Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-device.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Device probing and sysfs code.
4
*
5
* Copyright (C) 2005-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bug.h>
9
#include <linux/ctype.h>
10
#include <linux/delay.h>
11
#include <linux/device.h>
12
#include <linux/errno.h>
13
#include <linux/firewire.h>
14
#include <linux/firewire-constants.h>
15
#include <linux/jiffies.h>
16
#include <linux/kobject.h>
17
#include <linux/list.h>
18
#include <linux/mod_devicetable.h>
19
#include <linux/module.h>
20
#include <linux/mutex.h>
21
#include <linux/random.h>
22
#include <linux/rwsem.h>
23
#include <linux/slab.h>
24
#include <linux/spinlock.h>
25
#include <linux/string.h>
26
#include <linux/workqueue.h>
27
28
#include <linux/atomic.h>
29
#include <asm/byteorder.h>
30
31
#include "core.h"
32
33
#define ROOT_DIR_OFFSET 5
34
35
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
36
{
37
ci->p = p + 1;
38
ci->end = ci->p + (p[0] >> 16);
39
}
40
EXPORT_SYMBOL(fw_csr_iterator_init);
41
42
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
43
{
44
*key = *ci->p >> 24;
45
*value = *ci->p & 0xffffff;
46
47
return ci->p++ < ci->end;
48
}
49
EXPORT_SYMBOL(fw_csr_iterator_next);
50
51
static const u32 *search_directory(const u32 *directory, int search_key)
52
{
53
struct fw_csr_iterator ci;
54
int key, value;
55
56
search_key |= CSR_DIRECTORY;
57
58
fw_csr_iterator_init(&ci, directory);
59
while (fw_csr_iterator_next(&ci, &key, &value)) {
60
if (key == search_key)
61
return ci.p - 1 + value;
62
}
63
64
return NULL;
65
}
66
67
static const u32 *search_leaf(const u32 *directory, int search_key)
68
{
69
struct fw_csr_iterator ci;
70
int last_key = 0, key, value;
71
72
fw_csr_iterator_init(&ci, directory);
73
while (fw_csr_iterator_next(&ci, &key, &value)) {
74
if (last_key == search_key &&
75
key == (CSR_DESCRIPTOR | CSR_LEAF))
76
return ci.p - 1 + value;
77
78
last_key = key;
79
}
80
81
return NULL;
82
}
83
84
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
85
{
86
unsigned int quadlets, i;
87
char c;
88
89
if (!size || !buf)
90
return -EINVAL;
91
92
quadlets = min(block[0] >> 16, 256U);
93
if (quadlets < 2)
94
return -ENODATA;
95
96
if (block[1] != 0 || block[2] != 0)
97
/* unknown language/character set */
98
return -ENODATA;
99
100
block += 3;
101
quadlets -= 2;
102
for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
103
c = block[i / 4] >> (24 - 8 * (i % 4));
104
if (c == '\0')
105
break;
106
buf[i] = c;
107
}
108
buf[i] = '\0';
109
110
return i;
111
}
112
113
/**
114
* fw_csr_string() - reads a string from the configuration ROM
115
* @directory: e.g. root directory or unit directory
116
* @key: the key of the preceding directory entry
117
* @buf: where to put the string
118
* @size: size of @buf, in bytes
119
*
120
* The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
121
* @key. The string is zero-terminated. An overlong string is silently truncated such that it
122
* and the zero byte fit into @size.
123
*
124
* Returns strlen(buf) or a negative error code.
125
*/
126
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
127
{
128
const u32 *leaf = search_leaf(directory, key);
129
if (!leaf)
130
return -ENOENT;
131
132
return textual_leaf_to_string(leaf, buf, size);
133
}
134
EXPORT_SYMBOL(fw_csr_string);
135
136
static void get_ids(const u32 *directory, int *id)
137
{
138
struct fw_csr_iterator ci;
139
int key, value;
140
141
fw_csr_iterator_init(&ci, directory);
142
while (fw_csr_iterator_next(&ci, &key, &value)) {
143
switch (key) {
144
case CSR_VENDOR: id[0] = value; break;
145
case CSR_MODEL: id[1] = value; break;
146
case CSR_SPECIFIER_ID: id[2] = value; break;
147
case CSR_VERSION: id[3] = value; break;
148
}
149
}
150
}
151
152
static void get_modalias_ids(const struct fw_unit *unit, int *id)
153
{
154
const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
155
const u32 *directories[] = {NULL, NULL, NULL};
156
const u32 *vendor_directory;
157
int i;
158
159
directories[0] = root_directory;
160
161
// Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
162
// Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
163
vendor_directory = search_directory(root_directory, CSR_VENDOR);
164
if (!vendor_directory) {
165
directories[1] = unit->directory;
166
} else {
167
directories[1] = vendor_directory;
168
directories[2] = unit->directory;
169
}
170
171
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
172
get_ids(directories[i], id);
173
}
174
175
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
176
{
177
int match = 0;
178
179
if (id[0] == id_table->vendor_id)
180
match |= IEEE1394_MATCH_VENDOR_ID;
181
if (id[1] == id_table->model_id)
182
match |= IEEE1394_MATCH_MODEL_ID;
183
if (id[2] == id_table->specifier_id)
184
match |= IEEE1394_MATCH_SPECIFIER_ID;
185
if (id[3] == id_table->version)
186
match |= IEEE1394_MATCH_VERSION;
187
188
return (match & id_table->match_flags) == id_table->match_flags;
189
}
190
191
static const struct ieee1394_device_id *unit_match(struct device *dev,
192
const struct device_driver *drv)
193
{
194
const struct ieee1394_device_id *id_table =
195
container_of_const(drv, struct fw_driver, driver)->id_table;
196
int id[] = {0, 0, 0, 0};
197
198
get_modalias_ids(fw_unit(dev), id);
199
200
for (; id_table->match_flags != 0; id_table++)
201
if (match_ids(id_table, id))
202
return id_table;
203
204
return NULL;
205
}
206
207
static bool is_fw_unit(const struct device *dev);
208
209
static int fw_unit_match(struct device *dev, const struct device_driver *drv)
210
{
211
/* We only allow binding to fw_units. */
212
return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
213
}
214
215
static int fw_unit_probe(struct device *dev)
216
{
217
struct fw_driver *driver =
218
container_of(dev->driver, struct fw_driver, driver);
219
220
return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
221
}
222
223
static void fw_unit_remove(struct device *dev)
224
{
225
struct fw_driver *driver =
226
container_of(dev->driver, struct fw_driver, driver);
227
228
driver->remove(fw_unit(dev));
229
}
230
231
static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
232
{
233
int id[] = {0, 0, 0, 0};
234
235
get_modalias_ids(unit, id);
236
237
return snprintf(buffer, buffer_size,
238
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
239
id[0], id[1], id[2], id[3]);
240
}
241
242
static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
243
{
244
const struct fw_unit *unit = fw_unit(dev);
245
char modalias[64];
246
247
get_modalias(unit, modalias, sizeof(modalias));
248
249
if (add_uevent_var(env, "MODALIAS=%s", modalias))
250
return -ENOMEM;
251
252
return 0;
253
}
254
255
const struct bus_type fw_bus_type = {
256
.name = "firewire",
257
.match = fw_unit_match,
258
.probe = fw_unit_probe,
259
.remove = fw_unit_remove,
260
};
261
EXPORT_SYMBOL(fw_bus_type);
262
263
int fw_device_enable_phys_dma(struct fw_device *device)
264
{
265
int generation = device->generation;
266
267
/* device->node_id, accessed below, must not be older than generation */
268
smp_rmb();
269
270
return device->card->driver->enable_phys_dma(device->card,
271
device->node_id,
272
generation);
273
}
274
EXPORT_SYMBOL(fw_device_enable_phys_dma);
275
276
struct config_rom_attribute {
277
struct device_attribute attr;
278
u32 key;
279
};
280
281
static ssize_t show_immediate(struct device *dev,
282
struct device_attribute *dattr, char *buf)
283
{
284
struct config_rom_attribute *attr =
285
container_of(dattr, struct config_rom_attribute, attr);
286
struct fw_csr_iterator ci;
287
const u32 *directories[] = {NULL, NULL};
288
int i, value = -1;
289
290
guard(rwsem_read)(&fw_device_rwsem);
291
292
if (is_fw_unit(dev)) {
293
directories[0] = fw_unit(dev)->directory;
294
} else {
295
const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
296
const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
297
298
if (!vendor_directory) {
299
directories[0] = root_directory;
300
} else {
301
// Legacy layout of configuration ROM described in Annex 1 of
302
// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
303
// Association, TA Document 1999027)'.
304
directories[0] = vendor_directory;
305
directories[1] = root_directory;
306
}
307
}
308
309
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
310
int key, val;
311
312
fw_csr_iterator_init(&ci, directories[i]);
313
while (fw_csr_iterator_next(&ci, &key, &val)) {
314
if (attr->key == key)
315
value = val;
316
}
317
}
318
319
if (value < 0)
320
return -ENOENT;
321
322
// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
323
return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
324
}
325
326
#define IMMEDIATE_ATTR(name, key) \
327
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
328
329
static ssize_t show_text_leaf(struct device *dev,
330
struct device_attribute *dattr, char *buf)
331
{
332
struct config_rom_attribute *attr =
333
container_of(dattr, struct config_rom_attribute, attr);
334
const u32 *directories[] = {NULL, NULL};
335
size_t bufsize;
336
char dummy_buf[2];
337
int i, ret = -ENOENT;
338
339
guard(rwsem_read)(&fw_device_rwsem);
340
341
if (is_fw_unit(dev)) {
342
directories[0] = fw_unit(dev)->directory;
343
} else {
344
const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
345
const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
346
347
if (!vendor_directory) {
348
directories[0] = root_directory;
349
} else {
350
// Legacy layout of configuration ROM described in Annex 1 of
351
// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
352
// Trading Association, TA Document 1999027)'.
353
directories[0] = root_directory;
354
directories[1] = vendor_directory;
355
}
356
}
357
358
// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
359
if (buf) {
360
bufsize = PAGE_SIZE - 1;
361
} else {
362
buf = dummy_buf;
363
bufsize = 1;
364
}
365
366
for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
367
int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
368
// Detected.
369
if (result >= 0) {
370
ret = result;
371
} else if (i == 0 && attr->key == CSR_VENDOR) {
372
// Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
373
// in the root directory follows to the directory entry for vendor ID
374
// instead of the immediate value for vendor ID.
375
result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
376
bufsize);
377
if (result >= 0)
378
ret = result;
379
}
380
}
381
382
if (ret < 0)
383
return ret;
384
385
// Strip trailing whitespace and add newline.
386
while (ret > 0 && isspace(buf[ret - 1]))
387
ret--;
388
strcpy(buf + ret, "\n");
389
ret++;
390
391
return ret;
392
}
393
394
#define TEXT_LEAF_ATTR(name, key) \
395
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
396
397
static struct config_rom_attribute config_rom_attributes[] = {
398
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
399
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
400
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
401
IMMEDIATE_ATTR(version, CSR_VERSION),
402
IMMEDIATE_ATTR(model, CSR_MODEL),
403
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
404
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
405
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
406
};
407
408
static void init_fw_attribute_group(struct device *dev,
409
struct device_attribute *attrs,
410
struct fw_attribute_group *group)
411
{
412
struct device_attribute *attr;
413
int i, j;
414
415
for (j = 0; attrs[j].attr.name != NULL; j++)
416
group->attrs[j] = &attrs[j].attr;
417
418
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
419
attr = &config_rom_attributes[i].attr;
420
if (attr->show(dev, attr, NULL) < 0)
421
continue;
422
group->attrs[j++] = &attr->attr;
423
}
424
425
group->attrs[j] = NULL;
426
group->groups[0] = &group->group;
427
group->groups[1] = NULL;
428
group->group.attrs = group->attrs;
429
dev->groups = (const struct attribute_group **) group->groups;
430
}
431
432
static ssize_t modalias_show(struct device *dev,
433
struct device_attribute *attr, char *buf)
434
{
435
struct fw_unit *unit = fw_unit(dev);
436
int length;
437
438
length = get_modalias(unit, buf, PAGE_SIZE);
439
strcpy(buf + length, "\n");
440
441
return length + 1;
442
}
443
444
static ssize_t rom_index_show(struct device *dev,
445
struct device_attribute *attr, char *buf)
446
{
447
struct fw_device *device = fw_device(dev->parent);
448
struct fw_unit *unit = fw_unit(dev);
449
450
return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
451
}
452
453
static struct device_attribute fw_unit_attributes[] = {
454
__ATTR_RO(modalias),
455
__ATTR_RO(rom_index),
456
__ATTR_NULL,
457
};
458
459
static ssize_t config_rom_show(struct device *dev,
460
struct device_attribute *attr, char *buf)
461
{
462
struct fw_device *device = fw_device(dev);
463
size_t length;
464
465
guard(rwsem_read)(&fw_device_rwsem);
466
467
length = device->config_rom_length * 4;
468
memcpy(buf, device->config_rom, length);
469
470
return length;
471
}
472
473
static ssize_t guid_show(struct device *dev,
474
struct device_attribute *attr, char *buf)
475
{
476
struct fw_device *device = fw_device(dev);
477
478
guard(rwsem_read)(&fw_device_rwsem);
479
480
return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
481
}
482
483
static ssize_t is_local_show(struct device *dev,
484
struct device_attribute *attr, char *buf)
485
{
486
struct fw_device *device = fw_device(dev);
487
488
return sysfs_emit(buf, "%u\n", device->is_local);
489
}
490
491
static int units_sprintf(char *buf, const u32 *directory)
492
{
493
struct fw_csr_iterator ci;
494
int key, value;
495
int specifier_id = 0;
496
int version = 0;
497
498
fw_csr_iterator_init(&ci, directory);
499
while (fw_csr_iterator_next(&ci, &key, &value)) {
500
switch (key) {
501
case CSR_SPECIFIER_ID:
502
specifier_id = value;
503
break;
504
case CSR_VERSION:
505
version = value;
506
break;
507
}
508
}
509
510
return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
511
}
512
513
static ssize_t units_show(struct device *dev,
514
struct device_attribute *attr, char *buf)
515
{
516
struct fw_device *device = fw_device(dev);
517
struct fw_csr_iterator ci;
518
int key, value, i = 0;
519
520
guard(rwsem_read)(&fw_device_rwsem);
521
522
fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
523
while (fw_csr_iterator_next(&ci, &key, &value)) {
524
if (key != (CSR_UNIT | CSR_DIRECTORY))
525
continue;
526
i += units_sprintf(&buf[i], ci.p + value - 1);
527
if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
528
break;
529
}
530
531
if (i)
532
buf[i - 1] = '\n';
533
534
return i;
535
}
536
537
static struct device_attribute fw_device_attributes[] = {
538
__ATTR_RO(config_rom),
539
__ATTR_RO(guid),
540
__ATTR_RO(is_local),
541
__ATTR_RO(units),
542
__ATTR_NULL,
543
};
544
545
static int read_rom(struct fw_device *device,
546
int generation, int index, u32 *data)
547
{
548
u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
549
int i, rcode;
550
551
/* device->node_id, accessed below, must not be older than generation */
552
smp_rmb();
553
554
for (i = 10; i < 100; i += 10) {
555
rcode = fw_run_transaction(device->card,
556
TCODE_READ_QUADLET_REQUEST, device->node_id,
557
generation, device->max_speed, offset, data, 4);
558
if (rcode != RCODE_BUSY)
559
break;
560
msleep(i);
561
}
562
be32_to_cpus(data);
563
564
return rcode;
565
}
566
567
// By quadlet unit.
568
#define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
569
570
/*
571
* Read the bus info block, perform a speed probe, and read all of the rest of
572
* the config ROM. We do all this with a cached bus generation. If the bus
573
* generation changes under us, read_config_rom will fail and get retried.
574
* It's better to start all over in this case because the node from which we
575
* are reading the ROM may have changed the ROM during the reset.
576
* Returns either a result code or a negative error code.
577
*/
578
static int read_config_rom(struct fw_device *device, int generation)
579
{
580
struct fw_card *card = device->card;
581
const u32 *old_rom, *new_rom;
582
u32 *rom, *stack;
583
u32 sp, key;
584
int i, end, length, ret;
585
586
rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
587
sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
588
if (rom == NULL)
589
return -ENOMEM;
590
591
stack = &rom[MAX_CONFIG_ROM_SIZE];
592
memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
593
594
device->max_speed = SCODE_100;
595
596
/* First read the bus info block. */
597
for (i = 0; i < 5; i++) {
598
ret = read_rom(device, generation, i, &rom[i]);
599
if (ret != RCODE_COMPLETE)
600
goto out;
601
/*
602
* As per IEEE1212 7.2, during initialization, devices can
603
* reply with a 0 for the first quadlet of the config
604
* rom to indicate that they are booting (for example,
605
* if the firmware is on the disk of a external
606
* harddisk). In that case we just fail, and the
607
* retry mechanism will try again later.
608
*/
609
if (i == 0 && rom[i] == 0) {
610
ret = RCODE_BUSY;
611
goto out;
612
}
613
}
614
615
device->max_speed = device->node->max_speed;
616
617
/*
618
* Determine the speed of
619
* - devices with link speed less than PHY speed,
620
* - devices with 1394b PHY (unless only connected to 1394a PHYs),
621
* - all devices if there are 1394b repeaters.
622
* Note, we cannot use the bus info block's link_spd as starting point
623
* because some buggy firmwares set it lower than necessary and because
624
* 1394-1995 nodes do not have the field.
625
*/
626
if ((rom[2] & 0x7) < device->max_speed ||
627
device->max_speed == SCODE_BETA ||
628
card->beta_repeaters_present) {
629
u32 dummy;
630
631
/* for S1600 and S3200 */
632
if (device->max_speed == SCODE_BETA)
633
device->max_speed = card->link_speed;
634
635
while (device->max_speed > SCODE_100) {
636
if (read_rom(device, generation, 0, &dummy) ==
637
RCODE_COMPLETE)
638
break;
639
device->max_speed--;
640
}
641
}
642
643
/*
644
* Now parse the config rom. The config rom is a recursive
645
* directory structure so we parse it using a stack of
646
* references to the blocks that make up the structure. We
647
* push a reference to the root directory on the stack to
648
* start things off.
649
*/
650
length = i;
651
sp = 0;
652
stack[sp++] = 0xc0000005;
653
while (sp > 0) {
654
/*
655
* Pop the next block reference of the stack. The
656
* lower 24 bits is the offset into the config rom,
657
* the upper 8 bits are the type of the reference the
658
* block.
659
*/
660
key = stack[--sp];
661
i = key & 0xffffff;
662
if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
663
ret = -ENXIO;
664
goto out;
665
}
666
667
/* Read header quadlet for the block to get the length. */
668
ret = read_rom(device, generation, i, &rom[i]);
669
if (ret != RCODE_COMPLETE)
670
goto out;
671
end = i + (rom[i] >> 16) + 1;
672
if (end > MAX_CONFIG_ROM_SIZE) {
673
/*
674
* This block extends outside the config ROM which is
675
* a firmware bug. Ignore this whole block, i.e.
676
* simply set a fake block length of 0.
677
*/
678
fw_err(card, "skipped invalid ROM block %x at %llx\n",
679
rom[i],
680
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
681
rom[i] = 0;
682
end = i;
683
}
684
i++;
685
686
/*
687
* Now read in the block. If this is a directory
688
* block, check the entries as we read them to see if
689
* it references another block, and push it in that case.
690
*/
691
for (; i < end; i++) {
692
ret = read_rom(device, generation, i, &rom[i]);
693
if (ret != RCODE_COMPLETE)
694
goto out;
695
696
if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
697
continue;
698
/*
699
* Offset points outside the ROM. May be a firmware
700
* bug or an Extended ROM entry (IEEE 1212-2001 clause
701
* 7.7.18). Simply overwrite this pointer here by a
702
* fake immediate entry so that later iterators over
703
* the ROM don't have to check offsets all the time.
704
*/
705
if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
706
fw_err(card,
707
"skipped unsupported ROM entry %x at %llx\n",
708
rom[i],
709
i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
710
rom[i] = 0;
711
continue;
712
}
713
stack[sp++] = i + rom[i];
714
}
715
if (length < i)
716
length = i;
717
}
718
719
old_rom = device->config_rom;
720
new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
721
if (new_rom == NULL) {
722
ret = -ENOMEM;
723
goto out;
724
}
725
726
scoped_guard(rwsem_write, &fw_device_rwsem) {
727
device->config_rom = new_rom;
728
device->config_rom_length = length;
729
}
730
731
kfree(old_rom);
732
ret = RCODE_COMPLETE;
733
device->max_rec = rom[2] >> 12 & 0xf;
734
device->cmc = rom[2] >> 30 & 1;
735
device->irmc = rom[2] >> 31 & 1;
736
out:
737
kfree(rom);
738
739
return ret;
740
}
741
742
static void fw_unit_release(struct device *dev)
743
{
744
struct fw_unit *unit = fw_unit(dev);
745
746
fw_device_put(fw_parent_device(unit));
747
kfree(unit);
748
}
749
750
static struct device_type fw_unit_type = {
751
.uevent = fw_unit_uevent,
752
.release = fw_unit_release,
753
};
754
755
static bool is_fw_unit(const struct device *dev)
756
{
757
return dev->type == &fw_unit_type;
758
}
759
760
static void create_units(struct fw_device *device)
761
{
762
struct fw_csr_iterator ci;
763
struct fw_unit *unit;
764
int key, value, i;
765
766
i = 0;
767
fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
768
while (fw_csr_iterator_next(&ci, &key, &value)) {
769
if (key != (CSR_UNIT | CSR_DIRECTORY))
770
continue;
771
772
/*
773
* Get the address of the unit directory and try to
774
* match the drivers id_tables against it.
775
*/
776
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
777
if (unit == NULL)
778
continue;
779
780
unit->directory = ci.p + value - 1;
781
unit->device.bus = &fw_bus_type;
782
unit->device.type = &fw_unit_type;
783
unit->device.parent = &device->device;
784
dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
785
786
BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
787
ARRAY_SIZE(fw_unit_attributes) +
788
ARRAY_SIZE(config_rom_attributes));
789
init_fw_attribute_group(&unit->device,
790
fw_unit_attributes,
791
&unit->attribute_group);
792
793
fw_device_get(device);
794
if (device_register(&unit->device) < 0) {
795
put_device(&unit->device);
796
continue;
797
}
798
}
799
}
800
801
static int shutdown_unit(struct device *device, void *data)
802
{
803
device_unregister(device);
804
805
return 0;
806
}
807
808
/*
809
* fw_device_rwsem acts as dual purpose mutex:
810
* - serializes accesses to fw_device.config_rom/.config_rom_length and
811
* fw_unit.directory, unless those accesses happen at safe occasions
812
*/
813
DECLARE_RWSEM(fw_device_rwsem);
814
815
DEFINE_XARRAY_ALLOC(fw_device_xa);
816
int fw_cdev_major;
817
818
struct fw_device *fw_device_get_by_devt(dev_t devt)
819
{
820
struct fw_device *device;
821
822
device = xa_load(&fw_device_xa, MINOR(devt));
823
if (device)
824
fw_device_get(device);
825
826
return device;
827
}
828
829
struct workqueue_struct *fw_workqueue;
830
EXPORT_SYMBOL(fw_workqueue);
831
832
static void fw_schedule_device_work(struct fw_device *device,
833
unsigned long delay)
834
{
835
queue_delayed_work(fw_workqueue, &device->work, delay);
836
}
837
838
/*
839
* These defines control the retry behavior for reading the config
840
* rom. It shouldn't be necessary to tweak these; if the device
841
* doesn't respond to a config rom read within 10 seconds, it's not
842
* going to respond at all. As for the initial delay, a lot of
843
* devices will be able to respond within half a second after bus
844
* reset. On the other hand, it's not really worth being more
845
* aggressive than that, since it scales pretty well; if 10 devices
846
* are plugged in, they're all getting read within one second.
847
*/
848
849
#define MAX_RETRIES 10
850
#define RETRY_DELAY secs_to_jiffies(3)
851
#define INITIAL_DELAY msecs_to_jiffies(500)
852
#define SHUTDOWN_DELAY secs_to_jiffies(2)
853
854
static void fw_device_shutdown(struct work_struct *work)
855
{
856
struct fw_device *device = from_work(device, work, work.work);
857
858
if (time_is_after_jiffies64(device->card->reset_jiffies + SHUTDOWN_DELAY)
859
&& !list_empty(&device->card->link)) {
860
fw_schedule_device_work(device, SHUTDOWN_DELAY);
861
return;
862
}
863
864
if (atomic_cmpxchg(&device->state,
865
FW_DEVICE_GONE,
866
FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
867
return;
868
869
fw_device_cdev_remove(device);
870
device_for_each_child(&device->device, NULL, shutdown_unit);
871
device_unregister(&device->device);
872
873
xa_erase(&fw_device_xa, MINOR(device->device.devt));
874
875
fw_device_put(device);
876
}
877
878
static void fw_device_release(struct device *dev)
879
{
880
struct fw_device *device = fw_device(dev);
881
struct fw_card *card = device->card;
882
883
/*
884
* Take the card lock so we don't set this to NULL while a
885
* FW_NODE_UPDATED callback is being handled or while the
886
* bus manager work looks at this node.
887
*/
888
scoped_guard(spinlock_irqsave, &card->lock)
889
fw_node_set_device(device->node, NULL);
890
891
fw_node_put(device->node);
892
kfree(device->config_rom);
893
kfree(device);
894
fw_card_put(card);
895
}
896
897
static struct device_type fw_device_type = {
898
.release = fw_device_release,
899
};
900
901
static bool is_fw_device(const struct device *dev)
902
{
903
return dev->type == &fw_device_type;
904
}
905
906
static int update_unit(struct device *dev, void *data)
907
{
908
struct fw_unit *unit = fw_unit(dev);
909
struct fw_driver *driver = (struct fw_driver *)dev->driver;
910
911
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
912
device_lock(dev);
913
driver->update(unit);
914
device_unlock(dev);
915
}
916
917
return 0;
918
}
919
920
static void fw_device_update(struct work_struct *work)
921
{
922
struct fw_device *device = from_work(device, work, work.work);
923
924
fw_device_cdev_update(device);
925
device_for_each_child(&device->device, NULL, update_unit);
926
}
927
928
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
929
930
static void set_broadcast_channel(struct fw_device *device, int generation)
931
{
932
struct fw_card *card = device->card;
933
__be32 data;
934
int rcode;
935
936
if (!card->broadcast_channel_allocated)
937
return;
938
939
/*
940
* The Broadcast_Channel Valid bit is required by nodes which want to
941
* transmit on this channel. Such transmissions are practically
942
* exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
943
* to be IRM capable and have a max_rec of 8 or more. We use this fact
944
* to narrow down to which nodes we send Broadcast_Channel updates.
945
*/
946
if (!device->irmc || device->max_rec < 8)
947
return;
948
949
/*
950
* Some 1394-1995 nodes crash if this 1394a-2000 register is written.
951
* Perform a read test first.
952
*/
953
if (device->bc_implemented == BC_UNKNOWN) {
954
rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
955
device->node_id, generation, device->max_speed,
956
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
957
&data, 4);
958
switch (rcode) {
959
case RCODE_COMPLETE:
960
if (data & cpu_to_be32(1 << 31)) {
961
device->bc_implemented = BC_IMPLEMENTED;
962
break;
963
}
964
fallthrough; /* to case address error */
965
case RCODE_ADDRESS_ERROR:
966
device->bc_implemented = BC_UNIMPLEMENTED;
967
}
968
}
969
970
if (device->bc_implemented == BC_IMPLEMENTED) {
971
data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
972
BROADCAST_CHANNEL_VALID);
973
fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
974
device->node_id, generation, device->max_speed,
975
CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
976
&data, 4);
977
}
978
}
979
980
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
981
{
982
if (is_fw_device(dev))
983
set_broadcast_channel(fw_device(dev), (long)gen);
984
985
return 0;
986
}
987
988
static int compare_configuration_rom(struct device *dev, const void *data)
989
{
990
const struct fw_device *old = fw_device(dev);
991
const u32 *config_rom = data;
992
993
if (!is_fw_device(dev))
994
return 0;
995
996
// Compare the bus information block and root_length/root_crc.
997
return !memcmp(old->config_rom, config_rom, 6 * 4);
998
}
999
1000
static void fw_device_init(struct work_struct *work)
1001
{
1002
struct fw_device *device = from_work(device, work, work.work);
1003
struct fw_card *card = device->card;
1004
struct device *found;
1005
u32 minor;
1006
int ret;
1007
1008
/*
1009
* All failure paths here call fw_node_set_device(node, NULL), so that we
1010
* don't try to do device_for_each_child() on a kfree()'d
1011
* device.
1012
*/
1013
1014
ret = read_config_rom(device, device->generation);
1015
if (ret != RCODE_COMPLETE) {
1016
if (device->config_rom_retries < MAX_RETRIES &&
1017
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1018
device->config_rom_retries++;
1019
fw_schedule_device_work(device, RETRY_DELAY);
1020
} else {
1021
if (device->node->link_on)
1022
fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1023
device->node_id,
1024
fw_rcode_string(ret));
1025
if (device->node == card->root_node)
1026
fw_schedule_bm_work(card, 0);
1027
fw_device_release(&device->device);
1028
}
1029
return;
1030
}
1031
1032
// If a device was pending for deletion because its node went away but its bus info block
1033
// and root directory header matches that of a newly discovered device, revive the
1034
// existing fw_device. The newly allocated fw_device becomes obsolete instead.
1035
//
1036
// serialize config_rom access.
1037
scoped_guard(rwsem_read, &fw_device_rwsem) {
1038
found = device_find_child(card->device, device->config_rom,
1039
compare_configuration_rom);
1040
}
1041
if (found) {
1042
struct fw_device *reused = fw_device(found);
1043
1044
if (atomic_cmpxchg(&reused->state,
1045
FW_DEVICE_GONE,
1046
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1047
// serialize node access
1048
scoped_guard(spinlock_irq, &card->lock) {
1049
struct fw_node *current_node = device->node;
1050
struct fw_node *obsolete_node = reused->node;
1051
1052
device->node = obsolete_node;
1053
fw_node_set_device(device->node, device);
1054
reused->node = current_node;
1055
fw_node_set_device(reused->node, reused);
1056
1057
reused->max_speed = device->max_speed;
1058
reused->node_id = current_node->node_id;
1059
smp_wmb(); /* update node_id before generation */
1060
reused->generation = card->generation;
1061
reused->config_rom_retries = 0;
1062
fw_notice(card, "rediscovered device %s\n",
1063
dev_name(found));
1064
1065
reused->workfn = fw_device_update;
1066
fw_schedule_device_work(reused, 0);
1067
1068
if (current_node == card->root_node)
1069
fw_schedule_bm_work(card, 0);
1070
}
1071
1072
put_device(found);
1073
fw_device_release(&device->device);
1074
1075
return;
1076
}
1077
1078
put_device(found);
1079
}
1080
1081
device_initialize(&device->device);
1082
1083
fw_device_get(device);
1084
1085
// The index of allocated entry is used for minor identifier of device node.
1086
ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1087
if (ret < 0)
1088
goto error;
1089
1090
device->device.bus = &fw_bus_type;
1091
device->device.type = &fw_device_type;
1092
device->device.parent = card->device;
1093
device->device.devt = MKDEV(fw_cdev_major, minor);
1094
dev_set_name(&device->device, "fw%d", minor);
1095
1096
BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1097
ARRAY_SIZE(fw_device_attributes) +
1098
ARRAY_SIZE(config_rom_attributes));
1099
init_fw_attribute_group(&device->device,
1100
fw_device_attributes,
1101
&device->attribute_group);
1102
1103
if (device_add(&device->device)) {
1104
fw_err(card, "failed to add device\n");
1105
goto error_with_cdev;
1106
}
1107
1108
create_units(device);
1109
1110
/*
1111
* Transition the device to running state. If it got pulled
1112
* out from under us while we did the initialization work, we
1113
* have to shut down the device again here. Normally, though,
1114
* fw_node_event will be responsible for shutting it down when
1115
* necessary. We have to use the atomic cmpxchg here to avoid
1116
* racing with the FW_NODE_DESTROYED case in
1117
* fw_node_event().
1118
*/
1119
if (atomic_cmpxchg(&device->state,
1120
FW_DEVICE_INITIALIZING,
1121
FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1122
device->workfn = fw_device_shutdown;
1123
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1124
} else {
1125
fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1126
dev_name(&device->device),
1127
device->config_rom[3], device->config_rom[4],
1128
1 << device->max_speed);
1129
device->config_rom_retries = 0;
1130
1131
set_broadcast_channel(device, device->generation);
1132
1133
add_device_randomness(&device->config_rom[3], 8);
1134
}
1135
1136
/*
1137
* Reschedule the IRM work if we just finished reading the
1138
* root node config rom. If this races with a bus reset we
1139
* just end up running the IRM work a couple of extra times -
1140
* pretty harmless.
1141
*/
1142
if (device->node == card->root_node)
1143
fw_schedule_bm_work(card, 0);
1144
1145
return;
1146
1147
error_with_cdev:
1148
xa_erase(&fw_device_xa, minor);
1149
error:
1150
fw_device_put(device); // fw_device_xa's reference.
1151
1152
put_device(&device->device); /* our reference */
1153
}
1154
1155
/* Reread and compare bus info block and header of root directory */
1156
static int reread_config_rom(struct fw_device *device, int generation,
1157
bool *changed)
1158
{
1159
u32 q;
1160
int i, rcode;
1161
1162
for (i = 0; i < 6; i++) {
1163
rcode = read_rom(device, generation, i, &q);
1164
if (rcode != RCODE_COMPLETE)
1165
return rcode;
1166
1167
if (i == 0 && q == 0)
1168
/* inaccessible (see read_config_rom); retry later */
1169
return RCODE_BUSY;
1170
1171
if (q != device->config_rom[i]) {
1172
*changed = true;
1173
return RCODE_COMPLETE;
1174
}
1175
}
1176
1177
*changed = false;
1178
return RCODE_COMPLETE;
1179
}
1180
1181
static void fw_device_refresh(struct work_struct *work)
1182
{
1183
struct fw_device *device = from_work(device, work, work.work);
1184
struct fw_card *card = device->card;
1185
int ret, node_id = device->node_id;
1186
bool changed;
1187
1188
ret = reread_config_rom(device, device->generation, &changed);
1189
if (ret != RCODE_COMPLETE)
1190
goto failed_config_rom;
1191
1192
if (!changed) {
1193
if (atomic_cmpxchg(&device->state,
1194
FW_DEVICE_INITIALIZING,
1195
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1196
goto gone;
1197
1198
fw_device_update(work);
1199
device->config_rom_retries = 0;
1200
goto out;
1201
}
1202
1203
/*
1204
* Something changed. We keep things simple and don't investigate
1205
* further. We just destroy all previous units and create new ones.
1206
*/
1207
device_for_each_child(&device->device, NULL, shutdown_unit);
1208
1209
ret = read_config_rom(device, device->generation);
1210
if (ret != RCODE_COMPLETE)
1211
goto failed_config_rom;
1212
1213
fw_device_cdev_update(device);
1214
create_units(device);
1215
1216
/* Userspace may want to re-read attributes. */
1217
kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1218
1219
if (atomic_cmpxchg(&device->state,
1220
FW_DEVICE_INITIALIZING,
1221
FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1222
goto gone;
1223
1224
fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1225
device->config_rom_retries = 0;
1226
goto out;
1227
1228
failed_config_rom:
1229
if (device->config_rom_retries < MAX_RETRIES &&
1230
atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1231
device->config_rom_retries++;
1232
fw_schedule_device_work(device, RETRY_DELAY);
1233
return;
1234
}
1235
1236
fw_notice(card, "giving up on refresh of device %s: %s\n",
1237
dev_name(&device->device), fw_rcode_string(ret));
1238
gone:
1239
atomic_set(&device->state, FW_DEVICE_GONE);
1240
device->workfn = fw_device_shutdown;
1241
fw_schedule_device_work(device, SHUTDOWN_DELAY);
1242
out:
1243
if (node_id == card->root_node->node_id)
1244
fw_schedule_bm_work(card, 0);
1245
}
1246
1247
static void fw_device_workfn(struct work_struct *work)
1248
{
1249
struct fw_device *device = from_work(device, to_delayed_work(work), work);
1250
device->workfn(work);
1251
}
1252
1253
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1254
{
1255
struct fw_device *device;
1256
1257
switch (event) {
1258
case FW_NODE_CREATED:
1259
/*
1260
* Attempt to scan the node, regardless whether its self ID has
1261
* the L (link active) flag set or not. Some broken devices
1262
* send L=0 but have an up-and-running link; others send L=1
1263
* without actually having a link.
1264
*/
1265
create:
1266
device = kzalloc(sizeof(*device), GFP_ATOMIC);
1267
if (device == NULL)
1268
break;
1269
1270
/*
1271
* Do minimal initialization of the device here, the
1272
* rest will happen in fw_device_init().
1273
*
1274
* Attention: A lot of things, even fw_device_get(),
1275
* cannot be done before fw_device_init() finished!
1276
* You can basically just check device->state and
1277
* schedule work until then, but only while holding
1278
* card->lock.
1279
*/
1280
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1281
device->card = fw_card_get(card);
1282
device->node = fw_node_get(node);
1283
device->node_id = node->node_id;
1284
device->generation = card->generation;
1285
device->is_local = node == card->local_node;
1286
mutex_init(&device->client_list_mutex);
1287
INIT_LIST_HEAD(&device->client_list);
1288
1289
/*
1290
* Set the node data to point back to this device so
1291
* FW_NODE_UPDATED callbacks can update the node_id
1292
* and generation for the device.
1293
*/
1294
fw_node_set_device(node, device);
1295
1296
/*
1297
* Many devices are slow to respond after bus resets,
1298
* especially if they are bus powered and go through
1299
* power-up after getting plugged in. We schedule the
1300
* first config rom scan half a second after bus reset.
1301
*/
1302
device->workfn = fw_device_init;
1303
INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1304
fw_schedule_device_work(device, INITIAL_DELAY);
1305
break;
1306
1307
case FW_NODE_INITIATED_RESET:
1308
case FW_NODE_LINK_ON:
1309
device = fw_node_get_device(node);
1310
if (device == NULL)
1311
goto create;
1312
1313
device->node_id = node->node_id;
1314
smp_wmb(); /* update node_id before generation */
1315
device->generation = card->generation;
1316
if (atomic_cmpxchg(&device->state,
1317
FW_DEVICE_RUNNING,
1318
FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1319
device->workfn = fw_device_refresh;
1320
fw_schedule_device_work(device,
1321
device->is_local ? 0 : INITIAL_DELAY);
1322
}
1323
break;
1324
1325
case FW_NODE_UPDATED:
1326
device = fw_node_get_device(node);
1327
if (device == NULL)
1328
break;
1329
1330
device->node_id = node->node_id;
1331
smp_wmb(); /* update node_id before generation */
1332
device->generation = card->generation;
1333
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1334
device->workfn = fw_device_update;
1335
fw_schedule_device_work(device, 0);
1336
}
1337
break;
1338
1339
case FW_NODE_DESTROYED:
1340
case FW_NODE_LINK_OFF:
1341
if (!fw_node_get_device(node))
1342
break;
1343
1344
/*
1345
* Destroy the device associated with the node. There
1346
* are two cases here: either the device is fully
1347
* initialized (FW_DEVICE_RUNNING) or we're in the
1348
* process of reading its config rom
1349
* (FW_DEVICE_INITIALIZING). If it is fully
1350
* initialized we can reuse device->work to schedule a
1351
* full fw_device_shutdown(). If not, there's work
1352
* scheduled to read it's config rom, and we just put
1353
* the device in shutdown state to have that code fail
1354
* to create the device.
1355
*/
1356
device = fw_node_get_device(node);
1357
if (atomic_xchg(&device->state,
1358
FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1359
device->workfn = fw_device_shutdown;
1360
fw_schedule_device_work(device,
1361
list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1362
}
1363
break;
1364
}
1365
}
1366
1367
#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1368
#include "device-attribute-test.c"
1369
#endif
1370
1371