Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-card.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
4
*/
5
6
#include <linux/bug.h>
7
#include <linux/completion.h>
8
#include <linux/crc-itu-t.h>
9
#include <linux/device.h>
10
#include <linux/errno.h>
11
#include <linux/firewire.h>
12
#include <linux/firewire-constants.h>
13
#include <linux/jiffies.h>
14
#include <linux/kernel.h>
15
#include <linux/kref.h>
16
#include <linux/list.h>
17
#include <linux/module.h>
18
#include <linux/mutex.h>
19
#include <linux/spinlock.h>
20
#include <linux/workqueue.h>
21
22
#include <linux/atomic.h>
23
#include <asm/byteorder.h>
24
25
#include "core.h"
26
#include <trace/events/firewire.h>
27
28
#define define_fw_printk_level(func, kern_level) \
29
void func(const struct fw_card *card, const char *fmt, ...) \
30
{ \
31
struct va_format vaf; \
32
va_list args; \
33
\
34
va_start(args, fmt); \
35
vaf.fmt = fmt; \
36
vaf.va = &args; \
37
printk(kern_level KBUILD_MODNAME " %s: %pV", \
38
dev_name(card->device), &vaf); \
39
va_end(args); \
40
}
41
define_fw_printk_level(fw_err, KERN_ERR);
42
define_fw_printk_level(fw_notice, KERN_NOTICE);
43
44
int fw_compute_block_crc(__be32 *block)
45
{
46
int length;
47
u16 crc;
48
49
length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50
crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51
*block |= cpu_to_be32(crc);
52
53
return length;
54
}
55
56
static DEFINE_MUTEX(card_mutex);
57
static LIST_HEAD(card_list);
58
59
static LIST_HEAD(descriptor_list);
60
static int descriptor_count;
61
62
static __be32 tmp_config_rom[256];
63
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64
static size_t config_rom_length = 1 + 4 + 1 + 1;
65
66
#define BIB_CRC(v) ((v) << 0)
67
#define BIB_CRC_LENGTH(v) ((v) << 16)
68
#define BIB_INFO_LENGTH(v) ((v) << 24)
69
#define BIB_BUS_NAME 0x31333934 /* "1394" */
70
#define BIB_LINK_SPEED(v) ((v) << 0)
71
#define BIB_GENERATION(v) ((v) << 4)
72
#define BIB_MAX_ROM(v) ((v) << 8)
73
#define BIB_MAX_RECEIVE(v) ((v) << 12)
74
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
75
#define BIB_PMC ((1) << 27)
76
#define BIB_BMC ((1) << 28)
77
#define BIB_ISC ((1) << 29)
78
#define BIB_CMC ((1) << 30)
79
#define BIB_IRMC ((1) << 31)
80
#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81
82
/*
83
* IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84
* but we have to make it longer because there are many devices whose firmware
85
* is just too slow for that.
86
*/
87
#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
88
89
#define CANON_OUI 0x000085
90
91
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92
{
93
struct fw_descriptor *desc;
94
int i, j, k, length;
95
96
/*
97
* Initialize contents of config rom buffer. On the OHCI
98
* controller, block reads to the config rom accesses the host
99
* memory, but quadlet read access the hardware bus info block
100
* registers. That's just crack, but it means we should make
101
* sure the contents of bus info block in host memory matches
102
* the version stored in the OHCI registers.
103
*/
104
105
config_rom[0] = cpu_to_be32(
106
BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107
config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108
config_rom[2] = cpu_to_be32(
109
BIB_LINK_SPEED(card->link_speed) |
110
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111
BIB_MAX_ROM(2) |
112
BIB_MAX_RECEIVE(card->max_receive) |
113
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114
config_rom[3] = cpu_to_be32(card->guid >> 32);
115
config_rom[4] = cpu_to_be32(card->guid);
116
117
/* Generate root directory. */
118
config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119
i = 7;
120
j = 7 + descriptor_count;
121
122
/* Generate root directory entries for descriptors. */
123
list_for_each_entry (desc, &descriptor_list, link) {
124
if (desc->immediate > 0)
125
config_rom[i++] = cpu_to_be32(desc->immediate);
126
config_rom[i] = cpu_to_be32(desc->key | (j - i));
127
i++;
128
j += desc->length;
129
}
130
131
/* Update root directory length. */
132
config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133
134
/* End of root directory, now copy in descriptors. */
135
list_for_each_entry (desc, &descriptor_list, link) {
136
for (k = 0; k < desc->length; k++)
137
config_rom[i + k] = cpu_to_be32(desc->data[k]);
138
i += desc->length;
139
}
140
141
/* Calculate CRCs for all blocks in the config rom. This
142
* assumes that CRC length and info length are identical for
143
* the bus info block, which is always the case for this
144
* implementation. */
145
for (i = 0; i < j; i += length + 1)
146
length = fw_compute_block_crc(config_rom + i);
147
148
WARN_ON(j != config_rom_length);
149
}
150
151
static void update_config_roms(void)
152
{
153
struct fw_card *card;
154
155
list_for_each_entry (card, &card_list, link) {
156
generate_config_rom(card, tmp_config_rom);
157
card->driver->set_config_rom(card, tmp_config_rom,
158
config_rom_length);
159
}
160
}
161
162
static size_t required_space(struct fw_descriptor *desc)
163
{
164
/* descriptor + entry into root dir + optional immediate entry */
165
return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166
}
167
168
int fw_core_add_descriptor(struct fw_descriptor *desc)
169
{
170
size_t i;
171
172
/*
173
* Check descriptor is valid; the length of all blocks in the
174
* descriptor has to add up to exactly the length of the
175
* block.
176
*/
177
i = 0;
178
while (i < desc->length)
179
i += (desc->data[i] >> 16) + 1;
180
181
if (i != desc->length)
182
return -EINVAL;
183
184
guard(mutex)(&card_mutex);
185
186
if (config_rom_length + required_space(desc) > 256)
187
return -EBUSY;
188
189
list_add_tail(&desc->link, &descriptor_list);
190
config_rom_length += required_space(desc);
191
descriptor_count++;
192
if (desc->immediate > 0)
193
descriptor_count++;
194
update_config_roms();
195
196
return 0;
197
}
198
EXPORT_SYMBOL(fw_core_add_descriptor);
199
200
void fw_core_remove_descriptor(struct fw_descriptor *desc)
201
{
202
guard(mutex)(&card_mutex);
203
204
list_del(&desc->link);
205
config_rom_length -= required_space(desc);
206
descriptor_count--;
207
if (desc->immediate > 0)
208
descriptor_count--;
209
update_config_roms();
210
}
211
EXPORT_SYMBOL(fw_core_remove_descriptor);
212
213
static int reset_bus(struct fw_card *card, bool short_reset)
214
{
215
int reg = short_reset ? 5 : 1;
216
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217
218
trace_bus_reset_initiate(card->index, card->generation, short_reset);
219
220
return card->driver->update_phy_reg(card, reg, 0, bit);
221
}
222
223
void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224
{
225
trace_bus_reset_schedule(card->index, card->generation, short_reset);
226
227
/* We don't try hard to sort out requests of long vs. short resets. */
228
card->br_short = short_reset;
229
230
/* Use an arbitrary short delay to combine multiple reset requests. */
231
fw_card_get(card);
232
if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? msecs_to_jiffies(10) : 0))
233
fw_card_put(card);
234
}
235
EXPORT_SYMBOL(fw_schedule_bus_reset);
236
237
static void br_work(struct work_struct *work)
238
{
239
struct fw_card *card = from_work(card, work, br_work.work);
240
241
/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242
if (card->reset_jiffies != 0 &&
243
time_is_after_jiffies64(card->reset_jiffies + secs_to_jiffies(2))) {
244
trace_bus_reset_postpone(card->index, card->generation, card->br_short);
245
246
if (!queue_delayed_work(fw_workqueue, &card->br_work, secs_to_jiffies(2)))
247
fw_card_put(card);
248
return;
249
}
250
251
fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
252
FW_PHY_CONFIG_CURRENT_GAP_COUNT);
253
reset_bus(card, card->br_short);
254
fw_card_put(card);
255
}
256
257
static void allocate_broadcast_channel(struct fw_card *card, int generation)
258
{
259
int channel, bandwidth = 0;
260
261
if (!card->broadcast_channel_allocated) {
262
fw_iso_resource_manage(card, generation, 1ULL << 31,
263
&channel, &bandwidth, true);
264
if (channel != 31) {
265
fw_notice(card, "failed to allocate broadcast channel\n");
266
return;
267
}
268
card->broadcast_channel_allocated = true;
269
}
270
271
device_for_each_child(card->device, (void *)(long)generation,
272
fw_device_set_broadcast_channel);
273
}
274
275
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
276
{
277
fw_card_get(card);
278
if (!schedule_delayed_work(&card->bm_work, delay))
279
fw_card_put(card);
280
}
281
282
enum bm_contention_outcome {
283
// The bus management contention window is not expired.
284
BM_CONTENTION_OUTCOME_WITHIN_WINDOW = 0,
285
// The IRM node has link off.
286
BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF,
287
// The IRM node complies IEEE 1394:1994 only.
288
BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY,
289
// Another bus reset, BM work has been rescheduled.
290
BM_CONTENTION_OUTCOME_AT_NEW_GENERATION,
291
// We have been unable to send the lock request to IRM node due to some local problem.
292
BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION,
293
// The lock request failed, maybe the IRM isn't really IRM capable after all.
294
BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM,
295
// Somebody else is BM.
296
BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM,
297
// The local node succeeds after contending for bus manager.
298
BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM,
299
};
300
301
static enum bm_contention_outcome contend_for_bm(struct fw_card *card)
302
__must_hold(&card->lock)
303
{
304
int generation = card->generation;
305
int local_id = card->local_node->node_id;
306
__be32 data[2] = {
307
cpu_to_be32(BUS_MANAGER_ID_NOT_REGISTERED),
308
cpu_to_be32(local_id),
309
};
310
bool grace = time_is_before_jiffies64(card->reset_jiffies + msecs_to_jiffies(125));
311
bool irm_is_1394_1995_only = false;
312
bool keep_this_irm = false;
313
struct fw_node *irm_node;
314
struct fw_device *irm_device;
315
int irm_node_id;
316
int rcode;
317
318
lockdep_assert_held(&card->lock);
319
320
if (!grace) {
321
if (!is_next_generation(generation, card->bm_generation) || card->bm_abdicate)
322
return BM_CONTENTION_OUTCOME_WITHIN_WINDOW;
323
}
324
325
irm_node = card->irm_node;
326
if (!irm_node->link_on) {
327
fw_notice(card, "IRM has link off, making local node (%02x) root\n", local_id);
328
return BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF;
329
}
330
331
irm_device = fw_node_get_device(irm_node);
332
if (irm_device && irm_device->config_rom) {
333
irm_is_1394_1995_only = (irm_device->config_rom[2] & 0x000000f0) == 0;
334
335
// Canon MV5i works unreliably if it is not root node.
336
keep_this_irm = irm_device->config_rom[3] >> 8 == CANON_OUI;
337
}
338
339
if (irm_is_1394_1995_only && !keep_this_irm) {
340
fw_notice(card, "IRM is not 1394a compliant, making local node (%02x) root\n",
341
local_id);
342
return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
343
}
344
345
irm_node_id = irm_node->node_id;
346
347
spin_unlock_irq(&card->lock);
348
349
rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_node_id, generation,
350
SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, data,
351
sizeof(data));
352
353
spin_lock_irq(&card->lock);
354
355
switch (rcode) {
356
case RCODE_GENERATION:
357
return BM_CONTENTION_OUTCOME_AT_NEW_GENERATION;
358
case RCODE_SEND_ERROR:
359
return BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION;
360
case RCODE_COMPLETE:
361
{
362
int bm_id = be32_to_cpu(data[0]);
363
364
// Used by cdev layer for "struct fw_cdev_event_bus_reset".
365
if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
366
card->bm_node_id = 0xffc0 & bm_id;
367
else
368
card->bm_node_id = local_id;
369
370
if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
371
return BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM;
372
else
373
return BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM;
374
}
375
default:
376
if (!keep_this_irm) {
377
fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
378
fw_rcode_string(rcode), local_id);
379
return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
380
} else {
381
return BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM;
382
}
383
}
384
}
385
386
DEFINE_FREE(node_unref, struct fw_node *, if (_T) fw_node_put(_T))
387
DEFINE_FREE(card_unref, struct fw_card *, if (_T) fw_card_put(_T))
388
389
static void bm_work(struct work_struct *work)
390
{
391
static const char gap_count_table[] = {
392
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
393
};
394
struct fw_card *card __free(card_unref) = from_work(card, work, bm_work.work);
395
struct fw_node *root_node __free(node_unref) = NULL;
396
int root_id, new_root_id, irm_id, local_id;
397
int expected_gap_count, generation;
398
bool stand_for_root = false;
399
400
spin_lock_irq(&card->lock);
401
402
if (card->local_node == NULL) {
403
spin_unlock_irq(&card->lock);
404
return;
405
}
406
407
generation = card->generation;
408
409
root_node = fw_node_get(card->root_node);
410
411
root_id = root_node->node_id;
412
irm_id = card->irm_node->node_id;
413
local_id = card->local_node->node_id;
414
415
if (card->bm_generation != generation) {
416
enum bm_contention_outcome result = contend_for_bm(card);
417
418
switch (result) {
419
case BM_CONTENTION_OUTCOME_WITHIN_WINDOW:
420
spin_unlock_irq(&card->lock);
421
fw_schedule_bm_work(card, msecs_to_jiffies(125));
422
return;
423
case BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF:
424
stand_for_root = true;
425
break;
426
case BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY:
427
stand_for_root = true;
428
break;
429
case BM_CONTENTION_OUTCOME_AT_NEW_GENERATION:
430
// BM work has been rescheduled.
431
spin_unlock_irq(&card->lock);
432
return;
433
case BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION:
434
// Let's try again later and hope that the local problem has gone away by
435
// then.
436
spin_unlock_irq(&card->lock);
437
fw_schedule_bm_work(card, msecs_to_jiffies(125));
438
return;
439
case BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM:
440
// Let's do a bus reset and pick the local node as root, and thus, IRM.
441
stand_for_root = true;
442
break;
443
case BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM:
444
if (local_id == irm_id) {
445
// Only acts as IRM.
446
spin_unlock_irq(&card->lock);
447
allocate_broadcast_channel(card, generation);
448
spin_lock_irq(&card->lock);
449
}
450
fallthrough;
451
case BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM:
452
default:
453
card->bm_generation = generation;
454
break;
455
}
456
}
457
458
// We're bus manager for this generation, so next step is to make sure we have an active
459
// cycle master and do gap count optimization.
460
if (!stand_for_root) {
461
if (card->gap_count == GAP_COUNT_MISMATCHED) {
462
// If self IDs have inconsistent gap counts, do a
463
// bus reset ASAP. The config rom read might never
464
// complete, so don't wait for it. However, still
465
// send a PHY configuration packet prior to the
466
// bus reset. The PHY configuration packet might
467
// fail, but 1394-2008 8.4.5.2 explicitly permits
468
// it in this case, so it should be safe to try.
469
stand_for_root = true;
470
471
// We must always send a bus reset if the gap count
472
// is inconsistent, so bypass the 5-reset limit.
473
card->bm_retries = 0;
474
} else {
475
// Now investigate root node.
476
struct fw_device *root_device = fw_node_get_device(root_node);
477
478
if (root_device == NULL) {
479
// Either link_on is false, or we failed to read the
480
// config rom. In either case, pick another root.
481
stand_for_root = true;
482
} else {
483
bool root_device_is_running =
484
atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
485
486
if (!root_device_is_running) {
487
// If we haven't probed this device yet, bail out now
488
// and let's try again once that's done.
489
spin_unlock_irq(&card->lock);
490
return;
491
} else if (!root_device->cmc) {
492
// Current root has an active link layer and we
493
// successfully read the config rom, but it's not
494
// cycle master capable.
495
stand_for_root = true;
496
}
497
}
498
}
499
}
500
501
if (stand_for_root) {
502
new_root_id = local_id;
503
} else {
504
// We will send out a force root packet for this node as part of the gap count
505
// optimization on behalf of the node.
506
new_root_id = root_id;
507
}
508
509
/*
510
* Pick a gap count from 1394a table E-1. The table doesn't cover
511
* the typically much larger 1394b beta repeater delays though.
512
*/
513
if (!card->beta_repeaters_present &&
514
root_node->max_hops < ARRAY_SIZE(gap_count_table))
515
expected_gap_count = gap_count_table[root_node->max_hops];
516
else
517
expected_gap_count = 63;
518
519
// Finally, figure out if we should do a reset or not. If we have done less than 5 resets
520
// with the same physical topology and we have either a new root or a new gap count
521
// setting, let's do it.
522
if (card->bm_retries++ < 5 && (card->gap_count != expected_gap_count || new_root_id != root_id)) {
523
int card_gap_count = card->gap_count;
524
525
spin_unlock_irq(&card->lock);
526
527
fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
528
new_root_id, expected_gap_count);
529
fw_send_phy_config(card, new_root_id, generation, expected_gap_count);
530
/*
531
* Where possible, use a short bus reset to minimize
532
* disruption to isochronous transfers. But in the event
533
* of a gap count inconsistency, use a long bus reset.
534
*
535
* As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
536
* may set different gap counts after a bus reset. On a mixed
537
* 1394/1394a bus, a short bus reset can get doubled. Some
538
* nodes may treat the double reset as one bus reset and others
539
* may treat it as two, causing a gap count inconsistency
540
* again. Using a long bus reset prevents this.
541
*/
542
reset_bus(card, card_gap_count != 0);
543
/* Will allocate broadcast channel after the reset. */
544
} else {
545
struct fw_device *root_device = fw_node_get_device(root_node);
546
547
spin_unlock_irq(&card->lock);
548
549
if (root_device && root_device->cmc) {
550
// Make sure that the cycle master sends cycle start packets.
551
__be32 data = cpu_to_be32(CSR_STATE_BIT_CMSTR);
552
int rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
553
root_id, generation, SCODE_100,
554
CSR_REGISTER_BASE + CSR_STATE_SET,
555
&data, sizeof(data));
556
if (rcode == RCODE_GENERATION)
557
return;
558
}
559
560
if (local_id == irm_id)
561
allocate_broadcast_channel(card, generation);
562
}
563
}
564
565
void fw_card_initialize(struct fw_card *card,
566
const struct fw_card_driver *driver,
567
struct device *device)
568
{
569
static atomic_t index = ATOMIC_INIT(-1);
570
571
card->index = atomic_inc_return(&index);
572
card->driver = driver;
573
card->device = device;
574
575
card->transactions.current_tlabel = 0;
576
card->transactions.tlabel_mask = 0;
577
INIT_LIST_HEAD(&card->transactions.list);
578
spin_lock_init(&card->transactions.lock);
579
580
card->split_timeout.hi = DEFAULT_SPLIT_TIMEOUT / 8000;
581
card->split_timeout.lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
582
card->split_timeout.cycles = DEFAULT_SPLIT_TIMEOUT;
583
card->split_timeout.jiffies = isoc_cycles_to_jiffies(DEFAULT_SPLIT_TIMEOUT);
584
spin_lock_init(&card->split_timeout.lock);
585
586
card->color = 0;
587
card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
588
589
kref_init(&card->kref);
590
init_completion(&card->done);
591
592
spin_lock_init(&card->lock);
593
594
card->local_node = NULL;
595
596
INIT_DELAYED_WORK(&card->br_work, br_work);
597
INIT_DELAYED_WORK(&card->bm_work, bm_work);
598
}
599
EXPORT_SYMBOL(fw_card_initialize);
600
601
DEFINE_FREE(workqueue_destroy, struct workqueue_struct *, if (_T) destroy_workqueue(_T))
602
603
int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
604
unsigned int supported_isoc_contexts)
605
{
606
struct workqueue_struct *isoc_wq __free(workqueue_destroy) = NULL;
607
struct workqueue_struct *async_wq __free(workqueue_destroy) = NULL;
608
int ret;
609
610
// This workqueue should be:
611
// * != WQ_BH Sleepable.
612
// * == WQ_UNBOUND Any core can process data for isoc context. The
613
// implementation of unit protocol could consumes the core
614
// longer somehow.
615
// * != WQ_MEM_RECLAIM Not used for any backend of block device.
616
// * == WQ_FREEZABLE Isochronous communication is at regular interval in real
617
// time, thus should be drained if possible at freeze phase.
618
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
619
// * == WQ_SYSFS Parameters are available via sysfs.
620
// * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
621
// contexts if they are scheduled to the same cycle.
622
isoc_wq = alloc_workqueue("firewire-isoc-card%u",
623
WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
624
supported_isoc_contexts, card->index);
625
if (!isoc_wq)
626
return -ENOMEM;
627
628
// This workqueue should be:
629
// * != WQ_BH Sleepable.
630
// * == WQ_UNBOUND Any core can process data for asynchronous context.
631
// * == WQ_MEM_RECLAIM Used for any backend of block device.
632
// * == WQ_FREEZABLE The target device would not be available when being freezed.
633
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
634
// * == WQ_SYSFS Parameters are available via sysfs.
635
// * max_active == 4 A hardIRQ could notify events for a pair of requests and
636
// response AR/AT contexts.
637
async_wq = alloc_workqueue("firewire-async-card%u",
638
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
639
4, card->index);
640
if (!async_wq)
641
return -ENOMEM;
642
643
card->isoc_wq = isoc_wq;
644
card->async_wq = async_wq;
645
card->max_receive = max_receive;
646
card->link_speed = link_speed;
647
card->guid = guid;
648
649
scoped_guard(mutex, &card_mutex) {
650
generate_config_rom(card, tmp_config_rom);
651
ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
652
if (ret < 0) {
653
card->isoc_wq = NULL;
654
card->async_wq = NULL;
655
return ret;
656
}
657
retain_and_null_ptr(isoc_wq);
658
retain_and_null_ptr(async_wq);
659
660
list_add_tail(&card->link, &card_list);
661
}
662
663
return 0;
664
}
665
EXPORT_SYMBOL(fw_card_add);
666
667
/*
668
* The next few functions implement a dummy driver that is used once a card
669
* driver shuts down an fw_card. This allows the driver to cleanly unload,
670
* as all IO to the card will be handled (and failed) by the dummy driver
671
* instead of calling into the module. Only functions for iso context
672
* shutdown still need to be provided by the card driver.
673
*
674
* .read/write_csr() should never be called anymore after the dummy driver
675
* was bound since they are only used within request handler context.
676
* .set_config_rom() is never called since the card is taken out of card_list
677
* before switching to the dummy driver.
678
*/
679
680
static int dummy_read_phy_reg(struct fw_card *card, int address)
681
{
682
return -ENODEV;
683
}
684
685
static int dummy_update_phy_reg(struct fw_card *card, int address,
686
int clear_bits, int set_bits)
687
{
688
return -ENODEV;
689
}
690
691
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
692
{
693
packet->callback(packet, card, RCODE_CANCELLED);
694
}
695
696
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
697
{
698
packet->callback(packet, card, RCODE_CANCELLED);
699
}
700
701
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
702
{
703
return -ENOENT;
704
}
705
706
static int dummy_enable_phys_dma(struct fw_card *card,
707
int node_id, int generation)
708
{
709
return -ENODEV;
710
}
711
712
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
713
int type, int channel, size_t header_size)
714
{
715
return ERR_PTR(-ENODEV);
716
}
717
718
static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
719
{
720
return 0;
721
}
722
723
static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
724
{
725
}
726
727
static int dummy_start_iso(struct fw_iso_context *ctx,
728
s32 cycle, u32 sync, u32 tags)
729
{
730
return -ENODEV;
731
}
732
733
static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
734
{
735
return -ENODEV;
736
}
737
738
static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
739
struct fw_iso_buffer *buffer, unsigned long payload)
740
{
741
return -ENODEV;
742
}
743
744
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
745
{
746
}
747
748
static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
749
{
750
return -ENODEV;
751
}
752
753
static const struct fw_card_driver dummy_driver_template = {
754
.read_phy_reg = dummy_read_phy_reg,
755
.update_phy_reg = dummy_update_phy_reg,
756
.send_request = dummy_send_request,
757
.send_response = dummy_send_response,
758
.cancel_packet = dummy_cancel_packet,
759
.enable_phys_dma = dummy_enable_phys_dma,
760
.read_csr = dummy_read_csr,
761
.write_csr = dummy_write_csr,
762
.allocate_iso_context = dummy_allocate_iso_context,
763
.start_iso = dummy_start_iso,
764
.set_iso_channels = dummy_set_iso_channels,
765
.queue_iso = dummy_queue_iso,
766
.flush_queue_iso = dummy_flush_queue_iso,
767
.flush_iso_completions = dummy_flush_iso_completions,
768
};
769
770
void fw_card_release(struct kref *kref)
771
{
772
struct fw_card *card = container_of(kref, struct fw_card, kref);
773
774
complete(&card->done);
775
}
776
EXPORT_SYMBOL_GPL(fw_card_release);
777
778
void fw_core_remove_card(struct fw_card *card)
779
{
780
struct fw_card_driver dummy_driver = dummy_driver_template;
781
782
might_sleep();
783
784
card->driver->update_phy_reg(card, 4,
785
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
786
fw_schedule_bus_reset(card, false, true);
787
788
scoped_guard(mutex, &card_mutex)
789
list_del_init(&card->link);
790
791
/* Switch off most of the card driver interface. */
792
dummy_driver.free_iso_context = card->driver->free_iso_context;
793
dummy_driver.stop_iso = card->driver->stop_iso;
794
card->driver = &dummy_driver;
795
drain_workqueue(card->isoc_wq);
796
drain_workqueue(card->async_wq);
797
798
scoped_guard(spinlock_irqsave, &card->lock)
799
fw_destroy_nodes(card);
800
801
/* Wait for all users, especially device workqueue jobs, to finish. */
802
fw_card_put(card);
803
wait_for_completion(&card->done);
804
805
destroy_workqueue(card->isoc_wq);
806
destroy_workqueue(card->async_wq);
807
808
WARN_ON(!list_empty(&card->transactions.list));
809
}
810
EXPORT_SYMBOL(fw_core_remove_card);
811
812
/**
813
* fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
814
* for controller card.
815
* @card: The instance of card for 1394 OHCI controller.
816
* @cycle_time: The mutual reference to value of cycle time for the read operation.
817
*
818
* Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
819
* controller card. This function accesses the region without any lock primitives or IRQ mask.
820
* When returning successfully, the content of @value argument has value aligned to host endianness,
821
* formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
822
*
823
* Context: Any context.
824
* Return:
825
* * 0 - Read successfully.
826
* * -ENODEV - The controller is unavailable due to being removed or unbound.
827
*/
828
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
829
{
830
if (card->driver->read_csr == dummy_read_csr)
831
return -ENODEV;
832
833
// It's possible to switch to dummy driver between the above and the below. This is the best
834
// effort to return -ENODEV.
835
*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
836
return 0;
837
}
838
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
839
840