Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/ohci.c
29278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for OHCI 1394 controllers
4
*
5
* Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bitops.h>
9
#include <linux/bug.h>
10
#include <linux/compiler.h>
11
#include <linux/delay.h>
12
#include <linux/device.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/firewire.h>
15
#include <linux/firewire-constants.h>
16
#include <linux/init.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/kernel.h>
20
#include <linux/list.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/mutex.h>
25
#include <linux/pci.h>
26
#include <linux/pci_ids.h>
27
#include <linux/slab.h>
28
#include <linux/spinlock.h>
29
#include <linux/string.h>
30
#include <linux/time.h>
31
#include <linux/vmalloc.h>
32
#include <linux/workqueue.h>
33
34
#include <asm/byteorder.h>
35
#include <asm/page.h>
36
37
#ifdef CONFIG_PPC_PMAC
38
#include <asm/pmac_feature.h>
39
#endif
40
41
#include "core.h"
42
#include "ohci.h"
43
#include "packet-header-definitions.h"
44
#include "phy-packet-definitions.h"
45
46
#include <trace/events/firewire.h>
47
48
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50
#define CREATE_TRACE_POINTS
51
#include <trace/events/firewire_ohci.h>
52
53
#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54
#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56
#define DESCRIPTOR_OUTPUT_MORE 0
57
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58
#define DESCRIPTOR_INPUT_MORE (2 << 12)
59
#define DESCRIPTOR_INPUT_LAST (3 << 12)
60
#define DESCRIPTOR_STATUS (1 << 11)
61
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62
#define DESCRIPTOR_PING (1 << 7)
63
#define DESCRIPTOR_YY (1 << 6)
64
#define DESCRIPTOR_NO_IRQ (0 << 4)
65
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68
#define DESCRIPTOR_WAIT (3 << 0)
69
70
#define DESCRIPTOR_CMD (0xf << 12)
71
72
struct descriptor {
73
__le16 req_count;
74
__le16 control;
75
__le32 data_address;
76
__le32 branch_address;
77
__le16 res_count;
78
__le16 transfer_status;
79
} __aligned(16);
80
81
#define CONTROL_SET(regs) (regs)
82
#define CONTROL_CLEAR(regs) ((regs) + 4)
83
#define COMMAND_PTR(regs) ((regs) + 12)
84
#define CONTEXT_MATCH(regs) ((regs) + 16)
85
86
#define AR_BUFFER_SIZE (32*1024)
87
#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88
/* we need at least two pages for proper list management */
89
#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91
#define MAX_ASYNC_PAYLOAD 4096
92
#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93
#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95
struct ar_context {
96
struct fw_ohci *ohci;
97
struct page *pages[AR_BUFFERS];
98
void *buffer;
99
struct descriptor *descriptors;
100
dma_addr_t descriptors_bus;
101
void *pointer;
102
unsigned int last_buffer_index;
103
u32 regs;
104
struct work_struct work;
105
};
106
107
struct context;
108
109
typedef int (*descriptor_callback_t)(struct context *ctx,
110
struct descriptor *d,
111
struct descriptor *last);
112
113
/*
114
* A buffer that contains a block of DMA-able coherent memory used for
115
* storing a portion of a DMA descriptor program.
116
*/
117
struct descriptor_buffer {
118
struct list_head list;
119
dma_addr_t buffer_bus;
120
size_t buffer_size;
121
size_t used;
122
struct descriptor buffer[];
123
};
124
125
struct context {
126
struct fw_ohci *ohci;
127
u32 regs;
128
int total_allocation;
129
u32 current_bus;
130
bool running;
131
132
/*
133
* List of page-sized buffers for storing DMA descriptors.
134
* Head of list contains buffers in use and tail of list contains
135
* free buffers.
136
*/
137
struct list_head buffer_list;
138
139
/*
140
* Pointer to a buffer inside buffer_list that contains the tail
141
* end of the current DMA program.
142
*/
143
struct descriptor_buffer *buffer_tail;
144
145
/*
146
* The descriptor containing the branch address of the first
147
* descriptor that has not yet been filled by the device.
148
*/
149
struct descriptor *last;
150
151
/*
152
* The last descriptor block in the DMA program. It contains the branch
153
* address that must be updated upon appending a new descriptor.
154
*/
155
struct descriptor *prev;
156
int prev_z;
157
158
descriptor_callback_t callback;
159
};
160
161
struct at_context {
162
struct context context;
163
struct work_struct work;
164
bool flushing;
165
};
166
167
struct iso_context {
168
struct fw_iso_context base;
169
struct context context;
170
void *header;
171
size_t header_length;
172
unsigned long flushing_completions;
173
u32 mc_buffer_bus;
174
u16 mc_completed;
175
u16 last_timestamp;
176
u8 sync;
177
u8 tags;
178
};
179
180
#define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181
182
struct fw_ohci {
183
struct fw_card card;
184
185
__iomem char *registers;
186
int node_id;
187
int generation;
188
int request_generation; /* for timestamping incoming requests */
189
unsigned quirks;
190
unsigned int pri_req_max;
191
u32 bus_time;
192
bool bus_time_running;
193
bool is_root;
194
bool csr_state_setclear_abdicate;
195
int n_ir;
196
int n_it;
197
/*
198
* Spinlock for accessing fw_ohci data. Never call out of
199
* this driver with this lock held.
200
*/
201
spinlock_t lock;
202
203
struct mutex phy_reg_mutex;
204
205
void *misc_buffer;
206
dma_addr_t misc_buffer_bus;
207
208
struct ar_context ar_request_ctx;
209
struct ar_context ar_response_ctx;
210
struct at_context at_request_ctx;
211
struct at_context at_response_ctx;
212
213
u32 it_context_support;
214
u32 it_context_mask; /* unoccupied IT contexts */
215
struct iso_context *it_context_list;
216
u64 ir_context_channels; /* unoccupied channels */
217
u32 ir_context_support;
218
u32 ir_context_mask; /* unoccupied IR contexts */
219
struct iso_context *ir_context_list;
220
u64 mc_channels; /* channels in use by the multichannel IR context */
221
bool mc_allocated;
222
223
__be32 *config_rom;
224
dma_addr_t config_rom_bus;
225
__be32 *next_config_rom;
226
dma_addr_t next_config_rom_bus;
227
__be32 next_header;
228
229
__le32 *self_id;
230
dma_addr_t self_id_bus;
231
232
u32 self_id_buffer[512];
233
};
234
235
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236
{
237
return container_of(card, struct fw_ohci, card);
238
}
239
240
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
241
#define IR_CONTEXT_BUFFER_FILL 0x80000000
242
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
243
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
244
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
245
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246
247
#define CONTEXT_RUN 0x8000
248
#define CONTEXT_WAKE 0x1000
249
#define CONTEXT_DEAD 0x0800
250
#define CONTEXT_ACTIVE 0x0400
251
252
#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
253
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
254
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255
256
#define OHCI1394_REGISTER_SIZE 0x800
257
#define OHCI1394_PCI_HCI_Control 0x40
258
#define SELF_ID_BUF_SIZE 0x800
259
#define OHCI_VERSION_1_1 0x010010
260
261
static char ohci_driver_name[] = KBUILD_MODNAME;
262
263
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264
#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265
#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267
#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268
#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269
#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270
#define PCI_DEVICE_ID_VIA_VT630X 0x3044
271
#define PCI_REV_ID_VIA_VT6306 0x46
272
#define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274
#define QUIRK_CYCLE_TIMER 0x1
275
#define QUIRK_RESET_PACKET 0x2
276
#define QUIRK_BE_HEADERS 0x4
277
#define QUIRK_NO_1394A 0x8
278
#define QUIRK_NO_MSI 0x10
279
#define QUIRK_TI_SLLZ059 0x20
280
#define QUIRK_IR_WAKE 0x40
281
282
// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283
// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284
// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285
// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286
// while it is probable due to detection of any type of PCIe error.
287
#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289
#if IS_ENABLED(CONFIG_X86)
290
291
static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292
{
293
return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294
}
295
296
#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
298
static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299
{
300
const struct pci_dev *pcie_to_pci_bridge;
301
302
// Detect any type of AMD Ryzen machine.
303
if (!static_cpu_has(X86_FEATURE_ZEN))
304
return false;
305
306
// Detect VIA VT6306/6307/6308.
307
if (pdev->vendor != PCI_VENDOR_ID_VIA)
308
return false;
309
if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310
return false;
311
312
// Detect Asmedia ASM1083/1085.
313
pcie_to_pci_bridge = pdev->bus->self;
314
if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315
return false;
316
if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317
return false;
318
319
return true;
320
}
321
322
#else
323
#define has_reboot_by_cycle_timer_read_quirk(ohci) false
324
#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325
#endif
326
327
/* In case of multiple matches in ohci_quirks[], only the first one is used. */
328
static const struct {
329
unsigned short vendor, device, revision, flags;
330
} ohci_quirks[] = {
331
{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332
QUIRK_CYCLE_TIMER},
333
334
{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335
QUIRK_BE_HEADERS},
336
337
{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338
QUIRK_NO_MSI},
339
340
{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341
QUIRK_RESET_PACKET},
342
343
{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344
QUIRK_NO_MSI},
345
346
{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347
QUIRK_CYCLE_TIMER},
348
349
{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350
QUIRK_NO_MSI},
351
352
{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356
QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364
{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365
QUIRK_RESET_PACKET},
366
367
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368
QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371
QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374
QUIRK_NO_MSI},
375
376
{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378
};
379
380
/* This overrides anything that was found in ohci_quirks[]. */
381
static int param_quirks;
382
module_param_named(quirks, param_quirks, int, 0644);
383
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384
", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385
", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386
", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387
", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388
", disable MSI = " __stringify(QUIRK_NO_MSI)
389
", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390
", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391
")");
392
393
static bool param_remote_dma;
394
module_param_named(remote_dma, param_remote_dma, bool, 0444);
395
MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
396
397
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
398
{
399
writel(data, ohci->registers + offset);
400
}
401
402
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
403
{
404
return readl(ohci->registers + offset);
405
}
406
407
static inline void flush_writes(const struct fw_ohci *ohci)
408
{
409
/* Do a dummy read to flush writes. */
410
reg_read(ohci, OHCI1394_Version);
411
}
412
413
/*
414
* Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
415
* read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
416
* In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
417
* directly. Exceptions are intrinsically serialized contexts like pci_probe.
418
*/
419
static int read_phy_reg(struct fw_ohci *ohci, int addr)
420
{
421
u32 val;
422
int i;
423
424
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
425
for (i = 0; i < 3 + 100; i++) {
426
val = reg_read(ohci, OHCI1394_PhyControl);
427
if (!~val)
428
return -ENODEV; /* Card was ejected. */
429
430
if (val & OHCI1394_PhyControl_ReadDone)
431
return OHCI1394_PhyControl_ReadData(val);
432
433
/*
434
* Try a few times without waiting. Sleeping is necessary
435
* only when the link/PHY interface is busy.
436
*/
437
if (i >= 3)
438
msleep(1);
439
}
440
ohci_err(ohci, "failed to read phy reg %d\n", addr);
441
dump_stack();
442
443
return -EBUSY;
444
}
445
446
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
447
{
448
int i;
449
450
reg_write(ohci, OHCI1394_PhyControl,
451
OHCI1394_PhyControl_Write(addr, val));
452
for (i = 0; i < 3 + 100; i++) {
453
val = reg_read(ohci, OHCI1394_PhyControl);
454
if (!~val)
455
return -ENODEV; /* Card was ejected. */
456
457
if (!(val & OHCI1394_PhyControl_WritePending))
458
return 0;
459
460
if (i >= 3)
461
msleep(1);
462
}
463
ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
464
dump_stack();
465
466
return -EBUSY;
467
}
468
469
static int update_phy_reg(struct fw_ohci *ohci, int addr,
470
int clear_bits, int set_bits)
471
{
472
int ret = read_phy_reg(ohci, addr);
473
if (ret < 0)
474
return ret;
475
476
/*
477
* The interrupt status bits are cleared by writing a one bit.
478
* Avoid clearing them unless explicitly requested in set_bits.
479
*/
480
if (addr == 5)
481
clear_bits |= PHY_INT_STATUS_BITS;
482
483
return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
484
}
485
486
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
487
{
488
int ret;
489
490
ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
491
if (ret < 0)
492
return ret;
493
494
return read_phy_reg(ohci, addr);
495
}
496
497
static int ohci_read_phy_reg(struct fw_card *card, int addr)
498
{
499
struct fw_ohci *ohci = fw_ohci(card);
500
501
guard(mutex)(&ohci->phy_reg_mutex);
502
503
return read_phy_reg(ohci, addr);
504
}
505
506
static int ohci_update_phy_reg(struct fw_card *card, int addr,
507
int clear_bits, int set_bits)
508
{
509
struct fw_ohci *ohci = fw_ohci(card);
510
511
guard(mutex)(&ohci->phy_reg_mutex);
512
513
return update_phy_reg(ohci, addr, clear_bits, set_bits);
514
}
515
516
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
517
{
518
return page_private(ctx->pages[i]);
519
}
520
521
static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
522
{
523
struct descriptor *d;
524
525
d = &ctx->descriptors[index];
526
d->branch_address &= cpu_to_le32(~0xf);
527
d->res_count = cpu_to_le16(PAGE_SIZE);
528
d->transfer_status = 0;
529
530
wmb(); /* finish init of new descriptors before branch_address update */
531
d = &ctx->descriptors[ctx->last_buffer_index];
532
d->branch_address |= cpu_to_le32(1);
533
534
ctx->last_buffer_index = index;
535
536
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
537
}
538
539
static void ar_context_release(struct ar_context *ctx)
540
{
541
struct device *dev = ctx->ohci->card.device;
542
unsigned int i;
543
544
if (!ctx->buffer)
545
return;
546
547
vunmap(ctx->buffer);
548
549
for (i = 0; i < AR_BUFFERS; i++) {
550
if (ctx->pages[i])
551
dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
552
ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
553
}
554
}
555
556
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
557
{
558
struct fw_ohci *ohci = ctx->ohci;
559
560
if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
561
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
562
flush_writes(ohci);
563
564
ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
565
}
566
/* FIXME: restart? */
567
}
568
569
static inline unsigned int ar_next_buffer_index(unsigned int index)
570
{
571
return (index + 1) % AR_BUFFERS;
572
}
573
574
static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
575
{
576
return ar_next_buffer_index(ctx->last_buffer_index);
577
}
578
579
/*
580
* We search for the buffer that contains the last AR packet DMA data written
581
* by the controller.
582
*/
583
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
584
unsigned int *buffer_offset)
585
{
586
unsigned int i, next_i, last = ctx->last_buffer_index;
587
__le16 res_count, next_res_count;
588
589
i = ar_first_buffer_index(ctx);
590
res_count = READ_ONCE(ctx->descriptors[i].res_count);
591
592
/* A buffer that is not yet completely filled must be the last one. */
593
while (i != last && res_count == 0) {
594
595
/* Peek at the next descriptor. */
596
next_i = ar_next_buffer_index(i);
597
rmb(); /* read descriptors in order */
598
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
599
/*
600
* If the next descriptor is still empty, we must stop at this
601
* descriptor.
602
*/
603
if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
604
/*
605
* The exception is when the DMA data for one packet is
606
* split over three buffers; in this case, the middle
607
* buffer's descriptor might be never updated by the
608
* controller and look still empty, and we have to peek
609
* at the third one.
610
*/
611
if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
612
next_i = ar_next_buffer_index(next_i);
613
rmb();
614
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
615
if (next_res_count != cpu_to_le16(PAGE_SIZE))
616
goto next_buffer_is_active;
617
}
618
619
break;
620
}
621
622
next_buffer_is_active:
623
i = next_i;
624
res_count = next_res_count;
625
}
626
627
rmb(); /* read res_count before the DMA data */
628
629
*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
630
if (*buffer_offset > PAGE_SIZE) {
631
*buffer_offset = 0;
632
ar_context_abort(ctx, "corrupted descriptor");
633
}
634
635
return i;
636
}
637
638
static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
639
unsigned int end_buffer_index,
640
unsigned int end_buffer_offset)
641
{
642
unsigned int i;
643
644
i = ar_first_buffer_index(ctx);
645
while (i != end_buffer_index) {
646
dma_sync_single_for_cpu(ctx->ohci->card.device,
647
ar_buffer_bus(ctx, i),
648
PAGE_SIZE, DMA_FROM_DEVICE);
649
i = ar_next_buffer_index(i);
650
}
651
if (end_buffer_offset > 0)
652
dma_sync_single_for_cpu(ctx->ohci->card.device,
653
ar_buffer_bus(ctx, i),
654
end_buffer_offset, DMA_FROM_DEVICE);
655
}
656
657
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
658
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
659
{
660
return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
661
}
662
663
static bool has_be_header_quirk(const struct fw_ohci *ohci)
664
{
665
return !!(ohci->quirks & QUIRK_BE_HEADERS);
666
}
667
#else
668
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
669
{
670
return le32_to_cpu(value);
671
}
672
673
static bool has_be_header_quirk(const struct fw_ohci *ohci)
674
{
675
return false;
676
}
677
#endif
678
679
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
680
{
681
struct fw_ohci *ohci = ctx->ohci;
682
struct fw_packet p;
683
u32 status, length, tcode;
684
int evt;
685
686
p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
687
p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
688
p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
689
690
tcode = async_header_get_tcode(p.header);
691
switch (tcode) {
692
case TCODE_WRITE_QUADLET_REQUEST:
693
case TCODE_READ_QUADLET_RESPONSE:
694
p.header[3] = (__force __u32) buffer[3];
695
p.header_length = 16;
696
p.payload_length = 0;
697
break;
698
699
case TCODE_READ_BLOCK_REQUEST :
700
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
701
p.header_length = 16;
702
p.payload_length = 0;
703
break;
704
705
case TCODE_WRITE_BLOCK_REQUEST:
706
case TCODE_READ_BLOCK_RESPONSE:
707
case TCODE_LOCK_REQUEST:
708
case TCODE_LOCK_RESPONSE:
709
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
710
p.header_length = 16;
711
p.payload_length = async_header_get_data_length(p.header);
712
if (p.payload_length > MAX_ASYNC_PAYLOAD) {
713
ar_context_abort(ctx, "invalid packet length");
714
return NULL;
715
}
716
break;
717
718
case TCODE_WRITE_RESPONSE:
719
case TCODE_READ_QUADLET_REQUEST:
720
case TCODE_LINK_INTERNAL:
721
p.header_length = 12;
722
p.payload_length = 0;
723
break;
724
725
default:
726
ar_context_abort(ctx, "invalid tcode");
727
return NULL;
728
}
729
730
p.payload = (void *) buffer + p.header_length;
731
732
/* FIXME: What to do about evt_* errors? */
733
length = (p.header_length + p.payload_length + 3) / 4;
734
status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
735
evt = (status >> 16) & 0x1f;
736
737
p.ack = evt - 16;
738
p.speed = (status >> 21) & 0x7;
739
p.timestamp = status & 0xffff;
740
p.generation = ohci->request_generation;
741
742
/*
743
* Several controllers, notably from NEC and VIA, forget to
744
* write ack_complete status at PHY packet reception.
745
*/
746
if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
747
p.ack = ACK_COMPLETE;
748
749
/*
750
* The OHCI bus reset handler synthesizes a PHY packet with
751
* the new generation number when a bus reset happens (see
752
* section 8.4.2.3). This helps us determine when a request
753
* was received and make sure we send the response in the same
754
* generation. We only need this for requests; for responses
755
* we use the unique tlabel for finding the matching
756
* request.
757
*
758
* Alas some chips sometimes emit bus reset packets with a
759
* wrong generation. We set the correct generation for these
760
* at a slightly incorrect time (in handle_selfid_complete_event).
761
*/
762
if (evt == OHCI1394_evt_bus_reset) {
763
if (!(ohci->quirks & QUIRK_RESET_PACKET))
764
ohci->request_generation = (p.header[2] >> 16) & 0xff;
765
} else if (ctx == &ohci->ar_request_ctx) {
766
fw_core_handle_request(&ohci->card, &p);
767
} else {
768
fw_core_handle_response(&ohci->card, &p);
769
}
770
771
return buffer + length + 1;
772
}
773
774
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
775
{
776
void *next;
777
778
while (p < end) {
779
next = handle_ar_packet(ctx, p);
780
if (!next)
781
return p;
782
p = next;
783
}
784
785
return p;
786
}
787
788
static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
789
{
790
unsigned int i;
791
792
i = ar_first_buffer_index(ctx);
793
while (i != end_buffer) {
794
dma_sync_single_for_device(ctx->ohci->card.device,
795
ar_buffer_bus(ctx, i),
796
PAGE_SIZE, DMA_FROM_DEVICE);
797
ar_context_link_page(ctx, i);
798
i = ar_next_buffer_index(i);
799
}
800
}
801
802
static void ohci_ar_context_work(struct work_struct *work)
803
{
804
struct ar_context *ctx = from_work(ctx, work, work);
805
unsigned int end_buffer_index, end_buffer_offset;
806
void *p, *end;
807
808
p = ctx->pointer;
809
if (!p)
810
return;
811
812
end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
813
ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
814
end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
815
816
if (end_buffer_index < ar_first_buffer_index(ctx)) {
817
// The filled part of the overall buffer wraps around; handle all packets up to the
818
// buffer end here. If the last packet wraps around, its tail will be visible after
819
// the buffer end because the buffer start pages are mapped there again.
820
void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
821
p = handle_ar_packets(ctx, p, buffer_end);
822
if (p < buffer_end)
823
goto error;
824
// adjust p to point back into the actual buffer
825
p -= AR_BUFFERS * PAGE_SIZE;
826
}
827
828
p = handle_ar_packets(ctx, p, end);
829
if (p != end) {
830
if (p > end)
831
ar_context_abort(ctx, "inconsistent descriptor");
832
goto error;
833
}
834
835
ctx->pointer = p;
836
ar_recycle_buffers(ctx, end_buffer_index);
837
838
return;
839
error:
840
ctx->pointer = NULL;
841
}
842
843
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
844
unsigned int descriptors_offset, u32 regs)
845
{
846
struct device *dev = ohci->card.device;
847
unsigned int i;
848
dma_addr_t dma_addr;
849
struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
850
struct descriptor *d;
851
852
ctx->regs = regs;
853
ctx->ohci = ohci;
854
INIT_WORK(&ctx->work, ohci_ar_context_work);
855
856
for (i = 0; i < AR_BUFFERS; i++) {
857
ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
858
DMA_FROM_DEVICE, GFP_KERNEL);
859
if (!ctx->pages[i])
860
goto out_of_memory;
861
set_page_private(ctx->pages[i], dma_addr);
862
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
863
DMA_FROM_DEVICE);
864
}
865
866
for (i = 0; i < AR_BUFFERS; i++)
867
pages[i] = ctx->pages[i];
868
for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
869
pages[AR_BUFFERS + i] = ctx->pages[i];
870
ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
871
if (!ctx->buffer)
872
goto out_of_memory;
873
874
ctx->descriptors = ohci->misc_buffer + descriptors_offset;
875
ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
876
877
for (i = 0; i < AR_BUFFERS; i++) {
878
d = &ctx->descriptors[i];
879
d->req_count = cpu_to_le16(PAGE_SIZE);
880
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
881
DESCRIPTOR_STATUS |
882
DESCRIPTOR_BRANCH_ALWAYS);
883
d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
884
d->branch_address = cpu_to_le32(ctx->descriptors_bus +
885
ar_next_buffer_index(i) * sizeof(struct descriptor));
886
}
887
888
return 0;
889
890
out_of_memory:
891
ar_context_release(ctx);
892
893
return -ENOMEM;
894
}
895
896
static void ar_context_run(struct ar_context *ctx)
897
{
898
unsigned int i;
899
900
for (i = 0; i < AR_BUFFERS; i++)
901
ar_context_link_page(ctx, i);
902
903
ctx->pointer = ctx->buffer;
904
905
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
906
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
907
}
908
909
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
910
{
911
__le16 branch;
912
913
branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
914
915
/* figure out which descriptor the branch address goes in */
916
if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
917
return d;
918
else
919
return d + z - 1;
920
}
921
922
static void context_retire_descriptors(struct context *ctx)
923
{
924
struct descriptor *d, *last;
925
u32 address;
926
int z;
927
struct descriptor_buffer *desc;
928
929
desc = list_entry(ctx->buffer_list.next,
930
struct descriptor_buffer, list);
931
last = ctx->last;
932
while (last->branch_address != 0) {
933
struct descriptor_buffer *old_desc = desc;
934
address = le32_to_cpu(last->branch_address);
935
z = address & 0xf;
936
address &= ~0xf;
937
ctx->current_bus = address;
938
939
/* If the branch address points to a buffer outside of the
940
* current buffer, advance to the next buffer. */
941
if (address < desc->buffer_bus ||
942
address >= desc->buffer_bus + desc->used)
943
desc = list_entry(desc->list.next,
944
struct descriptor_buffer, list);
945
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
946
last = find_branch_descriptor(d, z);
947
948
if (!ctx->callback(ctx, d, last))
949
break;
950
951
if (old_desc != desc) {
952
// If we've advanced to the next buffer, move the previous buffer to the
953
// free list.
954
old_desc->used = 0;
955
guard(spinlock_irqsave)(&ctx->ohci->lock);
956
list_move_tail(&old_desc->list, &ctx->buffer_list);
957
}
958
ctx->last = last;
959
}
960
}
961
962
static void ohci_at_context_work(struct work_struct *work)
963
{
964
struct at_context *ctx = from_work(ctx, work, work);
965
966
context_retire_descriptors(&ctx->context);
967
}
968
969
static void ohci_isoc_context_work(struct work_struct *work)
970
{
971
struct fw_iso_context *base = from_work(base, work, work);
972
struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
973
974
context_retire_descriptors(&isoc_ctx->context);
975
}
976
977
/*
978
* Allocate a new buffer and add it to the list of free buffers for this
979
* context. Must be called with ohci->lock held.
980
*/
981
static int context_add_buffer(struct context *ctx)
982
{
983
struct descriptor_buffer *desc;
984
dma_addr_t bus_addr;
985
int offset;
986
987
/*
988
* 16MB of descriptors should be far more than enough for any DMA
989
* program. This will catch run-away userspace or DoS attacks.
990
*/
991
if (ctx->total_allocation >= 16*1024*1024)
992
return -ENOMEM;
993
994
desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
995
if (!desc)
996
return -ENOMEM;
997
998
offset = (void *)&desc->buffer - (void *)desc;
999
/*
1000
* Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1001
* for descriptors, even 0x10-byte ones. This can cause page faults when
1002
* an IOMMU is in use and the oversized read crosses a page boundary.
1003
* Work around this by always leaving at least 0x10 bytes of padding.
1004
*/
1005
desc->buffer_size = PAGE_SIZE - offset - 0x10;
1006
desc->buffer_bus = bus_addr + offset;
1007
desc->used = 0;
1008
1009
list_add_tail(&desc->list, &ctx->buffer_list);
1010
ctx->total_allocation += PAGE_SIZE;
1011
1012
return 0;
1013
}
1014
1015
static int context_init(struct context *ctx, struct fw_ohci *ohci,
1016
u32 regs, descriptor_callback_t callback)
1017
{
1018
ctx->ohci = ohci;
1019
ctx->regs = regs;
1020
ctx->total_allocation = 0;
1021
1022
INIT_LIST_HEAD(&ctx->buffer_list);
1023
if (context_add_buffer(ctx) < 0)
1024
return -ENOMEM;
1025
1026
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1027
struct descriptor_buffer, list);
1028
1029
ctx->callback = callback;
1030
1031
/*
1032
* We put a dummy descriptor in the buffer that has a NULL
1033
* branch address and looks like it's been sent. That way we
1034
* have a descriptor to append DMA programs to.
1035
*/
1036
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1037
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1038
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1039
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1040
ctx->last = ctx->buffer_tail->buffer;
1041
ctx->prev = ctx->buffer_tail->buffer;
1042
ctx->prev_z = 1;
1043
1044
return 0;
1045
}
1046
1047
static void context_release(struct context *ctx)
1048
{
1049
struct fw_card *card = &ctx->ohci->card;
1050
struct descriptor_buffer *desc, *tmp;
1051
1052
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1053
dmam_free_coherent(card->device, PAGE_SIZE, desc,
1054
desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1055
}
1056
}
1057
1058
/* Must be called with ohci->lock held */
1059
static struct descriptor *context_get_descriptors(struct context *ctx,
1060
int z, dma_addr_t *d_bus)
1061
{
1062
struct descriptor *d = NULL;
1063
struct descriptor_buffer *desc = ctx->buffer_tail;
1064
1065
if (z * sizeof(*d) > desc->buffer_size)
1066
return NULL;
1067
1068
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1069
/* No room for the descriptor in this buffer, so advance to the
1070
* next one. */
1071
1072
if (desc->list.next == &ctx->buffer_list) {
1073
/* If there is no free buffer next in the list,
1074
* allocate one. */
1075
if (context_add_buffer(ctx) < 0)
1076
return NULL;
1077
}
1078
desc = list_entry(desc->list.next,
1079
struct descriptor_buffer, list);
1080
ctx->buffer_tail = desc;
1081
}
1082
1083
d = desc->buffer + desc->used / sizeof(*d);
1084
memset(d, 0, z * sizeof(*d));
1085
*d_bus = desc->buffer_bus + desc->used;
1086
1087
return d;
1088
}
1089
1090
static void context_run(struct context *ctx, u32 extra)
1091
{
1092
struct fw_ohci *ohci = ctx->ohci;
1093
1094
reg_write(ohci, COMMAND_PTR(ctx->regs),
1095
le32_to_cpu(ctx->last->branch_address));
1096
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1097
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1098
ctx->running = true;
1099
flush_writes(ohci);
1100
}
1101
1102
static void context_append(struct context *ctx,
1103
struct descriptor *d, int z, int extra)
1104
{
1105
dma_addr_t d_bus;
1106
struct descriptor_buffer *desc = ctx->buffer_tail;
1107
struct descriptor *d_branch;
1108
1109
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1110
1111
desc->used += (z + extra) * sizeof(*d);
1112
1113
wmb(); /* finish init of new descriptors before branch_address update */
1114
1115
d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1116
d_branch->branch_address = cpu_to_le32(d_bus | z);
1117
1118
/*
1119
* VT6306 incorrectly checks only the single descriptor at the
1120
* CommandPtr when the wake bit is written, so if it's a
1121
* multi-descriptor block starting with an INPUT_MORE, put a copy of
1122
* the branch address in the first descriptor.
1123
*
1124
* Not doing this for transmit contexts since not sure how it interacts
1125
* with skip addresses.
1126
*/
1127
if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1128
d_branch != ctx->prev &&
1129
(ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1130
cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1131
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1132
}
1133
1134
ctx->prev = d;
1135
ctx->prev_z = z;
1136
}
1137
1138
static void context_stop(struct context *ctx)
1139
{
1140
struct fw_ohci *ohci = ctx->ohci;
1141
u32 reg;
1142
int i;
1143
1144
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1145
ctx->running = false;
1146
1147
for (i = 0; i < 1000; i++) {
1148
reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1149
if ((reg & CONTEXT_ACTIVE) == 0)
1150
return;
1151
1152
if (i)
1153
udelay(10);
1154
}
1155
ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1156
}
1157
1158
struct driver_data {
1159
u8 inline_data[8];
1160
struct fw_packet *packet;
1161
};
1162
1163
/*
1164
* This function appends a packet to the DMA queue for transmission.
1165
* Must always be called with the ochi->lock held to ensure proper
1166
* generation handling and locking around packet queue manipulation.
1167
*/
1168
static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1169
{
1170
struct context *context = &ctx->context;
1171
struct fw_ohci *ohci = context->ohci;
1172
dma_addr_t d_bus, payload_bus;
1173
struct driver_data *driver_data;
1174
struct descriptor *d, *last;
1175
__le32 *header;
1176
int z, tcode;
1177
1178
d = context_get_descriptors(context, 4, &d_bus);
1179
if (d == NULL) {
1180
packet->ack = RCODE_SEND_ERROR;
1181
return -1;
1182
}
1183
1184
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1185
d[0].res_count = cpu_to_le16(packet->timestamp);
1186
1187
tcode = async_header_get_tcode(packet->header);
1188
header = (__le32 *) &d[1];
1189
switch (tcode) {
1190
case TCODE_WRITE_QUADLET_REQUEST:
1191
case TCODE_WRITE_BLOCK_REQUEST:
1192
case TCODE_WRITE_RESPONSE:
1193
case TCODE_READ_QUADLET_REQUEST:
1194
case TCODE_READ_BLOCK_REQUEST:
1195
case TCODE_READ_QUADLET_RESPONSE:
1196
case TCODE_READ_BLOCK_RESPONSE:
1197
case TCODE_LOCK_REQUEST:
1198
case TCODE_LOCK_RESPONSE:
1199
ohci1394_at_data_set_src_bus_id(header, false);
1200
ohci1394_at_data_set_speed(header, packet->speed);
1201
ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1202
ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1203
ohci1394_at_data_set_tcode(header, tcode);
1204
1205
ohci1394_at_data_set_destination_id(header,
1206
async_header_get_destination(packet->header));
1207
1208
if (ctx == &ohci->at_response_ctx) {
1209
ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1210
} else {
1211
ohci1394_at_data_set_destination_offset(header,
1212
async_header_get_offset(packet->header));
1213
}
1214
1215
if (tcode_is_block_packet(tcode))
1216
header[3] = cpu_to_le32(packet->header[3]);
1217
else
1218
header[3] = (__force __le32) packet->header[3];
1219
1220
d[0].req_count = cpu_to_le16(packet->header_length);
1221
break;
1222
case TCODE_LINK_INTERNAL:
1223
ohci1394_at_data_set_speed(header, packet->speed);
1224
ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1225
1226
header[1] = cpu_to_le32(packet->header[1]);
1227
header[2] = cpu_to_le32(packet->header[2]);
1228
d[0].req_count = cpu_to_le16(12);
1229
1230
if (is_ping_packet(&packet->header[1]))
1231
d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1232
break;
1233
1234
case TCODE_STREAM_DATA:
1235
ohci1394_it_data_set_speed(header, packet->speed);
1236
ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1237
ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1238
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1239
ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1240
1241
ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1242
1243
d[0].req_count = cpu_to_le16(8);
1244
break;
1245
1246
default:
1247
/* BUG(); */
1248
packet->ack = RCODE_SEND_ERROR;
1249
return -1;
1250
}
1251
1252
BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1253
driver_data = (struct driver_data *) &d[3];
1254
driver_data->packet = packet;
1255
packet->driver_data = driver_data;
1256
1257
if (packet->payload_length > 0) {
1258
if (packet->payload_length > sizeof(driver_data->inline_data)) {
1259
payload_bus = dma_map_single(ohci->card.device,
1260
packet->payload,
1261
packet->payload_length,
1262
DMA_TO_DEVICE);
1263
if (dma_mapping_error(ohci->card.device, payload_bus)) {
1264
packet->ack = RCODE_SEND_ERROR;
1265
return -1;
1266
}
1267
packet->payload_bus = payload_bus;
1268
packet->payload_mapped = true;
1269
} else {
1270
memcpy(driver_data->inline_data, packet->payload,
1271
packet->payload_length);
1272
payload_bus = d_bus + 3 * sizeof(*d);
1273
}
1274
1275
d[2].req_count = cpu_to_le16(packet->payload_length);
1276
d[2].data_address = cpu_to_le32(payload_bus);
1277
last = &d[2];
1278
z = 3;
1279
} else {
1280
last = &d[0];
1281
z = 2;
1282
}
1283
1284
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1285
DESCRIPTOR_IRQ_ALWAYS |
1286
DESCRIPTOR_BRANCH_ALWAYS);
1287
1288
/* FIXME: Document how the locking works. */
1289
if (ohci->generation != packet->generation) {
1290
if (packet->payload_mapped)
1291
dma_unmap_single(ohci->card.device, payload_bus,
1292
packet->payload_length, DMA_TO_DEVICE);
1293
packet->ack = RCODE_GENERATION;
1294
return -1;
1295
}
1296
1297
context_append(context, d, z, 4 - z);
1298
1299
if (context->running)
1300
reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1301
else
1302
context_run(context, 0);
1303
1304
return 0;
1305
}
1306
1307
static void at_context_flush(struct at_context *ctx)
1308
{
1309
// Avoid dead lock due to programming mistake.
1310
if (WARN_ON_ONCE(current_work() == &ctx->work))
1311
return;
1312
1313
disable_work_sync(&ctx->work);
1314
1315
WRITE_ONCE(ctx->flushing, true);
1316
ohci_at_context_work(&ctx->work);
1317
WRITE_ONCE(ctx->flushing, false);
1318
1319
enable_work(&ctx->work);
1320
}
1321
1322
static int handle_at_packet(struct context *context,
1323
struct descriptor *d,
1324
struct descriptor *last)
1325
{
1326
struct at_context *ctx = container_of(context, struct at_context, context);
1327
struct fw_ohci *ohci = ctx->context.ohci;
1328
struct driver_data *driver_data;
1329
struct fw_packet *packet;
1330
int evt;
1331
1332
if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1333
/* This descriptor isn't done yet, stop iteration. */
1334
return 0;
1335
1336
driver_data = (struct driver_data *) &d[3];
1337
packet = driver_data->packet;
1338
if (packet == NULL)
1339
/* This packet was cancelled, just continue. */
1340
return 1;
1341
1342
if (packet->payload_mapped)
1343
dma_unmap_single(ohci->card.device, packet->payload_bus,
1344
packet->payload_length, DMA_TO_DEVICE);
1345
1346
evt = le16_to_cpu(last->transfer_status) & 0x1f;
1347
packet->timestamp = le16_to_cpu(last->res_count);
1348
1349
switch (evt) {
1350
case OHCI1394_evt_timeout:
1351
/* Async response transmit timed out. */
1352
packet->ack = RCODE_CANCELLED;
1353
break;
1354
1355
case OHCI1394_evt_flushed:
1356
/*
1357
* The packet was flushed should give same error as
1358
* when we try to use a stale generation count.
1359
*/
1360
packet->ack = RCODE_GENERATION;
1361
break;
1362
1363
case OHCI1394_evt_missing_ack:
1364
if (READ_ONCE(ctx->flushing))
1365
packet->ack = RCODE_GENERATION;
1366
else {
1367
/*
1368
* Using a valid (current) generation count, but the
1369
* node is not on the bus or not sending acks.
1370
*/
1371
packet->ack = RCODE_NO_ACK;
1372
}
1373
break;
1374
1375
case ACK_COMPLETE + 0x10:
1376
case ACK_PENDING + 0x10:
1377
case ACK_BUSY_X + 0x10:
1378
case ACK_BUSY_A + 0x10:
1379
case ACK_BUSY_B + 0x10:
1380
case ACK_DATA_ERROR + 0x10:
1381
case ACK_TYPE_ERROR + 0x10:
1382
packet->ack = evt - 0x10;
1383
break;
1384
1385
case OHCI1394_evt_no_status:
1386
if (READ_ONCE(ctx->flushing)) {
1387
packet->ack = RCODE_GENERATION;
1388
break;
1389
}
1390
fallthrough;
1391
1392
default:
1393
packet->ack = RCODE_SEND_ERROR;
1394
break;
1395
}
1396
1397
packet->callback(packet, &ohci->card, packet->ack);
1398
1399
return 1;
1400
}
1401
1402
static u32 get_cycle_time(struct fw_ohci *ohci);
1403
1404
static void handle_local_rom(struct fw_ohci *ohci,
1405
struct fw_packet *packet, u32 csr)
1406
{
1407
struct fw_packet response;
1408
int tcode, length, i;
1409
1410
tcode = async_header_get_tcode(packet->header);
1411
if (tcode_is_block_packet(tcode))
1412
length = async_header_get_data_length(packet->header);
1413
else
1414
length = 4;
1415
1416
i = csr - CSR_CONFIG_ROM;
1417
if (i + length > CONFIG_ROM_SIZE) {
1418
fw_fill_response(&response, packet->header,
1419
RCODE_ADDRESS_ERROR, NULL, 0);
1420
} else if (!tcode_is_read_request(tcode)) {
1421
fw_fill_response(&response, packet->header,
1422
RCODE_TYPE_ERROR, NULL, 0);
1423
} else {
1424
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1425
(void *) ohci->config_rom + i, length);
1426
}
1427
1428
// Timestamping on behalf of the hardware.
1429
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1430
fw_core_handle_response(&ohci->card, &response);
1431
}
1432
1433
static void handle_local_lock(struct fw_ohci *ohci,
1434
struct fw_packet *packet, u32 csr)
1435
{
1436
struct fw_packet response;
1437
int tcode, length, ext_tcode, sel, try;
1438
__be32 *payload, lock_old;
1439
u32 lock_arg, lock_data;
1440
1441
tcode = async_header_get_tcode(packet->header);
1442
length = async_header_get_data_length(packet->header);
1443
payload = packet->payload;
1444
ext_tcode = async_header_get_extended_tcode(packet->header);
1445
1446
if (tcode == TCODE_LOCK_REQUEST &&
1447
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1448
lock_arg = be32_to_cpu(payload[0]);
1449
lock_data = be32_to_cpu(payload[1]);
1450
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1451
lock_arg = 0;
1452
lock_data = 0;
1453
} else {
1454
fw_fill_response(&response, packet->header,
1455
RCODE_TYPE_ERROR, NULL, 0);
1456
goto out;
1457
}
1458
1459
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1460
reg_write(ohci, OHCI1394_CSRData, lock_data);
1461
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1462
reg_write(ohci, OHCI1394_CSRControl, sel);
1463
1464
for (try = 0; try < 20; try++)
1465
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1466
lock_old = cpu_to_be32(reg_read(ohci,
1467
OHCI1394_CSRData));
1468
fw_fill_response(&response, packet->header,
1469
RCODE_COMPLETE,
1470
&lock_old, sizeof(lock_old));
1471
goto out;
1472
}
1473
1474
ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1475
fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1476
1477
out:
1478
// Timestamping on behalf of the hardware.
1479
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1480
fw_core_handle_response(&ohci->card, &response);
1481
}
1482
1483
static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1484
{
1485
struct fw_ohci *ohci = ctx->context.ohci;
1486
u64 offset, csr;
1487
1488
if (ctx == &ohci->at_request_ctx) {
1489
packet->ack = ACK_PENDING;
1490
packet->callback(packet, &ohci->card, packet->ack);
1491
}
1492
1493
offset = async_header_get_offset(packet->header);
1494
csr = offset - CSR_REGISTER_BASE;
1495
1496
/* Handle config rom reads. */
1497
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1498
handle_local_rom(ohci, packet, csr);
1499
else switch (csr) {
1500
case CSR_BUS_MANAGER_ID:
1501
case CSR_BANDWIDTH_AVAILABLE:
1502
case CSR_CHANNELS_AVAILABLE_HI:
1503
case CSR_CHANNELS_AVAILABLE_LO:
1504
handle_local_lock(ohci, packet, csr);
1505
break;
1506
default:
1507
if (ctx == &ohci->at_request_ctx)
1508
fw_core_handle_request(&ohci->card, packet);
1509
else
1510
fw_core_handle_response(&ohci->card, packet);
1511
break;
1512
}
1513
1514
if (ctx == &ohci->at_response_ctx) {
1515
packet->ack = ACK_COMPLETE;
1516
packet->callback(packet, &ohci->card, packet->ack);
1517
}
1518
}
1519
1520
static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1521
{
1522
struct fw_ohci *ohci = ctx->context.ohci;
1523
unsigned long flags;
1524
int ret;
1525
1526
spin_lock_irqsave(&ohci->lock, flags);
1527
1528
if (async_header_get_destination(packet->header) == ohci->node_id &&
1529
ohci->generation == packet->generation) {
1530
spin_unlock_irqrestore(&ohci->lock, flags);
1531
1532
// Timestamping on behalf of the hardware.
1533
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1534
1535
handle_local_request(ctx, packet);
1536
return;
1537
}
1538
1539
ret = at_context_queue_packet(ctx, packet);
1540
spin_unlock_irqrestore(&ohci->lock, flags);
1541
1542
if (ret < 0) {
1543
// Timestamping on behalf of the hardware.
1544
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1545
1546
packet->callback(packet, &ohci->card, packet->ack);
1547
}
1548
}
1549
1550
static void detect_dead_context(struct fw_ohci *ohci,
1551
const char *name, unsigned int regs)
1552
{
1553
static const char *const evts[] = {
1554
[0x00] = "evt_no_status", [0x01] = "-reserved-",
1555
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
1556
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
1557
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
1558
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
1559
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
1560
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
1561
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
1562
[0x10] = "-reserved-", [0x11] = "ack_complete",
1563
[0x12] = "ack_pending ", [0x13] = "-reserved-",
1564
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
1565
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
1566
[0x18] = "-reserved-", [0x19] = "-reserved-",
1567
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
1568
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
1569
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
1570
[0x20] = "pending/cancelled",
1571
};
1572
u32 ctl;
1573
1574
ctl = reg_read(ohci, CONTROL_SET(regs));
1575
if (ctl & CONTEXT_DEAD)
1576
ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1577
name, evts[ctl & 0x1f]);
1578
}
1579
1580
static void handle_dead_contexts(struct fw_ohci *ohci)
1581
{
1582
unsigned int i;
1583
char name[8];
1584
1585
detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1586
detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1587
detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1588
detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1589
for (i = 0; i < 32; ++i) {
1590
if (!(ohci->it_context_support & (1 << i)))
1591
continue;
1592
sprintf(name, "IT%u", i);
1593
detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1594
}
1595
for (i = 0; i < 32; ++i) {
1596
if (!(ohci->ir_context_support & (1 << i)))
1597
continue;
1598
sprintf(name, "IR%u", i);
1599
detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1600
}
1601
/* TODO: maybe try to flush and restart the dead contexts */
1602
}
1603
1604
static u32 cycle_timer_ticks(u32 cycle_timer)
1605
{
1606
u32 ticks;
1607
1608
ticks = cycle_timer & 0xfff;
1609
ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1610
ticks += (3072 * 8000) * (cycle_timer >> 25);
1611
1612
return ticks;
1613
}
1614
1615
/*
1616
* Some controllers exhibit one or more of the following bugs when updating the
1617
* iso cycle timer register:
1618
* - When the lowest six bits are wrapping around to zero, a read that happens
1619
* at the same time will return garbage in the lowest ten bits.
1620
* - When the cycleOffset field wraps around to zero, the cycleCount field is
1621
* not incremented for about 60 ns.
1622
* - Occasionally, the entire register reads zero.
1623
*
1624
* To catch these, we read the register three times and ensure that the
1625
* difference between each two consecutive reads is approximately the same, i.e.
1626
* less than twice the other. Furthermore, any negative difference indicates an
1627
* error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1628
* execute, so we have enough precision to compute the ratio of the differences.)
1629
*/
1630
static u32 get_cycle_time(struct fw_ohci *ohci)
1631
{
1632
u32 c0, c1, c2;
1633
u32 t0, t1, t2;
1634
s32 diff01, diff12;
1635
int i;
1636
1637
if (has_reboot_by_cycle_timer_read_quirk(ohci))
1638
return 0;
1639
1640
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1641
1642
if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1643
i = 0;
1644
c1 = c2;
1645
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1646
do {
1647
c0 = c1;
1648
c1 = c2;
1649
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1650
t0 = cycle_timer_ticks(c0);
1651
t1 = cycle_timer_ticks(c1);
1652
t2 = cycle_timer_ticks(c2);
1653
diff01 = t1 - t0;
1654
diff12 = t2 - t1;
1655
} while ((diff01 <= 0 || diff12 <= 0 ||
1656
diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1657
&& i++ < 20);
1658
}
1659
1660
return c2;
1661
}
1662
1663
/*
1664
* This function has to be called at least every 64 seconds. The bus_time
1665
* field stores not only the upper 25 bits of the BUS_TIME register but also
1666
* the most significant bit of the cycle timer in bit 6 so that we can detect
1667
* changes in this bit.
1668
*/
1669
static u32 update_bus_time(struct fw_ohci *ohci)
1670
{
1671
u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1672
1673
if (unlikely(!ohci->bus_time_running)) {
1674
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1675
ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1676
(cycle_time_seconds & 0x40);
1677
ohci->bus_time_running = true;
1678
}
1679
1680
if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1681
ohci->bus_time += 0x40;
1682
1683
return ohci->bus_time | cycle_time_seconds;
1684
}
1685
1686
static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1687
enum phy_packet_self_id_port_status *status)
1688
{
1689
int reg;
1690
1691
scoped_guard(mutex, &ohci->phy_reg_mutex) {
1692
reg = write_phy_reg(ohci, 7, port_index);
1693
if (reg < 0)
1694
return reg;
1695
1696
reg = read_phy_reg(ohci, 8);
1697
if (reg < 0)
1698
return reg;
1699
}
1700
1701
switch (reg & 0x0f) {
1702
case 0x06:
1703
// is child node (connected to parent node)
1704
*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1705
break;
1706
case 0x0e:
1707
// is parent node (connected to child node)
1708
*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1709
break;
1710
default:
1711
// not connected
1712
*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1713
break;
1714
}
1715
1716
return 0;
1717
}
1718
1719
static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1720
int self_id_count)
1721
{
1722
unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1723
int i;
1724
1725
for (i = 0; i < self_id_count; i++) {
1726
u32 entry = ohci->self_id_buffer[i];
1727
unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1728
1729
if (left_phy_id == right_phy_id)
1730
return -1;
1731
if (left_phy_id < right_phy_id)
1732
return i;
1733
}
1734
return i;
1735
}
1736
1737
static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1738
{
1739
int reg;
1740
1741
guard(mutex)(&ohci->phy_reg_mutex);
1742
1743
// Select page 7
1744
reg = write_phy_reg(ohci, 7, 0xe0);
1745
if (reg < 0)
1746
return reg;
1747
1748
reg = read_phy_reg(ohci, 8);
1749
if (reg < 0)
1750
return reg;
1751
1752
// set PMODE bit
1753
reg |= 0x40;
1754
reg = write_phy_reg(ohci, 8, reg);
1755
if (reg < 0)
1756
return reg;
1757
1758
// read register 12
1759
reg = read_phy_reg(ohci, 12);
1760
if (reg < 0)
1761
return reg;
1762
1763
// bit 3 indicates "initiated reset"
1764
*is_initiated_reset = !!((reg & 0x08) == 0x08);
1765
1766
return 0;
1767
}
1768
1769
/*
1770
* TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1771
* attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1772
* Construct the selfID from phy register contents.
1773
*/
1774
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1775
{
1776
int reg, i, pos, err;
1777
bool is_initiated_reset;
1778
u32 self_id = 0;
1779
1780
// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1781
phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1782
phy_packet_self_id_zero_set_link_active(&self_id, true);
1783
phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1784
phy_packet_self_id_zero_set_contender(&self_id, true);
1785
1786
reg = reg_read(ohci, OHCI1394_NodeID);
1787
if (!(reg & OHCI1394_NodeID_idValid)) {
1788
ohci_notice(ohci,
1789
"node ID not valid, new bus reset in progress\n");
1790
return -EBUSY;
1791
}
1792
phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1793
1794
reg = ohci_read_phy_reg(&ohci->card, 4);
1795
if (reg < 0)
1796
return reg;
1797
phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1798
1799
reg = ohci_read_phy_reg(&ohci->card, 1);
1800
if (reg < 0)
1801
return reg;
1802
phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1803
1804
for (i = 0; i < 3; i++) {
1805
enum phy_packet_self_id_port_status status;
1806
1807
err = get_status_for_port(ohci, i, &status);
1808
if (err < 0)
1809
return err;
1810
1811
self_id_sequence_set_port_status(&self_id, 1, i, status);
1812
}
1813
1814
err = detect_initiated_reset(ohci, &is_initiated_reset);
1815
if (err < 0)
1816
return err;
1817
phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
1818
1819
pos = get_self_id_pos(ohci, self_id, self_id_count);
1820
if (pos >= 0) {
1821
memmove(&(ohci->self_id_buffer[pos+1]),
1822
&(ohci->self_id_buffer[pos]),
1823
(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1824
ohci->self_id_buffer[pos] = self_id;
1825
self_id_count++;
1826
}
1827
return self_id_count;
1828
}
1829
1830
static irqreturn_t handle_selfid_complete_event(int irq, void *data)
1831
{
1832
struct fw_ohci *ohci = data;
1833
int self_id_count, generation, new_generation, i, j;
1834
u32 reg, quadlet;
1835
void *free_rom = NULL;
1836
dma_addr_t free_rom_bus = 0;
1837
bool is_new_root;
1838
1839
reg = reg_read(ohci, OHCI1394_NodeID);
1840
if (!(reg & OHCI1394_NodeID_idValid)) {
1841
ohci_notice(ohci,
1842
"node ID not valid, new bus reset in progress\n");
1843
goto end;
1844
}
1845
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1846
ohci_notice(ohci, "malconfigured bus\n");
1847
goto end;
1848
}
1849
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1850
OHCI1394_NodeID_nodeNumber);
1851
1852
is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1853
if (!(ohci->is_root && is_new_root))
1854
reg_write(ohci, OHCI1394_LinkControlSet,
1855
OHCI1394_LinkControl_cycleMaster);
1856
ohci->is_root = is_new_root;
1857
1858
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1859
if (ohci1394_self_id_count_is_error(reg)) {
1860
ohci_notice(ohci, "self ID receive error\n");
1861
goto end;
1862
}
1863
1864
trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci));
1865
1866
/*
1867
* The count in the SelfIDCount register is the number of
1868
* bytes in the self ID receive buffer. Since we also receive
1869
* the inverted quadlets and a header quadlet, we shift one
1870
* bit extra to get the actual number of self IDs.
1871
*/
1872
self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
1873
1874
if (self_id_count > 252) {
1875
ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1876
goto end;
1877
}
1878
1879
quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
1880
generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
1881
rmb();
1882
1883
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1884
u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
1885
u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
1886
1887
if (id != ~id2) {
1888
/*
1889
* If the invalid data looks like a cycle start packet,
1890
* it's likely to be the result of the cycle master
1891
* having a wrong gap count. In this case, the self IDs
1892
* so far are valid and should be processed so that the
1893
* bus manager can then correct the gap count.
1894
*/
1895
if (id == 0xffff008f) {
1896
ohci_notice(ohci, "ignoring spurious self IDs\n");
1897
self_id_count = j;
1898
break;
1899
}
1900
1901
ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1902
j, self_id_count, id, id2);
1903
goto end;
1904
}
1905
ohci->self_id_buffer[j] = id;
1906
}
1907
1908
if (ohci->quirks & QUIRK_TI_SLLZ059) {
1909
self_id_count = find_and_insert_self_id(ohci, self_id_count);
1910
if (self_id_count < 0) {
1911
ohci_notice(ohci,
1912
"could not construct local self ID\n");
1913
goto end;
1914
}
1915
}
1916
1917
if (self_id_count == 0) {
1918
ohci_notice(ohci, "no self IDs\n");
1919
goto end;
1920
}
1921
rmb();
1922
1923
/*
1924
* Check the consistency of the self IDs we just read. The
1925
* problem we face is that a new bus reset can start while we
1926
* read out the self IDs from the DMA buffer. If this happens,
1927
* the DMA buffer will be overwritten with new self IDs and we
1928
* will read out inconsistent data. The OHCI specification
1929
* (section 11.2) recommends a technique similar to
1930
* linux/seqlock.h, where we remember the generation of the
1931
* self IDs in the buffer before reading them out and compare
1932
* it to the current generation after reading them out. If
1933
* the two generations match we know we have a consistent set
1934
* of self IDs.
1935
*/
1936
1937
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1938
new_generation = ohci1394_self_id_count_get_generation(reg);
1939
if (new_generation != generation) {
1940
ohci_notice(ohci, "new bus reset, discarding self ids\n");
1941
goto end;
1942
}
1943
1944
// FIXME: Document how the locking works.
1945
scoped_guard(spinlock_irq, &ohci->lock) {
1946
ohci->generation = -1; // prevent AT packet queueing
1947
context_stop(&ohci->at_request_ctx.context);
1948
context_stop(&ohci->at_response_ctx.context);
1949
}
1950
1951
/*
1952
* Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1953
* packets in the AT queues and software needs to drain them.
1954
* Some OHCI 1.1 controllers (JMicron) apparently require this too.
1955
*/
1956
at_context_flush(&ohci->at_request_ctx);
1957
at_context_flush(&ohci->at_response_ctx);
1958
1959
scoped_guard(spinlock_irq, &ohci->lock) {
1960
ohci->generation = generation;
1961
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1962
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1963
1964
if (ohci->quirks & QUIRK_RESET_PACKET)
1965
ohci->request_generation = generation;
1966
1967
// This next bit is unrelated to the AT context stuff but we have to do it under the
1968
// spinlock also. If a new config rom was set up before this reset, the old one is
1969
// now no longer in use and we can free it. Update the config rom pointers to point
1970
// to the current config rom and clear the next_config_rom pointer so a new update
1971
// can take place.
1972
if (ohci->next_config_rom != NULL) {
1973
if (ohci->next_config_rom != ohci->config_rom) {
1974
free_rom = ohci->config_rom;
1975
free_rom_bus = ohci->config_rom_bus;
1976
}
1977
ohci->config_rom = ohci->next_config_rom;
1978
ohci->config_rom_bus = ohci->next_config_rom_bus;
1979
ohci->next_config_rom = NULL;
1980
1981
// Restore config_rom image and manually update config_rom registers.
1982
// Writing the header quadlet will indicate that the config rom is ready,
1983
// so we do that last.
1984
reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
1985
ohci->config_rom[0] = ohci->next_header;
1986
reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
1987
}
1988
1989
if (param_remote_dma) {
1990
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1991
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1992
}
1993
}
1994
1995
if (free_rom)
1996
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
1997
1998
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1999
self_id_count, ohci->self_id_buffer,
2000
ohci->csr_state_setclear_abdicate);
2001
ohci->csr_state_setclear_abdicate = false;
2002
end:
2003
return IRQ_HANDLED;
2004
}
2005
2006
static irqreturn_t irq_handler(int irq, void *data)
2007
{
2008
struct fw_ohci *ohci = data;
2009
u32 event, iso_event;
2010
int i;
2011
2012
event = reg_read(ohci, OHCI1394_IntEventClear);
2013
2014
if (!event || !~event)
2015
return IRQ_NONE;
2016
2017
/*
2018
* busReset and postedWriteErr events must not be cleared yet
2019
* (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2020
*/
2021
reg_write(ohci, OHCI1394_IntEventClear,
2022
event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2023
trace_irqs(ohci->card.index, event);
2024
2025
// The flag is masked again at handle_selfid_complete_event() scheduled by selfID event.
2026
if (event & OHCI1394_busReset)
2027
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2028
2029
if (event & OHCI1394_RQPkt)
2030
queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2031
2032
if (event & OHCI1394_RSPkt)
2033
queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2034
2035
if (event & OHCI1394_reqTxComplete)
2036
queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2037
2038
if (event & OHCI1394_respTxComplete)
2039
queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2040
2041
if (event & OHCI1394_isochRx) {
2042
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2043
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2044
2045
while (iso_event) {
2046
i = ffs(iso_event) - 1;
2047
fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2048
iso_event &= ~(1 << i);
2049
}
2050
}
2051
2052
if (event & OHCI1394_isochTx) {
2053
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2054
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2055
2056
while (iso_event) {
2057
i = ffs(iso_event) - 1;
2058
fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2059
iso_event &= ~(1 << i);
2060
}
2061
}
2062
2063
if (unlikely(event & OHCI1394_regAccessFail))
2064
ohci_err(ohci, "register access failure\n");
2065
2066
if (unlikely(event & OHCI1394_postedWriteErr)) {
2067
reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2068
reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2069
reg_write(ohci, OHCI1394_IntEventClear,
2070
OHCI1394_postedWriteErr);
2071
dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2072
}
2073
2074
if (unlikely(event & OHCI1394_cycleTooLong)) {
2075
dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2076
reg_write(ohci, OHCI1394_LinkControlSet,
2077
OHCI1394_LinkControl_cycleMaster);
2078
}
2079
2080
if (unlikely(event & OHCI1394_cycleInconsistent)) {
2081
/*
2082
* We need to clear this event bit in order to make
2083
* cycleMatch isochronous I/O work. In theory we should
2084
* stop active cycleMatch iso contexts now and restart
2085
* them at least two cycles later. (FIXME?)
2086
*/
2087
dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2088
}
2089
2090
if (unlikely(event & OHCI1394_unrecoverableError))
2091
handle_dead_contexts(ohci);
2092
2093
if (event & OHCI1394_cycle64Seconds) {
2094
guard(spinlock)(&ohci->lock);
2095
update_bus_time(ohci);
2096
} else
2097
flush_writes(ohci);
2098
2099
if (event & OHCI1394_selfIDComplete)
2100
return IRQ_WAKE_THREAD;
2101
else
2102
return IRQ_HANDLED;
2103
}
2104
2105
static int software_reset(struct fw_ohci *ohci)
2106
{
2107
u32 val;
2108
int i;
2109
2110
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2111
for (i = 0; i < 500; i++) {
2112
val = reg_read(ohci, OHCI1394_HCControlSet);
2113
if (!~val)
2114
return -ENODEV; /* Card was ejected. */
2115
2116
if (!(val & OHCI1394_HCControl_softReset))
2117
return 0;
2118
2119
msleep(1);
2120
}
2121
2122
return -EBUSY;
2123
}
2124
2125
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2126
{
2127
size_t size = length * 4;
2128
2129
memcpy(dest, src, size);
2130
if (size < CONFIG_ROM_SIZE)
2131
memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2132
}
2133
2134
static int configure_1394a_enhancements(struct fw_ohci *ohci)
2135
{
2136
bool enable_1394a;
2137
int ret, clear, set, offset;
2138
2139
/* Check if the driver should configure link and PHY. */
2140
if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2141
OHCI1394_HCControl_programPhyEnable))
2142
return 0;
2143
2144
/* Paranoia: check whether the PHY supports 1394a, too. */
2145
enable_1394a = false;
2146
ret = read_phy_reg(ohci, 2);
2147
if (ret < 0)
2148
return ret;
2149
if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2150
ret = read_paged_phy_reg(ohci, 1, 8);
2151
if (ret < 0)
2152
return ret;
2153
if (ret >= 1)
2154
enable_1394a = true;
2155
}
2156
2157
if (ohci->quirks & QUIRK_NO_1394A)
2158
enable_1394a = false;
2159
2160
/* Configure PHY and link consistently. */
2161
if (enable_1394a) {
2162
clear = 0;
2163
set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2164
} else {
2165
clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2166
set = 0;
2167
}
2168
ret = update_phy_reg(ohci, 5, clear, set);
2169
if (ret < 0)
2170
return ret;
2171
2172
if (enable_1394a)
2173
offset = OHCI1394_HCControlSet;
2174
else
2175
offset = OHCI1394_HCControlClear;
2176
reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2177
2178
/* Clean up: configuration has been taken care of. */
2179
reg_write(ohci, OHCI1394_HCControlClear,
2180
OHCI1394_HCControl_programPhyEnable);
2181
2182
return 0;
2183
}
2184
2185
static int probe_tsb41ba3d(struct fw_ohci *ohci)
2186
{
2187
/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2188
static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2189
int reg, i;
2190
2191
reg = read_phy_reg(ohci, 2);
2192
if (reg < 0)
2193
return reg;
2194
if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2195
return 0;
2196
2197
for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2198
reg = read_paged_phy_reg(ohci, 1, i + 10);
2199
if (reg < 0)
2200
return reg;
2201
if (reg != id[i])
2202
return 0;
2203
}
2204
return 1;
2205
}
2206
2207
static int ohci_enable(struct fw_card *card,
2208
const __be32 *config_rom, size_t length)
2209
{
2210
struct fw_ohci *ohci = fw_ohci(card);
2211
u32 lps, version, irqs;
2212
int i, ret;
2213
2214
ret = software_reset(ohci);
2215
if (ret < 0) {
2216
ohci_err(ohci, "failed to reset ohci card\n");
2217
return ret;
2218
}
2219
2220
/*
2221
* Now enable LPS, which we need in order to start accessing
2222
* most of the registers. In fact, on some cards (ALI M5251),
2223
* accessing registers in the SClk domain without LPS enabled
2224
* will lock up the machine. Wait 50msec to make sure we have
2225
* full link enabled. However, with some cards (well, at least
2226
* a JMicron PCIe card), we have to try again sometimes.
2227
*
2228
* TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2229
* cannot actually use the phy at that time. These need tens of
2230
* millisecods pause between LPS write and first phy access too.
2231
*/
2232
2233
reg_write(ohci, OHCI1394_HCControlSet,
2234
OHCI1394_HCControl_LPS |
2235
OHCI1394_HCControl_postedWriteEnable);
2236
flush_writes(ohci);
2237
2238
for (lps = 0, i = 0; !lps && i < 3; i++) {
2239
msleep(50);
2240
lps = reg_read(ohci, OHCI1394_HCControlSet) &
2241
OHCI1394_HCControl_LPS;
2242
}
2243
2244
if (!lps) {
2245
ohci_err(ohci, "failed to set Link Power Status\n");
2246
return -EIO;
2247
}
2248
2249
if (ohci->quirks & QUIRK_TI_SLLZ059) {
2250
ret = probe_tsb41ba3d(ohci);
2251
if (ret < 0)
2252
return ret;
2253
if (ret)
2254
ohci_notice(ohci, "local TSB41BA3D phy\n");
2255
else
2256
ohci->quirks &= ~QUIRK_TI_SLLZ059;
2257
}
2258
2259
reg_write(ohci, OHCI1394_HCControlClear,
2260
OHCI1394_HCControl_noByteSwapData);
2261
2262
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2263
reg_write(ohci, OHCI1394_LinkControlSet,
2264
OHCI1394_LinkControl_cycleTimerEnable |
2265
OHCI1394_LinkControl_cycleMaster);
2266
2267
reg_write(ohci, OHCI1394_ATRetries,
2268
OHCI1394_MAX_AT_REQ_RETRIES |
2269
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2270
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2271
(200 << 16));
2272
2273
ohci->bus_time_running = false;
2274
2275
for (i = 0; i < 32; i++)
2276
if (ohci->ir_context_support & (1 << i))
2277
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2278
IR_CONTEXT_MULTI_CHANNEL_MODE);
2279
2280
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2281
if (version >= OHCI_VERSION_1_1) {
2282
reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2283
0xfffffffe);
2284
card->broadcast_channel_auto_allocated = true;
2285
}
2286
2287
/* Get implemented bits of the priority arbitration request counter. */
2288
reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2289
ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2290
reg_write(ohci, OHCI1394_FairnessControl, 0);
2291
card->priority_budget_implemented = ohci->pri_req_max != 0;
2292
2293
reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2294
reg_write(ohci, OHCI1394_IntEventClear, ~0);
2295
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2296
2297
ret = configure_1394a_enhancements(ohci);
2298
if (ret < 0)
2299
return ret;
2300
2301
/* Activate link_on bit and contender bit in our self ID packets.*/
2302
ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2303
if (ret < 0)
2304
return ret;
2305
2306
/*
2307
* When the link is not yet enabled, the atomic config rom
2308
* update mechanism described below in ohci_set_config_rom()
2309
* is not active. We have to update ConfigRomHeader and
2310
* BusOptions manually, and the write to ConfigROMmap takes
2311
* effect immediately. We tie this to the enabling of the
2312
* link, so we have a valid config rom before enabling - the
2313
* OHCI requires that ConfigROMhdr and BusOptions have valid
2314
* values before enabling.
2315
*
2316
* However, when the ConfigROMmap is written, some controllers
2317
* always read back quadlets 0 and 2 from the config rom to
2318
* the ConfigRomHeader and BusOptions registers on bus reset.
2319
* They shouldn't do that in this initial case where the link
2320
* isn't enabled. This means we have to use the same
2321
* workaround here, setting the bus header to 0 and then write
2322
* the right values in the bus reset work item.
2323
*/
2324
2325
if (config_rom) {
2326
ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2327
&ohci->next_config_rom_bus, GFP_KERNEL);
2328
if (ohci->next_config_rom == NULL)
2329
return -ENOMEM;
2330
2331
copy_config_rom(ohci->next_config_rom, config_rom, length);
2332
} else {
2333
/*
2334
* In the suspend case, config_rom is NULL, which
2335
* means that we just reuse the old config rom.
2336
*/
2337
ohci->next_config_rom = ohci->config_rom;
2338
ohci->next_config_rom_bus = ohci->config_rom_bus;
2339
}
2340
2341
ohci->next_header = ohci->next_config_rom[0];
2342
ohci->next_config_rom[0] = 0;
2343
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2344
reg_write(ohci, OHCI1394_BusOptions,
2345
be32_to_cpu(ohci->next_config_rom[2]));
2346
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2347
2348
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2349
2350
irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2351
OHCI1394_RQPkt | OHCI1394_RSPkt |
2352
OHCI1394_isochTx | OHCI1394_isochRx |
2353
OHCI1394_postedWriteErr |
2354
OHCI1394_selfIDComplete |
2355
OHCI1394_regAccessFail |
2356
OHCI1394_cycleInconsistent |
2357
OHCI1394_unrecoverableError |
2358
OHCI1394_cycleTooLong |
2359
OHCI1394_masterIntEnable |
2360
OHCI1394_busReset;
2361
reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2362
2363
reg_write(ohci, OHCI1394_HCControlSet,
2364
OHCI1394_HCControl_linkEnable |
2365
OHCI1394_HCControl_BIBimageValid);
2366
2367
reg_write(ohci, OHCI1394_LinkControlSet,
2368
OHCI1394_LinkControl_rcvSelfID |
2369
OHCI1394_LinkControl_rcvPhyPkt);
2370
2371
ar_context_run(&ohci->ar_request_ctx);
2372
ar_context_run(&ohci->ar_response_ctx);
2373
2374
flush_writes(ohci);
2375
2376
/* We are ready to go, reset bus to finish initialization. */
2377
fw_schedule_bus_reset(&ohci->card, false, true);
2378
2379
return 0;
2380
}
2381
2382
static int ohci_set_config_rom(struct fw_card *card,
2383
const __be32 *config_rom, size_t length)
2384
{
2385
struct fw_ohci *ohci;
2386
__be32 *next_config_rom;
2387
dma_addr_t next_config_rom_bus;
2388
2389
ohci = fw_ohci(card);
2390
2391
/*
2392
* When the OHCI controller is enabled, the config rom update
2393
* mechanism is a bit tricky, but easy enough to use. See
2394
* section 5.5.6 in the OHCI specification.
2395
*
2396
* The OHCI controller caches the new config rom address in a
2397
* shadow register (ConfigROMmapNext) and needs a bus reset
2398
* for the changes to take place. When the bus reset is
2399
* detected, the controller loads the new values for the
2400
* ConfigRomHeader and BusOptions registers from the specified
2401
* config rom and loads ConfigROMmap from the ConfigROMmapNext
2402
* shadow register. All automatically and atomically.
2403
*
2404
* Now, there's a twist to this story. The automatic load of
2405
* ConfigRomHeader and BusOptions doesn't honor the
2406
* noByteSwapData bit, so with a be32 config rom, the
2407
* controller will load be32 values in to these registers
2408
* during the atomic update, even on little endian
2409
* architectures. The workaround we use is to put a 0 in the
2410
* header quadlet; 0 is endian agnostic and means that the
2411
* config rom isn't ready yet. In the bus reset work item we
2412
* then set up the real values for the two registers.
2413
*
2414
* We use ohci->lock to avoid racing with the code that sets
2415
* ohci->next_config_rom to NULL (see handle_selfid_complete_event).
2416
*/
2417
2418
next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2419
&next_config_rom_bus, GFP_KERNEL);
2420
if (next_config_rom == NULL)
2421
return -ENOMEM;
2422
2423
scoped_guard(spinlock_irq, &ohci->lock) {
2424
// If there is not an already pending config_rom update, push our new allocation
2425
// into the ohci->next_config_rom and then mark the local variable as null so that
2426
// we won't deallocate the new buffer.
2427
//
2428
// OTOH, if there is a pending config_rom update, just use that buffer with the new
2429
// config_rom data, and let this routine free the unused DMA allocation.
2430
if (ohci->next_config_rom == NULL) {
2431
ohci->next_config_rom = next_config_rom;
2432
ohci->next_config_rom_bus = next_config_rom_bus;
2433
next_config_rom = NULL;
2434
}
2435
2436
copy_config_rom(ohci->next_config_rom, config_rom, length);
2437
2438
ohci->next_header = config_rom[0];
2439
ohci->next_config_rom[0] = 0;
2440
2441
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2442
}
2443
2444
/* If we didn't use the DMA allocation, delete it. */
2445
if (next_config_rom != NULL) {
2446
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2447
next_config_rom_bus);
2448
}
2449
2450
/*
2451
* Now initiate a bus reset to have the changes take
2452
* effect. We clean up the old config rom memory and DMA
2453
* mappings in the bus reset work item, since the OHCI
2454
* controller could need to access it before the bus reset
2455
* takes effect.
2456
*/
2457
2458
fw_schedule_bus_reset(&ohci->card, true, true);
2459
2460
return 0;
2461
}
2462
2463
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2464
{
2465
struct fw_ohci *ohci = fw_ohci(card);
2466
2467
at_context_transmit(&ohci->at_request_ctx, packet);
2468
}
2469
2470
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2471
{
2472
struct fw_ohci *ohci = fw_ohci(card);
2473
2474
at_context_transmit(&ohci->at_response_ctx, packet);
2475
}
2476
2477
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2478
{
2479
struct fw_ohci *ohci = fw_ohci(card);
2480
struct at_context *ctx = &ohci->at_request_ctx;
2481
struct driver_data *driver_data = packet->driver_data;
2482
int ret = -ENOENT;
2483
2484
// Avoid dead lock due to programming mistake.
2485
if (WARN_ON_ONCE(current_work() == &ctx->work))
2486
return 0;
2487
disable_work_sync(&ctx->work);
2488
2489
if (packet->ack != 0)
2490
goto out;
2491
2492
if (packet->payload_mapped)
2493
dma_unmap_single(ohci->card.device, packet->payload_bus,
2494
packet->payload_length, DMA_TO_DEVICE);
2495
2496
driver_data->packet = NULL;
2497
packet->ack = RCODE_CANCELLED;
2498
2499
// Timestamping on behalf of the hardware.
2500
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2501
2502
packet->callback(packet, &ohci->card, packet->ack);
2503
ret = 0;
2504
out:
2505
enable_work(&ctx->work);
2506
2507
return ret;
2508
}
2509
2510
static int ohci_enable_phys_dma(struct fw_card *card,
2511
int node_id, int generation)
2512
{
2513
struct fw_ohci *ohci = fw_ohci(card);
2514
int n, ret = 0;
2515
2516
if (param_remote_dma)
2517
return 0;
2518
2519
/*
2520
* FIXME: Make sure this bitmask is cleared when we clear the busReset
2521
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
2522
*/
2523
2524
guard(spinlock_irqsave)(&ohci->lock);
2525
2526
if (ohci->generation != generation)
2527
return -ESTALE;
2528
2529
/*
2530
* Note, if the node ID contains a non-local bus ID, physical DMA is
2531
* enabled for _all_ nodes on remote buses.
2532
*/
2533
2534
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2535
if (n < 32)
2536
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2537
else
2538
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2539
2540
flush_writes(ohci);
2541
2542
return ret;
2543
}
2544
2545
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2546
{
2547
struct fw_ohci *ohci = fw_ohci(card);
2548
u32 value;
2549
2550
switch (csr_offset) {
2551
case CSR_STATE_CLEAR:
2552
case CSR_STATE_SET:
2553
if (ohci->is_root &&
2554
(reg_read(ohci, OHCI1394_LinkControlSet) &
2555
OHCI1394_LinkControl_cycleMaster))
2556
value = CSR_STATE_BIT_CMSTR;
2557
else
2558
value = 0;
2559
if (ohci->csr_state_setclear_abdicate)
2560
value |= CSR_STATE_BIT_ABDICATE;
2561
2562
return value;
2563
2564
case CSR_NODE_IDS:
2565
return reg_read(ohci, OHCI1394_NodeID) << 16;
2566
2567
case CSR_CYCLE_TIME:
2568
return get_cycle_time(ohci);
2569
2570
case CSR_BUS_TIME:
2571
{
2572
// We might be called just after the cycle timer has wrapped around but just before
2573
// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2574
// to be updated.
2575
2576
guard(spinlock_irqsave)(&ohci->lock);
2577
return update_bus_time(ohci);
2578
}
2579
case CSR_BUSY_TIMEOUT:
2580
value = reg_read(ohci, OHCI1394_ATRetries);
2581
return (value >> 4) & 0x0ffff00f;
2582
2583
case CSR_PRIORITY_BUDGET:
2584
return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2585
(ohci->pri_req_max << 8);
2586
2587
default:
2588
WARN_ON(1);
2589
return 0;
2590
}
2591
}
2592
2593
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2594
{
2595
struct fw_ohci *ohci = fw_ohci(card);
2596
2597
switch (csr_offset) {
2598
case CSR_STATE_CLEAR:
2599
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2600
reg_write(ohci, OHCI1394_LinkControlClear,
2601
OHCI1394_LinkControl_cycleMaster);
2602
flush_writes(ohci);
2603
}
2604
if (value & CSR_STATE_BIT_ABDICATE)
2605
ohci->csr_state_setclear_abdicate = false;
2606
break;
2607
2608
case CSR_STATE_SET:
2609
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2610
reg_write(ohci, OHCI1394_LinkControlSet,
2611
OHCI1394_LinkControl_cycleMaster);
2612
flush_writes(ohci);
2613
}
2614
if (value & CSR_STATE_BIT_ABDICATE)
2615
ohci->csr_state_setclear_abdicate = true;
2616
break;
2617
2618
case CSR_NODE_IDS:
2619
reg_write(ohci, OHCI1394_NodeID, value >> 16);
2620
flush_writes(ohci);
2621
break;
2622
2623
case CSR_CYCLE_TIME:
2624
reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2625
reg_write(ohci, OHCI1394_IntEventSet,
2626
OHCI1394_cycleInconsistent);
2627
flush_writes(ohci);
2628
break;
2629
2630
case CSR_BUS_TIME:
2631
{
2632
guard(spinlock_irqsave)(&ohci->lock);
2633
ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2634
break;
2635
}
2636
case CSR_BUSY_TIMEOUT:
2637
value = (value & 0xf) | ((value & 0xf) << 4) |
2638
((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2639
reg_write(ohci, OHCI1394_ATRetries, value);
2640
flush_writes(ohci);
2641
break;
2642
2643
case CSR_PRIORITY_BUDGET:
2644
reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2645
flush_writes(ohci);
2646
break;
2647
2648
default:
2649
WARN_ON(1);
2650
break;
2651
}
2652
}
2653
2654
static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2655
{
2656
trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2657
ctx->header_length);
2658
trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2659
ctx->header_length);
2660
2661
ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2662
ctx->header_length, ctx->header,
2663
ctx->base.callback_data);
2664
ctx->header_length = 0;
2665
}
2666
2667
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2668
{
2669
u32 *ctx_hdr;
2670
2671
if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2672
if (ctx->base.drop_overflow_headers)
2673
return;
2674
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2675
}
2676
2677
ctx_hdr = ctx->header + ctx->header_length;
2678
ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2679
2680
/*
2681
* The two iso header quadlets are byteswapped to little
2682
* endian by the controller, but we want to present them
2683
* as big endian for consistency with the bus endianness.
2684
*/
2685
if (ctx->base.header_size > 0)
2686
ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2687
if (ctx->base.header_size > 4)
2688
ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2689
if (ctx->base.header_size > 8)
2690
memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2691
ctx->header_length += ctx->base.header_size;
2692
}
2693
2694
static int handle_ir_packet_per_buffer(struct context *context,
2695
struct descriptor *d,
2696
struct descriptor *last)
2697
{
2698
struct iso_context *ctx =
2699
container_of(context, struct iso_context, context);
2700
struct descriptor *pd;
2701
u32 buffer_dma;
2702
2703
for (pd = d; pd <= last; pd++)
2704
if (pd->transfer_status)
2705
break;
2706
if (pd > last)
2707
/* Descriptor(s) not done yet, stop iteration */
2708
return 0;
2709
2710
while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2711
d++;
2712
buffer_dma = le32_to_cpu(d->data_address);
2713
dma_sync_single_range_for_cpu(context->ohci->card.device,
2714
buffer_dma & PAGE_MASK,
2715
buffer_dma & ~PAGE_MASK,
2716
le16_to_cpu(d->req_count),
2717
DMA_FROM_DEVICE);
2718
}
2719
2720
copy_iso_headers(ctx, (u32 *) (last + 1));
2721
2722
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2723
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2724
2725
return 1;
2726
}
2727
2728
/* d == last because each descriptor block is only a single descriptor. */
2729
static int handle_ir_buffer_fill(struct context *context,
2730
struct descriptor *d,
2731
struct descriptor *last)
2732
{
2733
struct iso_context *ctx =
2734
container_of(context, struct iso_context, context);
2735
unsigned int req_count, res_count, completed;
2736
u32 buffer_dma;
2737
2738
req_count = le16_to_cpu(last->req_count);
2739
res_count = le16_to_cpu(READ_ONCE(last->res_count));
2740
completed = req_count - res_count;
2741
buffer_dma = le32_to_cpu(last->data_address);
2742
2743
if (completed > 0) {
2744
ctx->mc_buffer_bus = buffer_dma;
2745
ctx->mc_completed = completed;
2746
}
2747
2748
if (res_count != 0)
2749
/* Descriptor(s) not done yet, stop iteration */
2750
return 0;
2751
2752
dma_sync_single_range_for_cpu(context->ohci->card.device,
2753
buffer_dma & PAGE_MASK,
2754
buffer_dma & ~PAGE_MASK,
2755
completed, DMA_FROM_DEVICE);
2756
2757
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2758
trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2759
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2760
2761
ctx->base.callback.mc(&ctx->base,
2762
buffer_dma + completed,
2763
ctx->base.callback_data);
2764
ctx->mc_completed = 0;
2765
}
2766
2767
return 1;
2768
}
2769
2770
static void flush_ir_buffer_fill(struct iso_context *ctx)
2771
{
2772
dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2773
ctx->mc_buffer_bus & PAGE_MASK,
2774
ctx->mc_buffer_bus & ~PAGE_MASK,
2775
ctx->mc_completed, DMA_FROM_DEVICE);
2776
2777
trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2778
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2779
2780
ctx->base.callback.mc(&ctx->base,
2781
ctx->mc_buffer_bus + ctx->mc_completed,
2782
ctx->base.callback_data);
2783
ctx->mc_completed = 0;
2784
}
2785
2786
static inline void sync_it_packet_for_cpu(struct context *context,
2787
struct descriptor *pd)
2788
{
2789
__le16 control;
2790
u32 buffer_dma;
2791
2792
/* only packets beginning with OUTPUT_MORE* have data buffers */
2793
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2794
return;
2795
2796
/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2797
pd += 2;
2798
2799
/*
2800
* If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2801
* data buffer is in the context program's coherent page and must not
2802
* be synced.
2803
*/
2804
if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2805
(context->current_bus & PAGE_MASK)) {
2806
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2807
return;
2808
pd++;
2809
}
2810
2811
do {
2812
buffer_dma = le32_to_cpu(pd->data_address);
2813
dma_sync_single_range_for_cpu(context->ohci->card.device,
2814
buffer_dma & PAGE_MASK,
2815
buffer_dma & ~PAGE_MASK,
2816
le16_to_cpu(pd->req_count),
2817
DMA_TO_DEVICE);
2818
control = pd->control;
2819
pd++;
2820
} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2821
}
2822
2823
static int handle_it_packet(struct context *context,
2824
struct descriptor *d,
2825
struct descriptor *last)
2826
{
2827
struct iso_context *ctx =
2828
container_of(context, struct iso_context, context);
2829
struct descriptor *pd;
2830
__be32 *ctx_hdr;
2831
2832
for (pd = d; pd <= last; pd++)
2833
if (pd->transfer_status)
2834
break;
2835
if (pd > last)
2836
/* Descriptor(s) not done yet, stop iteration */
2837
return 0;
2838
2839
sync_it_packet_for_cpu(context, d);
2840
2841
if (ctx->header_length + 4 > PAGE_SIZE) {
2842
if (ctx->base.drop_overflow_headers)
2843
return 1;
2844
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2845
}
2846
2847
ctx_hdr = ctx->header + ctx->header_length;
2848
ctx->last_timestamp = le16_to_cpu(last->res_count);
2849
/* Present this value as big-endian to match the receive code */
2850
*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2851
le16_to_cpu(pd->res_count));
2852
ctx->header_length += 4;
2853
2854
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2855
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2856
2857
return 1;
2858
}
2859
2860
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2861
{
2862
u32 hi = channels >> 32, lo = channels;
2863
2864
reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2865
reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2866
reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2867
reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2868
ohci->mc_channels = channels;
2869
}
2870
2871
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2872
int type, int channel, size_t header_size)
2873
{
2874
struct fw_ohci *ohci = fw_ohci(card);
2875
struct iso_context *ctx;
2876
descriptor_callback_t callback;
2877
u64 *channels;
2878
u32 *mask, regs;
2879
int index, ret = -EBUSY;
2880
2881
scoped_guard(spinlock_irq, &ohci->lock) {
2882
switch (type) {
2883
case FW_ISO_CONTEXT_TRANSMIT:
2884
mask = &ohci->it_context_mask;
2885
callback = handle_it_packet;
2886
index = ffs(*mask) - 1;
2887
if (index >= 0) {
2888
*mask &= ~(1 << index);
2889
regs = OHCI1394_IsoXmitContextBase(index);
2890
ctx = &ohci->it_context_list[index];
2891
}
2892
break;
2893
2894
case FW_ISO_CONTEXT_RECEIVE:
2895
channels = &ohci->ir_context_channels;
2896
mask = &ohci->ir_context_mask;
2897
callback = handle_ir_packet_per_buffer;
2898
index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2899
if (index >= 0) {
2900
*channels &= ~(1ULL << channel);
2901
*mask &= ~(1 << index);
2902
regs = OHCI1394_IsoRcvContextBase(index);
2903
ctx = &ohci->ir_context_list[index];
2904
}
2905
break;
2906
2907
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2908
mask = &ohci->ir_context_mask;
2909
callback = handle_ir_buffer_fill;
2910
index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2911
if (index >= 0) {
2912
ohci->mc_allocated = true;
2913
*mask &= ~(1 << index);
2914
regs = OHCI1394_IsoRcvContextBase(index);
2915
ctx = &ohci->ir_context_list[index];
2916
}
2917
break;
2918
2919
default:
2920
index = -1;
2921
ret = -ENOSYS;
2922
}
2923
2924
if (index < 0)
2925
return ERR_PTR(ret);
2926
}
2927
2928
memset(ctx, 0, sizeof(*ctx));
2929
ctx->header_length = 0;
2930
ctx->header = (void *) __get_free_page(GFP_KERNEL);
2931
if (ctx->header == NULL) {
2932
ret = -ENOMEM;
2933
goto out;
2934
}
2935
ret = context_init(&ctx->context, ohci, regs, callback);
2936
if (ret < 0)
2937
goto out_with_header;
2938
fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
2939
2940
if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
2941
set_multichannel_mask(ohci, 0);
2942
ctx->mc_completed = 0;
2943
}
2944
2945
return &ctx->base;
2946
2947
out_with_header:
2948
free_page((unsigned long)ctx->header);
2949
out:
2950
scoped_guard(spinlock_irq, &ohci->lock) {
2951
switch (type) {
2952
case FW_ISO_CONTEXT_RECEIVE:
2953
*channels |= 1ULL << channel;
2954
break;
2955
2956
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2957
ohci->mc_allocated = false;
2958
break;
2959
}
2960
*mask |= 1 << index;
2961
}
2962
2963
return ERR_PTR(ret);
2964
}
2965
2966
static int ohci_start_iso(struct fw_iso_context *base,
2967
s32 cycle, u32 sync, u32 tags)
2968
{
2969
struct iso_context *ctx = container_of(base, struct iso_context, base);
2970
struct fw_ohci *ohci = ctx->context.ohci;
2971
u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2972
int index;
2973
2974
/* the controller cannot start without any queued packets */
2975
if (ctx->context.last->branch_address == 0)
2976
return -ENODATA;
2977
2978
switch (ctx->base.type) {
2979
case FW_ISO_CONTEXT_TRANSMIT:
2980
index = ctx - ohci->it_context_list;
2981
match = 0;
2982
if (cycle >= 0)
2983
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2984
(cycle & 0x7fff) << 16;
2985
2986
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2987
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2988
context_run(&ctx->context, match);
2989
break;
2990
2991
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2992
control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2993
fallthrough;
2994
case FW_ISO_CONTEXT_RECEIVE:
2995
index = ctx - ohci->ir_context_list;
2996
match = (tags << 28) | (sync << 8) | ctx->base.channel;
2997
if (cycle >= 0) {
2998
match |= (cycle & 0x07fff) << 12;
2999
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3000
}
3001
3002
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3003
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3004
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3005
context_run(&ctx->context, control);
3006
3007
ctx->sync = sync;
3008
ctx->tags = tags;
3009
3010
break;
3011
}
3012
3013
return 0;
3014
}
3015
3016
static int ohci_stop_iso(struct fw_iso_context *base)
3017
{
3018
struct fw_ohci *ohci = fw_ohci(base->card);
3019
struct iso_context *ctx = container_of(base, struct iso_context, base);
3020
int index;
3021
3022
switch (ctx->base.type) {
3023
case FW_ISO_CONTEXT_TRANSMIT:
3024
index = ctx - ohci->it_context_list;
3025
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3026
break;
3027
3028
case FW_ISO_CONTEXT_RECEIVE:
3029
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3030
index = ctx - ohci->ir_context_list;
3031
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3032
break;
3033
}
3034
flush_writes(ohci);
3035
context_stop(&ctx->context);
3036
3037
return 0;
3038
}
3039
3040
static void ohci_free_iso_context(struct fw_iso_context *base)
3041
{
3042
struct fw_ohci *ohci = fw_ohci(base->card);
3043
struct iso_context *ctx = container_of(base, struct iso_context, base);
3044
int index;
3045
3046
ohci_stop_iso(base);
3047
context_release(&ctx->context);
3048
free_page((unsigned long)ctx->header);
3049
3050
guard(spinlock_irqsave)(&ohci->lock);
3051
3052
switch (base->type) {
3053
case FW_ISO_CONTEXT_TRANSMIT:
3054
index = ctx - ohci->it_context_list;
3055
ohci->it_context_mask |= 1 << index;
3056
break;
3057
3058
case FW_ISO_CONTEXT_RECEIVE:
3059
index = ctx - ohci->ir_context_list;
3060
ohci->ir_context_mask |= 1 << index;
3061
ohci->ir_context_channels |= 1ULL << base->channel;
3062
break;
3063
3064
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3065
index = ctx - ohci->ir_context_list;
3066
ohci->ir_context_mask |= 1 << index;
3067
ohci->ir_context_channels |= ohci->mc_channels;
3068
ohci->mc_channels = 0;
3069
ohci->mc_allocated = false;
3070
break;
3071
}
3072
}
3073
3074
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3075
{
3076
struct fw_ohci *ohci = fw_ohci(base->card);
3077
3078
switch (base->type) {
3079
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3080
{
3081
guard(spinlock_irqsave)(&ohci->lock);
3082
3083
// Don't allow multichannel to grab other contexts' channels.
3084
if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3085
*channels = ohci->ir_context_channels;
3086
return -EBUSY;
3087
} else {
3088
set_multichannel_mask(ohci, *channels);
3089
return 0;
3090
}
3091
}
3092
default:
3093
return -EINVAL;
3094
}
3095
}
3096
3097
static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3098
{
3099
int i;
3100
struct iso_context *ctx;
3101
3102
for (i = 0 ; i < ohci->n_ir ; i++) {
3103
ctx = &ohci->ir_context_list[i];
3104
if (ctx->context.running)
3105
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3106
}
3107
3108
for (i = 0 ; i < ohci->n_it ; i++) {
3109
ctx = &ohci->it_context_list[i];
3110
if (ctx->context.running)
3111
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3112
}
3113
}
3114
3115
static int queue_iso_transmit(struct iso_context *ctx,
3116
struct fw_iso_packet *packet,
3117
struct fw_iso_buffer *buffer,
3118
unsigned long payload)
3119
{
3120
struct descriptor *d, *last, *pd;
3121
struct fw_iso_packet *p;
3122
__le32 *header;
3123
dma_addr_t d_bus, page_bus;
3124
u32 z, header_z, payload_z, irq;
3125
u32 payload_index, payload_end_index, next_page_index;
3126
int page, end_page, i, length, offset;
3127
3128
p = packet;
3129
payload_index = payload;
3130
3131
if (p->skip)
3132
z = 1;
3133
else
3134
z = 2;
3135
if (p->header_length > 0)
3136
z++;
3137
3138
/* Determine the first page the payload isn't contained in. */
3139
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3140
if (p->payload_length > 0)
3141
payload_z = end_page - (payload_index >> PAGE_SHIFT);
3142
else
3143
payload_z = 0;
3144
3145
z += payload_z;
3146
3147
/* Get header size in number of descriptors. */
3148
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3149
3150
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3151
if (d == NULL)
3152
return -ENOMEM;
3153
3154
if (!p->skip) {
3155
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3156
d[0].req_count = cpu_to_le16(8);
3157
/*
3158
* Link the skip address to this descriptor itself. This causes
3159
* a context to skip a cycle whenever lost cycles or FIFO
3160
* overruns occur, without dropping the data. The application
3161
* should then decide whether this is an error condition or not.
3162
* FIXME: Make the context's cycle-lost behaviour configurable?
3163
*/
3164
d[0].branch_address = cpu_to_le32(d_bus | z);
3165
3166
header = (__le32 *) &d[1];
3167
3168
ohci1394_it_data_set_speed(header, ctx->base.speed);
3169
ohci1394_it_data_set_tag(header, p->tag);
3170
ohci1394_it_data_set_channel(header, ctx->base.channel);
3171
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3172
ohci1394_it_data_set_sync(header, p->sy);
3173
3174
ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3175
}
3176
3177
if (p->header_length > 0) {
3178
d[2].req_count = cpu_to_le16(p->header_length);
3179
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3180
memcpy(&d[z], p->header, p->header_length);
3181
}
3182
3183
pd = d + z - payload_z;
3184
payload_end_index = payload_index + p->payload_length;
3185
for (i = 0; i < payload_z; i++) {
3186
page = payload_index >> PAGE_SHIFT;
3187
offset = payload_index & ~PAGE_MASK;
3188
next_page_index = (page + 1) << PAGE_SHIFT;
3189
length =
3190
min(next_page_index, payload_end_index) - payload_index;
3191
pd[i].req_count = cpu_to_le16(length);
3192
3193
page_bus = page_private(buffer->pages[page]);
3194
pd[i].data_address = cpu_to_le32(page_bus + offset);
3195
3196
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3197
page_bus, offset, length,
3198
DMA_TO_DEVICE);
3199
3200
payload_index += length;
3201
}
3202
3203
if (p->interrupt)
3204
irq = DESCRIPTOR_IRQ_ALWAYS;
3205
else
3206
irq = DESCRIPTOR_NO_IRQ;
3207
3208
last = z == 2 ? d : d + z - 1;
3209
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3210
DESCRIPTOR_STATUS |
3211
DESCRIPTOR_BRANCH_ALWAYS |
3212
irq);
3213
3214
context_append(&ctx->context, d, z, header_z);
3215
3216
return 0;
3217
}
3218
3219
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3220
struct fw_iso_packet *packet,
3221
struct fw_iso_buffer *buffer,
3222
unsigned long payload)
3223
{
3224
struct device *device = ctx->context.ohci->card.device;
3225
struct descriptor *d, *pd;
3226
dma_addr_t d_bus, page_bus;
3227
u32 z, header_z, rest;
3228
int i, j, length;
3229
int page, offset, packet_count, header_size, payload_per_buffer;
3230
3231
/*
3232
* The OHCI controller puts the isochronous header and trailer in the
3233
* buffer, so we need at least 8 bytes.
3234
*/
3235
packet_count = packet->header_length / ctx->base.header_size;
3236
header_size = max(ctx->base.header_size, (size_t)8);
3237
3238
/* Get header size in number of descriptors. */
3239
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3240
page = payload >> PAGE_SHIFT;
3241
offset = payload & ~PAGE_MASK;
3242
payload_per_buffer = packet->payload_length / packet_count;
3243
3244
for (i = 0; i < packet_count; i++) {
3245
/* d points to the header descriptor */
3246
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3247
d = context_get_descriptors(&ctx->context,
3248
z + header_z, &d_bus);
3249
if (d == NULL)
3250
return -ENOMEM;
3251
3252
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3253
DESCRIPTOR_INPUT_MORE);
3254
if (packet->skip && i == 0)
3255
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3256
d->req_count = cpu_to_le16(header_size);
3257
d->res_count = d->req_count;
3258
d->transfer_status = 0;
3259
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3260
3261
rest = payload_per_buffer;
3262
pd = d;
3263
for (j = 1; j < z; j++) {
3264
pd++;
3265
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3266
DESCRIPTOR_INPUT_MORE);
3267
3268
if (offset + rest < PAGE_SIZE)
3269
length = rest;
3270
else
3271
length = PAGE_SIZE - offset;
3272
pd->req_count = cpu_to_le16(length);
3273
pd->res_count = pd->req_count;
3274
pd->transfer_status = 0;
3275
3276
page_bus = page_private(buffer->pages[page]);
3277
pd->data_address = cpu_to_le32(page_bus + offset);
3278
3279
dma_sync_single_range_for_device(device, page_bus,
3280
offset, length,
3281
DMA_FROM_DEVICE);
3282
3283
offset = (offset + length) & ~PAGE_MASK;
3284
rest -= length;
3285
if (offset == 0)
3286
page++;
3287
}
3288
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3289
DESCRIPTOR_INPUT_LAST |
3290
DESCRIPTOR_BRANCH_ALWAYS);
3291
if (packet->interrupt && i == packet_count - 1)
3292
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3293
3294
context_append(&ctx->context, d, z, header_z);
3295
}
3296
3297
return 0;
3298
}
3299
3300
static int queue_iso_buffer_fill(struct iso_context *ctx,
3301
struct fw_iso_packet *packet,
3302
struct fw_iso_buffer *buffer,
3303
unsigned long payload)
3304
{
3305
struct descriptor *d;
3306
dma_addr_t d_bus, page_bus;
3307
int page, offset, rest, z, i, length;
3308
3309
page = payload >> PAGE_SHIFT;
3310
offset = payload & ~PAGE_MASK;
3311
rest = packet->payload_length;
3312
3313
/* We need one descriptor for each page in the buffer. */
3314
z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3315
3316
if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3317
return -EFAULT;
3318
3319
for (i = 0; i < z; i++) {
3320
d = context_get_descriptors(&ctx->context, 1, &d_bus);
3321
if (d == NULL)
3322
return -ENOMEM;
3323
3324
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3325
DESCRIPTOR_BRANCH_ALWAYS);
3326
if (packet->skip && i == 0)
3327
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3328
if (packet->interrupt && i == z - 1)
3329
d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3330
3331
if (offset + rest < PAGE_SIZE)
3332
length = rest;
3333
else
3334
length = PAGE_SIZE - offset;
3335
d->req_count = cpu_to_le16(length);
3336
d->res_count = d->req_count;
3337
d->transfer_status = 0;
3338
3339
page_bus = page_private(buffer->pages[page]);
3340
d->data_address = cpu_to_le32(page_bus + offset);
3341
3342
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3343
page_bus, offset, length,
3344
DMA_FROM_DEVICE);
3345
3346
rest -= length;
3347
offset = 0;
3348
page++;
3349
3350
context_append(&ctx->context, d, 1, 0);
3351
}
3352
3353
return 0;
3354
}
3355
3356
static int ohci_queue_iso(struct fw_iso_context *base,
3357
struct fw_iso_packet *packet,
3358
struct fw_iso_buffer *buffer,
3359
unsigned long payload)
3360
{
3361
struct iso_context *ctx = container_of(base, struct iso_context, base);
3362
3363
guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3364
3365
switch (base->type) {
3366
case FW_ISO_CONTEXT_TRANSMIT:
3367
return queue_iso_transmit(ctx, packet, buffer, payload);
3368
case FW_ISO_CONTEXT_RECEIVE:
3369
return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3370
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3371
return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3372
default:
3373
return -ENOSYS;
3374
}
3375
}
3376
3377
static void ohci_flush_queue_iso(struct fw_iso_context *base)
3378
{
3379
struct context *ctx =
3380
&container_of(base, struct iso_context, base)->context;
3381
3382
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3383
}
3384
3385
static int ohci_flush_iso_completions(struct fw_iso_context *base)
3386
{
3387
struct iso_context *ctx = container_of(base, struct iso_context, base);
3388
int ret = 0;
3389
3390
if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3391
ohci_isoc_context_work(&base->work);
3392
3393
switch (base->type) {
3394
case FW_ISO_CONTEXT_TRANSMIT:
3395
case FW_ISO_CONTEXT_RECEIVE:
3396
if (ctx->header_length != 0)
3397
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3398
break;
3399
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3400
if (ctx->mc_completed != 0)
3401
flush_ir_buffer_fill(ctx);
3402
break;
3403
default:
3404
ret = -ENOSYS;
3405
}
3406
3407
clear_bit_unlock(0, &ctx->flushing_completions);
3408
smp_mb__after_atomic();
3409
}
3410
3411
return ret;
3412
}
3413
3414
static const struct fw_card_driver ohci_driver = {
3415
.enable = ohci_enable,
3416
.read_phy_reg = ohci_read_phy_reg,
3417
.update_phy_reg = ohci_update_phy_reg,
3418
.set_config_rom = ohci_set_config_rom,
3419
.send_request = ohci_send_request,
3420
.send_response = ohci_send_response,
3421
.cancel_packet = ohci_cancel_packet,
3422
.enable_phys_dma = ohci_enable_phys_dma,
3423
.read_csr = ohci_read_csr,
3424
.write_csr = ohci_write_csr,
3425
3426
.allocate_iso_context = ohci_allocate_iso_context,
3427
.free_iso_context = ohci_free_iso_context,
3428
.set_iso_channels = ohci_set_iso_channels,
3429
.queue_iso = ohci_queue_iso,
3430
.flush_queue_iso = ohci_flush_queue_iso,
3431
.flush_iso_completions = ohci_flush_iso_completions,
3432
.start_iso = ohci_start_iso,
3433
.stop_iso = ohci_stop_iso,
3434
};
3435
3436
#ifdef CONFIG_PPC_PMAC
3437
static void pmac_ohci_on(struct pci_dev *dev)
3438
{
3439
if (machine_is(powermac)) {
3440
struct device_node *ofn = pci_device_to_OF_node(dev);
3441
3442
if (ofn) {
3443
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3444
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3445
}
3446
}
3447
}
3448
3449
static void pmac_ohci_off(struct pci_dev *dev)
3450
{
3451
if (machine_is(powermac)) {
3452
struct device_node *ofn = pci_device_to_OF_node(dev);
3453
3454
if (ofn) {
3455
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3456
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3457
}
3458
}
3459
}
3460
#else
3461
static inline void pmac_ohci_on(struct pci_dev *dev) {}
3462
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3463
#endif /* CONFIG_PPC_PMAC */
3464
3465
static void release_ohci(struct device *dev, void *data)
3466
{
3467
struct pci_dev *pdev = to_pci_dev(dev);
3468
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3469
3470
pmac_ohci_off(pdev);
3471
3472
ar_context_release(&ohci->ar_response_ctx);
3473
ar_context_release(&ohci->ar_request_ctx);
3474
3475
dev_notice(dev, "removed fw-ohci device\n");
3476
}
3477
3478
static int pci_probe(struct pci_dev *dev,
3479
const struct pci_device_id *ent)
3480
{
3481
struct fw_ohci *ohci;
3482
u32 bus_options, max_receive, link_speed, version;
3483
u64 guid;
3484
int i, flags, irq, err;
3485
3486
if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3487
dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3488
return -ENOSYS;
3489
}
3490
3491
ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3492
if (ohci == NULL)
3493
return -ENOMEM;
3494
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3495
pci_set_drvdata(dev, ohci);
3496
pmac_ohci_on(dev);
3497
devres_add(&dev->dev, ohci);
3498
3499
err = pcim_enable_device(dev);
3500
if (err) {
3501
dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3502
return err;
3503
}
3504
3505
pci_set_master(dev);
3506
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3507
3508
spin_lock_init(&ohci->lock);
3509
mutex_init(&ohci->phy_reg_mutex);
3510
3511
if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3512
pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3513
ohci_err(ohci, "invalid MMIO resource\n");
3514
return -ENXIO;
3515
}
3516
3517
ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3518
if (IS_ERR(ohci->registers)) {
3519
ohci_err(ohci, "request and map MMIO resource unavailable\n");
3520
return -ENXIO;
3521
}
3522
3523
for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3524
if ((ohci_quirks[i].vendor == dev->vendor) &&
3525
(ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3526
ohci_quirks[i].device == dev->device) &&
3527
(ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3528
ohci_quirks[i].revision >= dev->revision)) {
3529
ohci->quirks = ohci_quirks[i].flags;
3530
break;
3531
}
3532
if (param_quirks)
3533
ohci->quirks = param_quirks;
3534
3535
if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3536
ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3537
3538
/*
3539
* Because dma_alloc_coherent() allocates at least one page,
3540
* we save space by using a common buffer for the AR request/
3541
* response descriptors and the self IDs buffer.
3542
*/
3543
BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3544
BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3545
ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3546
GFP_KERNEL);
3547
if (!ohci->misc_buffer)
3548
return -ENOMEM;
3549
3550
err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3551
OHCI1394_AsReqRcvContextControlSet);
3552
if (err < 0)
3553
return err;
3554
3555
err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3556
OHCI1394_AsRspRcvContextControlSet);
3557
if (err < 0)
3558
return err;
3559
3560
err = context_init(&ohci->at_request_ctx.context, ohci,
3561
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3562
if (err < 0)
3563
return err;
3564
INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3565
3566
err = context_init(&ohci->at_response_ctx.context, ohci,
3567
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3568
if (err < 0)
3569
return err;
3570
INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3571
3572
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3573
ohci->ir_context_channels = ~0ULL;
3574
ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3575
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3576
ohci->ir_context_mask = ohci->ir_context_support;
3577
ohci->n_ir = hweight32(ohci->ir_context_mask);
3578
ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL);
3579
if (!ohci->ir_context_list)
3580
return -ENOMEM;
3581
3582
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3583
ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3584
/* JMicron JMB38x often shows 0 at first read, just ignore it */
3585
if (!ohci->it_context_support) {
3586
ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3587
ohci->it_context_support = 0xf;
3588
}
3589
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3590
ohci->it_context_mask = ohci->it_context_support;
3591
ohci->n_it = hweight32(ohci->it_context_mask);
3592
ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL);
3593
if (!ohci->it_context_list)
3594
return -ENOMEM;
3595
3596
ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3597
ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3598
3599
bus_options = reg_read(ohci, OHCI1394_BusOptions);
3600
max_receive = (bus_options >> 12) & 0xf;
3601
link_speed = bus_options & 0x7;
3602
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3603
reg_read(ohci, OHCI1394_GUIDLo);
3604
3605
flags = PCI_IRQ_INTX;
3606
if (!(ohci->quirks & QUIRK_NO_MSI))
3607
flags |= PCI_IRQ_MSI;
3608
err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3609
if (err < 0)
3610
return err;
3611
irq = pci_irq_vector(dev, 0);
3612
if (irq < 0) {
3613
err = irq;
3614
goto fail_msi;
3615
}
3616
3617
// IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during
3618
// invoking the threaded IRQ handler for SelfIDComplete event.
3619
err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event,
3620
pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3621
ohci);
3622
if (err < 0) {
3623
ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3624
goto fail_msi;
3625
}
3626
3627
err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3628
if (err)
3629
goto fail_irq;
3630
3631
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3632
ohci_notice(ohci,
3633
"added OHCI v%x.%x device as card %d, "
3634
"%d IR + %d IT contexts, quirks 0x%x%s\n",
3635
version >> 16, version & 0xff, ohci->card.index,
3636
ohci->n_ir, ohci->n_it, ohci->quirks,
3637
reg_read(ohci, OHCI1394_PhyUpperBound) ?
3638
", physUB" : "");
3639
3640
return 0;
3641
3642
fail_irq:
3643
free_irq(irq, ohci);
3644
fail_msi:
3645
pci_free_irq_vectors(dev);
3646
3647
return err;
3648
}
3649
3650
static void pci_remove(struct pci_dev *dev)
3651
{
3652
struct fw_ohci *ohci = pci_get_drvdata(dev);
3653
int irq;
3654
3655
/*
3656
* If the removal is happening from the suspend state, LPS won't be
3657
* enabled and host registers (eg., IntMaskClear) won't be accessible.
3658
*/
3659
if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3660
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3661
flush_writes(ohci);
3662
}
3663
fw_core_remove_card(&ohci->card);
3664
3665
/*
3666
* FIXME: Fail all pending packets here, now that the upper
3667
* layers can't queue any more.
3668
*/
3669
3670
software_reset(ohci);
3671
3672
irq = pci_irq_vector(dev, 0);
3673
if (irq >= 0)
3674
free_irq(irq, ohci);
3675
pci_free_irq_vectors(dev);
3676
3677
dev_notice(&dev->dev, "removing fw-ohci device\n");
3678
}
3679
3680
static int __maybe_unused pci_suspend(struct device *dev)
3681
{
3682
struct pci_dev *pdev = to_pci_dev(dev);
3683
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3684
3685
software_reset(ohci);
3686
pmac_ohci_off(pdev);
3687
3688
return 0;
3689
}
3690
3691
3692
static int __maybe_unused pci_resume(struct device *dev)
3693
{
3694
struct pci_dev *pdev = to_pci_dev(dev);
3695
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3696
int err;
3697
3698
pmac_ohci_on(pdev);
3699
3700
/* Some systems don't setup GUID register on resume from ram */
3701
if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3702
!reg_read(ohci, OHCI1394_GUIDHi)) {
3703
reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3704
reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3705
}
3706
3707
err = ohci_enable(&ohci->card, NULL, 0);
3708
if (err)
3709
return err;
3710
3711
ohci_resume_iso_dma(ohci);
3712
3713
return 0;
3714
}
3715
3716
static const struct pci_device_id pci_table[] = {
3717
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3718
{ }
3719
};
3720
3721
MODULE_DEVICE_TABLE(pci, pci_table);
3722
3723
static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3724
3725
static struct pci_driver fw_ohci_pci_driver = {
3726
.name = ohci_driver_name,
3727
.id_table = pci_table,
3728
.probe = pci_probe,
3729
.remove = pci_remove,
3730
.driver.pm = &pci_pm_ops,
3731
};
3732
3733
static int __init fw_ohci_init(void)
3734
{
3735
return pci_register_driver(&fw_ohci_pci_driver);
3736
}
3737
3738
static void __exit fw_ohci_cleanup(void)
3739
{
3740
pci_unregister_driver(&fw_ohci_pci_driver);
3741
}
3742
3743
module_init(fw_ohci_init);
3744
module_exit(fw_ohci_cleanup);
3745
3746
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3747
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3748
MODULE_LICENSE("GPL");
3749
3750
/* Provide a module alias so root-on-sbp2 initrds don't break. */
3751
MODULE_ALIAS("ohci1394");
3752
3753