Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/ohci.c
54332 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for OHCI 1394 controllers
4
*
5
* Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bitops.h>
9
#include <linux/bug.h>
10
#include <linux/compiler.h>
11
#include <linux/delay.h>
12
#include <linux/device.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/firewire.h>
15
#include <linux/firewire-constants.h>
16
#include <linux/init.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/kernel.h>
20
#include <linux/list.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/mutex.h>
25
#include <linux/pci.h>
26
#include <linux/pci_ids.h>
27
#include <linux/slab.h>
28
#include <linux/spinlock.h>
29
#include <linux/string.h>
30
#include <linux/time.h>
31
#include <linux/vmalloc.h>
32
#include <linux/workqueue.h>
33
34
#include <asm/byteorder.h>
35
#include <asm/page.h>
36
37
#ifdef CONFIG_PPC_PMAC
38
#include <asm/pmac_feature.h>
39
#endif
40
41
#include "core.h"
42
#include "ohci.h"
43
#include "packet-header-definitions.h"
44
#include "phy-packet-definitions.h"
45
46
#include <trace/events/firewire.h>
47
48
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50
#define CREATE_TRACE_POINTS
51
#include <trace/events/firewire_ohci.h>
52
53
#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54
#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56
#define DESCRIPTOR_OUTPUT_MORE 0
57
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58
#define DESCRIPTOR_INPUT_MORE (2 << 12)
59
#define DESCRIPTOR_INPUT_LAST (3 << 12)
60
#define DESCRIPTOR_STATUS (1 << 11)
61
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62
#define DESCRIPTOR_PING (1 << 7)
63
#define DESCRIPTOR_YY (1 << 6)
64
#define DESCRIPTOR_NO_IRQ (0 << 4)
65
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68
#define DESCRIPTOR_WAIT (3 << 0)
69
70
#define DESCRIPTOR_CMD (0xf << 12)
71
72
struct descriptor {
73
__le16 req_count;
74
__le16 control;
75
__le32 data_address;
76
__le32 branch_address;
77
__le16 res_count;
78
__le16 transfer_status;
79
} __aligned(16);
80
81
#define CONTROL_SET(regs) (regs)
82
#define CONTROL_CLEAR(regs) ((regs) + 4)
83
#define COMMAND_PTR(regs) ((regs) + 12)
84
#define CONTEXT_MATCH(regs) ((regs) + 16)
85
86
#define AR_BUFFER_SIZE (32*1024)
87
#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88
/* we need at least two pages for proper list management */
89
#define AR_BUFFERS MAX(2, AR_BUFFERS_MIN)
90
91
#define MAX_ASYNC_PAYLOAD 4096
92
#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93
#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95
struct ar_context {
96
struct fw_ohci *ohci;
97
struct page *pages[AR_BUFFERS];
98
void *buffer;
99
dma_addr_t dma_addrs[AR_BUFFERS];
100
struct descriptor *descriptors;
101
dma_addr_t descriptors_bus;
102
void *pointer;
103
unsigned int last_buffer_index;
104
u32 regs;
105
struct work_struct work;
106
};
107
108
struct context;
109
110
typedef int (*descriptor_callback_t)(struct context *ctx,
111
struct descriptor *d,
112
struct descriptor *last);
113
114
/*
115
* A buffer that contains a block of DMA-able coherent memory used for
116
* storing a portion of a DMA descriptor program.
117
*/
118
struct descriptor_buffer {
119
struct list_head list;
120
dma_addr_t buffer_bus;
121
size_t buffer_size;
122
size_t used;
123
struct descriptor buffer[];
124
};
125
126
struct context {
127
struct fw_ohci *ohci;
128
u32 regs;
129
int total_allocation;
130
u32 current_bus;
131
bool running;
132
133
/*
134
* List of page-sized buffers for storing DMA descriptors.
135
* Head of list contains buffers in use and tail of list contains
136
* free buffers.
137
*/
138
struct list_head buffer_list;
139
140
/*
141
* Pointer to a buffer inside buffer_list that contains the tail
142
* end of the current DMA program.
143
*/
144
struct descriptor_buffer *buffer_tail;
145
146
/*
147
* The descriptor containing the branch address of the first
148
* descriptor that has not yet been filled by the device.
149
*/
150
struct descriptor *last;
151
152
/*
153
* The last descriptor block in the DMA program. It contains the branch
154
* address that must be updated upon appending a new descriptor.
155
*/
156
struct descriptor *prev;
157
int prev_z;
158
159
descriptor_callback_t callback;
160
};
161
162
struct at_context {
163
struct context context;
164
struct work_struct work;
165
bool flushing;
166
};
167
168
struct iso_context {
169
struct fw_iso_context base;
170
struct context context;
171
unsigned long flushing_completions;
172
u8 sync;
173
u8 tags;
174
union {
175
struct {
176
u16 last_timestamp;
177
size_t header_length;
178
void *header;
179
} sc;
180
struct {
181
u32 buffer_bus;
182
u16 completed;
183
} mc;
184
};
185
};
186
187
#define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
188
189
struct fw_ohci {
190
struct fw_card card;
191
192
__iomem char *registers;
193
int node_id;
194
int generation;
195
int request_generation; /* for timestamping incoming requests */
196
unsigned quirks;
197
unsigned int pri_req_max;
198
u32 bus_time;
199
bool bus_time_running;
200
bool is_root;
201
bool csr_state_setclear_abdicate;
202
int n_ir;
203
int n_it;
204
/*
205
* Spinlock for accessing fw_ohci data. Never call out of
206
* this driver with this lock held.
207
*/
208
spinlock_t lock;
209
210
struct mutex phy_reg_mutex;
211
212
void *misc_buffer;
213
dma_addr_t misc_buffer_bus;
214
215
struct ar_context ar_request_ctx;
216
struct ar_context ar_response_ctx;
217
struct at_context at_request_ctx;
218
struct at_context at_response_ctx;
219
220
u32 it_context_support;
221
u32 it_context_mask; /* unoccupied IT contexts */
222
struct iso_context *it_context_list;
223
u64 ir_context_channels; /* unoccupied channels */
224
u32 ir_context_support;
225
u32 ir_context_mask; /* unoccupied IR contexts */
226
struct iso_context *ir_context_list;
227
u64 mc_channels; /* channels in use by the multichannel IR context */
228
bool mc_allocated;
229
230
__be32 *config_rom;
231
dma_addr_t config_rom_bus;
232
__be32 *next_config_rom;
233
dma_addr_t next_config_rom_bus;
234
__be32 next_header;
235
236
__le32 *self_id;
237
dma_addr_t self_id_bus;
238
239
u32 self_id_buffer[512];
240
};
241
242
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
243
{
244
return container_of(card, struct fw_ohci, card);
245
}
246
247
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
248
#define IR_CONTEXT_BUFFER_FILL 0x80000000
249
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
250
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
251
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
252
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
253
254
#define CONTEXT_RUN 0x8000
255
#define CONTEXT_WAKE 0x1000
256
#define CONTEXT_DEAD 0x0800
257
#define CONTEXT_ACTIVE 0x0400
258
259
#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
260
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
261
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
262
263
#define OHCI1394_REGISTER_SIZE 0x800
264
#define OHCI1394_PCI_HCI_Control 0x40
265
#define SELF_ID_BUF_SIZE 0x800
266
#define OHCI_VERSION_1_1 0x010010
267
268
static char ohci_driver_name[] = KBUILD_MODNAME;
269
270
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
271
#define PCI_DEVICE_ID_AGERE_FW643 0x5901
272
#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
273
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
274
#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
275
#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
276
#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
277
#define PCI_DEVICE_ID_VIA_VT630X 0x3044
278
#define PCI_REV_ID_VIA_VT6306 0x46
279
#define PCI_DEVICE_ID_VIA_VT6315 0x3403
280
281
#define QUIRK_CYCLE_TIMER 0x1
282
#define QUIRK_RESET_PACKET 0x2
283
#define QUIRK_BE_HEADERS 0x4
284
#define QUIRK_NO_1394A 0x8
285
#define QUIRK_NO_MSI 0x10
286
#define QUIRK_TI_SLLZ059 0x20
287
#define QUIRK_IR_WAKE 0x40
288
289
// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
290
// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
291
// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
292
// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
293
// while it is probable due to detection of any type of PCIe error.
294
#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
295
296
#if IS_ENABLED(CONFIG_X86)
297
298
static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
299
{
300
return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
301
}
302
303
#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
304
305
static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
306
{
307
const struct pci_dev *pcie_to_pci_bridge;
308
309
// Detect any type of AMD Ryzen machine.
310
if (!static_cpu_has(X86_FEATURE_ZEN))
311
return false;
312
313
// Detect VIA VT6306/6307/6308.
314
if (pdev->vendor != PCI_VENDOR_ID_VIA)
315
return false;
316
if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
317
return false;
318
319
// Detect Asmedia ASM1083/1085.
320
pcie_to_pci_bridge = pdev->bus->self;
321
if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
322
return false;
323
if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
324
return false;
325
326
return true;
327
}
328
329
#else
330
#define has_reboot_by_cycle_timer_read_quirk(ohci) false
331
#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
332
#endif
333
334
/* In case of multiple matches in ohci_quirks[], only the first one is used. */
335
static const struct {
336
unsigned short vendor, device, revision, flags;
337
} ohci_quirks[] = {
338
{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
339
QUIRK_CYCLE_TIMER},
340
341
{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
342
QUIRK_BE_HEADERS},
343
344
{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
345
QUIRK_NO_MSI},
346
347
{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
348
QUIRK_RESET_PACKET},
349
350
{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
351
QUIRK_NO_MSI},
352
353
{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
354
QUIRK_CYCLE_TIMER},
355
356
{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
357
QUIRK_NO_MSI},
358
359
{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
360
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
361
362
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
363
QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
364
365
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
366
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
367
368
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
369
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
370
371
{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
372
QUIRK_RESET_PACKET},
373
374
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
375
QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
376
377
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
378
QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
379
380
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
381
QUIRK_NO_MSI},
382
383
{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
384
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
385
};
386
387
/* This overrides anything that was found in ohci_quirks[]. */
388
static int param_quirks;
389
module_param_named(quirks, param_quirks, int, 0644);
390
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
391
", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
392
", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
393
", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
394
", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
395
", disable MSI = " __stringify(QUIRK_NO_MSI)
396
", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
397
", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
398
")");
399
400
static bool param_remote_dma;
401
module_param_named(remote_dma, param_remote_dma, bool, 0444);
402
MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
403
404
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
405
{
406
writel(data, ohci->registers + offset);
407
}
408
409
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
410
{
411
return readl(ohci->registers + offset);
412
}
413
414
static inline void flush_writes(const struct fw_ohci *ohci)
415
{
416
/* Do a dummy read to flush writes. */
417
reg_read(ohci, OHCI1394_Version);
418
}
419
420
/*
421
* Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
422
* read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
423
* In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
424
* directly. Exceptions are intrinsically serialized contexts like pci_probe.
425
*/
426
static int read_phy_reg(struct fw_ohci *ohci, int addr)
427
{
428
u32 val;
429
int i;
430
431
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
432
for (i = 0; i < 3 + 100; i++) {
433
val = reg_read(ohci, OHCI1394_PhyControl);
434
if (!~val)
435
return -ENODEV; /* Card was ejected. */
436
437
if (val & OHCI1394_PhyControl_ReadDone)
438
return OHCI1394_PhyControl_ReadData(val);
439
440
/*
441
* Try a few times without waiting. Sleeping is necessary
442
* only when the link/PHY interface is busy.
443
*/
444
if (i >= 3)
445
msleep(1);
446
}
447
ohci_err(ohci, "failed to read phy reg %d\n", addr);
448
dump_stack();
449
450
return -EBUSY;
451
}
452
453
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
454
{
455
int i;
456
457
reg_write(ohci, OHCI1394_PhyControl,
458
OHCI1394_PhyControl_Write(addr, val));
459
for (i = 0; i < 3 + 100; i++) {
460
val = reg_read(ohci, OHCI1394_PhyControl);
461
if (!~val)
462
return -ENODEV; /* Card was ejected. */
463
464
if (!(val & OHCI1394_PhyControl_WritePending))
465
return 0;
466
467
if (i >= 3)
468
msleep(1);
469
}
470
ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
471
dump_stack();
472
473
return -EBUSY;
474
}
475
476
static int update_phy_reg(struct fw_ohci *ohci, int addr,
477
int clear_bits, int set_bits)
478
{
479
int ret = read_phy_reg(ohci, addr);
480
if (ret < 0)
481
return ret;
482
483
/*
484
* The interrupt status bits are cleared by writing a one bit.
485
* Avoid clearing them unless explicitly requested in set_bits.
486
*/
487
if (addr == 5)
488
clear_bits |= PHY_INT_STATUS_BITS;
489
490
return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
491
}
492
493
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
494
{
495
int ret;
496
497
ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
498
if (ret < 0)
499
return ret;
500
501
return read_phy_reg(ohci, addr);
502
}
503
504
static int ohci_read_phy_reg(struct fw_card *card, int addr)
505
{
506
struct fw_ohci *ohci = fw_ohci(card);
507
508
guard(mutex)(&ohci->phy_reg_mutex);
509
510
return read_phy_reg(ohci, addr);
511
}
512
513
static int ohci_update_phy_reg(struct fw_card *card, int addr,
514
int clear_bits, int set_bits)
515
{
516
struct fw_ohci *ohci = fw_ohci(card);
517
518
guard(mutex)(&ohci->phy_reg_mutex);
519
520
return update_phy_reg(ohci, addr, clear_bits, set_bits);
521
}
522
523
static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
524
{
525
struct descriptor *d;
526
527
d = &ctx->descriptors[index];
528
d->branch_address &= cpu_to_le32(~0xf);
529
d->res_count = cpu_to_le16(PAGE_SIZE);
530
d->transfer_status = 0;
531
532
wmb(); /* finish init of new descriptors before branch_address update */
533
d = &ctx->descriptors[ctx->last_buffer_index];
534
d->branch_address |= cpu_to_le32(1);
535
536
ctx->last_buffer_index = index;
537
538
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
539
}
540
541
static void ar_context_release(struct ar_context *ctx)
542
{
543
struct device *dev = ctx->ohci->card.device;
544
545
if (!ctx->buffer)
546
return;
547
548
for (int i = 0; i < AR_BUFFERS; ++i) {
549
dma_addr_t dma_addr = ctx->dma_addrs[i];
550
if (dma_addr)
551
dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_FROM_DEVICE);
552
}
553
memset(ctx->dma_addrs, 0, sizeof(ctx->dma_addrs));
554
555
vunmap(ctx->buffer);
556
ctx->buffer = NULL;
557
558
release_pages(ctx->pages, AR_BUFFERS);
559
memset(ctx->pages, 0, sizeof(ctx->pages));
560
}
561
562
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
563
{
564
struct fw_ohci *ohci = ctx->ohci;
565
566
if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
567
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
568
flush_writes(ohci);
569
570
ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
571
}
572
/* FIXME: restart? */
573
}
574
575
static inline unsigned int ar_next_buffer_index(unsigned int index)
576
{
577
return (index + 1) % AR_BUFFERS;
578
}
579
580
static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
581
{
582
return ar_next_buffer_index(ctx->last_buffer_index);
583
}
584
585
/*
586
* We search for the buffer that contains the last AR packet DMA data written
587
* by the controller.
588
*/
589
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
590
unsigned int *buffer_offset)
591
{
592
unsigned int i, next_i, last = ctx->last_buffer_index;
593
__le16 res_count, next_res_count;
594
595
i = ar_first_buffer_index(ctx);
596
res_count = READ_ONCE(ctx->descriptors[i].res_count);
597
598
/* A buffer that is not yet completely filled must be the last one. */
599
while (i != last && res_count == 0) {
600
601
/* Peek at the next descriptor. */
602
next_i = ar_next_buffer_index(i);
603
rmb(); /* read descriptors in order */
604
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
605
/*
606
* If the next descriptor is still empty, we must stop at this
607
* descriptor.
608
*/
609
if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
610
/*
611
* The exception is when the DMA data for one packet is
612
* split over three buffers; in this case, the middle
613
* buffer's descriptor might be never updated by the
614
* controller and look still empty, and we have to peek
615
* at the third one.
616
*/
617
if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
618
next_i = ar_next_buffer_index(next_i);
619
rmb();
620
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
621
if (next_res_count != cpu_to_le16(PAGE_SIZE))
622
goto next_buffer_is_active;
623
}
624
625
break;
626
}
627
628
next_buffer_is_active:
629
i = next_i;
630
res_count = next_res_count;
631
}
632
633
rmb(); /* read res_count before the DMA data */
634
635
*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
636
if (*buffer_offset > PAGE_SIZE) {
637
*buffer_offset = 0;
638
ar_context_abort(ctx, "corrupted descriptor");
639
}
640
641
return i;
642
}
643
644
static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
645
unsigned int end_buffer_index,
646
unsigned int end_buffer_offset)
647
{
648
unsigned int i;
649
650
i = ar_first_buffer_index(ctx);
651
while (i != end_buffer_index) {
652
dma_sync_single_for_cpu(ctx->ohci->card.device, ctx->dma_addrs[i], PAGE_SIZE,
653
DMA_FROM_DEVICE);
654
i = ar_next_buffer_index(i);
655
}
656
if (end_buffer_offset > 0)
657
dma_sync_single_for_cpu(ctx->ohci->card.device, ctx->dma_addrs[i],
658
end_buffer_offset, DMA_FROM_DEVICE);
659
}
660
661
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
662
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
663
{
664
return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
665
}
666
667
static bool has_be_header_quirk(const struct fw_ohci *ohci)
668
{
669
return !!(ohci->quirks & QUIRK_BE_HEADERS);
670
}
671
#else
672
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
673
{
674
return le32_to_cpu(value);
675
}
676
677
static bool has_be_header_quirk(const struct fw_ohci *ohci)
678
{
679
return false;
680
}
681
#endif
682
683
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
684
{
685
struct fw_ohci *ohci = ctx->ohci;
686
struct fw_packet p;
687
u32 status, length, tcode;
688
int evt;
689
690
p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
691
p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
692
p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
693
694
tcode = async_header_get_tcode(p.header);
695
switch (tcode) {
696
case TCODE_WRITE_QUADLET_REQUEST:
697
case TCODE_READ_QUADLET_RESPONSE:
698
p.header[3] = (__force __u32) buffer[3];
699
p.header_length = 16;
700
p.payload_length = 0;
701
break;
702
703
case TCODE_READ_BLOCK_REQUEST :
704
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
705
p.header_length = 16;
706
p.payload_length = 0;
707
break;
708
709
case TCODE_WRITE_BLOCK_REQUEST:
710
case TCODE_READ_BLOCK_RESPONSE:
711
case TCODE_LOCK_REQUEST:
712
case TCODE_LOCK_RESPONSE:
713
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
714
p.header_length = 16;
715
p.payload_length = async_header_get_data_length(p.header);
716
if (p.payload_length > MAX_ASYNC_PAYLOAD) {
717
ar_context_abort(ctx, "invalid packet length");
718
return NULL;
719
}
720
break;
721
722
case TCODE_WRITE_RESPONSE:
723
case TCODE_READ_QUADLET_REQUEST:
724
case TCODE_LINK_INTERNAL:
725
p.header_length = 12;
726
p.payload_length = 0;
727
break;
728
729
default:
730
ar_context_abort(ctx, "invalid tcode");
731
return NULL;
732
}
733
734
p.payload = (void *) buffer + p.header_length;
735
736
/* FIXME: What to do about evt_* errors? */
737
length = (p.header_length + p.payload_length + 3) / 4;
738
status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
739
evt = (status >> 16) & 0x1f;
740
741
p.ack = evt - 16;
742
p.speed = (status >> 21) & 0x7;
743
p.timestamp = status & 0xffff;
744
p.generation = ohci->request_generation;
745
746
/*
747
* Several controllers, notably from NEC and VIA, forget to
748
* write ack_complete status at PHY packet reception.
749
*/
750
if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
751
p.ack = ACK_COMPLETE;
752
753
/*
754
* The OHCI bus reset handler synthesizes a PHY packet with
755
* the new generation number when a bus reset happens (see
756
* section 8.4.2.3). This helps us determine when a request
757
* was received and make sure we send the response in the same
758
* generation. We only need this for requests; for responses
759
* we use the unique tlabel for finding the matching
760
* request.
761
*
762
* Alas some chips sometimes emit bus reset packets with a
763
* wrong generation. We set the correct generation for these
764
* at a slightly incorrect time (in handle_selfid_complete_event).
765
*/
766
if (evt == OHCI1394_evt_bus_reset) {
767
if (!(ohci->quirks & QUIRK_RESET_PACKET))
768
ohci->request_generation = (p.header[2] >> 16) & 0xff;
769
} else if (ctx == &ohci->ar_request_ctx) {
770
fw_core_handle_request(&ohci->card, &p);
771
} else {
772
fw_core_handle_response(&ohci->card, &p);
773
}
774
775
return buffer + length + 1;
776
}
777
778
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
779
{
780
void *next;
781
782
while (p < end) {
783
next = handle_ar_packet(ctx, p);
784
if (!next)
785
return p;
786
p = next;
787
}
788
789
return p;
790
}
791
792
static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
793
{
794
unsigned int i;
795
796
i = ar_first_buffer_index(ctx);
797
while (i != end_buffer) {
798
dma_sync_single_for_device(ctx->ohci->card.device, ctx->dma_addrs[i], PAGE_SIZE,
799
DMA_FROM_DEVICE);
800
ar_context_link_page(ctx, i);
801
i = ar_next_buffer_index(i);
802
}
803
}
804
805
static void ohci_ar_context_work(struct work_struct *work)
806
{
807
struct ar_context *ctx = from_work(ctx, work, work);
808
unsigned int end_buffer_index, end_buffer_offset;
809
void *p, *end;
810
811
p = ctx->pointer;
812
if (!p)
813
return;
814
815
end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
816
ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
817
end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
818
819
if (end_buffer_index < ar_first_buffer_index(ctx)) {
820
// The filled part of the overall buffer wraps around; handle all packets up to the
821
// buffer end here. If the last packet wraps around, its tail will be visible after
822
// the buffer end because the buffer start pages are mapped there again.
823
void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
824
p = handle_ar_packets(ctx, p, buffer_end);
825
if (p < buffer_end)
826
goto error;
827
// adjust p to point back into the actual buffer
828
p -= AR_BUFFERS * PAGE_SIZE;
829
}
830
831
p = handle_ar_packets(ctx, p, end);
832
if (p != end) {
833
if (p > end)
834
ar_context_abort(ctx, "inconsistent descriptor");
835
goto error;
836
}
837
838
ctx->pointer = p;
839
ar_recycle_buffers(ctx, end_buffer_index);
840
841
return;
842
error:
843
ctx->pointer = NULL;
844
}
845
846
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
847
unsigned int descriptors_offset, u32 regs)
848
{
849
struct device *dev = ohci->card.device;
850
unsigned int i;
851
struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
852
dma_addr_t dma_addrs[AR_BUFFERS];
853
void *vaddr;
854
struct descriptor *d;
855
856
ctx->regs = regs;
857
ctx->ohci = ohci;
858
INIT_WORK(&ctx->work, ohci_ar_context_work);
859
860
// Retrieve noncontiguous pages. The descriptors for 1394 OHCI AR DMA contexts have a set
861
// of address and length per each. The reason to use pages is to construct contiguous
862
// address range in kernel virtual address space.
863
unsigned long nr_populated = alloc_pages_bulk(GFP_KERNEL | GFP_DMA32, AR_BUFFERS, pages);
864
865
if (nr_populated != AR_BUFFERS) {
866
release_pages(pages, nr_populated);
867
return -ENOMEM;
868
}
869
870
// Map the pages into contiguous kernel virtual addresses so that the packet data
871
// across the pages can be referred as being contiguous, especially across the last
872
// and first pages.
873
for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
874
pages[AR_BUFFERS + i] = pages[i];
875
vaddr = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
876
if (!vaddr) {
877
release_pages(pages, nr_populated);
878
return -ENOMEM;
879
}
880
881
// Retrieve DMA mapping addresses for the pages. They are not contiguous. Maintain the cache
882
// coherency for the pages by hand.
883
for (i = 0; i < AR_BUFFERS; i++) {
884
// The dma_map_phys() with a physical address per page is available here, instead.
885
dma_addr_t dma_addr = dma_map_page(dev, pages[i], 0, PAGE_SIZE, DMA_FROM_DEVICE);
886
if (dma_mapping_error(dev, dma_addr))
887
break;
888
dma_addrs[i] = dma_addr;
889
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, DMA_FROM_DEVICE);
890
}
891
if (i < AR_BUFFERS) {
892
while (i-- > 0)
893
dma_unmap_page(dev, dma_addrs[i], PAGE_SIZE, DMA_FROM_DEVICE);
894
vunmap(vaddr);
895
release_pages(pages, nr_populated);
896
return -ENOMEM;
897
}
898
899
memcpy(ctx->dma_addrs, dma_addrs, sizeof(ctx->dma_addrs));
900
ctx->buffer = vaddr;
901
memcpy(ctx->pages, pages, sizeof(ctx->pages));
902
903
ctx->descriptors = ohci->misc_buffer + descriptors_offset;
904
ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
905
906
for (i = 0; i < AR_BUFFERS; i++) {
907
d = &ctx->descriptors[i];
908
d->req_count = cpu_to_le16(PAGE_SIZE);
909
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
910
DESCRIPTOR_STATUS |
911
DESCRIPTOR_BRANCH_ALWAYS);
912
d->data_address = cpu_to_le32(ctx->dma_addrs[i]);
913
d->branch_address = cpu_to_le32(ctx->descriptors_bus +
914
ar_next_buffer_index(i) * sizeof(struct descriptor));
915
}
916
917
return 0;
918
}
919
920
static void ar_context_run(struct ar_context *ctx)
921
{
922
unsigned int i;
923
924
for (i = 0; i < AR_BUFFERS; i++)
925
ar_context_link_page(ctx, i);
926
927
ctx->pointer = ctx->buffer;
928
929
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
930
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
931
}
932
933
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
934
{
935
__le16 branch;
936
937
branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
938
939
/* figure out which descriptor the branch address goes in */
940
if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
941
return d;
942
else
943
return d + z - 1;
944
}
945
946
static void context_retire_descriptors(struct context *ctx)
947
{
948
struct descriptor *d, *last;
949
u32 address;
950
int z;
951
struct descriptor_buffer *desc;
952
953
desc = list_entry(ctx->buffer_list.next,
954
struct descriptor_buffer, list);
955
last = ctx->last;
956
while (last->branch_address != 0) {
957
struct descriptor_buffer *old_desc = desc;
958
address = le32_to_cpu(last->branch_address);
959
z = address & 0xf;
960
address &= ~0xf;
961
ctx->current_bus = address;
962
963
/* If the branch address points to a buffer outside of the
964
* current buffer, advance to the next buffer. */
965
if (address < desc->buffer_bus ||
966
address >= desc->buffer_bus + desc->used)
967
desc = list_entry(desc->list.next,
968
struct descriptor_buffer, list);
969
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
970
last = find_branch_descriptor(d, z);
971
972
if (!ctx->callback(ctx, d, last))
973
break;
974
975
if (old_desc != desc) {
976
// If we've advanced to the next buffer, move the previous buffer to the
977
// free list.
978
old_desc->used = 0;
979
guard(spinlock_irqsave)(&ctx->ohci->lock);
980
list_move_tail(&old_desc->list, &ctx->buffer_list);
981
}
982
ctx->last = last;
983
}
984
}
985
986
static void ohci_at_context_work(struct work_struct *work)
987
{
988
struct at_context *ctx = from_work(ctx, work, work);
989
990
context_retire_descriptors(&ctx->context);
991
}
992
993
static void ohci_isoc_context_work(struct work_struct *work)
994
{
995
struct fw_iso_context *base = from_work(base, work, work);
996
struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
997
998
context_retire_descriptors(&isoc_ctx->context);
999
}
1000
1001
/*
1002
* Allocate a new buffer and add it to the list of free buffers for this
1003
* context. Must be called with ohci->lock held.
1004
*/
1005
static int context_add_buffer(struct context *ctx)
1006
{
1007
struct descriptor_buffer *desc;
1008
dma_addr_t bus_addr;
1009
int offset;
1010
1011
/*
1012
* 16MB of descriptors should be far more than enough for any DMA
1013
* program. This will catch run-away userspace or DoS attacks.
1014
*/
1015
if (ctx->total_allocation >= 16*1024*1024)
1016
return -ENOMEM;
1017
1018
desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1019
if (!desc)
1020
return -ENOMEM;
1021
1022
offset = (void *)&desc->buffer - (void *)desc;
1023
/*
1024
* Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1025
* for descriptors, even 0x10-byte ones. This can cause page faults when
1026
* an IOMMU is in use and the oversized read crosses a page boundary.
1027
* Work around this by always leaving at least 0x10 bytes of padding.
1028
*/
1029
desc->buffer_size = PAGE_SIZE - offset - 0x10;
1030
desc->buffer_bus = bus_addr + offset;
1031
desc->used = 0;
1032
1033
list_add_tail(&desc->list, &ctx->buffer_list);
1034
ctx->total_allocation += PAGE_SIZE;
1035
1036
return 0;
1037
}
1038
1039
static int context_init(struct context *ctx, struct fw_ohci *ohci,
1040
u32 regs, descriptor_callback_t callback)
1041
{
1042
ctx->ohci = ohci;
1043
ctx->regs = regs;
1044
ctx->total_allocation = 0;
1045
1046
INIT_LIST_HEAD(&ctx->buffer_list);
1047
if (context_add_buffer(ctx) < 0)
1048
return -ENOMEM;
1049
1050
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1051
struct descriptor_buffer, list);
1052
1053
ctx->callback = callback;
1054
1055
/*
1056
* We put a dummy descriptor in the buffer that has a NULL
1057
* branch address and looks like it's been sent. That way we
1058
* have a descriptor to append DMA programs to.
1059
*/
1060
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1061
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1062
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1063
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1064
ctx->last = ctx->buffer_tail->buffer;
1065
ctx->prev = ctx->buffer_tail->buffer;
1066
ctx->prev_z = 1;
1067
1068
return 0;
1069
}
1070
1071
static void context_release(struct context *ctx)
1072
{
1073
struct fw_card *card = &ctx->ohci->card;
1074
struct descriptor_buffer *desc, *tmp;
1075
1076
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1077
dmam_free_coherent(card->device, PAGE_SIZE, desc,
1078
desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1079
}
1080
}
1081
1082
/* Must be called with ohci->lock held */
1083
static struct descriptor *context_get_descriptors(struct context *ctx,
1084
int z, dma_addr_t *d_bus)
1085
{
1086
struct descriptor *d = NULL;
1087
struct descriptor_buffer *desc = ctx->buffer_tail;
1088
1089
if (z * sizeof(*d) > desc->buffer_size)
1090
return NULL;
1091
1092
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1093
/* No room for the descriptor in this buffer, so advance to the
1094
* next one. */
1095
1096
if (desc->list.next == &ctx->buffer_list) {
1097
/* If there is no free buffer next in the list,
1098
* allocate one. */
1099
if (context_add_buffer(ctx) < 0)
1100
return NULL;
1101
}
1102
desc = list_entry(desc->list.next,
1103
struct descriptor_buffer, list);
1104
ctx->buffer_tail = desc;
1105
}
1106
1107
d = desc->buffer + desc->used / sizeof(*d);
1108
memset(d, 0, z * sizeof(*d));
1109
*d_bus = desc->buffer_bus + desc->used;
1110
1111
return d;
1112
}
1113
1114
static void context_run(struct context *ctx, u32 extra)
1115
{
1116
struct fw_ohci *ohci = ctx->ohci;
1117
1118
reg_write(ohci, COMMAND_PTR(ctx->regs),
1119
le32_to_cpu(ctx->last->branch_address));
1120
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1121
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1122
ctx->running = true;
1123
flush_writes(ohci);
1124
}
1125
1126
static void context_append(struct context *ctx,
1127
struct descriptor *d, int z, int extra)
1128
{
1129
dma_addr_t d_bus;
1130
struct descriptor_buffer *desc = ctx->buffer_tail;
1131
struct descriptor *d_branch;
1132
1133
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1134
1135
desc->used += (z + extra) * sizeof(*d);
1136
1137
wmb(); /* finish init of new descriptors before branch_address update */
1138
1139
d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1140
d_branch->branch_address = cpu_to_le32(d_bus | z);
1141
1142
/*
1143
* VT6306 incorrectly checks only the single descriptor at the
1144
* CommandPtr when the wake bit is written, so if it's a
1145
* multi-descriptor block starting with an INPUT_MORE, put a copy of
1146
* the branch address in the first descriptor.
1147
*
1148
* Not doing this for transmit contexts since not sure how it interacts
1149
* with skip addresses.
1150
*/
1151
if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1152
d_branch != ctx->prev &&
1153
(ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1154
cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1155
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1156
}
1157
1158
ctx->prev = d;
1159
ctx->prev_z = z;
1160
}
1161
1162
static void context_stop(struct context *ctx)
1163
{
1164
struct fw_ohci *ohci = ctx->ohci;
1165
u32 reg;
1166
int i;
1167
1168
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1169
ctx->running = false;
1170
1171
for (i = 0; i < 1000; i++) {
1172
reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1173
if ((reg & CONTEXT_ACTIVE) == 0)
1174
return;
1175
1176
if (i)
1177
udelay(10);
1178
}
1179
ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1180
}
1181
1182
struct driver_data {
1183
u8 inline_data[8];
1184
struct fw_packet *packet;
1185
};
1186
1187
/*
1188
* This function appends a packet to the DMA queue for transmission.
1189
* Must always be called with the ochi->lock held to ensure proper
1190
* generation handling and locking around packet queue manipulation.
1191
*/
1192
static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1193
{
1194
struct context *context = &ctx->context;
1195
struct fw_ohci *ohci = context->ohci;
1196
dma_addr_t d_bus, payload_bus;
1197
struct driver_data *driver_data;
1198
struct descriptor *d, *last;
1199
__le32 *header;
1200
int z, tcode;
1201
1202
d = context_get_descriptors(context, 4, &d_bus);
1203
if (d == NULL) {
1204
packet->ack = RCODE_SEND_ERROR;
1205
return -1;
1206
}
1207
1208
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1209
d[0].res_count = cpu_to_le16(packet->timestamp);
1210
1211
tcode = async_header_get_tcode(packet->header);
1212
header = (__le32 *) &d[1];
1213
switch (tcode) {
1214
case TCODE_WRITE_QUADLET_REQUEST:
1215
case TCODE_WRITE_BLOCK_REQUEST:
1216
case TCODE_WRITE_RESPONSE:
1217
case TCODE_READ_QUADLET_REQUEST:
1218
case TCODE_READ_BLOCK_REQUEST:
1219
case TCODE_READ_QUADLET_RESPONSE:
1220
case TCODE_READ_BLOCK_RESPONSE:
1221
case TCODE_LOCK_REQUEST:
1222
case TCODE_LOCK_RESPONSE:
1223
ohci1394_at_data_set_src_bus_id(header, false);
1224
ohci1394_at_data_set_speed(header, packet->speed);
1225
ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1226
ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1227
ohci1394_at_data_set_tcode(header, tcode);
1228
1229
ohci1394_at_data_set_destination_id(header,
1230
async_header_get_destination(packet->header));
1231
1232
if (ctx == &ohci->at_response_ctx) {
1233
ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1234
} else {
1235
ohci1394_at_data_set_destination_offset(header,
1236
async_header_get_offset(packet->header));
1237
}
1238
1239
if (tcode_is_block_packet(tcode))
1240
header[3] = cpu_to_le32(packet->header[3]);
1241
else
1242
header[3] = (__force __le32) packet->header[3];
1243
1244
d[0].req_count = cpu_to_le16(packet->header_length);
1245
break;
1246
case TCODE_LINK_INTERNAL:
1247
ohci1394_at_data_set_speed(header, packet->speed);
1248
ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1249
1250
header[1] = cpu_to_le32(packet->header[1]);
1251
header[2] = cpu_to_le32(packet->header[2]);
1252
d[0].req_count = cpu_to_le16(12);
1253
1254
if (is_ping_packet(&packet->header[1]))
1255
d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1256
break;
1257
1258
case TCODE_STREAM_DATA:
1259
ohci1394_it_data_set_speed(header, packet->speed);
1260
ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1261
ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1262
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1263
ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1264
1265
ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1266
1267
d[0].req_count = cpu_to_le16(8);
1268
break;
1269
1270
default:
1271
/* BUG(); */
1272
packet->ack = RCODE_SEND_ERROR;
1273
return -1;
1274
}
1275
1276
BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1277
driver_data = (struct driver_data *) &d[3];
1278
driver_data->packet = packet;
1279
packet->driver_data = driver_data;
1280
1281
if (packet->payload_length > 0) {
1282
if (packet->payload_length > sizeof(driver_data->inline_data)) {
1283
payload_bus = dma_map_single(ohci->card.device,
1284
packet->payload,
1285
packet->payload_length,
1286
DMA_TO_DEVICE);
1287
if (dma_mapping_error(ohci->card.device, payload_bus)) {
1288
packet->ack = RCODE_SEND_ERROR;
1289
return -1;
1290
}
1291
packet->payload_bus = payload_bus;
1292
packet->payload_mapped = true;
1293
} else {
1294
memcpy(driver_data->inline_data, packet->payload,
1295
packet->payload_length);
1296
payload_bus = d_bus + 3 * sizeof(*d);
1297
}
1298
1299
d[2].req_count = cpu_to_le16(packet->payload_length);
1300
d[2].data_address = cpu_to_le32(payload_bus);
1301
last = &d[2];
1302
z = 3;
1303
} else {
1304
last = &d[0];
1305
z = 2;
1306
}
1307
1308
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1309
DESCRIPTOR_IRQ_ALWAYS |
1310
DESCRIPTOR_BRANCH_ALWAYS);
1311
1312
/* FIXME: Document how the locking works. */
1313
if (ohci->generation != packet->generation) {
1314
if (packet->payload_mapped)
1315
dma_unmap_single(ohci->card.device, payload_bus,
1316
packet->payload_length, DMA_TO_DEVICE);
1317
packet->ack = RCODE_GENERATION;
1318
return -1;
1319
}
1320
1321
context_append(context, d, z, 4 - z);
1322
1323
if (context->running)
1324
reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1325
else
1326
context_run(context, 0);
1327
1328
return 0;
1329
}
1330
1331
static void at_context_flush(struct at_context *ctx)
1332
{
1333
// Avoid dead lock due to programming mistake.
1334
if (WARN_ON_ONCE(current_work() == &ctx->work))
1335
return;
1336
1337
disable_work_sync(&ctx->work);
1338
1339
WRITE_ONCE(ctx->flushing, true);
1340
ohci_at_context_work(&ctx->work);
1341
WRITE_ONCE(ctx->flushing, false);
1342
1343
enable_work(&ctx->work);
1344
}
1345
1346
static int find_fw_device(struct device *dev, const void *data)
1347
{
1348
struct fw_device *device = fw_device(dev);
1349
const u32 *params = data;
1350
1351
return (device->generation == params[0]) && (device->node_id == params[1]);
1352
}
1353
1354
static int handle_at_packet(struct context *context,
1355
struct descriptor *d,
1356
struct descriptor *last)
1357
{
1358
struct at_context *ctx = container_of(context, struct at_context, context);
1359
struct fw_ohci *ohci = ctx->context.ohci;
1360
struct driver_data *driver_data;
1361
struct fw_packet *packet;
1362
int evt;
1363
1364
if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1365
/* This descriptor isn't done yet, stop iteration. */
1366
return 0;
1367
1368
driver_data = (struct driver_data *) &d[3];
1369
packet = driver_data->packet;
1370
if (packet == NULL)
1371
/* This packet was cancelled, just continue. */
1372
return 1;
1373
1374
if (packet->payload_mapped)
1375
dma_unmap_single(ohci->card.device, packet->payload_bus,
1376
packet->payload_length, DMA_TO_DEVICE);
1377
1378
evt = le16_to_cpu(last->transfer_status) & 0x1f;
1379
packet->timestamp = le16_to_cpu(last->res_count);
1380
1381
switch (evt) {
1382
case OHCI1394_evt_timeout:
1383
/* Async response transmit timed out. */
1384
packet->ack = RCODE_CANCELLED;
1385
break;
1386
1387
case OHCI1394_evt_flushed:
1388
/*
1389
* The packet was flushed should give same error as
1390
* when we try to use a stale generation count.
1391
*/
1392
packet->ack = RCODE_GENERATION;
1393
break;
1394
1395
case OHCI1394_evt_missing_ack:
1396
if (READ_ONCE(ctx->flushing))
1397
packet->ack = RCODE_GENERATION;
1398
else {
1399
/*
1400
* Using a valid (current) generation count, but the
1401
* node is not on the bus or not sending acks.
1402
*/
1403
packet->ack = RCODE_NO_ACK;
1404
}
1405
break;
1406
1407
case ACK_COMPLETE + 0x10:
1408
case ACK_PENDING + 0x10:
1409
case ACK_BUSY_X + 0x10:
1410
case ACK_BUSY_A + 0x10:
1411
case ACK_BUSY_B + 0x10:
1412
case ACK_DATA_ERROR + 0x10:
1413
case ACK_TYPE_ERROR + 0x10:
1414
packet->ack = evt - 0x10;
1415
break;
1416
1417
case OHCI1394_evt_no_status:
1418
if (READ_ONCE(ctx->flushing)) {
1419
packet->ack = RCODE_GENERATION;
1420
break;
1421
}
1422
fallthrough;
1423
1424
default:
1425
if (unlikely(evt == 0x10)) {
1426
u32 params[2] = {
1427
packet->generation,
1428
async_header_get_destination(packet->header),
1429
};
1430
struct device *dev;
1431
1432
fw_card_get(&ohci->card);
1433
dev = device_find_child(ohci->card.device, (const void *)params, find_fw_device);
1434
fw_card_put(&ohci->card);
1435
if (dev) {
1436
struct fw_device *device = fw_device(dev);
1437
int quirks = READ_ONCE(device->quirks);
1438
1439
put_device(dev);
1440
if (quirks & FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE) {
1441
packet->ack = ACK_PENDING;
1442
break;
1443
}
1444
}
1445
}
1446
packet->ack = RCODE_SEND_ERROR;
1447
break;
1448
}
1449
1450
packet->callback(packet, &ohci->card, packet->ack);
1451
1452
return 1;
1453
}
1454
1455
static u32 get_cycle_time(struct fw_ohci *ohci);
1456
1457
static void handle_local_rom(struct fw_ohci *ohci,
1458
struct fw_packet *packet, u32 csr)
1459
{
1460
struct fw_packet response;
1461
int tcode, length, i;
1462
1463
tcode = async_header_get_tcode(packet->header);
1464
if (tcode_is_block_packet(tcode))
1465
length = async_header_get_data_length(packet->header);
1466
else
1467
length = 4;
1468
1469
i = csr - CSR_CONFIG_ROM;
1470
if (i + length > CONFIG_ROM_SIZE) {
1471
fw_fill_response(&response, packet->header,
1472
RCODE_ADDRESS_ERROR, NULL, 0);
1473
} else if (!tcode_is_read_request(tcode)) {
1474
fw_fill_response(&response, packet->header,
1475
RCODE_TYPE_ERROR, NULL, 0);
1476
} else {
1477
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1478
(void *) ohci->config_rom + i, length);
1479
}
1480
1481
// Timestamping on behalf of the hardware.
1482
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1483
fw_core_handle_response(&ohci->card, &response);
1484
}
1485
1486
static void handle_local_lock(struct fw_ohci *ohci,
1487
struct fw_packet *packet, u32 csr)
1488
{
1489
struct fw_packet response;
1490
int tcode, length, ext_tcode, sel, try;
1491
__be32 *payload, lock_old;
1492
u32 lock_arg, lock_data;
1493
1494
tcode = async_header_get_tcode(packet->header);
1495
length = async_header_get_data_length(packet->header);
1496
payload = packet->payload;
1497
ext_tcode = async_header_get_extended_tcode(packet->header);
1498
1499
if (tcode == TCODE_LOCK_REQUEST &&
1500
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1501
lock_arg = be32_to_cpu(payload[0]);
1502
lock_data = be32_to_cpu(payload[1]);
1503
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1504
lock_arg = 0;
1505
lock_data = 0;
1506
} else {
1507
fw_fill_response(&response, packet->header,
1508
RCODE_TYPE_ERROR, NULL, 0);
1509
goto out;
1510
}
1511
1512
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1513
reg_write(ohci, OHCI1394_CSRData, lock_data);
1514
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1515
reg_write(ohci, OHCI1394_CSRControl, sel);
1516
1517
for (try = 0; try < 20; try++)
1518
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1519
lock_old = cpu_to_be32(reg_read(ohci,
1520
OHCI1394_CSRData));
1521
fw_fill_response(&response, packet->header,
1522
RCODE_COMPLETE,
1523
&lock_old, sizeof(lock_old));
1524
goto out;
1525
}
1526
1527
ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1528
fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1529
1530
out:
1531
// Timestamping on behalf of the hardware.
1532
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1533
fw_core_handle_response(&ohci->card, &response);
1534
}
1535
1536
static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1537
{
1538
struct fw_ohci *ohci = ctx->context.ohci;
1539
u64 offset, csr;
1540
1541
if (ctx == &ohci->at_request_ctx) {
1542
packet->ack = ACK_PENDING;
1543
packet->callback(packet, &ohci->card, packet->ack);
1544
}
1545
1546
offset = async_header_get_offset(packet->header);
1547
csr = offset - CSR_REGISTER_BASE;
1548
1549
/* Handle config rom reads. */
1550
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1551
handle_local_rom(ohci, packet, csr);
1552
else switch (csr) {
1553
case CSR_BUS_MANAGER_ID:
1554
case CSR_BANDWIDTH_AVAILABLE:
1555
case CSR_CHANNELS_AVAILABLE_HI:
1556
case CSR_CHANNELS_AVAILABLE_LO:
1557
handle_local_lock(ohci, packet, csr);
1558
break;
1559
default:
1560
if (ctx == &ohci->at_request_ctx)
1561
fw_core_handle_request(&ohci->card, packet);
1562
else
1563
fw_core_handle_response(&ohci->card, packet);
1564
break;
1565
}
1566
1567
if (ctx == &ohci->at_response_ctx) {
1568
packet->ack = ACK_COMPLETE;
1569
packet->callback(packet, &ohci->card, packet->ack);
1570
}
1571
}
1572
1573
static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1574
{
1575
struct fw_ohci *ohci = ctx->context.ohci;
1576
unsigned long flags;
1577
int ret;
1578
1579
spin_lock_irqsave(&ohci->lock, flags);
1580
1581
if (async_header_get_destination(packet->header) == ohci->node_id &&
1582
ohci->generation == packet->generation) {
1583
spin_unlock_irqrestore(&ohci->lock, flags);
1584
1585
// Timestamping on behalf of the hardware.
1586
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1587
1588
handle_local_request(ctx, packet);
1589
return;
1590
}
1591
1592
ret = at_context_queue_packet(ctx, packet);
1593
spin_unlock_irqrestore(&ohci->lock, flags);
1594
1595
if (ret < 0) {
1596
// Timestamping on behalf of the hardware.
1597
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1598
1599
packet->callback(packet, &ohci->card, packet->ack);
1600
}
1601
}
1602
1603
static void detect_dead_context(struct fw_ohci *ohci,
1604
const char *name, unsigned int regs)
1605
{
1606
static const char *const evts[] = {
1607
[0x00] = "evt_no_status", [0x01] = "-reserved-",
1608
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
1609
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
1610
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
1611
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
1612
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
1613
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
1614
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
1615
[0x10] = "-reserved-", [0x11] = "ack_complete",
1616
[0x12] = "ack_pending ", [0x13] = "-reserved-",
1617
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
1618
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
1619
[0x18] = "-reserved-", [0x19] = "-reserved-",
1620
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
1621
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
1622
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
1623
[0x20] = "pending/cancelled",
1624
};
1625
u32 ctl;
1626
1627
ctl = reg_read(ohci, CONTROL_SET(regs));
1628
if (ctl & CONTEXT_DEAD)
1629
ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1630
name, evts[ctl & 0x1f]);
1631
}
1632
1633
static void handle_dead_contexts(struct fw_ohci *ohci)
1634
{
1635
unsigned int i;
1636
char name[8];
1637
1638
detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1639
detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1640
detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1641
detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1642
for (i = 0; i < 32; ++i) {
1643
if (!(ohci->it_context_support & (1 << i)))
1644
continue;
1645
sprintf(name, "IT%u", i);
1646
detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1647
}
1648
for (i = 0; i < 32; ++i) {
1649
if (!(ohci->ir_context_support & (1 << i)))
1650
continue;
1651
sprintf(name, "IR%u", i);
1652
detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1653
}
1654
/* TODO: maybe try to flush and restart the dead contexts */
1655
}
1656
1657
static u32 cycle_timer_ticks(u32 cycle_timer)
1658
{
1659
u32 ticks;
1660
1661
ticks = cycle_timer & 0xfff;
1662
ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1663
ticks += (3072 * 8000) * (cycle_timer >> 25);
1664
1665
return ticks;
1666
}
1667
1668
/*
1669
* Some controllers exhibit one or more of the following bugs when updating the
1670
* iso cycle timer register:
1671
* - When the lowest six bits are wrapping around to zero, a read that happens
1672
* at the same time will return garbage in the lowest ten bits.
1673
* - When the cycleOffset field wraps around to zero, the cycleCount field is
1674
* not incremented for about 60 ns.
1675
* - Occasionally, the entire register reads zero.
1676
*
1677
* To catch these, we read the register three times and ensure that the
1678
* difference between each two consecutive reads is approximately the same, i.e.
1679
* less than twice the other. Furthermore, any negative difference indicates an
1680
* error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1681
* execute, so we have enough precision to compute the ratio of the differences.)
1682
*/
1683
static u32 get_cycle_time(struct fw_ohci *ohci)
1684
{
1685
u32 c0, c1, c2;
1686
u32 t0, t1, t2;
1687
s32 diff01, diff12;
1688
int i;
1689
1690
if (has_reboot_by_cycle_timer_read_quirk(ohci))
1691
return 0;
1692
1693
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1694
1695
if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1696
i = 0;
1697
c1 = c2;
1698
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1699
do {
1700
c0 = c1;
1701
c1 = c2;
1702
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1703
t0 = cycle_timer_ticks(c0);
1704
t1 = cycle_timer_ticks(c1);
1705
t2 = cycle_timer_ticks(c2);
1706
diff01 = t1 - t0;
1707
diff12 = t2 - t1;
1708
} while ((diff01 <= 0 || diff12 <= 0 ||
1709
diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1710
&& i++ < 20);
1711
}
1712
1713
return c2;
1714
}
1715
1716
/*
1717
* This function has to be called at least every 64 seconds. The bus_time
1718
* field stores not only the upper 25 bits of the BUS_TIME register but also
1719
* the most significant bit of the cycle timer in bit 6 so that we can detect
1720
* changes in this bit.
1721
*/
1722
static u32 update_bus_time(struct fw_ohci *ohci)
1723
{
1724
u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1725
1726
if (unlikely(!ohci->bus_time_running)) {
1727
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1728
ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1729
(cycle_time_seconds & 0x40);
1730
ohci->bus_time_running = true;
1731
}
1732
1733
if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1734
ohci->bus_time += 0x40;
1735
1736
return ohci->bus_time | cycle_time_seconds;
1737
}
1738
1739
static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1740
enum phy_packet_self_id_port_status *status)
1741
{
1742
int reg;
1743
1744
scoped_guard(mutex, &ohci->phy_reg_mutex) {
1745
reg = write_phy_reg(ohci, 7, port_index);
1746
if (reg < 0)
1747
return reg;
1748
1749
reg = read_phy_reg(ohci, 8);
1750
if (reg < 0)
1751
return reg;
1752
}
1753
1754
switch (reg & 0x0f) {
1755
case 0x06:
1756
// is child node (connected to parent node)
1757
*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1758
break;
1759
case 0x0e:
1760
// is parent node (connected to child node)
1761
*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1762
break;
1763
default:
1764
// not connected
1765
*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1766
break;
1767
}
1768
1769
return 0;
1770
}
1771
1772
static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1773
int self_id_count)
1774
{
1775
unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1776
int i;
1777
1778
for (i = 0; i < self_id_count; i++) {
1779
u32 entry = ohci->self_id_buffer[i];
1780
unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1781
1782
if (left_phy_id == right_phy_id)
1783
return -1;
1784
if (left_phy_id < right_phy_id)
1785
return i;
1786
}
1787
return i;
1788
}
1789
1790
static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1791
{
1792
int reg;
1793
1794
guard(mutex)(&ohci->phy_reg_mutex);
1795
1796
// Select page 7
1797
reg = write_phy_reg(ohci, 7, 0xe0);
1798
if (reg < 0)
1799
return reg;
1800
1801
reg = read_phy_reg(ohci, 8);
1802
if (reg < 0)
1803
return reg;
1804
1805
// set PMODE bit
1806
reg |= 0x40;
1807
reg = write_phy_reg(ohci, 8, reg);
1808
if (reg < 0)
1809
return reg;
1810
1811
// read register 12
1812
reg = read_phy_reg(ohci, 12);
1813
if (reg < 0)
1814
return reg;
1815
1816
// bit 3 indicates "initiated reset"
1817
*is_initiated_reset = !!((reg & 0x08) == 0x08);
1818
1819
return 0;
1820
}
1821
1822
/*
1823
* TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1824
* attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1825
* Construct the selfID from phy register contents.
1826
*/
1827
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1828
{
1829
int reg, i, pos, err;
1830
bool is_initiated_reset;
1831
u32 self_id = 0;
1832
1833
// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1834
phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1835
phy_packet_self_id_zero_set_link_active(&self_id, true);
1836
phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1837
phy_packet_self_id_zero_set_contender(&self_id, true);
1838
1839
reg = reg_read(ohci, OHCI1394_NodeID);
1840
if (!(reg & OHCI1394_NodeID_idValid)) {
1841
ohci_notice(ohci,
1842
"node ID not valid, new bus reset in progress\n");
1843
return -EBUSY;
1844
}
1845
phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1846
1847
reg = ohci_read_phy_reg(&ohci->card, 4);
1848
if (reg < 0)
1849
return reg;
1850
phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1851
1852
reg = ohci_read_phy_reg(&ohci->card, 1);
1853
if (reg < 0)
1854
return reg;
1855
phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1856
1857
for (i = 0; i < 3; i++) {
1858
enum phy_packet_self_id_port_status status;
1859
1860
err = get_status_for_port(ohci, i, &status);
1861
if (err < 0)
1862
return err;
1863
1864
self_id_sequence_set_port_status(&self_id, 1, i, status);
1865
}
1866
1867
err = detect_initiated_reset(ohci, &is_initiated_reset);
1868
if (err < 0)
1869
return err;
1870
phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
1871
1872
pos = get_self_id_pos(ohci, self_id, self_id_count);
1873
if (pos >= 0) {
1874
memmove(&(ohci->self_id_buffer[pos+1]),
1875
&(ohci->self_id_buffer[pos]),
1876
(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1877
ohci->self_id_buffer[pos] = self_id;
1878
self_id_count++;
1879
}
1880
return self_id_count;
1881
}
1882
1883
static irqreturn_t handle_selfid_complete_event(int irq, void *data)
1884
{
1885
struct fw_ohci *ohci = data;
1886
int self_id_count, generation, new_generation, i, j;
1887
u32 reg, quadlet;
1888
void *free_rom = NULL;
1889
dma_addr_t free_rom_bus = 0;
1890
bool is_new_root;
1891
1892
reg = reg_read(ohci, OHCI1394_NodeID);
1893
if (!(reg & OHCI1394_NodeID_idValid)) {
1894
ohci_notice(ohci,
1895
"node ID not valid, new bus reset in progress\n");
1896
goto end;
1897
}
1898
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1899
ohci_notice(ohci, "malconfigured bus\n");
1900
goto end;
1901
}
1902
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1903
OHCI1394_NodeID_nodeNumber);
1904
1905
is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1906
if (!(ohci->is_root && is_new_root))
1907
reg_write(ohci, OHCI1394_LinkControlSet,
1908
OHCI1394_LinkControl_cycleMaster);
1909
ohci->is_root = is_new_root;
1910
1911
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1912
if (ohci1394_self_id_count_is_error(reg)) {
1913
ohci_notice(ohci, "self ID receive error\n");
1914
goto end;
1915
}
1916
1917
trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci));
1918
1919
/*
1920
* The count in the SelfIDCount register is the number of
1921
* bytes in the self ID receive buffer. Since we also receive
1922
* the inverted quadlets and a header quadlet, we shift one
1923
* bit extra to get the actual number of self IDs.
1924
*/
1925
self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
1926
1927
if (self_id_count > 252) {
1928
ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1929
goto end;
1930
}
1931
1932
quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
1933
generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
1934
rmb();
1935
1936
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1937
u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
1938
u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
1939
1940
if (id != ~id2) {
1941
/*
1942
* If the invalid data looks like a cycle start packet,
1943
* it's likely to be the result of the cycle master
1944
* having a wrong gap count. In this case, the self IDs
1945
* so far are valid and should be processed so that the
1946
* bus manager can then correct the gap count.
1947
*/
1948
if (id == 0xffff008f) {
1949
ohci_notice(ohci, "ignoring spurious self IDs\n");
1950
self_id_count = j;
1951
break;
1952
}
1953
1954
ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1955
j, self_id_count, id, id2);
1956
goto end;
1957
}
1958
ohci->self_id_buffer[j] = id;
1959
}
1960
1961
if (ohci->quirks & QUIRK_TI_SLLZ059) {
1962
self_id_count = find_and_insert_self_id(ohci, self_id_count);
1963
if (self_id_count < 0) {
1964
ohci_notice(ohci,
1965
"could not construct local self ID\n");
1966
goto end;
1967
}
1968
}
1969
1970
if (self_id_count == 0) {
1971
ohci_notice(ohci, "no self IDs\n");
1972
goto end;
1973
}
1974
rmb();
1975
1976
/*
1977
* Check the consistency of the self IDs we just read. The
1978
* problem we face is that a new bus reset can start while we
1979
* read out the self IDs from the DMA buffer. If this happens,
1980
* the DMA buffer will be overwritten with new self IDs and we
1981
* will read out inconsistent data. The OHCI specification
1982
* (section 11.2) recommends a technique similar to
1983
* linux/seqlock.h, where we remember the generation of the
1984
* self IDs in the buffer before reading them out and compare
1985
* it to the current generation after reading them out. If
1986
* the two generations match we know we have a consistent set
1987
* of self IDs.
1988
*/
1989
1990
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1991
new_generation = ohci1394_self_id_count_get_generation(reg);
1992
if (new_generation != generation) {
1993
ohci_notice(ohci, "new bus reset, discarding self ids\n");
1994
goto end;
1995
}
1996
1997
// FIXME: Document how the locking works.
1998
scoped_guard(spinlock_irq, &ohci->lock) {
1999
ohci->generation = -1; // prevent AT packet queueing
2000
context_stop(&ohci->at_request_ctx.context);
2001
context_stop(&ohci->at_response_ctx.context);
2002
}
2003
2004
/*
2005
* Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2006
* packets in the AT queues and software needs to drain them.
2007
* Some OHCI 1.1 controllers (JMicron) apparently require this too.
2008
*/
2009
at_context_flush(&ohci->at_request_ctx);
2010
at_context_flush(&ohci->at_response_ctx);
2011
2012
scoped_guard(spinlock_irq, &ohci->lock) {
2013
ohci->generation = generation;
2014
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2015
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2016
2017
if (ohci->quirks & QUIRK_RESET_PACKET)
2018
ohci->request_generation = generation;
2019
2020
// This next bit is unrelated to the AT context stuff but we have to do it under the
2021
// spinlock also. If a new config rom was set up before this reset, the old one is
2022
// now no longer in use and we can free it. Update the config rom pointers to point
2023
// to the current config rom and clear the next_config_rom pointer so a new update
2024
// can take place.
2025
if (ohci->next_config_rom != NULL) {
2026
if (ohci->next_config_rom != ohci->config_rom) {
2027
free_rom = ohci->config_rom;
2028
free_rom_bus = ohci->config_rom_bus;
2029
}
2030
ohci->config_rom = ohci->next_config_rom;
2031
ohci->config_rom_bus = ohci->next_config_rom_bus;
2032
ohci->next_config_rom = NULL;
2033
2034
// Restore config_rom image and manually update config_rom registers.
2035
// Writing the header quadlet will indicate that the config rom is ready,
2036
// so we do that last.
2037
reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2038
ohci->config_rom[0] = ohci->next_header;
2039
reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2040
}
2041
2042
if (param_remote_dma) {
2043
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2044
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2045
}
2046
}
2047
2048
if (free_rom)
2049
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2050
2051
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2052
self_id_count, ohci->self_id_buffer,
2053
ohci->csr_state_setclear_abdicate);
2054
ohci->csr_state_setclear_abdicate = false;
2055
end:
2056
return IRQ_HANDLED;
2057
}
2058
2059
static irqreturn_t irq_handler(int irq, void *data)
2060
{
2061
struct fw_ohci *ohci = data;
2062
u32 event, iso_event;
2063
int i;
2064
2065
event = reg_read(ohci, OHCI1394_IntEventClear);
2066
2067
if (!event || !~event)
2068
return IRQ_NONE;
2069
2070
/*
2071
* busReset and postedWriteErr events must not be cleared yet
2072
* (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2073
*/
2074
reg_write(ohci, OHCI1394_IntEventClear,
2075
event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2076
trace_irqs(ohci->card.index, event);
2077
2078
// The flag is masked again at handle_selfid_complete_event() scheduled by selfID event.
2079
if (event & OHCI1394_busReset)
2080
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2081
2082
if (event & OHCI1394_RQPkt)
2083
queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2084
2085
if (event & OHCI1394_RSPkt)
2086
queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2087
2088
if (event & OHCI1394_reqTxComplete)
2089
queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2090
2091
if (event & OHCI1394_respTxComplete)
2092
queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2093
2094
if (event & OHCI1394_isochRx) {
2095
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2096
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2097
2098
while (iso_event) {
2099
i = ffs(iso_event) - 1;
2100
fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2101
iso_event &= ~(1 << i);
2102
}
2103
}
2104
2105
if (event & OHCI1394_isochTx) {
2106
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2107
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2108
2109
while (iso_event) {
2110
i = ffs(iso_event) - 1;
2111
fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2112
iso_event &= ~(1 << i);
2113
}
2114
}
2115
2116
if (unlikely(event & OHCI1394_regAccessFail))
2117
ohci_err(ohci, "register access failure\n");
2118
2119
if (unlikely(event & OHCI1394_postedWriteErr)) {
2120
reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2121
reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2122
reg_write(ohci, OHCI1394_IntEventClear,
2123
OHCI1394_postedWriteErr);
2124
dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2125
}
2126
2127
if (unlikely(event & OHCI1394_cycleTooLong)) {
2128
dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2129
reg_write(ohci, OHCI1394_LinkControlSet,
2130
OHCI1394_LinkControl_cycleMaster);
2131
}
2132
2133
if (unlikely(event & OHCI1394_cycleInconsistent)) {
2134
/*
2135
* We need to clear this event bit in order to make
2136
* cycleMatch isochronous I/O work. In theory we should
2137
* stop active cycleMatch iso contexts now and restart
2138
* them at least two cycles later. (FIXME?)
2139
*/
2140
dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2141
}
2142
2143
if (unlikely(event & OHCI1394_unrecoverableError))
2144
handle_dead_contexts(ohci);
2145
2146
if (event & OHCI1394_cycle64Seconds) {
2147
guard(spinlock)(&ohci->lock);
2148
update_bus_time(ohci);
2149
} else
2150
flush_writes(ohci);
2151
2152
if (event & OHCI1394_selfIDComplete)
2153
return IRQ_WAKE_THREAD;
2154
else
2155
return IRQ_HANDLED;
2156
}
2157
2158
static int software_reset(struct fw_ohci *ohci)
2159
{
2160
u32 val;
2161
int i;
2162
2163
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2164
for (i = 0; i < 500; i++) {
2165
val = reg_read(ohci, OHCI1394_HCControlSet);
2166
if (!~val)
2167
return -ENODEV; /* Card was ejected. */
2168
2169
if (!(val & OHCI1394_HCControl_softReset))
2170
return 0;
2171
2172
msleep(1);
2173
}
2174
2175
return -EBUSY;
2176
}
2177
2178
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2179
{
2180
size_t size = length * 4;
2181
2182
memcpy(dest, src, size);
2183
if (size < CONFIG_ROM_SIZE)
2184
memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2185
}
2186
2187
static int configure_1394a_enhancements(struct fw_ohci *ohci)
2188
{
2189
bool enable_1394a;
2190
int ret, clear, set, offset;
2191
2192
/* Check if the driver should configure link and PHY. */
2193
if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2194
OHCI1394_HCControl_programPhyEnable))
2195
return 0;
2196
2197
/* Paranoia: check whether the PHY supports 1394a, too. */
2198
enable_1394a = false;
2199
ret = read_phy_reg(ohci, 2);
2200
if (ret < 0)
2201
return ret;
2202
if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2203
ret = read_paged_phy_reg(ohci, 1, 8);
2204
if (ret < 0)
2205
return ret;
2206
if (ret >= 1)
2207
enable_1394a = true;
2208
}
2209
2210
if (ohci->quirks & QUIRK_NO_1394A)
2211
enable_1394a = false;
2212
2213
/* Configure PHY and link consistently. */
2214
if (enable_1394a) {
2215
clear = 0;
2216
set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2217
} else {
2218
clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2219
set = 0;
2220
}
2221
ret = update_phy_reg(ohci, 5, clear, set);
2222
if (ret < 0)
2223
return ret;
2224
2225
if (enable_1394a)
2226
offset = OHCI1394_HCControlSet;
2227
else
2228
offset = OHCI1394_HCControlClear;
2229
reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2230
2231
/* Clean up: configuration has been taken care of. */
2232
reg_write(ohci, OHCI1394_HCControlClear,
2233
OHCI1394_HCControl_programPhyEnable);
2234
2235
return 0;
2236
}
2237
2238
static int probe_tsb41ba3d(struct fw_ohci *ohci)
2239
{
2240
/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2241
static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2242
int reg, i;
2243
2244
reg = read_phy_reg(ohci, 2);
2245
if (reg < 0)
2246
return reg;
2247
if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2248
return 0;
2249
2250
for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2251
reg = read_paged_phy_reg(ohci, 1, i + 10);
2252
if (reg < 0)
2253
return reg;
2254
if (reg != id[i])
2255
return 0;
2256
}
2257
return 1;
2258
}
2259
2260
static int ohci_enable(struct fw_card *card,
2261
const __be32 *config_rom, size_t length)
2262
{
2263
struct fw_ohci *ohci = fw_ohci(card);
2264
u32 lps, version, irqs;
2265
int i, ret;
2266
2267
ret = software_reset(ohci);
2268
if (ret < 0) {
2269
ohci_err(ohci, "failed to reset ohci card\n");
2270
return ret;
2271
}
2272
2273
/*
2274
* Now enable LPS, which we need in order to start accessing
2275
* most of the registers. In fact, on some cards (ALI M5251),
2276
* accessing registers in the SClk domain without LPS enabled
2277
* will lock up the machine. Wait 50msec to make sure we have
2278
* full link enabled. However, with some cards (well, at least
2279
* a JMicron PCIe card), we have to try again sometimes.
2280
*
2281
* TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2282
* cannot actually use the phy at that time. These need tens of
2283
* millisecods pause between LPS write and first phy access too.
2284
*/
2285
2286
reg_write(ohci, OHCI1394_HCControlSet,
2287
OHCI1394_HCControl_LPS |
2288
OHCI1394_HCControl_postedWriteEnable);
2289
flush_writes(ohci);
2290
2291
for (lps = 0, i = 0; !lps && i < 3; i++) {
2292
msleep(50);
2293
lps = reg_read(ohci, OHCI1394_HCControlSet) &
2294
OHCI1394_HCControl_LPS;
2295
}
2296
2297
if (!lps) {
2298
ohci_err(ohci, "failed to set Link Power Status\n");
2299
return -EIO;
2300
}
2301
2302
if (ohci->quirks & QUIRK_TI_SLLZ059) {
2303
ret = probe_tsb41ba3d(ohci);
2304
if (ret < 0)
2305
return ret;
2306
if (ret)
2307
ohci_notice(ohci, "local TSB41BA3D phy\n");
2308
else
2309
ohci->quirks &= ~QUIRK_TI_SLLZ059;
2310
}
2311
2312
reg_write(ohci, OHCI1394_HCControlClear,
2313
OHCI1394_HCControl_noByteSwapData);
2314
2315
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2316
reg_write(ohci, OHCI1394_LinkControlSet,
2317
OHCI1394_LinkControl_cycleTimerEnable |
2318
OHCI1394_LinkControl_cycleMaster);
2319
2320
reg_write(ohci, OHCI1394_ATRetries,
2321
OHCI1394_MAX_AT_REQ_RETRIES |
2322
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2323
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2324
(200 << 16));
2325
2326
ohci->bus_time_running = false;
2327
2328
for (i = 0; i < 32; i++)
2329
if (ohci->ir_context_support & (1 << i))
2330
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2331
IR_CONTEXT_MULTI_CHANNEL_MODE);
2332
2333
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2334
if (version >= OHCI_VERSION_1_1) {
2335
reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2336
0xfffffffe);
2337
card->broadcast_channel_auto_allocated = true;
2338
}
2339
2340
/* Get implemented bits of the priority arbitration request counter. */
2341
reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2342
ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2343
reg_write(ohci, OHCI1394_FairnessControl, 0);
2344
card->priority_budget_implemented = ohci->pri_req_max != 0;
2345
2346
reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2347
reg_write(ohci, OHCI1394_IntEventClear, ~0);
2348
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2349
2350
ret = configure_1394a_enhancements(ohci);
2351
if (ret < 0)
2352
return ret;
2353
2354
/* Activate link_on bit and contender bit in our self ID packets.*/
2355
ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2356
if (ret < 0)
2357
return ret;
2358
2359
/*
2360
* When the link is not yet enabled, the atomic config rom
2361
* update mechanism described below in ohci_set_config_rom()
2362
* is not active. We have to update ConfigRomHeader and
2363
* BusOptions manually, and the write to ConfigROMmap takes
2364
* effect immediately. We tie this to the enabling of the
2365
* link, so we have a valid config rom before enabling - the
2366
* OHCI requires that ConfigROMhdr and BusOptions have valid
2367
* values before enabling.
2368
*
2369
* However, when the ConfigROMmap is written, some controllers
2370
* always read back quadlets 0 and 2 from the config rom to
2371
* the ConfigRomHeader and BusOptions registers on bus reset.
2372
* They shouldn't do that in this initial case where the link
2373
* isn't enabled. This means we have to use the same
2374
* workaround here, setting the bus header to 0 and then write
2375
* the right values in the bus reset work item.
2376
*/
2377
2378
if (config_rom) {
2379
ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2380
&ohci->next_config_rom_bus, GFP_KERNEL);
2381
if (ohci->next_config_rom == NULL)
2382
return -ENOMEM;
2383
2384
copy_config_rom(ohci->next_config_rom, config_rom, length);
2385
} else {
2386
/*
2387
* In the suspend case, config_rom is NULL, which
2388
* means that we just reuse the old config rom.
2389
*/
2390
ohci->next_config_rom = ohci->config_rom;
2391
ohci->next_config_rom_bus = ohci->config_rom_bus;
2392
}
2393
2394
ohci->next_header = ohci->next_config_rom[0];
2395
ohci->next_config_rom[0] = 0;
2396
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2397
reg_write(ohci, OHCI1394_BusOptions,
2398
be32_to_cpu(ohci->next_config_rom[2]));
2399
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2400
2401
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2402
2403
irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2404
OHCI1394_RQPkt | OHCI1394_RSPkt |
2405
OHCI1394_isochTx | OHCI1394_isochRx |
2406
OHCI1394_postedWriteErr |
2407
OHCI1394_selfIDComplete |
2408
OHCI1394_regAccessFail |
2409
OHCI1394_cycleInconsistent |
2410
OHCI1394_unrecoverableError |
2411
OHCI1394_cycleTooLong |
2412
OHCI1394_masterIntEnable |
2413
OHCI1394_busReset;
2414
reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2415
2416
reg_write(ohci, OHCI1394_HCControlSet,
2417
OHCI1394_HCControl_linkEnable |
2418
OHCI1394_HCControl_BIBimageValid);
2419
2420
reg_write(ohci, OHCI1394_LinkControlSet,
2421
OHCI1394_LinkControl_rcvSelfID |
2422
OHCI1394_LinkControl_rcvPhyPkt);
2423
2424
ar_context_run(&ohci->ar_request_ctx);
2425
ar_context_run(&ohci->ar_response_ctx);
2426
2427
flush_writes(ohci);
2428
2429
/* We are ready to go, reset bus to finish initialization. */
2430
fw_schedule_bus_reset(&ohci->card, false, true);
2431
2432
return 0;
2433
}
2434
2435
static void ohci_disable(struct fw_card *card)
2436
{
2437
struct pci_dev *pdev = to_pci_dev(card->device);
2438
struct fw_ohci *ohci = pci_get_drvdata(pdev);
2439
int i, irq = pci_irq_vector(pdev, 0);
2440
2441
// If the removal is happening from the suspend state, LPS won't be enabled and host
2442
// registers (eg., IntMaskClear) won't be accessible.
2443
if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS))
2444
return;
2445
2446
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2447
flush_writes(ohci);
2448
2449
if (irq >= 0)
2450
synchronize_irq(irq);
2451
2452
flush_work(&ohci->ar_request_ctx.work);
2453
flush_work(&ohci->ar_response_ctx.work);
2454
flush_work(&ohci->at_request_ctx.work);
2455
flush_work(&ohci->at_response_ctx.work);
2456
2457
for (i = 0; i < ohci->n_ir; ++i) {
2458
if (!(ohci->ir_context_mask & BIT(i)))
2459
flush_work(&ohci->ir_context_list[i].base.work);
2460
}
2461
for (i = 0; i < ohci->n_it; ++i) {
2462
if (!(ohci->it_context_mask & BIT(i)))
2463
flush_work(&ohci->it_context_list[i].base.work);
2464
}
2465
2466
at_context_flush(&ohci->at_request_ctx);
2467
at_context_flush(&ohci->at_response_ctx);
2468
}
2469
2470
static int ohci_set_config_rom(struct fw_card *card,
2471
const __be32 *config_rom, size_t length)
2472
{
2473
struct fw_ohci *ohci;
2474
__be32 *next_config_rom;
2475
dma_addr_t next_config_rom_bus;
2476
2477
ohci = fw_ohci(card);
2478
2479
/*
2480
* When the OHCI controller is enabled, the config rom update
2481
* mechanism is a bit tricky, but easy enough to use. See
2482
* section 5.5.6 in the OHCI specification.
2483
*
2484
* The OHCI controller caches the new config rom address in a
2485
* shadow register (ConfigROMmapNext) and needs a bus reset
2486
* for the changes to take place. When the bus reset is
2487
* detected, the controller loads the new values for the
2488
* ConfigRomHeader and BusOptions registers from the specified
2489
* config rom and loads ConfigROMmap from the ConfigROMmapNext
2490
* shadow register. All automatically and atomically.
2491
*
2492
* Now, there's a twist to this story. The automatic load of
2493
* ConfigRomHeader and BusOptions doesn't honor the
2494
* noByteSwapData bit, so with a be32 config rom, the
2495
* controller will load be32 values in to these registers
2496
* during the atomic update, even on little endian
2497
* architectures. The workaround we use is to put a 0 in the
2498
* header quadlet; 0 is endian agnostic and means that the
2499
* config rom isn't ready yet. In the bus reset work item we
2500
* then set up the real values for the two registers.
2501
*
2502
* We use ohci->lock to avoid racing with the code that sets
2503
* ohci->next_config_rom to NULL (see handle_selfid_complete_event).
2504
*/
2505
2506
next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2507
&next_config_rom_bus, GFP_KERNEL);
2508
if (next_config_rom == NULL)
2509
return -ENOMEM;
2510
2511
scoped_guard(spinlock_irq, &ohci->lock) {
2512
// If there is not an already pending config_rom update, push our new allocation
2513
// into the ohci->next_config_rom and then mark the local variable as null so that
2514
// we won't deallocate the new buffer.
2515
//
2516
// OTOH, if there is a pending config_rom update, just use that buffer with the new
2517
// config_rom data, and let this routine free the unused DMA allocation.
2518
if (ohci->next_config_rom == NULL) {
2519
ohci->next_config_rom = next_config_rom;
2520
ohci->next_config_rom_bus = next_config_rom_bus;
2521
next_config_rom = NULL;
2522
}
2523
2524
copy_config_rom(ohci->next_config_rom, config_rom, length);
2525
2526
ohci->next_header = config_rom[0];
2527
ohci->next_config_rom[0] = 0;
2528
2529
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2530
}
2531
2532
/* If we didn't use the DMA allocation, delete it. */
2533
if (next_config_rom != NULL) {
2534
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2535
next_config_rom_bus);
2536
}
2537
2538
/*
2539
* Now initiate a bus reset to have the changes take
2540
* effect. We clean up the old config rom memory and DMA
2541
* mappings in the bus reset work item, since the OHCI
2542
* controller could need to access it before the bus reset
2543
* takes effect.
2544
*/
2545
2546
fw_schedule_bus_reset(&ohci->card, true, true);
2547
2548
return 0;
2549
}
2550
2551
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2552
{
2553
struct fw_ohci *ohci = fw_ohci(card);
2554
2555
at_context_transmit(&ohci->at_request_ctx, packet);
2556
}
2557
2558
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2559
{
2560
struct fw_ohci *ohci = fw_ohci(card);
2561
2562
at_context_transmit(&ohci->at_response_ctx, packet);
2563
}
2564
2565
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2566
{
2567
struct fw_ohci *ohci = fw_ohci(card);
2568
struct at_context *ctx = &ohci->at_request_ctx;
2569
struct driver_data *driver_data = packet->driver_data;
2570
int ret = -ENOENT;
2571
2572
// Avoid dead lock due to programming mistake.
2573
if (WARN_ON_ONCE(current_work() == &ctx->work))
2574
return 0;
2575
disable_work_sync(&ctx->work);
2576
2577
if (packet->ack != 0)
2578
goto out;
2579
2580
if (packet->payload_mapped)
2581
dma_unmap_single(ohci->card.device, packet->payload_bus,
2582
packet->payload_length, DMA_TO_DEVICE);
2583
2584
driver_data->packet = NULL;
2585
packet->ack = RCODE_CANCELLED;
2586
2587
// Timestamping on behalf of the hardware.
2588
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2589
2590
packet->callback(packet, &ohci->card, packet->ack);
2591
ret = 0;
2592
out:
2593
enable_work(&ctx->work);
2594
2595
return ret;
2596
}
2597
2598
static int ohci_enable_phys_dma(struct fw_card *card,
2599
int node_id, int generation)
2600
{
2601
struct fw_ohci *ohci = fw_ohci(card);
2602
int n, ret = 0;
2603
2604
if (param_remote_dma)
2605
return 0;
2606
2607
/*
2608
* FIXME: Make sure this bitmask is cleared when we clear the busReset
2609
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
2610
*/
2611
2612
guard(spinlock_irqsave)(&ohci->lock);
2613
2614
if (ohci->generation != generation)
2615
return -ESTALE;
2616
2617
/*
2618
* Note, if the node ID contains a non-local bus ID, physical DMA is
2619
* enabled for _all_ nodes on remote buses.
2620
*/
2621
2622
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2623
if (n < 32)
2624
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2625
else
2626
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2627
2628
flush_writes(ohci);
2629
2630
return ret;
2631
}
2632
2633
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2634
{
2635
struct fw_ohci *ohci = fw_ohci(card);
2636
u32 value;
2637
2638
switch (csr_offset) {
2639
case CSR_STATE_CLEAR:
2640
case CSR_STATE_SET:
2641
if (ohci->is_root &&
2642
(reg_read(ohci, OHCI1394_LinkControlSet) &
2643
OHCI1394_LinkControl_cycleMaster))
2644
value = CSR_STATE_BIT_CMSTR;
2645
else
2646
value = 0;
2647
if (ohci->csr_state_setclear_abdicate)
2648
value |= CSR_STATE_BIT_ABDICATE;
2649
2650
return value;
2651
2652
case CSR_NODE_IDS:
2653
return reg_read(ohci, OHCI1394_NodeID) << 16;
2654
2655
case CSR_CYCLE_TIME:
2656
return get_cycle_time(ohci);
2657
2658
case CSR_BUS_TIME:
2659
{
2660
// We might be called just after the cycle timer has wrapped around but just before
2661
// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2662
// to be updated.
2663
2664
guard(spinlock_irqsave)(&ohci->lock);
2665
return update_bus_time(ohci);
2666
}
2667
case CSR_BUSY_TIMEOUT:
2668
value = reg_read(ohci, OHCI1394_ATRetries);
2669
return (value >> 4) & 0x0ffff00f;
2670
2671
case CSR_PRIORITY_BUDGET:
2672
return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2673
(ohci->pri_req_max << 8);
2674
2675
default:
2676
WARN_ON(1);
2677
return 0;
2678
}
2679
}
2680
2681
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2682
{
2683
struct fw_ohci *ohci = fw_ohci(card);
2684
2685
switch (csr_offset) {
2686
case CSR_STATE_CLEAR:
2687
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2688
reg_write(ohci, OHCI1394_LinkControlClear,
2689
OHCI1394_LinkControl_cycleMaster);
2690
flush_writes(ohci);
2691
}
2692
if (value & CSR_STATE_BIT_ABDICATE)
2693
ohci->csr_state_setclear_abdicate = false;
2694
break;
2695
2696
case CSR_STATE_SET:
2697
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2698
reg_write(ohci, OHCI1394_LinkControlSet,
2699
OHCI1394_LinkControl_cycleMaster);
2700
flush_writes(ohci);
2701
}
2702
if (value & CSR_STATE_BIT_ABDICATE)
2703
ohci->csr_state_setclear_abdicate = true;
2704
break;
2705
2706
case CSR_NODE_IDS:
2707
reg_write(ohci, OHCI1394_NodeID, value >> 16);
2708
flush_writes(ohci);
2709
break;
2710
2711
case CSR_CYCLE_TIME:
2712
reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2713
reg_write(ohci, OHCI1394_IntEventSet,
2714
OHCI1394_cycleInconsistent);
2715
flush_writes(ohci);
2716
break;
2717
2718
case CSR_BUS_TIME:
2719
{
2720
guard(spinlock_irqsave)(&ohci->lock);
2721
ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2722
break;
2723
}
2724
case CSR_BUSY_TIMEOUT:
2725
value = (value & 0xf) | ((value & 0xf) << 4) |
2726
((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2727
reg_write(ohci, OHCI1394_ATRetries, value);
2728
flush_writes(ohci);
2729
break;
2730
2731
case CSR_PRIORITY_BUDGET:
2732
reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2733
flush_writes(ohci);
2734
break;
2735
2736
default:
2737
WARN_ON(1);
2738
break;
2739
}
2740
}
2741
2742
static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2743
{
2744
trace_isoc_inbound_single_completions(&ctx->base, ctx->sc.last_timestamp, cause,
2745
ctx->sc.header, ctx->sc.header_length);
2746
trace_isoc_outbound_completions(&ctx->base, ctx->sc.last_timestamp, cause, ctx->sc.header,
2747
ctx->sc.header_length);
2748
2749
ctx->base.callback.sc(&ctx->base, ctx->sc.last_timestamp, ctx->sc.header_length,
2750
ctx->sc.header, ctx->base.callback_data);
2751
ctx->sc.header_length = 0;
2752
}
2753
2754
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2755
{
2756
u32 *ctx_hdr;
2757
2758
if (ctx->sc.header_length + ctx->base.header_size > ctx->base.header_storage_size) {
2759
if (ctx->base.flags & FW_ISO_CONTEXT_FLAG_DROP_OVERFLOW_HEADERS)
2760
return;
2761
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2762
}
2763
2764
ctx_hdr = ctx->sc.header + ctx->sc.header_length;
2765
ctx->sc.last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2766
2767
/*
2768
* The two iso header quadlets are byteswapped to little
2769
* endian by the controller, but we want to present them
2770
* as big endian for consistency with the bus endianness.
2771
*/
2772
if (ctx->base.header_size > 0)
2773
ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2774
if (ctx->base.header_size > 4)
2775
ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2776
if (ctx->base.header_size > 8)
2777
memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2778
ctx->sc.header_length += ctx->base.header_size;
2779
}
2780
2781
static int handle_ir_packet_per_buffer(struct context *context,
2782
struct descriptor *d,
2783
struct descriptor *last)
2784
{
2785
struct iso_context *ctx =
2786
container_of(context, struct iso_context, context);
2787
struct descriptor *pd;
2788
u32 buffer_dma;
2789
2790
for (pd = d; pd <= last; pd++)
2791
if (pd->transfer_status)
2792
break;
2793
if (pd > last)
2794
/* Descriptor(s) not done yet, stop iteration */
2795
return 0;
2796
2797
while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2798
d++;
2799
buffer_dma = le32_to_cpu(d->data_address);
2800
dma_sync_single_range_for_cpu(context->ohci->card.device,
2801
buffer_dma & PAGE_MASK,
2802
buffer_dma & ~PAGE_MASK,
2803
le16_to_cpu(d->req_count),
2804
DMA_FROM_DEVICE);
2805
}
2806
2807
copy_iso_headers(ctx, (u32 *) (last + 1));
2808
2809
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2810
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2811
2812
return 1;
2813
}
2814
2815
/* d == last because each descriptor block is only a single descriptor. */
2816
static int handle_ir_buffer_fill(struct context *context,
2817
struct descriptor *d,
2818
struct descriptor *last)
2819
{
2820
struct iso_context *ctx =
2821
container_of(context, struct iso_context, context);
2822
unsigned int req_count, res_count, completed;
2823
u32 buffer_dma;
2824
2825
req_count = le16_to_cpu(last->req_count);
2826
res_count = le16_to_cpu(READ_ONCE(last->res_count));
2827
completed = req_count - res_count;
2828
buffer_dma = le32_to_cpu(last->data_address);
2829
2830
if (completed > 0) {
2831
ctx->mc.buffer_bus = buffer_dma;
2832
ctx->mc.completed = completed;
2833
}
2834
2835
if (res_count != 0)
2836
/* Descriptor(s) not done yet, stop iteration */
2837
return 0;
2838
2839
dma_sync_single_range_for_cpu(context->ohci->card.device,
2840
buffer_dma & PAGE_MASK,
2841
buffer_dma & ~PAGE_MASK,
2842
completed, DMA_FROM_DEVICE);
2843
2844
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2845
trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2846
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2847
2848
ctx->base.callback.mc(&ctx->base,
2849
buffer_dma + completed,
2850
ctx->base.callback_data);
2851
ctx->mc.completed = 0;
2852
}
2853
2854
return 1;
2855
}
2856
2857
static void flush_ir_buffer_fill(struct iso_context *ctx)
2858
{
2859
dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2860
ctx->mc.buffer_bus & PAGE_MASK,
2861
ctx->mc.buffer_bus & ~PAGE_MASK,
2862
ctx->mc.completed, DMA_FROM_DEVICE);
2863
2864
trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc.completed,
2865
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2866
2867
ctx->base.callback.mc(&ctx->base, ctx->mc.buffer_bus + ctx->mc.completed,
2868
ctx->base.callback_data);
2869
ctx->mc.completed = 0;
2870
}
2871
2872
static inline void sync_it_packet_for_cpu(struct context *context,
2873
struct descriptor *pd)
2874
{
2875
__le16 control;
2876
u32 buffer_dma;
2877
2878
/* only packets beginning with OUTPUT_MORE* have data buffers */
2879
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2880
return;
2881
2882
/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2883
pd += 2;
2884
2885
/*
2886
* If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2887
* data buffer is in the context program's coherent page and must not
2888
* be synced.
2889
*/
2890
if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2891
(context->current_bus & PAGE_MASK)) {
2892
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2893
return;
2894
pd++;
2895
}
2896
2897
do {
2898
buffer_dma = le32_to_cpu(pd->data_address);
2899
dma_sync_single_range_for_cpu(context->ohci->card.device,
2900
buffer_dma & PAGE_MASK,
2901
buffer_dma & ~PAGE_MASK,
2902
le16_to_cpu(pd->req_count),
2903
DMA_TO_DEVICE);
2904
control = pd->control;
2905
pd++;
2906
} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2907
}
2908
2909
static int handle_it_packet(struct context *context,
2910
struct descriptor *d,
2911
struct descriptor *last)
2912
{
2913
struct iso_context *ctx =
2914
container_of(context, struct iso_context, context);
2915
struct descriptor *pd;
2916
__be32 *ctx_hdr;
2917
2918
for (pd = d; pd <= last; pd++)
2919
if (pd->transfer_status)
2920
break;
2921
if (pd > last)
2922
/* Descriptor(s) not done yet, stop iteration */
2923
return 0;
2924
2925
sync_it_packet_for_cpu(context, d);
2926
2927
if (ctx->sc.header_length + 4 > ctx->base.header_storage_size) {
2928
if (ctx->base.flags & FW_ISO_CONTEXT_FLAG_DROP_OVERFLOW_HEADERS)
2929
return 1;
2930
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2931
}
2932
2933
ctx_hdr = ctx->sc.header + ctx->sc.header_length;
2934
ctx->sc.last_timestamp = le16_to_cpu(last->res_count);
2935
/* Present this value as big-endian to match the receive code */
2936
*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2937
le16_to_cpu(pd->res_count));
2938
ctx->sc.header_length += 4;
2939
2940
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2941
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2942
2943
return 1;
2944
}
2945
2946
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2947
{
2948
u32 hi = channels >> 32, lo = channels;
2949
2950
reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2951
reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2952
reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2953
reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2954
ohci->mc_channels = channels;
2955
}
2956
2957
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, int type, int channel,
2958
size_t header_size, size_t header_storage_size)
2959
{
2960
struct fw_ohci *ohci = fw_ohci(card);
2961
void *header __free(kvfree) = NULL;
2962
struct iso_context *ctx;
2963
descriptor_callback_t callback;
2964
u64 *channels;
2965
u32 *mask, regs;
2966
int index, ret = -EBUSY;
2967
2968
scoped_guard(spinlock_irq, &ohci->lock) {
2969
switch (type) {
2970
case FW_ISO_CONTEXT_TRANSMIT:
2971
mask = &ohci->it_context_mask;
2972
callback = handle_it_packet;
2973
index = ffs(*mask) - 1;
2974
if (index >= 0) {
2975
*mask &= ~(1 << index);
2976
regs = OHCI1394_IsoXmitContextBase(index);
2977
ctx = &ohci->it_context_list[index];
2978
}
2979
break;
2980
2981
case FW_ISO_CONTEXT_RECEIVE:
2982
channels = &ohci->ir_context_channels;
2983
mask = &ohci->ir_context_mask;
2984
callback = handle_ir_packet_per_buffer;
2985
index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2986
if (index >= 0) {
2987
*channels &= ~(1ULL << channel);
2988
*mask &= ~(1 << index);
2989
regs = OHCI1394_IsoRcvContextBase(index);
2990
ctx = &ohci->ir_context_list[index];
2991
}
2992
break;
2993
2994
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2995
mask = &ohci->ir_context_mask;
2996
callback = handle_ir_buffer_fill;
2997
index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2998
if (index >= 0) {
2999
ohci->mc_allocated = true;
3000
*mask &= ~(1 << index);
3001
regs = OHCI1394_IsoRcvContextBase(index);
3002
ctx = &ohci->ir_context_list[index];
3003
}
3004
break;
3005
3006
default:
3007
index = -1;
3008
ret = -ENOSYS;
3009
}
3010
3011
if (index < 0)
3012
return ERR_PTR(ret);
3013
}
3014
3015
memset(ctx, 0, sizeof(*ctx));
3016
3017
if (type != FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3018
ctx->sc.header_length = 0;
3019
header = kvmalloc(header_storage_size, GFP_KERNEL);
3020
if (!header) {
3021
ret = -ENOMEM;
3022
goto out;
3023
}
3024
}
3025
3026
ret = context_init(&ctx->context, ohci, regs, callback);
3027
if (ret < 0)
3028
goto out;
3029
fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3030
3031
if (type != FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3032
ctx->sc.header = no_free_ptr(header);
3033
} else {
3034
set_multichannel_mask(ohci, 0);
3035
ctx->mc.completed = 0;
3036
}
3037
3038
return &ctx->base;
3039
out:
3040
scoped_guard(spinlock_irq, &ohci->lock) {
3041
switch (type) {
3042
case FW_ISO_CONTEXT_RECEIVE:
3043
*channels |= 1ULL << channel;
3044
break;
3045
3046
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3047
ohci->mc_allocated = false;
3048
break;
3049
}
3050
*mask |= 1 << index;
3051
}
3052
3053
return ERR_PTR(ret);
3054
}
3055
3056
static int ohci_start_iso(struct fw_iso_context *base,
3057
s32 cycle, u32 sync, u32 tags)
3058
{
3059
struct iso_context *ctx = container_of(base, struct iso_context, base);
3060
struct fw_ohci *ohci = ctx->context.ohci;
3061
u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3062
int index;
3063
3064
/* the controller cannot start without any queued packets */
3065
if (ctx->context.last->branch_address == 0)
3066
return -ENODATA;
3067
3068
switch (ctx->base.type) {
3069
case FW_ISO_CONTEXT_TRANSMIT:
3070
index = ctx - ohci->it_context_list;
3071
match = 0;
3072
if (cycle >= 0)
3073
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3074
(cycle & 0x7fff) << 16;
3075
3076
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3077
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3078
context_run(&ctx->context, match);
3079
break;
3080
3081
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3082
control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3083
fallthrough;
3084
case FW_ISO_CONTEXT_RECEIVE:
3085
index = ctx - ohci->ir_context_list;
3086
match = (tags << 28) | (sync << 8) | ctx->base.channel;
3087
if (cycle >= 0) {
3088
match |= (cycle & 0x07fff) << 12;
3089
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3090
}
3091
3092
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3093
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3094
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3095
context_run(&ctx->context, control);
3096
3097
ctx->sync = sync;
3098
ctx->tags = tags;
3099
3100
break;
3101
}
3102
3103
return 0;
3104
}
3105
3106
static int ohci_stop_iso(struct fw_iso_context *base)
3107
{
3108
struct fw_ohci *ohci = fw_ohci(base->card);
3109
struct iso_context *ctx = container_of(base, struct iso_context, base);
3110
int index;
3111
3112
switch (ctx->base.type) {
3113
case FW_ISO_CONTEXT_TRANSMIT:
3114
index = ctx - ohci->it_context_list;
3115
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3116
break;
3117
3118
case FW_ISO_CONTEXT_RECEIVE:
3119
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120
index = ctx - ohci->ir_context_list;
3121
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3122
break;
3123
}
3124
flush_writes(ohci);
3125
context_stop(&ctx->context);
3126
3127
return 0;
3128
}
3129
3130
static void ohci_free_iso_context(struct fw_iso_context *base)
3131
{
3132
struct fw_ohci *ohci = fw_ohci(base->card);
3133
struct iso_context *ctx = container_of(base, struct iso_context, base);
3134
int index;
3135
3136
ohci_stop_iso(base);
3137
context_release(&ctx->context);
3138
3139
if (base->type != FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3140
kvfree(ctx->sc.header);
3141
ctx->sc.header = NULL;
3142
}
3143
3144
guard(spinlock_irqsave)(&ohci->lock);
3145
3146
switch (base->type) {
3147
case FW_ISO_CONTEXT_TRANSMIT:
3148
index = ctx - ohci->it_context_list;
3149
ohci->it_context_mask |= 1 << index;
3150
break;
3151
3152
case FW_ISO_CONTEXT_RECEIVE:
3153
index = ctx - ohci->ir_context_list;
3154
ohci->ir_context_mask |= 1 << index;
3155
ohci->ir_context_channels |= 1ULL << base->channel;
3156
break;
3157
3158
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3159
index = ctx - ohci->ir_context_list;
3160
ohci->ir_context_mask |= 1 << index;
3161
ohci->ir_context_channels |= ohci->mc_channels;
3162
ohci->mc_channels = 0;
3163
ohci->mc_allocated = false;
3164
break;
3165
}
3166
}
3167
3168
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3169
{
3170
struct fw_ohci *ohci = fw_ohci(base->card);
3171
3172
switch (base->type) {
3173
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3174
{
3175
guard(spinlock_irqsave)(&ohci->lock);
3176
3177
// Don't allow multichannel to grab other contexts' channels.
3178
if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3179
*channels = ohci->ir_context_channels;
3180
return -EBUSY;
3181
} else {
3182
set_multichannel_mask(ohci, *channels);
3183
return 0;
3184
}
3185
}
3186
default:
3187
return -EINVAL;
3188
}
3189
}
3190
3191
static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3192
{
3193
int i;
3194
struct iso_context *ctx;
3195
3196
for (i = 0 ; i < ohci->n_ir ; i++) {
3197
ctx = &ohci->ir_context_list[i];
3198
if (ctx->context.running)
3199
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3200
}
3201
3202
for (i = 0 ; i < ohci->n_it ; i++) {
3203
ctx = &ohci->it_context_list[i];
3204
if (ctx->context.running)
3205
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3206
}
3207
}
3208
3209
static int queue_iso_transmit(struct iso_context *ctx,
3210
struct fw_iso_packet *packet,
3211
struct fw_iso_buffer *buffer,
3212
unsigned long payload)
3213
{
3214
struct descriptor *d, *last, *pd;
3215
struct fw_iso_packet *p;
3216
__le32 *header;
3217
dma_addr_t d_bus;
3218
u32 z, header_z, payload_z, irq;
3219
u32 payload_index, payload_end_index, next_page_index;
3220
int page, end_page, i, length, offset;
3221
3222
p = packet;
3223
payload_index = payload;
3224
3225
if (p->skip)
3226
z = 1;
3227
else
3228
z = 2;
3229
if (p->header_length > 0)
3230
z++;
3231
3232
/* Determine the first page the payload isn't contained in. */
3233
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3234
if (p->payload_length > 0)
3235
payload_z = end_page - (payload_index >> PAGE_SHIFT);
3236
else
3237
payload_z = 0;
3238
3239
z += payload_z;
3240
3241
/* Get header size in number of descriptors. */
3242
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3243
3244
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3245
if (d == NULL)
3246
return -ENOMEM;
3247
3248
if (!p->skip) {
3249
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3250
d[0].req_count = cpu_to_le16(8);
3251
/*
3252
* Link the skip address to this descriptor itself. This causes
3253
* a context to skip a cycle whenever lost cycles or FIFO
3254
* overruns occur, without dropping the data. The application
3255
* should then decide whether this is an error condition or not.
3256
* FIXME: Make the context's cycle-lost behaviour configurable?
3257
*/
3258
d[0].branch_address = cpu_to_le32(d_bus | z);
3259
3260
header = (__le32 *) &d[1];
3261
3262
ohci1394_it_data_set_speed(header, ctx->base.speed);
3263
ohci1394_it_data_set_tag(header, p->tag);
3264
ohci1394_it_data_set_channel(header, ctx->base.channel);
3265
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3266
ohci1394_it_data_set_sync(header, p->sy);
3267
3268
ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3269
}
3270
3271
if (p->header_length > 0) {
3272
d[2].req_count = cpu_to_le16(p->header_length);
3273
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3274
memcpy(&d[z], p->header, p->header_length);
3275
}
3276
3277
pd = d + z - payload_z;
3278
payload_end_index = payload_index + p->payload_length;
3279
for (i = 0; i < payload_z; i++) {
3280
page = payload_index >> PAGE_SHIFT;
3281
offset = payload_index & ~PAGE_MASK;
3282
next_page_index = (page + 1) << PAGE_SHIFT;
3283
length =
3284
min(next_page_index, payload_end_index) - payload_index;
3285
pd[i].req_count = cpu_to_le16(length);
3286
3287
dma_addr_t dma_addr = buffer->dma_addrs[page];
3288
pd[i].data_address = cpu_to_le32(dma_addr + offset);
3289
3290
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3291
dma_addr, offset, length,
3292
DMA_TO_DEVICE);
3293
3294
payload_index += length;
3295
}
3296
3297
if (p->interrupt)
3298
irq = DESCRIPTOR_IRQ_ALWAYS;
3299
else
3300
irq = DESCRIPTOR_NO_IRQ;
3301
3302
last = z == 2 ? d : d + z - 1;
3303
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3304
DESCRIPTOR_STATUS |
3305
DESCRIPTOR_BRANCH_ALWAYS |
3306
irq);
3307
3308
context_append(&ctx->context, d, z, header_z);
3309
3310
return 0;
3311
}
3312
3313
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3314
struct fw_iso_packet *packet,
3315
struct fw_iso_buffer *buffer,
3316
unsigned long payload)
3317
{
3318
struct device *device = ctx->context.ohci->card.device;
3319
struct descriptor *d, *pd;
3320
dma_addr_t d_bus;
3321
u32 z, header_z, rest;
3322
int i, j, length;
3323
int page, offset, packet_count, header_size, payload_per_buffer;
3324
3325
/*
3326
* The OHCI controller puts the isochronous header and trailer in the
3327
* buffer, so we need at least 8 bytes.
3328
*/
3329
packet_count = packet->header_length / ctx->base.header_size;
3330
header_size = max(ctx->base.header_size, (size_t)8);
3331
3332
/* Get header size in number of descriptors. */
3333
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3334
page = payload >> PAGE_SHIFT;
3335
offset = payload & ~PAGE_MASK;
3336
payload_per_buffer = packet->payload_length / packet_count;
3337
3338
for (i = 0; i < packet_count; i++) {
3339
/* d points to the header descriptor */
3340
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3341
d = context_get_descriptors(&ctx->context,
3342
z + header_z, &d_bus);
3343
if (d == NULL)
3344
return -ENOMEM;
3345
3346
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3347
DESCRIPTOR_INPUT_MORE);
3348
if (packet->skip && i == 0)
3349
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3350
d->req_count = cpu_to_le16(header_size);
3351
d->res_count = d->req_count;
3352
d->transfer_status = 0;
3353
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3354
3355
rest = payload_per_buffer;
3356
pd = d;
3357
for (j = 1; j < z; j++) {
3358
pd++;
3359
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3360
DESCRIPTOR_INPUT_MORE);
3361
3362
if (offset + rest < PAGE_SIZE)
3363
length = rest;
3364
else
3365
length = PAGE_SIZE - offset;
3366
pd->req_count = cpu_to_le16(length);
3367
pd->res_count = pd->req_count;
3368
pd->transfer_status = 0;
3369
3370
dma_addr_t dma_addr = buffer->dma_addrs[page];
3371
pd->data_address = cpu_to_le32(dma_addr + offset);
3372
3373
dma_sync_single_range_for_device(device, dma_addr,
3374
offset, length,
3375
DMA_FROM_DEVICE);
3376
3377
offset = (offset + length) & ~PAGE_MASK;
3378
rest -= length;
3379
if (offset == 0)
3380
page++;
3381
}
3382
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3383
DESCRIPTOR_INPUT_LAST |
3384
DESCRIPTOR_BRANCH_ALWAYS);
3385
if (packet->interrupt && i == packet_count - 1)
3386
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3387
3388
context_append(&ctx->context, d, z, header_z);
3389
}
3390
3391
return 0;
3392
}
3393
3394
static int queue_iso_buffer_fill(struct iso_context *ctx,
3395
struct fw_iso_packet *packet,
3396
struct fw_iso_buffer *buffer,
3397
unsigned long payload)
3398
{
3399
struct descriptor *d;
3400
dma_addr_t d_bus;
3401
int page, offset, rest, z, i, length;
3402
3403
page = payload >> PAGE_SHIFT;
3404
offset = payload & ~PAGE_MASK;
3405
rest = packet->payload_length;
3406
3407
/* We need one descriptor for each page in the buffer. */
3408
z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3409
3410
if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3411
return -EFAULT;
3412
3413
for (i = 0; i < z; i++) {
3414
d = context_get_descriptors(&ctx->context, 1, &d_bus);
3415
if (d == NULL)
3416
return -ENOMEM;
3417
3418
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3419
DESCRIPTOR_BRANCH_ALWAYS);
3420
if (packet->skip && i == 0)
3421
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3422
if (packet->interrupt && i == z - 1)
3423
d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3424
3425
if (offset + rest < PAGE_SIZE)
3426
length = rest;
3427
else
3428
length = PAGE_SIZE - offset;
3429
d->req_count = cpu_to_le16(length);
3430
d->res_count = d->req_count;
3431
d->transfer_status = 0;
3432
3433
dma_addr_t dma_addr = buffer->dma_addrs[page];
3434
d->data_address = cpu_to_le32(dma_addr + offset);
3435
3436
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3437
dma_addr, offset, length,
3438
DMA_FROM_DEVICE);
3439
3440
rest -= length;
3441
offset = 0;
3442
page++;
3443
3444
context_append(&ctx->context, d, 1, 0);
3445
}
3446
3447
return 0;
3448
}
3449
3450
static int ohci_queue_iso(struct fw_iso_context *base,
3451
struct fw_iso_packet *packet,
3452
struct fw_iso_buffer *buffer,
3453
unsigned long payload)
3454
{
3455
struct iso_context *ctx = container_of(base, struct iso_context, base);
3456
3457
guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3458
3459
switch (base->type) {
3460
case FW_ISO_CONTEXT_TRANSMIT:
3461
return queue_iso_transmit(ctx, packet, buffer, payload);
3462
case FW_ISO_CONTEXT_RECEIVE:
3463
return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3464
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3465
return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3466
default:
3467
return -ENOSYS;
3468
}
3469
}
3470
3471
static void ohci_flush_queue_iso(struct fw_iso_context *base)
3472
{
3473
struct context *ctx =
3474
&container_of(base, struct iso_context, base)->context;
3475
3476
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3477
}
3478
3479
static int ohci_flush_iso_completions(struct fw_iso_context *base)
3480
{
3481
struct iso_context *ctx = container_of(base, struct iso_context, base);
3482
int ret = 0;
3483
3484
if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3485
ohci_isoc_context_work(&base->work);
3486
3487
switch (base->type) {
3488
case FW_ISO_CONTEXT_TRANSMIT:
3489
case FW_ISO_CONTEXT_RECEIVE:
3490
if (ctx->sc.header_length != 0)
3491
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3492
break;
3493
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3494
if (ctx->mc.completed != 0)
3495
flush_ir_buffer_fill(ctx);
3496
break;
3497
default:
3498
ret = -ENOSYS;
3499
}
3500
3501
clear_bit_unlock(0, &ctx->flushing_completions);
3502
smp_mb__after_atomic();
3503
}
3504
3505
return ret;
3506
}
3507
3508
static const struct fw_card_driver ohci_driver = {
3509
.enable = ohci_enable,
3510
.disable = ohci_disable,
3511
.read_phy_reg = ohci_read_phy_reg,
3512
.update_phy_reg = ohci_update_phy_reg,
3513
.set_config_rom = ohci_set_config_rom,
3514
.send_request = ohci_send_request,
3515
.send_response = ohci_send_response,
3516
.cancel_packet = ohci_cancel_packet,
3517
.enable_phys_dma = ohci_enable_phys_dma,
3518
.read_csr = ohci_read_csr,
3519
.write_csr = ohci_write_csr,
3520
3521
.allocate_iso_context = ohci_allocate_iso_context,
3522
.free_iso_context = ohci_free_iso_context,
3523
.set_iso_channels = ohci_set_iso_channels,
3524
.queue_iso = ohci_queue_iso,
3525
.flush_queue_iso = ohci_flush_queue_iso,
3526
.flush_iso_completions = ohci_flush_iso_completions,
3527
.start_iso = ohci_start_iso,
3528
.stop_iso = ohci_stop_iso,
3529
};
3530
3531
#ifdef CONFIG_PPC_PMAC
3532
static void pmac_ohci_on(struct pci_dev *dev)
3533
{
3534
if (machine_is(powermac)) {
3535
struct device_node *ofn = pci_device_to_OF_node(dev);
3536
3537
if (ofn) {
3538
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3539
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3540
}
3541
}
3542
}
3543
3544
static void pmac_ohci_off(struct pci_dev *dev)
3545
{
3546
if (machine_is(powermac)) {
3547
struct device_node *ofn = pci_device_to_OF_node(dev);
3548
3549
if (ofn) {
3550
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3551
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3552
}
3553
}
3554
}
3555
#else
3556
static inline void pmac_ohci_on(struct pci_dev *dev) {}
3557
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3558
#endif /* CONFIG_PPC_PMAC */
3559
3560
static void release_ohci(struct device *dev, void *data)
3561
{
3562
struct pci_dev *pdev = to_pci_dev(dev);
3563
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3564
3565
pmac_ohci_off(pdev);
3566
3567
ar_context_release(&ohci->ar_response_ctx);
3568
ar_context_release(&ohci->ar_request_ctx);
3569
3570
dev_notice(dev, "removed fw-ohci device\n");
3571
}
3572
3573
static int pci_probe(struct pci_dev *dev,
3574
const struct pci_device_id *ent)
3575
{
3576
struct fw_ohci *ohci;
3577
u32 bus_options, max_receive, link_speed, version;
3578
u64 guid;
3579
int i, flags, irq, err;
3580
3581
if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3582
dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3583
return -ENOSYS;
3584
}
3585
3586
ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3587
if (ohci == NULL)
3588
return -ENOMEM;
3589
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3590
pci_set_drvdata(dev, ohci);
3591
pmac_ohci_on(dev);
3592
devres_add(&dev->dev, ohci);
3593
3594
err = pcim_enable_device(dev);
3595
if (err) {
3596
dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3597
return err;
3598
}
3599
3600
pci_set_master(dev);
3601
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3602
3603
spin_lock_init(&ohci->lock);
3604
mutex_init(&ohci->phy_reg_mutex);
3605
3606
if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3607
pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3608
ohci_err(ohci, "invalid MMIO resource\n");
3609
return -ENXIO;
3610
}
3611
3612
ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3613
if (IS_ERR(ohci->registers)) {
3614
ohci_err(ohci, "request and map MMIO resource unavailable\n");
3615
return -ENXIO;
3616
}
3617
3618
for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3619
if ((ohci_quirks[i].vendor == dev->vendor) &&
3620
(ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3621
ohci_quirks[i].device == dev->device) &&
3622
(ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3623
ohci_quirks[i].revision >= dev->revision)) {
3624
ohci->quirks = ohci_quirks[i].flags;
3625
break;
3626
}
3627
if (param_quirks)
3628
ohci->quirks = param_quirks;
3629
3630
if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3631
ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3632
3633
/*
3634
* Because dma_alloc_coherent() allocates at least one page,
3635
* we save space by using a common buffer for the AR request/
3636
* response descriptors and the self IDs buffer.
3637
*/
3638
BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3639
BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3640
ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3641
GFP_KERNEL);
3642
if (!ohci->misc_buffer)
3643
return -ENOMEM;
3644
3645
err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3646
OHCI1394_AsReqRcvContextControlSet);
3647
if (err < 0)
3648
return err;
3649
3650
err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3651
OHCI1394_AsRspRcvContextControlSet);
3652
if (err < 0)
3653
return err;
3654
3655
err = context_init(&ohci->at_request_ctx.context, ohci,
3656
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3657
if (err < 0)
3658
return err;
3659
INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3660
3661
err = context_init(&ohci->at_response_ctx.context, ohci,
3662
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3663
if (err < 0)
3664
return err;
3665
INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3666
3667
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3668
ohci->ir_context_channels = ~0ULL;
3669
ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3670
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3671
ohci->ir_context_mask = ohci->ir_context_support;
3672
ohci->n_ir = hweight32(ohci->ir_context_mask);
3673
ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL);
3674
if (!ohci->ir_context_list)
3675
return -ENOMEM;
3676
3677
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3678
ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3679
/* JMicron JMB38x often shows 0 at first read, just ignore it */
3680
if (!ohci->it_context_support) {
3681
ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3682
ohci->it_context_support = 0xf;
3683
}
3684
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3685
ohci->it_context_mask = ohci->it_context_support;
3686
ohci->n_it = hweight32(ohci->it_context_mask);
3687
ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL);
3688
if (!ohci->it_context_list)
3689
return -ENOMEM;
3690
3691
ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3692
ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3693
3694
bus_options = reg_read(ohci, OHCI1394_BusOptions);
3695
max_receive = (bus_options >> 12) & 0xf;
3696
link_speed = bus_options & 0x7;
3697
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3698
reg_read(ohci, OHCI1394_GUIDLo);
3699
3700
flags = PCI_IRQ_INTX;
3701
if (!(ohci->quirks & QUIRK_NO_MSI))
3702
flags |= PCI_IRQ_MSI;
3703
err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3704
if (err < 0)
3705
return err;
3706
irq = pci_irq_vector(dev, 0);
3707
if (irq < 0) {
3708
err = irq;
3709
goto fail_msi;
3710
}
3711
3712
// IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during
3713
// invoking the threaded IRQ handler for SelfIDComplete event.
3714
err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event,
3715
pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3716
ohci);
3717
if (err < 0) {
3718
ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3719
goto fail_msi;
3720
}
3721
3722
err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3723
if (err)
3724
goto fail_irq;
3725
3726
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3727
ohci_notice(ohci,
3728
"added OHCI v%x.%x device as card %d, "
3729
"%d IR + %d IT contexts, quirks 0x%x%s\n",
3730
version >> 16, version & 0xff, ohci->card.index,
3731
ohci->n_ir, ohci->n_it, ohci->quirks,
3732
reg_read(ohci, OHCI1394_PhyUpperBound) ?
3733
", physUB" : "");
3734
3735
return 0;
3736
3737
fail_irq:
3738
free_irq(irq, ohci);
3739
fail_msi:
3740
pci_free_irq_vectors(dev);
3741
3742
return err;
3743
}
3744
3745
static void pci_remove(struct pci_dev *dev)
3746
{
3747
struct fw_ohci *ohci = pci_get_drvdata(dev);
3748
int irq;
3749
3750
fw_core_remove_card(&ohci->card);
3751
3752
software_reset(ohci);
3753
3754
irq = pci_irq_vector(dev, 0);
3755
if (irq >= 0)
3756
free_irq(irq, ohci);
3757
pci_free_irq_vectors(dev);
3758
3759
dev_notice(&dev->dev, "removing fw-ohci device\n");
3760
}
3761
3762
static int __maybe_unused pci_suspend(struct device *dev)
3763
{
3764
struct pci_dev *pdev = to_pci_dev(dev);
3765
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3766
3767
software_reset(ohci);
3768
pmac_ohci_off(pdev);
3769
3770
return 0;
3771
}
3772
3773
3774
static int __maybe_unused pci_resume(struct device *dev)
3775
{
3776
struct pci_dev *pdev = to_pci_dev(dev);
3777
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3778
int err;
3779
3780
pmac_ohci_on(pdev);
3781
3782
/* Some systems don't setup GUID register on resume from ram */
3783
if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3784
!reg_read(ohci, OHCI1394_GUIDHi)) {
3785
reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3786
reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3787
}
3788
3789
err = ohci_enable(&ohci->card, NULL, 0);
3790
if (err)
3791
return err;
3792
3793
ohci_resume_iso_dma(ohci);
3794
3795
return 0;
3796
}
3797
3798
static const struct pci_device_id pci_table[] = {
3799
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3800
{ }
3801
};
3802
3803
MODULE_DEVICE_TABLE(pci, pci_table);
3804
3805
static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3806
3807
static struct pci_driver fw_ohci_pci_driver = {
3808
.name = ohci_driver_name,
3809
.id_table = pci_table,
3810
.probe = pci_probe,
3811
.remove = pci_remove,
3812
.driver.pm = &pci_pm_ops,
3813
};
3814
3815
static int __init fw_ohci_init(void)
3816
{
3817
return pci_register_driver(&fw_ohci_pci_driver);
3818
}
3819
3820
static void __exit fw_ohci_cleanup(void)
3821
{
3822
pci_unregister_driver(&fw_ohci_pci_driver);
3823
}
3824
3825
module_init(fw_ohci_init);
3826
module_exit(fw_ohci_cleanup);
3827
3828
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3829
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3830
MODULE_LICENSE("GPL");
3831
3832
/* Provide a module alias so root-on-sbp2 initrds don't break. */
3833
MODULE_ALIAS("ohci1394");
3834
3835