Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/core-transaction.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Core IEEE1394 transaction logic
4
*
5
* Copyright (C) 2004-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bug.h>
9
#include <linux/completion.h>
10
#include <linux/device.h>
11
#include <linux/errno.h>
12
#include <linux/firewire.h>
13
#include <linux/firewire-constants.h>
14
#include <linux/fs.h>
15
#include <linux/init.h>
16
#include <linux/jiffies.h>
17
#include <linux/kernel.h>
18
#include <linux/list.h>
19
#include <linux/module.h>
20
#include <linux/rculist.h>
21
#include <linux/slab.h>
22
#include <linux/spinlock.h>
23
#include <linux/string.h>
24
#include <linux/timer.h>
25
#include <linux/types.h>
26
#include <linux/workqueue.h>
27
28
#include <asm/byteorder.h>
29
30
#include "core.h"
31
#include "packet-header-definitions.h"
32
#include "phy-packet-definitions.h"
33
#include <trace/events/firewire.h>
34
35
#define HEADER_DESTINATION_IS_BROADCAST(header) \
36
((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38
/* returns 0 if the split timeout handler is already running */
39
static int try_cancel_split_timeout(struct fw_transaction *t)
40
{
41
if (t->is_split_transaction)
42
return timer_delete(&t->split_timeout_timer);
43
else
44
return 1;
45
}
46
47
static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48
u32 response_tstamp)
49
{
50
struct fw_transaction *t = NULL, *iter;
51
52
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
53
// local destination never runs in any type of IRQ context.
54
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
55
list_for_each_entry(iter, &card->transactions.list, link) {
56
if (iter == transaction) {
57
if (try_cancel_split_timeout(iter)) {
58
list_del_init(&iter->link);
59
card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
60
t = iter;
61
}
62
break;
63
}
64
}
65
}
66
67
if (!t)
68
return -ENOENT;
69
70
if (!t->with_tstamp) {
71
t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
72
} else {
73
t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
74
t->callback_data);
75
}
76
77
return 0;
78
}
79
80
/*
81
* Only valid for transactions that are potentially pending (ie have
82
* been sent).
83
*/
84
int fw_cancel_transaction(struct fw_card *card,
85
struct fw_transaction *transaction)
86
{
87
u32 tstamp;
88
89
/*
90
* Cancel the packet transmission if it's still queued. That
91
* will call the packet transmission callback which cancels
92
* the transaction.
93
*/
94
95
if (card->driver->cancel_packet(card, &transaction->packet) == 0)
96
return 0;
97
98
/*
99
* If the request packet has already been sent, we need to see
100
* if the transaction is still pending and remove it in that case.
101
*/
102
103
if (transaction->packet.ack == 0) {
104
// The timestamp is reused since it was just read now.
105
tstamp = transaction->packet.timestamp;
106
} else {
107
u32 curr_cycle_time = 0;
108
109
(void)fw_card_read_cycle_time(card, &curr_cycle_time);
110
tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
111
}
112
113
return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
114
}
115
EXPORT_SYMBOL(fw_cancel_transaction);
116
117
static void split_transaction_timeout_callback(struct timer_list *timer)
118
{
119
struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
120
struct fw_card *card = t->card;
121
122
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
123
if (list_empty(&t->link))
124
return;
125
list_del(&t->link);
126
card->transactions.tlabel_mask &= ~(1ULL << t->tlabel);
127
}
128
129
if (!t->with_tstamp) {
130
t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
131
} else {
132
t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
133
t->split_timeout_cycle, NULL, 0, t->callback_data);
134
}
135
}
136
137
static void start_split_transaction_timeout(struct fw_transaction *t,
138
struct fw_card *card)
139
{
140
unsigned long delta;
141
142
if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
143
return;
144
145
t->is_split_transaction = true;
146
147
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
148
// local destination never runs in any type of IRQ context.
149
scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
150
delta = card->split_timeout.jiffies;
151
mod_timer(&t->split_timeout_timer, jiffies + delta);
152
}
153
154
static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
155
156
static void transmit_complete_callback(struct fw_packet *packet,
157
struct fw_card *card, int status)
158
{
159
struct fw_transaction *t =
160
container_of(packet, struct fw_transaction, packet);
161
162
trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
163
packet->speed, status, packet->timestamp);
164
165
switch (status) {
166
case ACK_COMPLETE:
167
close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
168
break;
169
case ACK_PENDING:
170
{
171
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
172
// local destination never runs in any type of IRQ context.
173
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
174
t->split_timeout_cycle =
175
compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
176
}
177
start_split_transaction_timeout(t, card);
178
break;
179
}
180
case ACK_BUSY_X:
181
case ACK_BUSY_A:
182
case ACK_BUSY_B:
183
close_transaction(t, card, RCODE_BUSY, packet->timestamp);
184
break;
185
case ACK_DATA_ERROR:
186
close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
187
break;
188
case ACK_TYPE_ERROR:
189
close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
190
break;
191
default:
192
/*
193
* In this case the ack is really a juju specific
194
* rcode, so just forward that to the callback.
195
*/
196
close_transaction(t, card, status, packet->timestamp);
197
break;
198
}
199
}
200
201
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
202
int destination_id, int source_id, int generation, int speed,
203
unsigned long long offset, void *payload, size_t length)
204
{
205
int ext_tcode;
206
207
if (tcode == TCODE_STREAM_DATA) {
208
// The value of destination_id argument should include tag, channel, and sy fields
209
// as isochronous packet header has.
210
packet->header[0] = destination_id;
211
isoc_header_set_data_length(packet->header, length);
212
isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
213
packet->header_length = 4;
214
packet->payload = payload;
215
packet->payload_length = length;
216
217
goto common;
218
}
219
220
if (tcode > 0x10) {
221
ext_tcode = tcode & ~0x10;
222
tcode = TCODE_LOCK_REQUEST;
223
} else
224
ext_tcode = 0;
225
226
async_header_set_retry(packet->header, RETRY_X);
227
async_header_set_tlabel(packet->header, tlabel);
228
async_header_set_tcode(packet->header, tcode);
229
async_header_set_destination(packet->header, destination_id);
230
async_header_set_source(packet->header, source_id);
231
async_header_set_offset(packet->header, offset);
232
233
switch (tcode) {
234
case TCODE_WRITE_QUADLET_REQUEST:
235
async_header_set_quadlet_data(packet->header, *(u32 *)payload);
236
packet->header_length = 16;
237
packet->payload_length = 0;
238
break;
239
240
case TCODE_LOCK_REQUEST:
241
case TCODE_WRITE_BLOCK_REQUEST:
242
async_header_set_data_length(packet->header, length);
243
async_header_set_extended_tcode(packet->header, ext_tcode);
244
packet->header_length = 16;
245
packet->payload = payload;
246
packet->payload_length = length;
247
break;
248
249
case TCODE_READ_QUADLET_REQUEST:
250
packet->header_length = 12;
251
packet->payload_length = 0;
252
break;
253
254
case TCODE_READ_BLOCK_REQUEST:
255
async_header_set_data_length(packet->header, length);
256
async_header_set_extended_tcode(packet->header, ext_tcode);
257
packet->header_length = 16;
258
packet->payload_length = 0;
259
break;
260
261
default:
262
WARN(1, "wrong tcode %d\n", tcode);
263
}
264
common:
265
packet->speed = speed;
266
packet->generation = generation;
267
packet->ack = 0;
268
packet->payload_mapped = false;
269
}
270
271
static int allocate_tlabel(struct fw_card *card)
272
__must_hold(&card->transactions_lock)
273
{
274
int tlabel;
275
276
lockdep_assert_held(&card->transactions.lock);
277
278
tlabel = card->transactions.current_tlabel;
279
while (card->transactions.tlabel_mask & (1ULL << tlabel)) {
280
tlabel = (tlabel + 1) & 0x3f;
281
if (tlabel == card->transactions.current_tlabel)
282
return -EBUSY;
283
}
284
285
card->transactions.current_tlabel = (tlabel + 1) & 0x3f;
286
card->transactions.tlabel_mask |= 1ULL << tlabel;
287
288
return tlabel;
289
}
290
291
/**
292
* __fw_send_request() - submit a request packet for transmission to generate callback for response
293
* subaction with or without time stamp.
294
* @card: interface to send the request at
295
* @t: transaction instance to which the request belongs
296
* @tcode: transaction code
297
* @destination_id: destination node ID, consisting of bus_ID and phy_ID
298
* @generation: bus generation in which request and response are valid
299
* @speed: transmission speed
300
* @offset: 48bit wide offset into destination's address space
301
* @payload: data payload for the request subaction
302
* @length: length of the payload, in bytes
303
* @callback: union of two functions whether to receive time stamp or not for response
304
* subaction.
305
* @with_tstamp: Whether to receive time stamp or not for response subaction.
306
* @callback_data: data to be passed to the transaction completion callback
307
*
308
* Submit a request packet into the asynchronous request transmission queue.
309
* Can be called from atomic context. If you prefer a blocking API, use
310
* fw_run_transaction() in a context that can sleep.
311
*
312
* In case of lock requests, specify one of the firewire-core specific %TCODE_
313
* constants instead of %TCODE_LOCK_REQUEST in @tcode.
314
*
315
* Make sure that the value in @destination_id is not older than the one in
316
* @generation. Otherwise the request is in danger to be sent to a wrong node.
317
*
318
* In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
319
* needs to synthesize @destination_id with fw_stream_packet_destination_id().
320
* It will contain tag, channel, and sy data instead of a node ID then.
321
*
322
* The payload buffer at @data is going to be DMA-mapped except in case of
323
* @length <= 8 or of local (loopback) requests. Hence make sure that the
324
* buffer complies with the restrictions of the streaming DMA mapping API.
325
* @payload must not be freed before the @callback is called.
326
*
327
* In case of request types without payload, @data is NULL and @length is 0.
328
*
329
* After the transaction is completed successfully or unsuccessfully, the
330
* @callback will be called. Among its parameters is the response code which
331
* is either one of the rcodes per IEEE 1394 or, in case of internal errors,
332
* the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
333
* specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
334
* %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
335
* generation, or missing ACK respectively.
336
*
337
* Note some timing corner cases: fw_send_request() may complete much earlier
338
* than when the request packet actually hits the wire. On the other hand,
339
* transaction completion and hence execution of @callback may happen even
340
* before fw_send_request() returns.
341
*/
342
void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
343
int destination_id, int generation, int speed, unsigned long long offset,
344
void *payload, size_t length, union fw_transaction_callback callback,
345
bool with_tstamp, void *callback_data)
346
{
347
int tlabel;
348
349
/*
350
* Allocate tlabel from the bitmap and put the transaction on
351
* the list while holding the card spinlock.
352
*/
353
354
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
355
// local destination never runs in any type of IRQ context.
356
scoped_guard(spinlock_irqsave, &card->transactions.lock)
357
tlabel = allocate_tlabel(card);
358
if (tlabel < 0) {
359
if (!with_tstamp) {
360
callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
361
} else {
362
// Timestamping on behalf of hardware.
363
u32 curr_cycle_time = 0;
364
u32 tstamp;
365
366
(void)fw_card_read_cycle_time(card, &curr_cycle_time);
367
tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
368
369
callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
370
callback_data);
371
}
372
return;
373
}
374
375
t->node_id = destination_id;
376
t->tlabel = tlabel;
377
t->card = card;
378
t->is_split_transaction = false;
379
timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
380
t->callback = callback;
381
t->with_tstamp = with_tstamp;
382
t->callback_data = callback_data;
383
t->packet.callback = transmit_complete_callback;
384
385
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
386
// local destination never runs in any type of IRQ context.
387
scoped_guard(spinlock_irqsave, &card->lock) {
388
// The node_id field of fw_card can be updated when handling SelfIDComplete.
389
fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id,
390
generation, speed, offset, payload, length);
391
}
392
393
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
394
// local destination never runs in any type of IRQ context.
395
scoped_guard(spinlock_irqsave, &card->transactions.lock)
396
list_add_tail(&t->link, &card->transactions.list);
397
398
// Safe with no lock, since the index field of fw_card is immutable once assigned.
399
trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
400
t->packet.header, payload,
401
tcode_is_read_request(tcode) ? 0 : length / 4);
402
403
card->driver->send_request(card, &t->packet);
404
}
405
EXPORT_SYMBOL_GPL(__fw_send_request);
406
407
struct transaction_callback_data {
408
struct completion done;
409
void *payload;
410
int rcode;
411
};
412
413
static void transaction_callback(struct fw_card *card, int rcode,
414
void *payload, size_t length, void *data)
415
{
416
struct transaction_callback_data *d = data;
417
418
if (rcode == RCODE_COMPLETE)
419
memcpy(d->payload, payload, length);
420
d->rcode = rcode;
421
complete(&d->done);
422
}
423
424
/**
425
* fw_run_transaction() - send request and sleep until transaction is completed
426
* @card: card interface for this request
427
* @tcode: transaction code
428
* @destination_id: destination node ID, consisting of bus_ID and phy_ID
429
* @generation: bus generation in which request and response are valid
430
* @speed: transmission speed
431
* @offset: 48bit wide offset into destination's address space
432
* @payload: data payload for the request subaction
433
* @length: length of the payload, in bytes
434
*
435
* Returns the RCODE. See fw_send_request() for parameter documentation.
436
* Unlike fw_send_request(), @data points to the payload of the request or/and
437
* to the payload of the response. DMA mapping restrictions apply to outbound
438
* request payloads of >= 8 bytes but not to inbound response payloads.
439
*/
440
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
441
int generation, int speed, unsigned long long offset,
442
void *payload, size_t length)
443
{
444
struct transaction_callback_data d;
445
struct fw_transaction t;
446
447
timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
448
init_completion(&d.done);
449
d.payload = payload;
450
fw_send_request(card, &t, tcode, destination_id, generation, speed,
451
offset, payload, length, transaction_callback, &d);
452
wait_for_completion(&d.done);
453
timer_destroy_on_stack(&t.split_timeout_timer);
454
455
return d.rcode;
456
}
457
EXPORT_SYMBOL(fw_run_transaction);
458
459
static DEFINE_MUTEX(phy_config_mutex);
460
static DECLARE_COMPLETION(phy_config_done);
461
462
static void transmit_phy_packet_callback(struct fw_packet *packet,
463
struct fw_card *card, int status)
464
{
465
trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
466
packet->timestamp);
467
complete(&phy_config_done);
468
}
469
470
static struct fw_packet phy_config_packet = {
471
.header_length = 12,
472
.payload_length = 0,
473
.speed = SCODE_100,
474
.callback = transmit_phy_packet_callback,
475
};
476
477
void fw_send_phy_config(struct fw_card *card,
478
int node_id, int generation, int gap_count)
479
{
480
long timeout = msecs_to_jiffies(100);
481
u32 data = 0;
482
483
phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
484
485
if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
486
phy_packet_phy_config_set_root_id(&data, node_id);
487
phy_packet_phy_config_set_force_root_node(&data, true);
488
}
489
490
if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
491
gap_count = card->driver->read_phy_reg(card, 1);
492
if (gap_count < 0)
493
return;
494
495
gap_count &= 63;
496
if (gap_count == 63)
497
return;
498
}
499
phy_packet_phy_config_set_gap_count(&data, gap_count);
500
phy_packet_phy_config_set_gap_count_optimization(&data, true);
501
502
guard(mutex)(&phy_config_mutex);
503
504
async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
505
phy_config_packet.header[1] = data;
506
phy_config_packet.header[2] = ~data;
507
phy_config_packet.generation = generation;
508
reinit_completion(&phy_config_done);
509
510
trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
511
phy_config_packet.generation, phy_config_packet.header[1],
512
phy_config_packet.header[2]);
513
514
card->driver->send_request(card, &phy_config_packet);
515
wait_for_completion_timeout(&phy_config_done, timeout);
516
}
517
518
static struct fw_address_handler *lookup_overlapping_address_handler(
519
struct list_head *list, unsigned long long offset, size_t length)
520
{
521
struct fw_address_handler *handler;
522
523
list_for_each_entry_rcu(handler, list, link) {
524
if (handler->offset < offset + length &&
525
offset < handler->offset + handler->length)
526
return handler;
527
}
528
529
return NULL;
530
}
531
532
static bool is_enclosing_handler(struct fw_address_handler *handler,
533
unsigned long long offset, size_t length)
534
{
535
return handler->offset <= offset &&
536
offset + length <= handler->offset + handler->length;
537
}
538
539
static struct fw_address_handler *lookup_enclosing_address_handler(
540
struct list_head *list, unsigned long long offset, size_t length)
541
{
542
struct fw_address_handler *handler;
543
544
list_for_each_entry_rcu(handler, list, link) {
545
if (is_enclosing_handler(handler, offset, length))
546
return handler;
547
}
548
549
return NULL;
550
}
551
552
static DEFINE_SPINLOCK(address_handler_list_lock);
553
static LIST_HEAD(address_handler_list);
554
555
const struct fw_address_region fw_high_memory_region =
556
{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
557
EXPORT_SYMBOL(fw_high_memory_region);
558
559
static const struct fw_address_region low_memory_region =
560
{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
561
562
#if 0
563
const struct fw_address_region fw_private_region =
564
{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
565
const struct fw_address_region fw_csr_region =
566
{ .start = CSR_REGISTER_BASE,
567
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
568
const struct fw_address_region fw_unit_space_region =
569
{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
570
#endif /* 0 */
571
572
static void complete_address_handler(struct kref *kref)
573
{
574
struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
575
576
complete(&handler->done);
577
}
578
579
static void get_address_handler(struct fw_address_handler *handler)
580
{
581
kref_get(&handler->kref);
582
}
583
584
static int put_address_handler(struct fw_address_handler *handler)
585
{
586
return kref_put(&handler->kref, complete_address_handler);
587
}
588
589
/**
590
* fw_core_add_address_handler() - register for incoming requests
591
* @handler: callback
592
* @region: region in the IEEE 1212 node space address range
593
*
594
* region->start, ->end, and handler->length have to be quadlet-aligned.
595
*
596
* When a request is received that falls within the specified address range, the specified callback
597
* is invoked. The parameters passed to the callback give the details of the particular request.
598
* The callback is invoked in the workqueue context in most cases. However, if the request is
599
* initiated by the local node, the callback is invoked in the initiator's context.
600
*
601
* To be called in process context.
602
* Return value: 0 on success, non-zero otherwise.
603
*
604
* The start offset of the handler's address region is determined by
605
* fw_core_add_address_handler() and is returned in handler->offset.
606
*
607
* Address allocations are exclusive, except for the FCP registers.
608
*/
609
int fw_core_add_address_handler(struct fw_address_handler *handler,
610
const struct fw_address_region *region)
611
{
612
struct fw_address_handler *other;
613
int ret = -EBUSY;
614
615
if (region->start & 0xffff000000000003ULL ||
616
region->start >= region->end ||
617
region->end > 0x0001000000000000ULL ||
618
handler->length & 3 ||
619
handler->length == 0)
620
return -EINVAL;
621
622
guard(spinlock)(&address_handler_list_lock);
623
624
handler->offset = region->start;
625
while (handler->offset + handler->length <= region->end) {
626
if (is_in_fcp_region(handler->offset, handler->length))
627
other = NULL;
628
else
629
other = lookup_overlapping_address_handler
630
(&address_handler_list,
631
handler->offset, handler->length);
632
if (other != NULL) {
633
handler->offset += other->length;
634
} else {
635
init_completion(&handler->done);
636
kref_init(&handler->kref);
637
list_add_tail_rcu(&handler->link, &address_handler_list);
638
ret = 0;
639
break;
640
}
641
}
642
643
return ret;
644
}
645
EXPORT_SYMBOL(fw_core_add_address_handler);
646
647
/**
648
* fw_core_remove_address_handler() - unregister an address handler
649
* @handler: callback
650
*
651
* To be called in process context.
652
*
653
* When fw_core_remove_address_handler() returns, @handler->callback() is
654
* guaranteed to not run on any CPU anymore.
655
*/
656
void fw_core_remove_address_handler(struct fw_address_handler *handler)
657
{
658
scoped_guard(spinlock, &address_handler_list_lock)
659
list_del_rcu(&handler->link);
660
661
synchronize_rcu();
662
663
if (!put_address_handler(handler))
664
wait_for_completion(&handler->done);
665
}
666
EXPORT_SYMBOL(fw_core_remove_address_handler);
667
668
struct fw_request {
669
struct kref kref;
670
struct fw_packet response;
671
u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
672
int ack;
673
u32 timestamp;
674
u32 length;
675
u32 data[];
676
};
677
678
void fw_request_get(struct fw_request *request)
679
{
680
kref_get(&request->kref);
681
}
682
683
static void release_request(struct kref *kref)
684
{
685
struct fw_request *request = container_of(kref, struct fw_request, kref);
686
687
kfree(request);
688
}
689
690
void fw_request_put(struct fw_request *request)
691
{
692
kref_put(&request->kref, release_request);
693
}
694
695
static void free_response_callback(struct fw_packet *packet,
696
struct fw_card *card, int status)
697
{
698
struct fw_request *request = container_of(packet, struct fw_request, response);
699
700
trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
701
packet->speed, status, packet->timestamp);
702
703
// Decrease the reference count since not at in-flight.
704
fw_request_put(request);
705
706
// Decrease the reference count to release the object.
707
fw_request_put(request);
708
}
709
710
int fw_get_response_length(struct fw_request *r)
711
{
712
int tcode, ext_tcode, data_length;
713
714
tcode = async_header_get_tcode(r->request_header);
715
716
switch (tcode) {
717
case TCODE_WRITE_QUADLET_REQUEST:
718
case TCODE_WRITE_BLOCK_REQUEST:
719
return 0;
720
721
case TCODE_READ_QUADLET_REQUEST:
722
return 4;
723
724
case TCODE_READ_BLOCK_REQUEST:
725
data_length = async_header_get_data_length(r->request_header);
726
return data_length;
727
728
case TCODE_LOCK_REQUEST:
729
ext_tcode = async_header_get_extended_tcode(r->request_header);
730
data_length = async_header_get_data_length(r->request_header);
731
switch (ext_tcode) {
732
case EXTCODE_FETCH_ADD:
733
case EXTCODE_LITTLE_ADD:
734
return data_length;
735
default:
736
return data_length / 2;
737
}
738
739
default:
740
WARN(1, "wrong tcode %d\n", tcode);
741
return 0;
742
}
743
}
744
745
void fw_fill_response(struct fw_packet *response, u32 *request_header,
746
int rcode, void *payload, size_t length)
747
{
748
int tcode, tlabel, extended_tcode, source, destination;
749
750
tcode = async_header_get_tcode(request_header);
751
tlabel = async_header_get_tlabel(request_header);
752
source = async_header_get_destination(request_header); // Exchange.
753
destination = async_header_get_source(request_header); // Exchange.
754
extended_tcode = async_header_get_extended_tcode(request_header);
755
756
async_header_set_retry(response->header, RETRY_1);
757
async_header_set_tlabel(response->header, tlabel);
758
async_header_set_destination(response->header, destination);
759
async_header_set_source(response->header, source);
760
async_header_set_rcode(response->header, rcode);
761
response->header[2] = 0; // The field is reserved.
762
763
switch (tcode) {
764
case TCODE_WRITE_QUADLET_REQUEST:
765
case TCODE_WRITE_BLOCK_REQUEST:
766
async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
767
response->header_length = 12;
768
response->payload_length = 0;
769
break;
770
771
case TCODE_READ_QUADLET_REQUEST:
772
async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
773
if (payload != NULL)
774
async_header_set_quadlet_data(response->header, *(u32 *)payload);
775
else
776
async_header_set_quadlet_data(response->header, 0);
777
response->header_length = 16;
778
response->payload_length = 0;
779
break;
780
781
case TCODE_READ_BLOCK_REQUEST:
782
case TCODE_LOCK_REQUEST:
783
async_header_set_tcode(response->header, tcode + 2);
784
async_header_set_data_length(response->header, length);
785
async_header_set_extended_tcode(response->header, extended_tcode);
786
response->header_length = 16;
787
response->payload = payload;
788
response->payload_length = length;
789
break;
790
791
default:
792
WARN(1, "wrong tcode %d\n", tcode);
793
}
794
795
response->payload_mapped = false;
796
}
797
EXPORT_SYMBOL(fw_fill_response);
798
799
static u32 compute_split_timeout_timestamp(struct fw_card *card,
800
u32 request_timestamp)
801
__must_hold(&card->split_timeout.lock)
802
{
803
unsigned int cycles;
804
u32 timestamp;
805
806
lockdep_assert_held(&card->split_timeout.lock);
807
808
cycles = card->split_timeout.cycles;
809
cycles += request_timestamp & 0x1fff;
810
811
timestamp = request_timestamp & ~0x1fff;
812
timestamp += (cycles / 8000) << 13;
813
timestamp |= cycles % 8000;
814
815
return timestamp;
816
}
817
818
static struct fw_request *allocate_request(struct fw_card *card,
819
struct fw_packet *p)
820
{
821
struct fw_request *request;
822
u32 *data, length;
823
int request_tcode;
824
825
request_tcode = async_header_get_tcode(p->header);
826
switch (request_tcode) {
827
case TCODE_WRITE_QUADLET_REQUEST:
828
data = &p->header[3];
829
length = 4;
830
break;
831
832
case TCODE_WRITE_BLOCK_REQUEST:
833
case TCODE_LOCK_REQUEST:
834
data = p->payload;
835
length = async_header_get_data_length(p->header);
836
break;
837
838
case TCODE_READ_QUADLET_REQUEST:
839
data = NULL;
840
length = 4;
841
break;
842
843
case TCODE_READ_BLOCK_REQUEST:
844
data = NULL;
845
length = async_header_get_data_length(p->header);
846
break;
847
848
default:
849
fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
850
p->header[0], p->header[1], p->header[2]);
851
return NULL;
852
}
853
854
request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
855
if (request == NULL)
856
return NULL;
857
kref_init(&request->kref);
858
859
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
860
// local destination never runs in any type of IRQ context.
861
scoped_guard(spinlock_irqsave, &card->split_timeout.lock)
862
request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp);
863
864
request->response.speed = p->speed;
865
request->response.generation = p->generation;
866
request->response.ack = 0;
867
request->response.callback = free_response_callback;
868
request->ack = p->ack;
869
request->timestamp = p->timestamp;
870
request->length = length;
871
if (data)
872
memcpy(request->data, data, length);
873
874
memcpy(request->request_header, p->header, sizeof(p->header));
875
876
return request;
877
}
878
879
/**
880
* fw_send_response: - send response packet for asynchronous transaction.
881
* @card: interface to send the response at.
882
* @request: firewire request data for the transaction.
883
* @rcode: response code to send.
884
*
885
* Submit a response packet into the asynchronous response transmission queue. The @request
886
* is going to be released when the transmission successfully finishes later.
887
*/
888
void fw_send_response(struct fw_card *card,
889
struct fw_request *request, int rcode)
890
{
891
u32 *data = NULL;
892
unsigned int data_length = 0;
893
894
/* unified transaction or broadcast transaction: don't respond */
895
if (request->ack != ACK_PENDING ||
896
HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
897
fw_request_put(request);
898
return;
899
}
900
901
if (rcode == RCODE_COMPLETE) {
902
data = request->data;
903
data_length = fw_get_response_length(request);
904
}
905
906
fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
907
908
// Increase the reference count so that the object is kept during in-flight.
909
fw_request_get(request);
910
911
trace_async_response_outbound_initiate((uintptr_t)request, card->index,
912
request->response.generation, request->response.speed,
913
request->response.header, data,
914
data ? data_length / 4 : 0);
915
916
card->driver->send_response(card, &request->response);
917
}
918
EXPORT_SYMBOL(fw_send_response);
919
920
/**
921
* fw_get_request_speed() - returns speed at which the @request was received
922
* @request: firewire request data
923
*/
924
int fw_get_request_speed(struct fw_request *request)
925
{
926
return request->response.speed;
927
}
928
EXPORT_SYMBOL(fw_get_request_speed);
929
930
/**
931
* fw_request_get_timestamp: Get timestamp of the request.
932
* @request: The opaque pointer to request structure.
933
*
934
* Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
935
* timestamp consists of the low order 3 bits of second field and the full 13 bits of count
936
* field of isochronous cycle time register.
937
*
938
* Returns: timestamp of the request.
939
*/
940
u32 fw_request_get_timestamp(const struct fw_request *request)
941
{
942
return request->timestamp;
943
}
944
EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
945
946
static void handle_exclusive_region_request(struct fw_card *card,
947
struct fw_packet *p,
948
struct fw_request *request,
949
unsigned long long offset)
950
{
951
struct fw_address_handler *handler;
952
int tcode, destination, source;
953
954
destination = async_header_get_destination(p->header);
955
source = async_header_get_source(p->header);
956
tcode = async_header_get_tcode(p->header);
957
if (tcode == TCODE_LOCK_REQUEST)
958
tcode = 0x10 + async_header_get_extended_tcode(p->header);
959
960
scoped_guard(rcu) {
961
handler = lookup_enclosing_address_handler(&address_handler_list, offset,
962
request->length);
963
if (handler)
964
get_address_handler(handler);
965
}
966
967
if (!handler) {
968
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
969
return;
970
}
971
972
// Outside the RCU read-side critical section. Without spinlock. With reference count.
973
handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
974
request->data, request->length, handler->callback_data);
975
put_address_handler(handler);
976
}
977
978
// To use kmalloc allocator efficiently, this should be power of two.
979
#define BUFFER_ON_KERNEL_STACK_SIZE 4
980
981
static void handle_fcp_region_request(struct fw_card *card,
982
struct fw_packet *p,
983
struct fw_request *request,
984
unsigned long long offset)
985
{
986
struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
987
struct fw_address_handler *handler, **handlers;
988
int tcode, destination, source, i, count, buffer_size;
989
990
if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
991
offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
992
request->length > 0x200) {
993
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
994
995
return;
996
}
997
998
tcode = async_header_get_tcode(p->header);
999
destination = async_header_get_destination(p->header);
1000
source = async_header_get_source(p->header);
1001
1002
if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
1003
tcode != TCODE_WRITE_BLOCK_REQUEST) {
1004
fw_send_response(card, request, RCODE_TYPE_ERROR);
1005
1006
return;
1007
}
1008
1009
count = 0;
1010
handlers = buffer_on_kernel_stack;
1011
buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
1012
scoped_guard(rcu) {
1013
list_for_each_entry_rcu(handler, &address_handler_list, link) {
1014
if (is_enclosing_handler(handler, offset, request->length)) {
1015
if (count >= buffer_size) {
1016
int next_size = buffer_size * 2;
1017
struct fw_address_handler **buffer_on_kernel_heap;
1018
1019
if (handlers == buffer_on_kernel_stack)
1020
buffer_on_kernel_heap = NULL;
1021
else
1022
buffer_on_kernel_heap = handlers;
1023
1024
buffer_on_kernel_heap =
1025
krealloc_array(buffer_on_kernel_heap, next_size,
1026
sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1027
// FCP is used for purposes unrelated to significant system
1028
// resources (e.g. storage or networking), so allocation
1029
// failures are not considered so critical.
1030
if (!buffer_on_kernel_heap)
1031
break;
1032
1033
if (handlers == buffer_on_kernel_stack) {
1034
memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1035
sizeof(buffer_on_kernel_stack));
1036
}
1037
1038
handlers = buffer_on_kernel_heap;
1039
buffer_size = next_size;
1040
}
1041
get_address_handler(handler);
1042
handlers[count++] = handler;
1043
}
1044
}
1045
}
1046
1047
for (i = 0; i < count; ++i) {
1048
handler = handlers[i];
1049
handler->address_callback(card, request, tcode, destination, source,
1050
p->generation, offset, request->data,
1051
request->length, handler->callback_data);
1052
put_address_handler(handler);
1053
}
1054
1055
if (handlers != buffer_on_kernel_stack)
1056
kfree(handlers);
1057
1058
fw_send_response(card, request, RCODE_COMPLETE);
1059
}
1060
1061
void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1062
{
1063
struct fw_request *request;
1064
unsigned long long offset;
1065
unsigned int tcode;
1066
1067
if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1068
return;
1069
1070
tcode = async_header_get_tcode(p->header);
1071
if (tcode_is_link_internal(tcode)) {
1072
trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1073
p->header[1], p->header[2]);
1074
fw_cdev_handle_phy_packet(card, p);
1075
return;
1076
}
1077
1078
request = allocate_request(card, p);
1079
if (request == NULL) {
1080
/* FIXME: send statically allocated busy packet. */
1081
return;
1082
}
1083
1084
trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1085
p->ack, p->timestamp, p->header, request->data,
1086
tcode_is_read_request(tcode) ? 0 : request->length / 4);
1087
1088
offset = async_header_get_offset(p->header);
1089
1090
if (!is_in_fcp_region(offset, request->length))
1091
handle_exclusive_region_request(card, p, request, offset);
1092
else
1093
handle_fcp_region_request(card, p, request, offset);
1094
1095
}
1096
EXPORT_SYMBOL(fw_core_handle_request);
1097
1098
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1099
{
1100
struct fw_transaction *t = NULL, *iter;
1101
u32 *data;
1102
size_t data_length;
1103
int tcode, tlabel, source, rcode;
1104
1105
tcode = async_header_get_tcode(p->header);
1106
tlabel = async_header_get_tlabel(p->header);
1107
source = async_header_get_source(p->header);
1108
rcode = async_header_get_rcode(p->header);
1109
1110
// FIXME: sanity check packet, is length correct, does tcodes
1111
// and addresses match to the transaction request queried later.
1112
//
1113
// For the tracepoints event, let us decode the header here against the concern.
1114
1115
switch (tcode) {
1116
case TCODE_READ_QUADLET_RESPONSE:
1117
data = (u32 *) &p->header[3];
1118
data_length = 4;
1119
break;
1120
1121
case TCODE_WRITE_RESPONSE:
1122
data = NULL;
1123
data_length = 0;
1124
break;
1125
1126
case TCODE_READ_BLOCK_RESPONSE:
1127
case TCODE_LOCK_RESPONSE:
1128
data = p->payload;
1129
data_length = async_header_get_data_length(p->header);
1130
break;
1131
1132
default:
1133
/* Should never happen, this is just to shut up gcc. */
1134
data = NULL;
1135
data_length = 0;
1136
break;
1137
}
1138
1139
// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for
1140
// local destination never runs in any type of IRQ context.
1141
scoped_guard(spinlock_irqsave, &card->transactions.lock) {
1142
list_for_each_entry(iter, &card->transactions.list, link) {
1143
if (iter->node_id == source && iter->tlabel == tlabel) {
1144
if (try_cancel_split_timeout(iter)) {
1145
list_del_init(&iter->link);
1146
card->transactions.tlabel_mask &= ~(1ULL << iter->tlabel);
1147
t = iter;
1148
}
1149
break;
1150
}
1151
}
1152
}
1153
1154
trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1155
p->timestamp, p->header, data, data_length / 4);
1156
1157
if (!t) {
1158
fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1159
source, tlabel);
1160
return;
1161
}
1162
1163
/*
1164
* The response handler may be executed while the request handler
1165
* is still pending. Cancel the request handler.
1166
*/
1167
card->driver->cancel_packet(card, &t->packet);
1168
1169
if (!t->with_tstamp) {
1170
t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1171
} else {
1172
t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1173
data_length, t->callback_data);
1174
}
1175
}
1176
EXPORT_SYMBOL(fw_core_handle_response);
1177
1178
/**
1179
* fw_rcode_string - convert a firewire result code to an error description
1180
* @rcode: the result code
1181
*/
1182
const char *fw_rcode_string(int rcode)
1183
{
1184
static const char *const names[] = {
1185
[RCODE_COMPLETE] = "no error",
1186
[RCODE_CONFLICT_ERROR] = "conflict error",
1187
[RCODE_DATA_ERROR] = "data error",
1188
[RCODE_TYPE_ERROR] = "type error",
1189
[RCODE_ADDRESS_ERROR] = "address error",
1190
[RCODE_SEND_ERROR] = "send error",
1191
[RCODE_CANCELLED] = "timeout",
1192
[RCODE_BUSY] = "busy",
1193
[RCODE_GENERATION] = "bus reset",
1194
[RCODE_NO_ACK] = "no ack",
1195
};
1196
1197
if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1198
return names[rcode];
1199
else
1200
return "unknown";
1201
}
1202
EXPORT_SYMBOL(fw_rcode_string);
1203
1204
static const struct fw_address_region topology_map_region =
1205
{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1206
.end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1207
1208
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1209
int tcode, int destination, int source, int generation,
1210
unsigned long long offset, void *payload, size_t length,
1211
void *callback_data)
1212
{
1213
int start;
1214
1215
if (!tcode_is_read_request(tcode)) {
1216
fw_send_response(card, request, RCODE_TYPE_ERROR);
1217
return;
1218
}
1219
1220
if ((offset & 3) > 0 || (length & 3) > 0) {
1221
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1222
return;
1223
}
1224
1225
start = (offset - topology_map_region.start) / 4;
1226
1227
// NOTE: This can be without irqsave when we can guarantee that fw_send_request() for local
1228
// destination never runs in any type of IRQ context.
1229
scoped_guard(spinlock_irqsave, &card->topology_map.lock)
1230
memcpy(payload, &card->topology_map.buffer[start], length);
1231
1232
fw_send_response(card, request, RCODE_COMPLETE);
1233
}
1234
1235
static struct fw_address_handler topology_map = {
1236
.length = 0x400,
1237
.address_callback = handle_topology_map,
1238
};
1239
1240
static const struct fw_address_region registers_region =
1241
{ .start = CSR_REGISTER_BASE,
1242
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1243
1244
static void update_split_timeout(struct fw_card *card)
1245
__must_hold(&card->split_timeout.lock)
1246
{
1247
unsigned int cycles;
1248
1249
cycles = card->split_timeout.hi * 8000 + (card->split_timeout.lo >> 19);
1250
1251
/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1252
cycles = clamp(cycles, 800u, 3u * 8000u);
1253
1254
card->split_timeout.cycles = cycles;
1255
card->split_timeout.jiffies = isoc_cycles_to_jiffies(cycles);
1256
}
1257
1258
static void handle_registers(struct fw_card *card, struct fw_request *request,
1259
int tcode, int destination, int source, int generation,
1260
unsigned long long offset, void *payload, size_t length,
1261
void *callback_data)
1262
{
1263
int reg = offset & ~CSR_REGISTER_BASE;
1264
__be32 *data = payload;
1265
int rcode = RCODE_COMPLETE;
1266
1267
switch (reg) {
1268
case CSR_PRIORITY_BUDGET:
1269
if (!card->priority_budget_implemented) {
1270
rcode = RCODE_ADDRESS_ERROR;
1271
break;
1272
}
1273
fallthrough;
1274
1275
case CSR_NODE_IDS:
1276
/*
1277
* per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1278
* and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1279
*/
1280
fallthrough;
1281
1282
case CSR_STATE_CLEAR:
1283
case CSR_STATE_SET:
1284
case CSR_CYCLE_TIME:
1285
case CSR_BUS_TIME:
1286
case CSR_BUSY_TIMEOUT:
1287
if (tcode == TCODE_READ_QUADLET_REQUEST)
1288
*data = cpu_to_be32(card->driver->read_csr(card, reg));
1289
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1290
card->driver->write_csr(card, reg, be32_to_cpu(*data));
1291
else
1292
rcode = RCODE_TYPE_ERROR;
1293
break;
1294
1295
case CSR_RESET_START:
1296
if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1297
card->driver->write_csr(card, CSR_STATE_CLEAR,
1298
CSR_STATE_BIT_ABDICATE);
1299
else
1300
rcode = RCODE_TYPE_ERROR;
1301
break;
1302
1303
case CSR_SPLIT_TIMEOUT_HI:
1304
if (tcode == TCODE_READ_QUADLET_REQUEST) {
1305
*data = cpu_to_be32(card->split_timeout.hi);
1306
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1307
// NOTE: This can be without irqsave when we can guarantee that
1308
// __fw_send_request() for local destination never runs in any type of IRQ
1309
// context.
1310
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1311
card->split_timeout.hi = be32_to_cpu(*data) & 7;
1312
update_split_timeout(card);
1313
}
1314
} else {
1315
rcode = RCODE_TYPE_ERROR;
1316
}
1317
break;
1318
1319
case CSR_SPLIT_TIMEOUT_LO:
1320
if (tcode == TCODE_READ_QUADLET_REQUEST) {
1321
*data = cpu_to_be32(card->split_timeout.lo);
1322
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1323
// NOTE: This can be without irqsave when we can guarantee that
1324
// __fw_send_request() for local destination never runs in any type of IRQ
1325
// context.
1326
scoped_guard(spinlock_irqsave, &card->split_timeout.lock) {
1327
card->split_timeout.lo = be32_to_cpu(*data) & 0xfff80000;
1328
update_split_timeout(card);
1329
}
1330
} else {
1331
rcode = RCODE_TYPE_ERROR;
1332
}
1333
break;
1334
1335
case CSR_MAINT_UTILITY:
1336
if (tcode == TCODE_READ_QUADLET_REQUEST)
1337
*data = card->maint_utility_register;
1338
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1339
card->maint_utility_register = *data;
1340
else
1341
rcode = RCODE_TYPE_ERROR;
1342
break;
1343
1344
case CSR_BROADCAST_CHANNEL:
1345
if (tcode == TCODE_READ_QUADLET_REQUEST)
1346
*data = cpu_to_be32(card->broadcast_channel);
1347
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1348
card->broadcast_channel =
1349
(be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1350
BROADCAST_CHANNEL_INITIAL;
1351
else
1352
rcode = RCODE_TYPE_ERROR;
1353
break;
1354
1355
case CSR_BUS_MANAGER_ID:
1356
case CSR_BANDWIDTH_AVAILABLE:
1357
case CSR_CHANNELS_AVAILABLE_HI:
1358
case CSR_CHANNELS_AVAILABLE_LO:
1359
/*
1360
* FIXME: these are handled by the OHCI hardware and
1361
* the stack never sees these request. If we add
1362
* support for a new type of controller that doesn't
1363
* handle this in hardware we need to deal with these
1364
* transactions.
1365
*/
1366
BUG();
1367
break;
1368
1369
default:
1370
rcode = RCODE_ADDRESS_ERROR;
1371
break;
1372
}
1373
1374
fw_send_response(card, request, rcode);
1375
}
1376
1377
static struct fw_address_handler registers = {
1378
.length = 0x400,
1379
.address_callback = handle_registers,
1380
};
1381
1382
static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1383
int tcode, int destination, int source, int generation,
1384
unsigned long long offset, void *payload, size_t length,
1385
void *callback_data)
1386
{
1387
/*
1388
* This catches requests not handled by the physical DMA unit,
1389
* i.e., wrong transaction types or unauthorized source nodes.
1390
*/
1391
fw_send_response(card, request, RCODE_TYPE_ERROR);
1392
}
1393
1394
static struct fw_address_handler low_memory = {
1395
.length = FW_MAX_PHYSICAL_RANGE,
1396
.address_callback = handle_low_memory,
1397
};
1398
1399
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
1400
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1401
MODULE_LICENSE("GPL");
1402
1403
static const u32 vendor_textual_descriptor[] = {
1404
/* textual descriptor leaf () */
1405
0x00060000,
1406
0x00000000,
1407
0x00000000,
1408
0x4c696e75, /* L i n u */
1409
0x78204669, /* x F i */
1410
0x72657769, /* r e w i */
1411
0x72650000, /* r e */
1412
};
1413
1414
static const u32 model_textual_descriptor[] = {
1415
/* model descriptor leaf () */
1416
0x00030000,
1417
0x00000000,
1418
0x00000000,
1419
0x4a756a75, /* J u j u */
1420
};
1421
1422
static struct fw_descriptor vendor_id_descriptor = {
1423
.length = ARRAY_SIZE(vendor_textual_descriptor),
1424
.immediate = 0x03001f11,
1425
.key = 0x81000000,
1426
.data = vendor_textual_descriptor,
1427
};
1428
1429
static struct fw_descriptor model_id_descriptor = {
1430
.length = ARRAY_SIZE(model_textual_descriptor),
1431
.immediate = 0x17023901,
1432
.key = 0x81000000,
1433
.data = model_textual_descriptor,
1434
};
1435
1436
static int __init fw_core_init(void)
1437
{
1438
int ret;
1439
1440
fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1441
if (!fw_workqueue)
1442
return -ENOMEM;
1443
1444
ret = bus_register(&fw_bus_type);
1445
if (ret < 0) {
1446
destroy_workqueue(fw_workqueue);
1447
return ret;
1448
}
1449
1450
fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1451
if (fw_cdev_major < 0) {
1452
bus_unregister(&fw_bus_type);
1453
destroy_workqueue(fw_workqueue);
1454
return fw_cdev_major;
1455
}
1456
1457
fw_core_add_address_handler(&topology_map, &topology_map_region);
1458
fw_core_add_address_handler(&registers, &registers_region);
1459
fw_core_add_address_handler(&low_memory, &low_memory_region);
1460
fw_core_add_descriptor(&vendor_id_descriptor);
1461
fw_core_add_descriptor(&model_id_descriptor);
1462
1463
return 0;
1464
}
1465
1466
static void __exit fw_core_cleanup(void)
1467
{
1468
unregister_chrdev(fw_cdev_major, "firewire");
1469
bus_unregister(&fw_bus_type);
1470
destroy_workqueue(fw_workqueue);
1471
xa_destroy(&fw_device_xa);
1472
}
1473
1474
module_init(fw_core_init);
1475
module_exit(fw_core_cleanup);
1476
1477