Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/edac/altera_edac.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4
* Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5
* Copyright 2011-2012 Calxeda, Inc.
6
*/
7
8
#include <asm/cacheflush.h>
9
#include <linux/ctype.h>
10
#include <linux/delay.h>
11
#include <linux/edac.h>
12
#include <linux/firmware/intel/stratix10-smc.h>
13
#include <linux/genalloc.h>
14
#include <linux/interrupt.h>
15
#include <linux/irqchip/chained_irq.h>
16
#include <linux/kernel.h>
17
#include <linux/mfd/altera-sysmgr.h>
18
#include <linux/mfd/syscon.h>
19
#include <linux/notifier.h>
20
#include <linux/of_address.h>
21
#include <linux/of_irq.h>
22
#include <linux/of_platform.h>
23
#include <linux/panic_notifier.h>
24
#include <linux/platform_device.h>
25
#include <linux/property.h>
26
#include <linux/regmap.h>
27
#include <linux/types.h>
28
#include <linux/uaccess.h>
29
30
#include "altera_edac.h"
31
#include "edac_module.h"
32
33
#define EDAC_MOD_STR "altera_edac"
34
#define EDAC_DEVICE "Altera"
35
36
#ifdef CONFIG_EDAC_ALTERA_SDRAM
37
static const struct altr_sdram_prv_data c5_data = {
38
.ecc_ctrl_offset = CV_CTLCFG_OFST,
39
.ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
40
.ecc_stat_offset = CV_DRAMSTS_OFST,
41
.ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
42
.ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
43
.ecc_saddr_offset = CV_ERRADDR_OFST,
44
.ecc_daddr_offset = CV_ERRADDR_OFST,
45
.ecc_cecnt_offset = CV_SBECOUNT_OFST,
46
.ecc_uecnt_offset = CV_DBECOUNT_OFST,
47
.ecc_irq_en_offset = CV_DRAMINTR_OFST,
48
.ecc_irq_en_mask = CV_DRAMINTR_INTREN,
49
.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50
.ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51
.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52
.ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
53
.ce_ue_trgr_offset = CV_CTLCFG_OFST,
54
.ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
55
.ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
56
};
57
58
static const struct altr_sdram_prv_data a10_data = {
59
.ecc_ctrl_offset = A10_ECCCTRL1_OFST,
60
.ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
61
.ecc_stat_offset = A10_INTSTAT_OFST,
62
.ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
63
.ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
64
.ecc_saddr_offset = A10_SERRADDR_OFST,
65
.ecc_daddr_offset = A10_DERRADDR_OFST,
66
.ecc_irq_en_offset = A10_ERRINTEN_OFST,
67
.ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
68
.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69
.ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70
.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71
.ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
72
.ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
73
.ce_set_mask = A10_DIAGINT_TSERRA_MASK,
74
.ue_set_mask = A10_DIAGINT_TDERRA_MASK,
75
};
76
77
/*********************** EDAC Memory Controller Functions ****************/
78
79
/* The SDRAM controller uses the EDAC Memory Controller framework. */
80
81
static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82
{
83
struct mem_ctl_info *mci = dev_id;
84
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85
const struct altr_sdram_prv_data *priv = drvdata->data;
86
u32 status, err_count = 1, err_addr;
87
88
regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89
90
if (status & priv->ecc_stat_ue_mask) {
91
regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92
&err_addr);
93
if (priv->ecc_uecnt_offset)
94
regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95
&err_count);
96
panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97
err_count, err_addr);
98
}
99
if (status & priv->ecc_stat_ce_mask) {
100
regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101
&err_addr);
102
if (priv->ecc_cecnt_offset)
103
regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
104
&err_count);
105
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106
err_addr >> PAGE_SHIFT,
107
err_addr & ~PAGE_MASK, 0,
108
0, 0, -1, mci->ctl_name, "");
109
/* Clear IRQ to resume */
110
regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
111
priv->ecc_irq_clr_mask);
112
113
return IRQ_HANDLED;
114
}
115
return IRQ_NONE;
116
}
117
118
static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119
const char __user *data,
120
size_t count, loff_t *ppos)
121
{
122
struct mem_ctl_info *mci = file->private_data;
123
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124
const struct altr_sdram_prv_data *priv = drvdata->data;
125
u32 *ptemp;
126
dma_addr_t dma_handle;
127
u32 reg, read_reg;
128
129
ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130
if (!ptemp) {
131
edac_printk(KERN_ERR, EDAC_MC,
132
"Inject: Buffer Allocation error\n");
133
return -ENOMEM;
134
}
135
136
regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137
&read_reg);
138
read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139
140
/* Error are injected by writing a word while the SBE or DBE
141
* bit in the CTLCFG register is set. Reading the word will
142
* trigger the SBE or DBE error and the corresponding IRQ.
143
*/
144
if (count == 3) {
145
edac_printk(KERN_ALERT, EDAC_MC,
146
"Inject Double bit error\n");
147
local_irq_disable();
148
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149
(read_reg | priv->ue_set_mask));
150
local_irq_enable();
151
} else {
152
edac_printk(KERN_ALERT, EDAC_MC,
153
"Inject Single bit error\n");
154
local_irq_disable();
155
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
156
(read_reg | priv->ce_set_mask));
157
local_irq_enable();
158
}
159
160
ptemp[0] = 0x5A5A5A5A;
161
ptemp[1] = 0xA5A5A5A5;
162
163
/* Clear the error injection bits */
164
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
165
/* Ensure it has been written out */
166
wmb();
167
168
/*
169
* To trigger the error, we need to read the data back
170
* (the data was written with errors above).
171
* The READ_ONCE macros and printk are used to prevent the
172
* the compiler optimizing these reads out.
173
*/
174
reg = READ_ONCE(ptemp[0]);
175
read_reg = READ_ONCE(ptemp[1]);
176
/* Force Read */
177
rmb();
178
179
edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180
reg, read_reg);
181
182
dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183
184
return count;
185
}
186
187
static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188
.open = simple_open,
189
.write = altr_sdr_mc_err_inject_write,
190
.llseek = generic_file_llseek,
191
};
192
193
static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194
{
195
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196
return;
197
198
if (!mci->debugfs)
199
return;
200
201
edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202
&altr_sdr_mc_debug_inject_fops);
203
}
204
205
/* Get total memory size from Open Firmware DTB */
206
static unsigned long get_total_mem(void)
207
{
208
struct device_node *np = NULL;
209
struct resource res;
210
int ret;
211
unsigned long total_mem = 0;
212
213
for_each_node_by_type(np, "memory") {
214
ret = of_address_to_resource(np, 0, &res);
215
if (ret)
216
continue;
217
218
total_mem += resource_size(&res);
219
}
220
edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221
return total_mem;
222
}
223
224
static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225
{ .compatible = "altr,sdram-edac", .data = &c5_data},
226
{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227
{},
228
};
229
MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230
231
static int a10_init(struct regmap *mc_vbase)
232
{
233
if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234
A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235
edac_printk(KERN_ERR, EDAC_MC,
236
"Error setting SB IRQ mode\n");
237
return -ENODEV;
238
}
239
240
if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241
edac_printk(KERN_ERR, EDAC_MC,
242
"Error setting trigger count\n");
243
return -ENODEV;
244
}
245
246
return 0;
247
}
248
249
static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250
{
251
void __iomem *sm_base;
252
int ret = 0;
253
254
if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255
dev_name(&pdev->dev))) {
256
edac_printk(KERN_ERR, EDAC_MC,
257
"Unable to request mem region\n");
258
return -EBUSY;
259
}
260
261
sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262
if (!sm_base) {
263
edac_printk(KERN_ERR, EDAC_MC,
264
"Unable to ioremap device\n");
265
266
ret = -ENOMEM;
267
goto release;
268
}
269
270
iowrite32(mask, sm_base);
271
272
iounmap(sm_base);
273
274
release:
275
release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276
277
return ret;
278
}
279
280
static int altr_sdram_probe(struct platform_device *pdev)
281
{
282
struct edac_mc_layer layers[2];
283
struct mem_ctl_info *mci;
284
struct altr_sdram_mc_data *drvdata;
285
const struct altr_sdram_prv_data *priv;
286
struct regmap *mc_vbase;
287
struct dimm_info *dimm;
288
u32 read_reg;
289
int irq, irq2, res = 0;
290
unsigned long mem_size, irqflags = 0;
291
292
/* Grab the register range from the sdr controller in device tree */
293
mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
294
"altr,sdr-syscon");
295
if (IS_ERR(mc_vbase)) {
296
edac_printk(KERN_ERR, EDAC_MC,
297
"regmap for altr,sdr-syscon lookup failed.\n");
298
return -ENODEV;
299
}
300
301
/* Check specific dependencies for the module */
302
priv = device_get_match_data(&pdev->dev);
303
304
/* Validate the SDRAM controller has ECC enabled */
305
if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
306
((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
307
edac_printk(KERN_ERR, EDAC_MC,
308
"No ECC/ECC disabled [0x%08X]\n", read_reg);
309
return -ENODEV;
310
}
311
312
/* Grab memory size from device tree. */
313
mem_size = get_total_mem();
314
if (!mem_size) {
315
edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
316
return -ENODEV;
317
}
318
319
/* Ensure the SDRAM Interrupt is disabled */
320
if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
321
priv->ecc_irq_en_mask, 0)) {
322
edac_printk(KERN_ERR, EDAC_MC,
323
"Error disabling SDRAM ECC IRQ\n");
324
return -ENODEV;
325
}
326
327
/* Toggle to clear the SDRAM Error count */
328
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
329
priv->ecc_cnt_rst_mask,
330
priv->ecc_cnt_rst_mask)) {
331
edac_printk(KERN_ERR, EDAC_MC,
332
"Error clearing SDRAM ECC count\n");
333
return -ENODEV;
334
}
335
336
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
337
priv->ecc_cnt_rst_mask, 0)) {
338
edac_printk(KERN_ERR, EDAC_MC,
339
"Error clearing SDRAM ECC count\n");
340
return -ENODEV;
341
}
342
343
irq = platform_get_irq(pdev, 0);
344
if (irq < 0) {
345
edac_printk(KERN_ERR, EDAC_MC,
346
"No irq %d in DT\n", irq);
347
return irq;
348
}
349
350
/* Arria10 has a 2nd IRQ */
351
irq2 = platform_get_irq(pdev, 1);
352
353
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
354
layers[0].size = 1;
355
layers[0].is_virt_csrow = true;
356
layers[1].type = EDAC_MC_LAYER_CHANNEL;
357
layers[1].size = 1;
358
layers[1].is_virt_csrow = false;
359
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
360
sizeof(struct altr_sdram_mc_data));
361
if (!mci)
362
return -ENOMEM;
363
364
mci->pdev = &pdev->dev;
365
drvdata = mci->pvt_info;
366
drvdata->mc_vbase = mc_vbase;
367
drvdata->data = priv;
368
platform_set_drvdata(pdev, mci);
369
370
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
371
edac_printk(KERN_ERR, EDAC_MC,
372
"Unable to get managed device resource\n");
373
res = -ENOMEM;
374
goto free;
375
}
376
377
mci->mtype_cap = MEM_FLAG_DDR3;
378
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
379
mci->edac_cap = EDAC_FLAG_SECDED;
380
mci->mod_name = EDAC_MOD_STR;
381
mci->ctl_name = dev_name(&pdev->dev);
382
mci->scrub_mode = SCRUB_SW_SRC;
383
mci->dev_name = dev_name(&pdev->dev);
384
385
dimm = *mci->dimms;
386
dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
387
dimm->grain = 8;
388
dimm->dtype = DEV_X8;
389
dimm->mtype = MEM_DDR3;
390
dimm->edac_mode = EDAC_SECDED;
391
392
res = edac_mc_add_mc(mci);
393
if (res < 0)
394
goto err;
395
396
/* Only the Arria10 has separate IRQs */
397
if (of_machine_is_compatible("altr,socfpga-arria10")) {
398
/* Arria10 specific initialization */
399
res = a10_init(mc_vbase);
400
if (res < 0)
401
goto err2;
402
403
res = devm_request_irq(&pdev->dev, irq2,
404
altr_sdram_mc_err_handler,
405
IRQF_SHARED, dev_name(&pdev->dev), mci);
406
if (res < 0) {
407
edac_mc_printk(mci, KERN_ERR,
408
"Unable to request irq %d\n", irq2);
409
res = -ENODEV;
410
goto err2;
411
}
412
413
res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
414
if (res < 0)
415
goto err2;
416
417
irqflags = IRQF_SHARED;
418
}
419
420
res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
421
irqflags, dev_name(&pdev->dev), mci);
422
if (res < 0) {
423
edac_mc_printk(mci, KERN_ERR,
424
"Unable to request irq %d\n", irq);
425
res = -ENODEV;
426
goto err2;
427
}
428
429
/* Infrastructure ready - enable the IRQ */
430
if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
431
priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
432
edac_mc_printk(mci, KERN_ERR,
433
"Error enabling SDRAM ECC IRQ\n");
434
res = -ENODEV;
435
goto err2;
436
}
437
438
altr_sdr_mc_create_debugfs_nodes(mci);
439
440
devres_close_group(&pdev->dev, NULL);
441
442
return 0;
443
444
err2:
445
edac_mc_del_mc(&pdev->dev);
446
err:
447
devres_release_group(&pdev->dev, NULL);
448
free:
449
edac_mc_free(mci);
450
edac_printk(KERN_ERR, EDAC_MC,
451
"EDAC Probe Failed; Error %d\n", res);
452
453
return res;
454
}
455
456
static void altr_sdram_remove(struct platform_device *pdev)
457
{
458
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
459
460
edac_mc_del_mc(&pdev->dev);
461
edac_mc_free(mci);
462
platform_set_drvdata(pdev, NULL);
463
}
464
465
/*
466
* If you want to suspend, need to disable EDAC by removing it
467
* from the device tree or defconfig.
468
*/
469
#ifdef CONFIG_PM
470
static int altr_sdram_prepare(struct device *dev)
471
{
472
pr_err("Suspend not allowed when EDAC is enabled.\n");
473
474
return -EPERM;
475
}
476
477
static const struct dev_pm_ops altr_sdram_pm_ops = {
478
.prepare = altr_sdram_prepare,
479
};
480
#endif
481
482
static struct platform_driver altr_sdram_edac_driver = {
483
.probe = altr_sdram_probe,
484
.remove = altr_sdram_remove,
485
.driver = {
486
.name = "altr_sdram_edac",
487
#ifdef CONFIG_PM
488
.pm = &altr_sdram_pm_ops,
489
#endif
490
.of_match_table = altr_sdram_ctrl_of_match,
491
},
492
};
493
494
module_platform_driver(altr_sdram_edac_driver);
495
496
#endif /* CONFIG_EDAC_ALTERA_SDRAM */
497
498
/************************* EDAC Parent Probe *************************/
499
500
static const struct of_device_id altr_edac_device_of_match[];
501
502
static const struct of_device_id altr_edac_of_match[] = {
503
{ .compatible = "altr,socfpga-ecc-manager" },
504
{},
505
};
506
MODULE_DEVICE_TABLE(of, altr_edac_of_match);
507
508
static int altr_edac_probe(struct platform_device *pdev)
509
{
510
of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
511
NULL, &pdev->dev);
512
return 0;
513
}
514
515
static struct platform_driver altr_edac_driver = {
516
.probe = altr_edac_probe,
517
.driver = {
518
.name = "socfpga_ecc_manager",
519
.of_match_table = altr_edac_of_match,
520
},
521
};
522
module_platform_driver(altr_edac_driver);
523
524
/************************* EDAC Device Functions *************************/
525
526
/*
527
* EDAC Device Functions (shared between various IPs).
528
* The discrete memories use the EDAC Device framework. The probe
529
* and error handling functions are very similar between memories
530
* so they are shared. The memory allocation and freeing for EDAC
531
* trigger testing are different for each memory.
532
*/
533
534
#ifdef CONFIG_EDAC_ALTERA_OCRAM
535
static const struct edac_device_prv_data ocramecc_data;
536
#endif
537
#ifdef CONFIG_EDAC_ALTERA_L2C
538
static const struct edac_device_prv_data l2ecc_data;
539
#endif
540
#ifdef CONFIG_EDAC_ALTERA_OCRAM
541
static const struct edac_device_prv_data a10_ocramecc_data;
542
#endif
543
#ifdef CONFIG_EDAC_ALTERA_L2C
544
static const struct edac_device_prv_data a10_l2ecc_data;
545
#endif
546
547
static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
548
{
549
irqreturn_t ret_value = IRQ_NONE;
550
struct edac_device_ctl_info *dci = dev_id;
551
struct altr_edac_device_dev *drvdata = dci->pvt_info;
552
const struct edac_device_prv_data *priv = drvdata->data;
553
554
if (irq == drvdata->sb_irq) {
555
if (priv->ce_clear_mask)
556
writel(priv->ce_clear_mask, drvdata->base);
557
edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
558
ret_value = IRQ_HANDLED;
559
} else if (irq == drvdata->db_irq) {
560
if (priv->ue_clear_mask)
561
writel(priv->ue_clear_mask, drvdata->base);
562
edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
563
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
564
ret_value = IRQ_HANDLED;
565
} else {
566
WARN_ON(1);
567
}
568
569
return ret_value;
570
}
571
572
static ssize_t __maybe_unused
573
altr_edac_device_trig(struct file *file, const char __user *user_buf,
574
size_t count, loff_t *ppos)
575
576
{
577
u32 *ptemp, i, error_mask;
578
int result = 0;
579
u8 trig_type;
580
unsigned long flags;
581
struct edac_device_ctl_info *edac_dci = file->private_data;
582
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
583
const struct edac_device_prv_data *priv = drvdata->data;
584
void *generic_ptr = edac_dci->dev;
585
586
if (!user_buf || get_user(trig_type, user_buf))
587
return -EFAULT;
588
589
if (!priv->alloc_mem)
590
return -ENOMEM;
591
592
/*
593
* Note that generic_ptr is initialized to the device * but in
594
* some alloc_functions, this is overridden and returns data.
595
*/
596
ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
597
if (!ptemp) {
598
edac_printk(KERN_ERR, EDAC_DEVICE,
599
"Inject: Buffer Allocation error\n");
600
return -ENOMEM;
601
}
602
603
if (trig_type == ALTR_UE_TRIGGER_CHAR)
604
error_mask = priv->ue_set_mask;
605
else
606
error_mask = priv->ce_set_mask;
607
608
edac_printk(KERN_ALERT, EDAC_DEVICE,
609
"Trigger Error Mask (0x%X)\n", error_mask);
610
611
local_irq_save(flags);
612
/* write ECC corrupted data out. */
613
for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
614
/* Read data so we're in the correct state */
615
rmb();
616
if (READ_ONCE(ptemp[i]))
617
result = -1;
618
/* Toggle Error bit (it is latched), leave ECC enabled */
619
writel(error_mask, (drvdata->base + priv->set_err_ofst));
620
writel(priv->ecc_enable_mask, (drvdata->base +
621
priv->set_err_ofst));
622
ptemp[i] = i;
623
}
624
/* Ensure it has been written out */
625
wmb();
626
local_irq_restore(flags);
627
628
if (result)
629
edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
630
631
/* Read out written data. ECC error caused here */
632
for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
633
if (READ_ONCE(ptemp[i]) != i)
634
edac_printk(KERN_ERR, EDAC_DEVICE,
635
"Read doesn't match written data\n");
636
637
if (priv->free_mem)
638
priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
639
640
return count;
641
}
642
643
static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
644
.open = simple_open,
645
.write = altr_edac_device_trig,
646
.llseek = generic_file_llseek,
647
};
648
649
static ssize_t __maybe_unused
650
altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
651
size_t count, loff_t *ppos);
652
653
static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
654
.open = simple_open,
655
.write = altr_edac_a10_device_trig,
656
.llseek = generic_file_llseek,
657
};
658
659
static ssize_t __maybe_unused
660
altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
661
size_t count, loff_t *ppos);
662
663
static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
664
.open = simple_open,
665
.write = altr_edac_a10_device_trig2,
666
.llseek = generic_file_llseek,
667
};
668
669
static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
670
const struct edac_device_prv_data *priv)
671
{
672
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
673
674
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
675
return;
676
677
drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
678
if (!drvdata->debugfs_dir)
679
return;
680
681
if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
682
drvdata->debugfs_dir, edac_dci,
683
priv->inject_fops))
684
debugfs_remove_recursive(drvdata->debugfs_dir);
685
}
686
687
static const struct of_device_id altr_edac_device_of_match[] = {
688
#ifdef CONFIG_EDAC_ALTERA_L2C
689
{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
690
#endif
691
#ifdef CONFIG_EDAC_ALTERA_OCRAM
692
{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
693
#endif
694
{},
695
};
696
MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
697
698
/*
699
* altr_edac_device_probe()
700
* This is a generic EDAC device driver that will support
701
* various Altera memory devices such as the L2 cache ECC and
702
* OCRAM ECC as well as the memories for other peripherals.
703
* Module specific initialization is done by passing the
704
* function index in the device tree.
705
*/
706
static int altr_edac_device_probe(struct platform_device *pdev)
707
{
708
struct edac_device_ctl_info *dci;
709
struct altr_edac_device_dev *drvdata;
710
struct resource *r;
711
int res = 0;
712
struct device_node *np = pdev->dev.of_node;
713
char *ecc_name = (char *)np->name;
714
static int dev_instance;
715
716
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
717
edac_printk(KERN_ERR, EDAC_DEVICE,
718
"Unable to open devm\n");
719
return -ENOMEM;
720
}
721
722
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
723
if (!r) {
724
edac_printk(KERN_ERR, EDAC_DEVICE,
725
"Unable to get mem resource\n");
726
res = -ENODEV;
727
goto fail;
728
}
729
730
if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
731
dev_name(&pdev->dev))) {
732
edac_printk(KERN_ERR, EDAC_DEVICE,
733
"%s:Error requesting mem region\n", ecc_name);
734
res = -EBUSY;
735
goto fail;
736
}
737
738
dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
739
1, ecc_name, 1, 0, dev_instance++);
740
741
if (!dci) {
742
edac_printk(KERN_ERR, EDAC_DEVICE,
743
"%s: Unable to allocate EDAC device\n", ecc_name);
744
res = -ENOMEM;
745
goto fail;
746
}
747
748
drvdata = dci->pvt_info;
749
dci->dev = &pdev->dev;
750
platform_set_drvdata(pdev, dci);
751
drvdata->edac_dev_name = ecc_name;
752
753
drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
754
if (!drvdata->base) {
755
res = -ENOMEM;
756
goto fail1;
757
}
758
759
/* Get driver specific data for this EDAC device */
760
drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
761
762
/* Check specific dependencies for the module */
763
if (drvdata->data->setup) {
764
res = drvdata->data->setup(drvdata);
765
if (res)
766
goto fail1;
767
}
768
769
drvdata->sb_irq = platform_get_irq(pdev, 0);
770
res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
771
altr_edac_device_handler,
772
0, dev_name(&pdev->dev), dci);
773
if (res)
774
goto fail1;
775
776
drvdata->db_irq = platform_get_irq(pdev, 1);
777
res = devm_request_irq(&pdev->dev, drvdata->db_irq,
778
altr_edac_device_handler,
779
0, dev_name(&pdev->dev), dci);
780
if (res)
781
goto fail1;
782
783
dci->mod_name = "Altera ECC Manager";
784
dci->dev_name = drvdata->edac_dev_name;
785
786
res = edac_device_add_device(dci);
787
if (res)
788
goto fail1;
789
790
altr_create_edacdev_dbgfs(dci, drvdata->data);
791
792
devres_close_group(&pdev->dev, NULL);
793
794
return 0;
795
796
fail1:
797
edac_device_free_ctl_info(dci);
798
fail:
799
devres_release_group(&pdev->dev, NULL);
800
edac_printk(KERN_ERR, EDAC_DEVICE,
801
"%s:Error setting up EDAC device: %d\n", ecc_name, res);
802
803
return res;
804
}
805
806
static void altr_edac_device_remove(struct platform_device *pdev)
807
{
808
struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
809
struct altr_edac_device_dev *drvdata = dci->pvt_info;
810
811
debugfs_remove_recursive(drvdata->debugfs_dir);
812
edac_device_del_device(&pdev->dev);
813
edac_device_free_ctl_info(dci);
814
}
815
816
static struct platform_driver altr_edac_device_driver = {
817
.probe = altr_edac_device_probe,
818
.remove = altr_edac_device_remove,
819
.driver = {
820
.name = "altr_edac_device",
821
.of_match_table = altr_edac_device_of_match,
822
},
823
};
824
module_platform_driver(altr_edac_device_driver);
825
826
/******************* Arria10 Device ECC Shared Functions *****************/
827
828
/*
829
* Test for memory's ECC dependencies upon entry because platform specific
830
* startup should have initialized the memory and enabled the ECC.
831
* Can't turn on ECC here because accessing un-initialized memory will
832
* cause CE/UE errors possibly causing an ABORT.
833
*/
834
static int __maybe_unused
835
altr_check_ecc_deps(struct altr_edac_device_dev *device)
836
{
837
void __iomem *base = device->base;
838
const struct edac_device_prv_data *prv = device->data;
839
840
if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
841
return 0;
842
843
edac_printk(KERN_ERR, EDAC_DEVICE,
844
"%s: No ECC present or ECC disabled.\n",
845
device->edac_dev_name);
846
return -ENODEV;
847
}
848
849
static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
850
{
851
struct altr_edac_device_dev *dci = dev_id;
852
void __iomem *base = dci->base;
853
854
if (irq == dci->sb_irq) {
855
writel(ALTR_A10_ECC_SERRPENA,
856
base + ALTR_A10_ECC_INTSTAT_OFST);
857
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
858
859
return IRQ_HANDLED;
860
} else if (irq == dci->db_irq) {
861
writel(ALTR_A10_ECC_DERRPENA,
862
base + ALTR_A10_ECC_INTSTAT_OFST);
863
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
864
if (dci->data->panic)
865
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
866
867
return IRQ_HANDLED;
868
}
869
870
WARN_ON(1);
871
872
return IRQ_NONE;
873
}
874
875
/******************* Arria10 Memory Buffer Functions *********************/
876
877
static inline int a10_get_irq_mask(struct device_node *np)
878
{
879
int irq;
880
const u32 *handle = of_get_property(np, "interrupts", NULL);
881
882
if (!handle)
883
return -ENODEV;
884
irq = be32_to_cpup(handle);
885
return irq;
886
}
887
888
static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
889
{
890
u32 value = readl(ioaddr);
891
892
value |= bit_mask;
893
writel(value, ioaddr);
894
}
895
896
static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
897
{
898
u32 value = readl(ioaddr);
899
900
value &= ~bit_mask;
901
writel(value, ioaddr);
902
}
903
904
static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
905
{
906
u32 value = readl(ioaddr);
907
908
return (value & bit_mask) ? 1 : 0;
909
}
910
911
/*
912
* This function uses the memory initialization block in the Arria10 ECC
913
* controller to initialize/clear the entire memory data and ECC data.
914
*/
915
static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
916
{
917
int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
918
u32 init_mask, stat_mask, clear_mask;
919
int ret = 0;
920
921
if (port) {
922
init_mask = ALTR_A10_ECC_INITB;
923
stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
924
clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
925
} else {
926
init_mask = ALTR_A10_ECC_INITA;
927
stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
928
clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
929
}
930
931
ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
932
while (limit--) {
933
if (ecc_test_bits(stat_mask,
934
(ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
935
break;
936
udelay(1);
937
}
938
if (limit < 0)
939
ret = -EBUSY;
940
941
/* Clear any pending ECC interrupts */
942
writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
943
944
return ret;
945
}
946
947
static __init int __maybe_unused
948
altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
949
u32 ecc_ctrl_en_mask, bool dual_port)
950
{
951
int ret = 0;
952
void __iomem *ecc_block_base;
953
struct regmap *ecc_mgr_map;
954
char *ecc_name;
955
struct device_node *np_eccmgr;
956
957
ecc_name = (char *)np->name;
958
959
/* Get the ECC Manager - parent of the device EDACs */
960
np_eccmgr = of_get_parent(np);
961
962
ecc_mgr_map =
963
altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
964
"altr,sysmgr-syscon");
965
966
of_node_put(np_eccmgr);
967
if (IS_ERR(ecc_mgr_map)) {
968
edac_printk(KERN_ERR, EDAC_DEVICE,
969
"Unable to get syscon altr,sysmgr-syscon\n");
970
return -ENODEV;
971
}
972
973
/* Map the ECC Block */
974
ecc_block_base = of_iomap(np, 0);
975
if (!ecc_block_base) {
976
edac_printk(KERN_ERR, EDAC_DEVICE,
977
"Unable to map %s ECC block\n", ecc_name);
978
return -ENODEV;
979
}
980
981
/* Disable ECC */
982
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
983
writel(ALTR_A10_ECC_SERRINTEN,
984
(ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
985
ecc_clear_bits(ecc_ctrl_en_mask,
986
(ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
987
/* Ensure all writes complete */
988
wmb();
989
/* Use HW initialization block to initialize memory for ECC */
990
ret = altr_init_memory_port(ecc_block_base, 0);
991
if (ret) {
992
edac_printk(KERN_ERR, EDAC_DEVICE,
993
"ECC: cannot init %s PORTA memory\n", ecc_name);
994
goto out;
995
}
996
997
if (dual_port) {
998
ret = altr_init_memory_port(ecc_block_base, 1);
999
if (ret) {
1000
edac_printk(KERN_ERR, EDAC_DEVICE,
1001
"ECC: cannot init %s PORTB memory\n",
1002
ecc_name);
1003
goto out;
1004
}
1005
}
1006
1007
/* Enable ECC */
1008
ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1009
ALTR_A10_ECC_CTRL_OFST));
1010
writel(ALTR_A10_ECC_SERRINTEN,
1011
(ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1012
regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1013
/* Ensure all writes complete */
1014
wmb();
1015
out:
1016
iounmap(ecc_block_base);
1017
return ret;
1018
}
1019
1020
static int validate_parent_available(struct device_node *np);
1021
static const struct of_device_id altr_edac_a10_device_of_match[];
1022
static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1023
{
1024
int irq;
1025
struct device_node *child, *np;
1026
1027
np = of_find_compatible_node(NULL, NULL,
1028
"altr,socfpga-a10-ecc-manager");
1029
if (!np) {
1030
edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1031
return -ENODEV;
1032
}
1033
1034
for_each_child_of_node(np, child) {
1035
const struct of_device_id *pdev_id;
1036
const struct edac_device_prv_data *prv;
1037
1038
if (!of_device_is_available(child))
1039
continue;
1040
if (!of_device_is_compatible(child, compat))
1041
continue;
1042
1043
if (validate_parent_available(child))
1044
continue;
1045
1046
irq = a10_get_irq_mask(child);
1047
if (irq < 0)
1048
continue;
1049
1050
/* Get matching node and check for valid result */
1051
pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1052
if (IS_ERR_OR_NULL(pdev_id))
1053
continue;
1054
1055
/* Validate private data pointer before dereferencing */
1056
prv = pdev_id->data;
1057
if (!prv)
1058
continue;
1059
1060
altr_init_a10_ecc_block(child, BIT(irq),
1061
prv->ecc_enable_mask, 0);
1062
}
1063
1064
of_node_put(np);
1065
return 0;
1066
}
1067
1068
/*********************** SDRAM EDAC Device Functions *********************/
1069
1070
#ifdef CONFIG_EDAC_ALTERA_SDRAM
1071
1072
/*
1073
* A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1074
* register if ECC is enabled. Linux checks the ECC Enable register to
1075
* determine ECC status.
1076
* Use an SMC call (which always works) to determine ECC enablement.
1077
*/
1078
static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1079
{
1080
const struct edac_device_prv_data *prv = device->data;
1081
unsigned long sdram_ecc_addr;
1082
struct arm_smccc_res result;
1083
struct device_node *np;
1084
phys_addr_t sdram_addr;
1085
u32 read_reg;
1086
int ret;
1087
1088
np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1089
if (!np)
1090
goto sdram_err;
1091
1092
sdram_addr = of_translate_address(np, of_get_address(np, 0,
1093
NULL, NULL));
1094
of_node_put(np);
1095
sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1096
arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1097
0, 0, 0, 0, 0, 0, &result);
1098
read_reg = (unsigned int)result.a1;
1099
ret = (int)result.a0;
1100
if (!ret && (read_reg & prv->ecc_enable_mask))
1101
return 0;
1102
1103
sdram_err:
1104
edac_printk(KERN_ERR, EDAC_DEVICE,
1105
"%s: No ECC present or ECC disabled.\n",
1106
device->edac_dev_name);
1107
return -ENODEV;
1108
}
1109
1110
static const struct edac_device_prv_data s10_sdramecc_data = {
1111
.setup = altr_s10_sdram_check_ecc_deps,
1112
.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1113
.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1114
.ecc_enable_mask = ALTR_S10_ECC_EN,
1115
.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1116
.ce_set_mask = ALTR_S10_ECC_TSERRA,
1117
.ue_set_mask = ALTR_S10_ECC_TDERRA,
1118
.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1119
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1120
.inject_fops = &altr_edac_a10_device_inject_fops,
1121
};
1122
#endif /* CONFIG_EDAC_ALTERA_SDRAM */
1123
1124
/*********************** OCRAM EDAC Device Functions *********************/
1125
1126
#ifdef CONFIG_EDAC_ALTERA_OCRAM
1127
1128
static void *ocram_alloc_mem(size_t size, void **other)
1129
{
1130
struct device_node *np;
1131
struct gen_pool *gp;
1132
void *sram_addr;
1133
1134
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1135
if (!np)
1136
return NULL;
1137
1138
gp = of_gen_pool_get(np, "iram", 0);
1139
of_node_put(np);
1140
if (!gp)
1141
return NULL;
1142
1143
sram_addr = (void *)gen_pool_alloc(gp, size);
1144
if (!sram_addr)
1145
return NULL;
1146
1147
memset(sram_addr, 0, size);
1148
/* Ensure data is written out */
1149
wmb();
1150
1151
/* Remember this handle for freeing later */
1152
*other = gp;
1153
1154
return sram_addr;
1155
}
1156
1157
static void ocram_free_mem(void *p, size_t size, void *other)
1158
{
1159
gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1160
}
1161
1162
static const struct edac_device_prv_data ocramecc_data = {
1163
.setup = altr_check_ecc_deps,
1164
.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1165
.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1166
.alloc_mem = ocram_alloc_mem,
1167
.free_mem = ocram_free_mem,
1168
.ecc_enable_mask = ALTR_OCR_ECC_EN,
1169
.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1170
.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1171
.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1172
.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1173
.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1174
.inject_fops = &altr_edac_device_inject_fops,
1175
};
1176
1177
static int __maybe_unused
1178
altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1179
{
1180
void __iomem *base = device->base;
1181
int ret;
1182
1183
ret = altr_check_ecc_deps(device);
1184
if (ret)
1185
return ret;
1186
1187
/* Verify OCRAM has been initialized */
1188
if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1189
(base + ALTR_A10_ECC_INITSTAT_OFST)))
1190
return -ENODEV;
1191
1192
/* Enable IRQ on Single Bit Error */
1193
writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1194
/* Ensure all writes complete */
1195
wmb();
1196
1197
return 0;
1198
}
1199
1200
static const struct edac_device_prv_data a10_ocramecc_data = {
1201
.setup = altr_check_ocram_deps_init,
1202
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1203
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1204
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1205
.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1206
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1207
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1208
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1209
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1210
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1211
.inject_fops = &altr_edac_a10_device_inject2_fops,
1212
/*
1213
* OCRAM panic on uncorrectable error because sleep/resume
1214
* functions and FPGA contents are stored in OCRAM. Prefer
1215
* a kernel panic over executing/loading corrupted data.
1216
*/
1217
.panic = true,
1218
};
1219
1220
#endif /* CONFIG_EDAC_ALTERA_OCRAM */
1221
1222
/********************* L2 Cache EDAC Device Functions ********************/
1223
1224
#ifdef CONFIG_EDAC_ALTERA_L2C
1225
1226
static void *l2_alloc_mem(size_t size, void **other)
1227
{
1228
struct device *dev = *other;
1229
void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1230
1231
if (!ptemp)
1232
return NULL;
1233
1234
/* Make sure everything is written out */
1235
wmb();
1236
1237
/*
1238
* Clean all cache levels up to LoC (includes L2)
1239
* This ensures the corrupted data is written into
1240
* L2 cache for readback test (which causes ECC error).
1241
*/
1242
flush_cache_all();
1243
1244
return ptemp;
1245
}
1246
1247
static void l2_free_mem(void *p, size_t size, void *other)
1248
{
1249
struct device *dev = other;
1250
1251
if (dev && p)
1252
devm_kfree(dev, p);
1253
}
1254
1255
/*
1256
* altr_l2_check_deps()
1257
* Test for L2 cache ECC dependencies upon entry because
1258
* platform specific startup should have initialized the L2
1259
* memory and enabled the ECC.
1260
* Bail if ECC is not enabled.
1261
* Note that L2 Cache Enable is forced at build time.
1262
*/
1263
static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1264
{
1265
void __iomem *base = device->base;
1266
const struct edac_device_prv_data *prv = device->data;
1267
1268
if ((readl(base) & prv->ecc_enable_mask) ==
1269
prv->ecc_enable_mask)
1270
return 0;
1271
1272
edac_printk(KERN_ERR, EDAC_DEVICE,
1273
"L2: No ECC present, or ECC disabled\n");
1274
return -ENODEV;
1275
}
1276
1277
static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1278
{
1279
struct altr_edac_device_dev *dci = dev_id;
1280
1281
if (irq == dci->sb_irq) {
1282
regmap_write(dci->edac->ecc_mgr_map,
1283
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1284
A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1285
edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1286
1287
return IRQ_HANDLED;
1288
} else if (irq == dci->db_irq) {
1289
regmap_write(dci->edac->ecc_mgr_map,
1290
A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1291
A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1292
edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1293
panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1294
1295
return IRQ_HANDLED;
1296
}
1297
1298
WARN_ON(1);
1299
1300
return IRQ_NONE;
1301
}
1302
1303
static const struct edac_device_prv_data l2ecc_data = {
1304
.setup = altr_l2_check_deps,
1305
.ce_clear_mask = 0,
1306
.ue_clear_mask = 0,
1307
.alloc_mem = l2_alloc_mem,
1308
.free_mem = l2_free_mem,
1309
.ecc_enable_mask = ALTR_L2_ECC_EN,
1310
.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1311
.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1312
.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1313
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1314
.inject_fops = &altr_edac_device_inject_fops,
1315
};
1316
1317
static const struct edac_device_prv_data a10_l2ecc_data = {
1318
.setup = altr_l2_check_deps,
1319
.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1320
.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1321
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1322
.alloc_mem = l2_alloc_mem,
1323
.free_mem = l2_free_mem,
1324
.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1325
.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1326
.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1327
.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1328
.ecc_irq_handler = altr_edac_a10_l2_irq,
1329
.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1330
.inject_fops = &altr_edac_device_inject_fops,
1331
};
1332
1333
#endif /* CONFIG_EDAC_ALTERA_L2C */
1334
1335
/********************* Ethernet Device Functions ********************/
1336
1337
#ifdef CONFIG_EDAC_ALTERA_ETHERNET
1338
1339
static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1340
{
1341
int ret;
1342
1343
ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1344
if (ret)
1345
return ret;
1346
1347
return altr_check_ecc_deps(dev);
1348
}
1349
1350
static const struct edac_device_prv_data a10_enetecc_data = {
1351
.setup = socfpga_init_ethernet_ecc,
1352
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1353
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1354
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1355
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1356
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1357
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1358
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1359
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1360
.inject_fops = &altr_edac_a10_device_inject2_fops,
1361
};
1362
1363
#endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1364
1365
/********************** NAND Device Functions **********************/
1366
1367
#ifdef CONFIG_EDAC_ALTERA_NAND
1368
1369
static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1370
{
1371
int ret;
1372
1373
ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1374
if (ret)
1375
return ret;
1376
1377
return altr_check_ecc_deps(device);
1378
}
1379
1380
static const struct edac_device_prv_data a10_nandecc_data = {
1381
.setup = socfpga_init_nand_ecc,
1382
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1383
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1384
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1385
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1386
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1387
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1388
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1389
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1390
.inject_fops = &altr_edac_a10_device_inject_fops,
1391
};
1392
1393
#endif /* CONFIG_EDAC_ALTERA_NAND */
1394
1395
/********************** DMA Device Functions **********************/
1396
1397
#ifdef CONFIG_EDAC_ALTERA_DMA
1398
1399
static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1400
{
1401
int ret;
1402
1403
ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1404
if (ret)
1405
return ret;
1406
1407
return altr_check_ecc_deps(device);
1408
}
1409
1410
static const struct edac_device_prv_data a10_dmaecc_data = {
1411
.setup = socfpga_init_dma_ecc,
1412
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1413
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1414
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1415
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1416
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1417
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1418
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1419
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1420
.inject_fops = &altr_edac_a10_device_inject_fops,
1421
};
1422
1423
#endif /* CONFIG_EDAC_ALTERA_DMA */
1424
1425
/********************** USB Device Functions **********************/
1426
1427
#ifdef CONFIG_EDAC_ALTERA_USB
1428
1429
static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1430
{
1431
int ret;
1432
1433
ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1434
if (ret)
1435
return ret;
1436
1437
return altr_check_ecc_deps(device);
1438
}
1439
1440
static const struct edac_device_prv_data a10_usbecc_data = {
1441
.setup = socfpga_init_usb_ecc,
1442
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1443
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1444
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1445
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1446
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1447
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1448
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1449
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1450
.inject_fops = &altr_edac_a10_device_inject2_fops,
1451
};
1452
1453
#endif /* CONFIG_EDAC_ALTERA_USB */
1454
1455
/********************** QSPI Device Functions **********************/
1456
1457
#ifdef CONFIG_EDAC_ALTERA_QSPI
1458
1459
static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1460
{
1461
int ret;
1462
1463
ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1464
if (ret)
1465
return ret;
1466
1467
return altr_check_ecc_deps(device);
1468
}
1469
1470
static const struct edac_device_prv_data a10_qspiecc_data = {
1471
.setup = socfpga_init_qspi_ecc,
1472
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1473
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1474
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1475
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1476
.ce_set_mask = ALTR_A10_ECC_TSERRA,
1477
.ue_set_mask = ALTR_A10_ECC_TDERRA,
1478
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1479
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1480
.inject_fops = &altr_edac_a10_device_inject_fops,
1481
};
1482
1483
#endif /* CONFIG_EDAC_ALTERA_QSPI */
1484
1485
/********************* SDMMC Device Functions **********************/
1486
1487
#ifdef CONFIG_EDAC_ALTERA_SDMMC
1488
1489
static const struct edac_device_prv_data a10_sdmmceccb_data;
1490
static int altr_portb_setup(struct altr_edac_device_dev *device)
1491
{
1492
struct edac_device_ctl_info *dci;
1493
struct altr_edac_device_dev *altdev;
1494
char *ecc_name = "sdmmcb-ecc";
1495
int edac_idx, rc;
1496
struct device_node *np;
1497
const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1498
1499
rc = altr_check_ecc_deps(device);
1500
if (rc)
1501
return rc;
1502
1503
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1504
if (!np) {
1505
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1506
return -ENODEV;
1507
}
1508
1509
/* Create the PortB EDAC device */
1510
edac_idx = edac_device_alloc_index();
1511
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1512
ecc_name, 1, 0, edac_idx);
1513
if (!dci) {
1514
edac_printk(KERN_ERR, EDAC_DEVICE,
1515
"%s: Unable to allocate PortB EDAC device\n",
1516
ecc_name);
1517
return -ENOMEM;
1518
}
1519
1520
/* Initialize the PortB EDAC device structure from PortA structure */
1521
altdev = dci->pvt_info;
1522
*altdev = *device;
1523
1524
if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1525
return -ENOMEM;
1526
1527
/* Update PortB specific values */
1528
altdev->edac_dev_name = ecc_name;
1529
altdev->edac_idx = edac_idx;
1530
altdev->edac_dev = dci;
1531
altdev->data = prv;
1532
dci->dev = &altdev->ddev;
1533
dci->ctl_name = "Altera ECC Manager";
1534
dci->mod_name = ecc_name;
1535
dci->dev_name = ecc_name;
1536
1537
/*
1538
* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1539
*
1540
* FIXME: Instead of ifdefs with different architectures the driver
1541
* should properly use compatibles.
1542
*/
1543
#ifdef CONFIG_64BIT
1544
altdev->sb_irq = irq_of_parse_and_map(np, 1);
1545
#else
1546
altdev->sb_irq = irq_of_parse_and_map(np, 2);
1547
#endif
1548
if (!altdev->sb_irq) {
1549
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1550
rc = -ENODEV;
1551
goto err_release_group_1;
1552
}
1553
rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1554
prv->ecc_irq_handler,
1555
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1556
ecc_name, altdev);
1557
if (rc) {
1558
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1559
goto err_release_group_1;
1560
}
1561
1562
#ifdef CONFIG_64BIT
1563
/* Use IRQ to determine SError origin instead of assigning IRQ */
1564
rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1565
if (rc) {
1566
edac_printk(KERN_ERR, EDAC_DEVICE,
1567
"Error PortB DBIRQ alloc\n");
1568
goto err_release_group_1;
1569
}
1570
#else
1571
altdev->db_irq = irq_of_parse_and_map(np, 3);
1572
if (!altdev->db_irq) {
1573
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1574
rc = -ENODEV;
1575
goto err_release_group_1;
1576
}
1577
rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1578
prv->ecc_irq_handler,
1579
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1580
ecc_name, altdev);
1581
if (rc) {
1582
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1583
goto err_release_group_1;
1584
}
1585
#endif
1586
1587
rc = edac_device_add_device(dci);
1588
if (rc) {
1589
edac_printk(KERN_ERR, EDAC_DEVICE,
1590
"edac_device_add_device portB failed\n");
1591
rc = -ENOMEM;
1592
goto err_release_group_1;
1593
}
1594
altr_create_edacdev_dbgfs(dci, prv);
1595
1596
list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1597
1598
devres_remove_group(&altdev->ddev, altr_portb_setup);
1599
1600
return 0;
1601
1602
err_release_group_1:
1603
edac_device_free_ctl_info(dci);
1604
devres_release_group(&altdev->ddev, altr_portb_setup);
1605
edac_printk(KERN_ERR, EDAC_DEVICE,
1606
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1607
return rc;
1608
}
1609
1610
static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1611
{
1612
int rc = -ENODEV;
1613
struct device_node *child;
1614
1615
child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1616
if (!child)
1617
return -ENODEV;
1618
1619
if (!of_device_is_available(child))
1620
goto exit;
1621
1622
if (validate_parent_available(child))
1623
goto exit;
1624
1625
/* Init portB */
1626
rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1627
a10_sdmmceccb_data.ecc_enable_mask, 1);
1628
if (rc)
1629
goto exit;
1630
1631
/* Setup portB */
1632
return altr_portb_setup(device);
1633
1634
exit:
1635
of_node_put(child);
1636
return rc;
1637
}
1638
1639
static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1640
{
1641
struct altr_edac_device_dev *ad = dev_id;
1642
void __iomem *base = ad->base;
1643
const struct edac_device_prv_data *priv = ad->data;
1644
1645
if (irq == ad->sb_irq) {
1646
writel(priv->ce_clear_mask,
1647
base + ALTR_A10_ECC_INTSTAT_OFST);
1648
edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1649
return IRQ_HANDLED;
1650
} else if (irq == ad->db_irq) {
1651
writel(priv->ue_clear_mask,
1652
base + ALTR_A10_ECC_INTSTAT_OFST);
1653
edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1654
return IRQ_HANDLED;
1655
}
1656
1657
WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1658
1659
return IRQ_NONE;
1660
}
1661
1662
static const struct edac_device_prv_data a10_sdmmcecca_data = {
1663
.setup = socfpga_init_sdmmc_ecc,
1664
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1665
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1666
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1667
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1668
.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1669
.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1670
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1671
.ecc_irq_handler = altr_edac_a10_ecc_irq,
1672
.inject_fops = &altr_edac_a10_device_inject_fops,
1673
};
1674
1675
static const struct edac_device_prv_data a10_sdmmceccb_data = {
1676
.setup = socfpga_init_sdmmc_ecc,
1677
.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1678
.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1679
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1680
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1681
.ce_set_mask = ALTR_A10_ECC_TSERRB,
1682
.ue_set_mask = ALTR_A10_ECC_TDERRB,
1683
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1684
.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1685
.inject_fops = &altr_edac_a10_device_inject_fops,
1686
};
1687
1688
#endif /* CONFIG_EDAC_ALTERA_SDMMC */
1689
1690
/********************* Arria10 EDAC Device Functions *************************/
1691
static const struct of_device_id altr_edac_a10_device_of_match[] = {
1692
#ifdef CONFIG_EDAC_ALTERA_L2C
1693
{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1694
#endif
1695
#ifdef CONFIG_EDAC_ALTERA_OCRAM
1696
{ .compatible = "altr,socfpga-a10-ocram-ecc",
1697
.data = &a10_ocramecc_data },
1698
#endif
1699
#ifdef CONFIG_EDAC_ALTERA_ETHERNET
1700
{ .compatible = "altr,socfpga-eth-mac-ecc",
1701
.data = &a10_enetecc_data },
1702
#endif
1703
#ifdef CONFIG_EDAC_ALTERA_NAND
1704
{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1705
#endif
1706
#ifdef CONFIG_EDAC_ALTERA_DMA
1707
{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1708
#endif
1709
#ifdef CONFIG_EDAC_ALTERA_USB
1710
{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1711
#endif
1712
#ifdef CONFIG_EDAC_ALTERA_QSPI
1713
{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1714
#endif
1715
#ifdef CONFIG_EDAC_ALTERA_SDMMC
1716
{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1717
#endif
1718
#ifdef CONFIG_EDAC_ALTERA_SDRAM
1719
{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1720
#endif
1721
{},
1722
};
1723
MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1724
1725
/*
1726
* The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1727
* because 2 IRQs are shared among the all ECC peripherals. The ECC
1728
* manager manages the IRQs and the children.
1729
* Based on xgene_edac.c peripheral code.
1730
*/
1731
1732
static ssize_t __maybe_unused
1733
altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1734
size_t count, loff_t *ppos)
1735
{
1736
struct edac_device_ctl_info *edac_dci = file->private_data;
1737
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1738
const struct edac_device_prv_data *priv = drvdata->data;
1739
void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1740
unsigned long flags;
1741
u8 trig_type;
1742
1743
if (!user_buf || get_user(trig_type, user_buf))
1744
return -EFAULT;
1745
1746
local_irq_save(flags);
1747
if (trig_type == ALTR_UE_TRIGGER_CHAR)
1748
writew(priv->ue_set_mask, set_addr);
1749
else
1750
writew(priv->ce_set_mask, set_addr);
1751
1752
/* Ensure the interrupt test bits are set */
1753
wmb();
1754
local_irq_restore(flags);
1755
1756
return count;
1757
}
1758
1759
/*
1760
* The Stratix10 EDAC Error Injection Functions differ from Arria10
1761
* slightly. A few Arria10 peripherals can use this injection function.
1762
* Inject the error into the memory and then readback to trigger the IRQ.
1763
*/
1764
static ssize_t __maybe_unused
1765
altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1766
size_t count, loff_t *ppos)
1767
{
1768
struct edac_device_ctl_info *edac_dci = file->private_data;
1769
struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1770
const struct edac_device_prv_data *priv = drvdata->data;
1771
void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1772
unsigned long flags;
1773
u8 trig_type;
1774
1775
if (!user_buf || get_user(trig_type, user_buf))
1776
return -EFAULT;
1777
1778
local_irq_save(flags);
1779
if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1780
writew(priv->ue_set_mask, set_addr);
1781
} else {
1782
/* Setup read/write of 4 bytes */
1783
writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1784
/* Setup Address to 0 */
1785
writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1786
/* Setup accctrl to read & ecc & data override */
1787
writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1788
/* Kick it. */
1789
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1790
/* Setup write for single bit change */
1791
writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1792
drvdata->base + ECC_BLK_WDATA0_OFST);
1793
writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1794
drvdata->base + ECC_BLK_WDATA1_OFST);
1795
writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1796
drvdata->base + ECC_BLK_WDATA2_OFST);
1797
writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1798
drvdata->base + ECC_BLK_WDATA3_OFST);
1799
1800
/* Copy Read ECC to Write ECC */
1801
writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1802
drvdata->base + ECC_BLK_WECC0_OFST);
1803
writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1804
drvdata->base + ECC_BLK_WECC1_OFST);
1805
/* Setup accctrl to write & ecc override & data override */
1806
writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1807
/* Kick it. */
1808
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1809
/* Setup accctrl to read & ecc overwrite & data overwrite */
1810
writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1811
/* Kick it. */
1812
writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1813
}
1814
1815
/* Ensure the interrupt test bits are set */
1816
wmb();
1817
local_irq_restore(flags);
1818
1819
return count;
1820
}
1821
1822
static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1823
{
1824
int dberr, bit, sm_offset, irq_status;
1825
struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1826
struct irq_chip *chip = irq_desc_get_chip(desc);
1827
int irq = irq_desc_get_irq(desc);
1828
unsigned long bits;
1829
1830
dberr = (irq == edac->db_irq) ? 1 : 0;
1831
sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1832
A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1833
1834
chained_irq_enter(chip, desc);
1835
1836
regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1837
1838
bits = irq_status;
1839
for_each_set_bit(bit, &bits, 32)
1840
generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1841
1842
chained_irq_exit(chip, desc);
1843
}
1844
1845
static int validate_parent_available(struct device_node *np)
1846
{
1847
struct device_node *parent;
1848
int ret = 0;
1849
1850
/* SDRAM must be present for Linux (implied parent) */
1851
if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1852
return 0;
1853
1854
/* Ensure parent device is enabled if parent node exists */
1855
parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1856
if (parent && !of_device_is_available(parent))
1857
ret = -ENODEV;
1858
1859
of_node_put(parent);
1860
return ret;
1861
}
1862
1863
static int get_s10_sdram_edac_resource(struct device_node *np,
1864
struct resource *res)
1865
{
1866
struct device_node *parent;
1867
int ret;
1868
1869
parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1870
if (!parent)
1871
return -ENODEV;
1872
1873
ret = of_address_to_resource(parent, 0, res);
1874
of_node_put(parent);
1875
1876
return ret;
1877
}
1878
1879
static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1880
struct device_node *np)
1881
{
1882
struct edac_device_ctl_info *dci;
1883
struct altr_edac_device_dev *altdev;
1884
char *ecc_name = (char *)np->name;
1885
struct resource res;
1886
int edac_idx;
1887
int rc = 0;
1888
const struct edac_device_prv_data *prv;
1889
/* Get matching node and check for valid result */
1890
const struct of_device_id *pdev_id =
1891
of_match_node(altr_edac_a10_device_of_match, np);
1892
if (IS_ERR_OR_NULL(pdev_id))
1893
return -ENODEV;
1894
1895
/* Get driver specific data for this EDAC device */
1896
prv = pdev_id->data;
1897
if (IS_ERR_OR_NULL(prv))
1898
return -ENODEV;
1899
1900
if (validate_parent_available(np))
1901
return -ENODEV;
1902
1903
if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1904
return -ENOMEM;
1905
1906
if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1907
rc = get_s10_sdram_edac_resource(np, &res);
1908
else
1909
rc = of_address_to_resource(np, 0, &res);
1910
1911
if (rc < 0) {
1912
edac_printk(KERN_ERR, EDAC_DEVICE,
1913
"%s: no resource address\n", ecc_name);
1914
goto err_release_group;
1915
}
1916
1917
edac_idx = edac_device_alloc_index();
1918
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1919
1, ecc_name, 1, 0, edac_idx);
1920
1921
if (!dci) {
1922
edac_printk(KERN_ERR, EDAC_DEVICE,
1923
"%s: Unable to allocate EDAC device\n", ecc_name);
1924
rc = -ENOMEM;
1925
goto err_release_group;
1926
}
1927
1928
altdev = dci->pvt_info;
1929
dci->dev = edac->dev;
1930
altdev->edac_dev_name = ecc_name;
1931
altdev->edac_idx = edac_idx;
1932
altdev->edac = edac;
1933
altdev->edac_dev = dci;
1934
altdev->data = prv;
1935
altdev->ddev = *edac->dev;
1936
dci->dev = &altdev->ddev;
1937
dci->ctl_name = "Altera ECC Manager";
1938
dci->mod_name = ecc_name;
1939
dci->dev_name = ecc_name;
1940
1941
altdev->base = devm_ioremap_resource(edac->dev, &res);
1942
if (IS_ERR(altdev->base)) {
1943
rc = PTR_ERR(altdev->base);
1944
goto err_release_group1;
1945
}
1946
1947
/* Check specific dependencies for the module */
1948
if (altdev->data->setup) {
1949
rc = altdev->data->setup(altdev);
1950
if (rc)
1951
goto err_release_group1;
1952
}
1953
1954
altdev->sb_irq = irq_of_parse_and_map(np, 0);
1955
if (!altdev->sb_irq) {
1956
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1957
rc = -ENODEV;
1958
goto err_release_group1;
1959
}
1960
rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1961
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1962
ecc_name, altdev);
1963
if (rc) {
1964
edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1965
goto err_release_group1;
1966
}
1967
1968
#ifdef CONFIG_64BIT
1969
/* Use IRQ to determine SError origin instead of assigning IRQ */
1970
rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1971
if (rc) {
1972
edac_printk(KERN_ERR, EDAC_DEVICE,
1973
"Unable to parse DB IRQ index\n");
1974
goto err_release_group1;
1975
}
1976
#else
1977
altdev->db_irq = irq_of_parse_and_map(np, 1);
1978
if (!altdev->db_irq) {
1979
edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1980
rc = -ENODEV;
1981
goto err_release_group1;
1982
}
1983
rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1984
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1985
ecc_name, altdev);
1986
if (rc) {
1987
edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1988
goto err_release_group1;
1989
}
1990
#endif
1991
1992
rc = edac_device_add_device(dci);
1993
if (rc) {
1994
dev_err(edac->dev, "edac_device_add_device failed\n");
1995
rc = -ENOMEM;
1996
goto err_release_group1;
1997
}
1998
1999
altr_create_edacdev_dbgfs(dci, prv);
2000
2001
list_add(&altdev->next, &edac->a10_ecc_devices);
2002
2003
devres_remove_group(edac->dev, altr_edac_a10_device_add);
2004
2005
return 0;
2006
2007
err_release_group1:
2008
edac_device_free_ctl_info(dci);
2009
err_release_group:
2010
devres_release_group(edac->dev, NULL);
2011
edac_printk(KERN_ERR, EDAC_DEVICE,
2012
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2013
2014
return rc;
2015
}
2016
2017
static void a10_eccmgr_irq_mask(struct irq_data *d)
2018
{
2019
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2020
2021
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2022
BIT(d->hwirq));
2023
}
2024
2025
static void a10_eccmgr_irq_unmask(struct irq_data *d)
2026
{
2027
struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2028
2029
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2030
BIT(d->hwirq));
2031
}
2032
2033
static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2034
irq_hw_number_t hwirq)
2035
{
2036
struct altr_arria10_edac *edac = d->host_data;
2037
2038
irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2039
irq_set_chip_data(irq, edac);
2040
irq_set_noprobe(irq);
2041
2042
return 0;
2043
}
2044
2045
static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2046
.map = a10_eccmgr_irqdomain_map,
2047
.xlate = irq_domain_xlate_twocell,
2048
};
2049
2050
/************** Stratix 10 EDAC Double Bit Error Handler ************/
2051
#define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2052
2053
#ifdef CONFIG_64BIT
2054
/* panic routine issues reboot on non-zero panic_timeout */
2055
extern int panic_timeout;
2056
2057
/*
2058
* The double bit error is handled through SError which is fatal. This is
2059
* called as a panic notifier to printout ECC error info as part of the panic.
2060
*/
2061
static int s10_edac_dberr_handler(struct notifier_block *this,
2062
unsigned long event, void *ptr)
2063
{
2064
struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2065
int err_addr, dberror;
2066
2067
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2068
&dberror);
2069
regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2070
if (dberror & S10_DBE_IRQ_MASK) {
2071
struct list_head *position;
2072
struct altr_edac_device_dev *ed;
2073
struct arm_smccc_res result;
2074
2075
/* Find the matching DBE in the list of devices */
2076
list_for_each(position, &edac->a10_ecc_devices) {
2077
ed = list_entry(position, struct altr_edac_device_dev,
2078
next);
2079
if (!(BIT(ed->db_irq) & dberror))
2080
continue;
2081
2082
writel(ALTR_A10_ECC_DERRPENA,
2083
ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2084
err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2085
regmap_write(edac->ecc_mgr_map,
2086
S10_SYSMGR_UE_ADDR_OFST, err_addr);
2087
edac_printk(KERN_ERR, EDAC_DEVICE,
2088
"EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2089
ed->edac_dev_name, err_addr);
2090
break;
2091
}
2092
/* Notify the System through SMC. Reboot delay = 1 second */
2093
panic_timeout = 1;
2094
arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2095
0, 0, &result);
2096
}
2097
2098
return NOTIFY_DONE;
2099
}
2100
#endif
2101
2102
/****************** Arria 10 EDAC Probe Function *********************/
2103
static int altr_edac_a10_probe(struct platform_device *pdev)
2104
{
2105
struct altr_arria10_edac *edac;
2106
struct device_node *child;
2107
2108
edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2109
if (!edac)
2110
return -ENOMEM;
2111
2112
edac->dev = &pdev->dev;
2113
platform_set_drvdata(pdev, edac);
2114
INIT_LIST_HEAD(&edac->a10_ecc_devices);
2115
2116
edac->ecc_mgr_map =
2117
altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2118
"altr,sysmgr-syscon");
2119
2120
if (IS_ERR(edac->ecc_mgr_map)) {
2121
edac_printk(KERN_ERR, EDAC_DEVICE,
2122
"Unable to get syscon altr,sysmgr-syscon\n");
2123
return PTR_ERR(edac->ecc_mgr_map);
2124
}
2125
2126
/* Set irq mask for DDR SBE to avoid any pending irq before registration */
2127
regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2128
(A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0));
2129
2130
edac->irq_chip.name = pdev->dev.of_node->name;
2131
edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2132
edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2133
edac->domain = irq_domain_create_linear(dev_fwnode(&pdev->dev), 64, &a10_eccmgr_ic_ops,
2134
edac);
2135
if (!edac->domain) {
2136
dev_err(&pdev->dev, "Error adding IRQ domain\n");
2137
return -ENOMEM;
2138
}
2139
2140
edac->sb_irq = platform_get_irq(pdev, 0);
2141
if (edac->sb_irq < 0)
2142
return edac->sb_irq;
2143
2144
irq_set_chained_handler_and_data(edac->sb_irq,
2145
altr_edac_a10_irq_handler,
2146
edac);
2147
2148
#ifdef CONFIG_64BIT
2149
{
2150
int dberror, err_addr;
2151
2152
edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2153
atomic_notifier_chain_register(&panic_notifier_list,
2154
&edac->panic_notifier);
2155
2156
/* Printout a message if uncorrectable error previously. */
2157
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2158
&dberror);
2159
if (dberror) {
2160
regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2161
&err_addr);
2162
edac_printk(KERN_ERR, EDAC_DEVICE,
2163
"Previous Boot UE detected[0x%X] @ 0x%X\n",
2164
dberror, err_addr);
2165
/* Reset the sticky registers */
2166
regmap_write(edac->ecc_mgr_map,
2167
S10_SYSMGR_UE_VAL_OFST, 0);
2168
regmap_write(edac->ecc_mgr_map,
2169
S10_SYSMGR_UE_ADDR_OFST, 0);
2170
}
2171
}
2172
#else
2173
edac->db_irq = platform_get_irq(pdev, 1);
2174
if (edac->db_irq < 0)
2175
return edac->db_irq;
2176
2177
irq_set_chained_handler_and_data(edac->db_irq,
2178
altr_edac_a10_irq_handler, edac);
2179
#endif
2180
2181
for_each_child_of_node(pdev->dev.of_node, child) {
2182
if (!of_device_is_available(child))
2183
continue;
2184
2185
if (of_match_node(altr_edac_a10_device_of_match, child))
2186
altr_edac_a10_device_add(edac, child);
2187
2188
#ifdef CONFIG_EDAC_ALTERA_SDRAM
2189
else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2190
of_platform_populate(pdev->dev.of_node,
2191
altr_sdram_ctrl_of_match,
2192
NULL, &pdev->dev);
2193
#endif
2194
}
2195
2196
return 0;
2197
}
2198
2199
static const struct of_device_id altr_edac_a10_of_match[] = {
2200
{ .compatible = "altr,socfpga-a10-ecc-manager" },
2201
{ .compatible = "altr,socfpga-s10-ecc-manager" },
2202
{},
2203
};
2204
MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2205
2206
static struct platform_driver altr_edac_a10_driver = {
2207
.probe = altr_edac_a10_probe,
2208
.driver = {
2209
.name = "socfpga_a10_ecc_manager",
2210
.of_match_table = altr_edac_a10_of_match,
2211
},
2212
};
2213
module_platform_driver(altr_edac_a10_driver);
2214
2215
MODULE_AUTHOR("Thor Thayer");
2216
MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2217
2218