ixp4xx_cipher_fallback(req, encrypt);
994
995
if (qmgr_stat_full(send_qid))
996
return -EAGAIN;
997
if (atomic_read(&ctx->configuring))
998
return -EAGAIN;
999
1000
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
1001
req_ctx->encrypt = encrypt;
1002
1003
crypt = get_crypt_desc();
1004
if (!crypt)
1005
return -ENOMEM;
1006
1007
crypt->data.ablk_req = req;
1008
crypt->crypto_ctx = dir->npe_ctx_phys;
1009
crypt->mode = dir->npe_mode;
1010
crypt->init_len = dir->npe_ctx_idx;
1011
1012
crypt->crypt_offs = 0;
1013
crypt->crypt_len = nbytes;
1014
1015
BUG_ON(ivsize && !req->iv);
1016
memcpy(crypt->iv, req->iv, ivsize);
1017
if (ivsize > 0 && !encrypt) {
1018
offset = req->cryptlen - ivsize;
1019
scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1020
}
1021
if (req->src != req->dst) {
1022
struct buffer_desc dst_hook;
1023
1024
crypt->mode |= NPE_OP_NOT_IN_PLACE;
1025
/* This was never tested by Intel
1026
* for more than one dst buffer, I think. */
1027
req_ctx->dst = NULL;
1028
if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1029
flags, DMA_FROM_DEVICE))
1030
goto free_buf_dest;
1031
src_direction = DMA_TO_DEVICE;
1032
req_ctx->dst = dst_hook.next;
1033
crypt->dst_buf = dst_hook.phys_next;
1034
} else {
1035
req_ctx->dst = NULL;
1036
}
1037
req_ctx->src = NULL;
1038
if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1039
src_direction))
1040
goto free_buf_src;
1041
1042
req_ctx->src = src_hook.next;
1043
crypt->src_buf = src_hook.phys_next;
1044
crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1045
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1046
BUG_ON(qmgr_stat_overflow(send_qid));
1047
return -EINPROGRESS;
1048
1049
free_buf_src:
1050
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1051
free_buf_dest:
1052
if (req->src != req->dst)
1053
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1054
1055
crypt->ctl_flags = CTL_FLAG_UNUSED;
1056
return -ENOMEM;
1057
}
1058
1059
static int ablk_encrypt(struct skcipher_request *req)
1060
{
1061
return ablk_perform(req, 1);
1062
}
1063
1064
static int ablk_decrypt(struct skcipher_request *req)
1065
{
1066
return ablk_perform(req, 0);
1067
}
1068
1069
static int ablk_rfc3686_crypt(struct skcipher_request *req)
1070
{
1071
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1072
struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1073
u8 iv[CTR_RFC3686_BLOCK_SIZE];
1074
u8 *info = req->iv;
1075
int ret;
1076
1077
/* set up counter block */
1078
memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1079
memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1080
1081
/* initialize counter portion of counter block */
1082
*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1083
cpu_to_be32(1);
1084
1085
req->iv = iv;
1086
ret = ablk_perform(req, 1);
1087
req->iv = info;
1088
return ret;
1089
}
1090
1091
static int aead_perform(struct aead_request *req, int encrypt,
1092
int cryptoffset, int eff_cryptlen, u8 *iv)
1093
{
1094
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1095
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1096
unsigned int ivsize = crypto_aead_ivsize(tfm);
1097
unsigned int authsize = crypto_aead_authsize(tfm);
1098
struct ix_sa_dir *dir;
1099
struct crypt_ctl *crypt;
1100
unsigned int cryptlen;
1101
struct buffer_desc *buf, src_hook;
1102
struct aead_ctx *req_ctx = aead_request_ctx(req);
1103
struct device *dev = &pdev->dev;
1104
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1105
GFP_KERNEL : GFP_ATOMIC;
1106
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1107
unsigned int lastlen;
1108
1109
if (qmgr_stat_full(send_qid))
1110
return -EAGAIN;
1111
if (atomic_read(&ctx->configuring))
1112
return -EAGAIN;
1113
1114
if (encrypt) {
1115
dir = &ctx->encrypt;
1116
cryptlen = req->cryptlen;
1117
} else {
1118
dir = &ctx->decrypt;
1119
/* req->cryptlen includes the authsize when decrypting */
1120
cryptlen = req->cryptlen - authsize;
1121
eff_cryptlen -= authsize;
1122
}
1123
crypt = get_crypt_desc();
1124
if (!crypt)
1125
return -ENOMEM;
1126
1127
crypt->data.aead_req = req;
1128
crypt->crypto_ctx = dir->npe_ctx_phys;
1129
crypt->mode = dir->npe_mode;
1130
crypt->init_len = dir->npe_ctx_idx;
1131
1132
crypt->crypt_offs = cryptoffset;
1133
crypt->crypt_len = eff_cryptlen;
1134
1135
crypt->auth_offs = 0;
1136
crypt->auth_len = req->assoclen + cryptlen;
1137
BUG_ON(ivsize && !req->iv);
1138
memcpy(crypt->iv, req->iv, ivsize);
1139
1140
buf = chainup_buffers(dev, req->src, crypt->auth_len,
1141
&src_hook, flags, src_direction);
1142
req_ctx->src = src_hook.next;
1143
crypt->src_buf = src_hook.phys_next;
1144
if (!buf)
1145
goto free_buf_src;
1146
1147
lastlen = buf->buf_len;
1148
if (lastlen >= authsize)
1149
crypt->icv_rev_aes = buf->phys_addr +
1150
buf->buf_len - authsize;
1151
1152
req_ctx->dst = NULL;
1153
1154
if (req->src != req->dst) {
1155
struct buffer_desc dst_hook;
1156
1157
crypt->mode |= NPE_OP_NOT_IN_PLACE;
1158
src_direction = DMA_TO_DEVICE;
1159
1160
buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1161
&dst_hook, flags, DMA_FROM_DEVICE);
1162
req_ctx->dst = dst_hook.next;
1163
crypt->dst_buf = dst_hook.phys_next;
1164
1165
if (!buf)
1166
goto free_buf_dst;
1167
1168
if (encrypt) {
1169
lastlen = buf->buf_len;
1170
if (lastlen >= authsize)
1171
crypt->icv_rev_aes = buf->phys_addr +
1172
buf->buf_len - authsize;
1173
}
1174
}
1175
1176
if (unlikely(lastlen < authsize)) {
1177
dma_addr_t dma;
1178
/* The 12 hmac bytes are scattered,
1179
* we need to copy them into a safe buffer */
1180
req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, &dma);
1181
if (unlikely(!req_ctx->hmac_virt))
1182
goto free_buf_dst;
1183
crypt->icv_rev_aes = dma;
1184
if (!encrypt) {
1185
scatterwalk_map_and_copy(req_ctx->hmac_virt,
1186
req->src, cryptlen, authsize, 0);
1187
}
1188
req_ctx->encrypt = encrypt;
1189
} else {
1190
req_ctx->hmac_virt = NULL;
1191
}
1192
1193
crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1194
qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1195
BUG_ON(qmgr_stat_overflow(send_qid));
1196
return -EINPROGRESS;
1197
1198
free_buf_dst:
1199
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1200
free_buf_src:
1201
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1202
crypt->ctl_flags = CTL_FLAG_UNUSED;
1203
return -ENOMEM;
1204
}
1205
1206
static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1207
{
1208
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1209
unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1210
int ret;
1211
1212
if (!ctx->enckey_len && !ctx->authkey_len)
1213
return 0;
1214
init_completion(&ctx->completion);
1215
atomic_inc(&ctx->configuring);
1216
1217
reset_sa_dir(&ctx->encrypt);
1218
reset_sa_dir(&ctx->decrypt);
1219
1220
ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1221
if (ret)
1222
goto out;
1223
ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1224
if (ret)
1225
goto out;
1226
ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1227
ctx->authkey_len, digest_len);
1228
if (ret)
1229
goto out;
1230
ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1231
ctx->authkey_len, digest_len);
1232
out:
1233
if (!atomic_dec_and_test(&ctx->configuring))
1234
wait_for_completion(&ctx->completion);
1235
return ret;
1236
}
1237
1238
static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1239
{
1240
int max = crypto_aead_maxauthsize(tfm) >> 2;
1241
1242
if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1243
return -EINVAL;
1244
return aead_setup(tfm, authsize);
1245
}
1246
1247
static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1248
unsigned int keylen)
1249
{
1250
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1251
struct crypto_authenc_keys keys;
1252
1253
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1254
goto badkey;
1255
1256
if (keys.authkeylen > sizeof(ctx->authkey))
1257
goto badkey;
1258
1259
if (keys.enckeylen > sizeof(ctx->enckey))
1260
goto badkey;
1261
1262
memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1263
memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1264
ctx->authkey_len = keys.authkeylen;
1265
ctx->enckey_len = keys.enckeylen;
1266
1267
memzero_explicit(&keys, sizeof(keys));
1268
return aead_setup(tfm, crypto_aead_authsize(tfm));
1269
badkey:
1270
memzero_explicit(&keys, sizeof(keys));
1271
return -EINVAL;
1272
}
1273
1274
static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1275
unsigned int keylen)
1276
{
1277
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1278
struct crypto_authenc_keys keys;
1279
int err;
1280
1281
err = crypto_authenc_extractkeys(&keys, key, keylen);
1282
if (unlikely(err))
1283
goto badkey;
1284
1285
err = -EINVAL;
1286
if (keys.authkeylen > sizeof(ctx->authkey))
1287
goto badkey;
1288
1289
err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1290
if (err)
1291
goto badkey;
1292
1293
memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1294
memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1295
ctx->authkey_len = keys.authkeylen;
1296
ctx->enckey_len = keys.enckeylen;
1297
1298
memzero_explicit(&keys, sizeof(keys));
1299
return aead_setup(tfm, crypto_aead_authsize(tfm));
1300
badkey:
1301
memzero_explicit(&keys, sizeof(keys));
1302
return err;
1303
}
1304
1305
static int aead_encrypt(struct aead_request *req)
1306
{
1307
return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1308
}
1309
1310
static int aead_decrypt(struct aead_request *req)
1311
{
1312
return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1313
}
1314
1315
static struct ixp_alg ixp4xx_algos[] = {
1316
{
1317
.crypto = {
1318
.base.cra_name = "cbc(des)",
1319
.base.cra_blocksize = DES_BLOCK_SIZE,
1320
1321
.min_keysize = DES_KEY_SIZE,
1322
.max_keysize = DES_KEY_SIZE,
1323
.ivsize = DES_BLOCK_SIZE,
1324
},
1325
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1326
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1327
1328
}, {
1329
.crypto = {
1330
.base.cra_name = "ecb(des)",
1331
.base.cra_blocksize = DES_BLOCK_SIZE,
1332
.min_keysize = DES_KEY_SIZE,
1333
.max_keysize = DES_KEY_SIZE,
1334
},
1335
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1336
.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1337
}, {
1338
.crypto = {
1339
.base.cra_name = "cbc(des3_ede)",
1340
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1341
1342
.min_keysize = DES3_EDE_KEY_SIZE,
1343
.max_keysize = DES3_EDE_KEY_SIZE,
1344
.ivsize = DES3_EDE_BLOCK_SIZE,
1345
.setkey = ablk_des3_setkey,
1346
},
1347
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1348
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1349
}, {
1350
.crypto = {
1351
.base.cra_name = "ecb(des3_ede)",
1352
.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1353
1354
.min_keysize = DES3_EDE_KEY_SIZE,
1355
.max_keysize = DES3_EDE_KEY_SIZE,
1356
.setkey = ablk_des3_setkey,
1357
},
1358
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1359
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1360
}, {
1361
.crypto = {
1362
.base.cra_name = "cbc(aes)",
1363
.base.cra_blocksize = AES_BLOCK_SIZE,
1364
1365
.min_keysize = AES_MIN_KEY_SIZE,
1366
.max_keysize = AES_MAX_KEY_SIZE,
1367
.ivsize = AES_BLOCK_SIZE,
1368
},
1369
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1370
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1371
}, {
1372
.crypto = {
1373
.base.cra_name = "ecb(aes)",
1374
.base.cra_blocksize = AES_BLOCK_SIZE,
1375
1376
.min_keysize = AES_MIN_KEY_SIZE,
1377
.max_keysize = AES_MAX_KEY_SIZE,
1378
},
1379
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1380
.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1381
}, {
1382
.crypto = {
1383
.base.cra_name = "ctr(aes)",
1384
.base.cra_blocksize = 1,
1385
1386
.min_keysize = AES_MIN_KEY_SIZE,
1387
.max_keysize = AES_MAX_KEY_SIZE,
1388
.ivsize = AES_BLOCK_SIZE,
1389
},
1390
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1391
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1392
}, {
1393
.crypto = {
1394
.base.cra_name = "rfc3686(ctr(aes))",
1395
.base.cra_blocksize = 1,
1396
1397
.min_keysize = AES_MIN_KEY_SIZE,
1398
.max_keysize = AES_MAX_KEY_SIZE,
1399
.ivsize = AES_BLOCK_SIZE,
1400
.setkey = ablk_rfc3686_setkey,
1401
.encrypt = ablk_rfc3686_crypt,
1402
.decrypt = ablk_rfc3686_crypt,
1403
},
1404
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1405
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1406
} };
1407
1408
static struct ixp_aead_alg ixp4xx_aeads[] = {
1409
{
1410
.crypto = {
1411
.base = {
1412
.cra_name = "authenc(hmac(md5),cbc(des))",
1413
.cra_blocksize = DES_BLOCK_SIZE,
1414
},
1415
.ivsize = DES_BLOCK_SIZE,
1416
.maxauthsize = MD5_DIGEST_SIZE,
1417
},
1418
.hash = &hash_alg_md5,
1419
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1420
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1421
}, {
1422
.crypto = {
1423
.base = {
1424
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1425
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1426
},
1427
.ivsize = DES3_EDE_BLOCK_SIZE,
1428
.maxauthsize = MD5_DIGEST_SIZE,
1429
.setkey = des3_aead_setkey,
1430
},
1431
.hash = &hash_alg_md5,
1432
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1433
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1434
}, {
1435
.crypto = {
1436
.base = {
1437
.cra_name = "authenc(hmac(sha1),cbc(des))",
1438
.cra_blocksize = DES_BLOCK_SIZE,
1439
},
1440
.ivsize = DES_BLOCK_SIZE,
1441
.maxauthsize = SHA1_DIGEST_SIZE,
1442
},
1443
.hash = &hash_alg_sha1,
1444
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1445
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1446
}, {
1447
.crypto = {
1448
.base = {
1449
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1450
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1451
},
1452
.ivsize = DES3_EDE_BLOCK_SIZE,
1453
.maxauthsize = SHA1_DIGEST_SIZE,
1454
.setkey = des3_aead_setkey,
1455
},
1456
.hash = &hash_alg_sha1,
1457
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1458
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1459
}, {
1460
.crypto = {
1461
.base = {
1462
.cra_name = "authenc(hmac(md5),cbc(aes))",
1463
.cra_blocksize = AES_BLOCK_SIZE,
1464
},
1465
.ivsize = AES_BLOCK_SIZE,
1466
.maxauthsize = MD5_DIGEST_SIZE,
1467
},
1468
.hash = &hash_alg_md5,
1469
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1470
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1471
}, {
1472
.crypto = {
1473
.base = {
1474
.cra_name = "authenc(hmac(sha1),cbc(aes))",
1475
.cra_blocksize = AES_BLOCK_SIZE,
1476
},
1477
.ivsize = AES_BLOCK_SIZE,
1478
.maxauthsize = SHA1_DIGEST_SIZE,
1479
},
1480
.hash = &hash_alg_sha1,
1481
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1482
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1483
} };
1484
1485
#define IXP_POSTFIX "-ixp4xx"
1486
1487
static int ixp_crypto_probe(struct platform_device *_pdev)
1488
{
1489
struct device *dev = &_pdev->dev;
1490
int num = ARRAY_SIZE(ixp4xx_algos);
1491
int i, err;
1492
1493
pdev = _pdev;
1494
1495
err = init_ixp_crypto(dev);
1496
if (err)
1497
return err;
1498
1499
for (i = 0; i < num; i++) {
1500
struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1501
1502
if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1503
"%s"IXP_POSTFIX, cra->base.cra_name) >=
1504
CRYPTO_MAX_ALG_NAME)
1505
continue;
1506
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1507
continue;
1508
1509
/* block ciphers */
1510
cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1511
CRYPTO_ALG_ASYNC |
1512
CRYPTO_ALG_ALLOCATES_MEMORY |
1513
CRYPTO_ALG_NEED_FALLBACK;
1514
if (!cra->setkey)
1515
cra->setkey = ablk_setkey;
1516
if (!cra->encrypt)
1517
cra->encrypt = ablk_encrypt;
1518
if (!cra->decrypt)
1519
cra->decrypt = ablk_decrypt;
1520
cra->init = init_tfm_ablk;
1521
cra->exit = exit_tfm_ablk;
1522
1523
cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1524
cra->base.cra_module = THIS_MODULE;
1525
cra->base.cra_alignmask = 3;
1526
cra->base.cra_priority = 300;
1527
if (crypto_register_skcipher(cra))
1528
dev_err(&pdev->dev, "Failed to register '%s'\n",
1529
cra->base.cra_name);
1530
else
1531
ixp4xx_algos[i].registered = 1;
1532
}
1533
1534
for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1535
struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1536
1537
if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1538
"%s"IXP_POSTFIX, cra->base.cra_name) >=
1539
CRYPTO_MAX_ALG_NAME)
1540
continue;
1541
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1542
continue;
1543
1544
/* authenc */
1545
cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1546
CRYPTO_ALG_ASYNC |
1547
CRYPTO_ALG_ALLOCATES_MEMORY;
1548
cra->setkey = cra->setkey ?: aead_setkey;
1549
cra->setauthsize = aead_setauthsize;
1550
cra->encrypt = aead_encrypt;
1551
cra->decrypt = aead_decrypt;
1552
cra->init = init_tfm_aead;
1553
cra->exit = exit_tfm_aead;
1554
1555
cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1556
cra->base.cra_module = THIS_MODULE;
1557
cra->base.cra_alignmask = 3;
1558
cra->base.cra_priority = 300;
1559
1560
if (crypto_register_aead(cra))
1561
dev_err(&pdev->dev, "Failed to register '%s'\n",
1562
cra->base.cra_driver_name);
1563
else
1564
ixp4xx_aeads[i].registered = 1;
1565
}
1566
return 0;
1567
}
1568
1569
static void ixp_crypto_remove(struct platform_device *pdev)
1570
{
1571
int num = ARRAY_SIZE(ixp4xx_algos);
1572
int i;
1573
1574
for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1575
if (ixp4xx_aeads[i].registered)
1576
crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1577
}
1578
1579
for (i = 0; i < num; i++) {
1580
if (ixp4xx_algos[i].registered)
1581
crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1582
}
1583
release_ixp_crypto(&pdev->dev);
1584
}
1585
static const struct of_device_id ixp4xx_crypto_of_match[] = {
1586
{
1587
.compatible = "intel,ixp4xx-crypto",
1588
},
1589
{},
1590
};
1591
1592
static struct platform_driver ixp_crypto_driver = {
1593
.probe = ixp_crypto_probe,
1594
.remove = ixp_crypto_remove,
1595
.driver = {
1596
.name = "ixp4xx_crypto",
1597
.of_match_table = ixp4xx_crypto_of_match,
1598
},
1599
};
1600
module_platform_driver(ixp_crypto_driver);
1601
1602
MODULE_LICENSE("GPL");
1603
MODULE_AUTHOR("Christian Hohnstaedt <[email protected]>");
1604
MODULE_DESCRIPTION("IXP4xx hardware crypto");
1605
1606
1607