Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firmware/arm_ffa/driver.c
54336 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Arm Firmware Framework for ARMv8-A(FFA) interface driver
4
*
5
* The Arm FFA specification[1] describes a software architecture to
6
* leverages the virtualization extension to isolate software images
7
* provided by an ecosystem of vendors from each other and describes
8
* interfaces that standardize communication between the various software
9
* images including communication between images in the Secure world and
10
* Normal world. Any Hypervisor could use the FFA interfaces to enable
11
* communication between VMs it manages.
12
*
13
* The Hypervisor a.k.a Partition managers in FFA terminology can assign
14
* system resources(Memory regions, Devices, CPU cycles) to the partitions
15
* and manage isolation amongst them.
16
*
17
* [1] https://developer.arm.com/docs/den0077/latest
18
*
19
* Copyright (C) 2021 ARM Ltd.
20
*/
21
22
#define DRIVER_NAME "ARM FF-A"
23
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
24
25
#include <linux/acpi.h>
26
#include <linux/arm_ffa.h>
27
#include <linux/bitfield.h>
28
#include <linux/cpuhotplug.h>
29
#include <linux/delay.h>
30
#include <linux/device.h>
31
#include <linux/hashtable.h>
32
#include <linux/interrupt.h>
33
#include <linux/io.h>
34
#include <linux/kernel.h>
35
#include <linux/module.h>
36
#include <linux/mm.h>
37
#include <linux/mutex.h>
38
#include <linux/of_irq.h>
39
#include <linux/scatterlist.h>
40
#include <linux/slab.h>
41
#include <linux/smp.h>
42
#include <linux/uuid.h>
43
#include <linux/xarray.h>
44
45
#include "common.h"
46
47
#define FFA_DRIVER_VERSION FFA_VERSION_1_2
48
#define FFA_MIN_VERSION FFA_VERSION_1_0
49
50
#define SENDER_ID_MASK GENMASK(31, 16)
51
#define RECEIVER_ID_MASK GENMASK(15, 0)
52
#define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
53
#define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
54
#define PACK_TARGET_INFO(s, r) \
55
(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
56
57
#define RXTX_MAP_MIN_BUFSZ_MASK GENMASK(1, 0)
58
#define RXTX_MAP_MIN_BUFSZ(x) ((x) & RXTX_MAP_MIN_BUFSZ_MASK)
59
60
#define FFA_MAX_NOTIFICATIONS 64
61
62
static ffa_fn *invoke_ffa_fn;
63
64
static const int ffa_linux_errmap[] = {
65
/* better than switch case as long as return value is continuous */
66
0, /* FFA_RET_SUCCESS */
67
-EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
68
-EINVAL, /* FFA_RET_INVALID_PARAMETERS */
69
-ENOMEM, /* FFA_RET_NO_MEMORY */
70
-EBUSY, /* FFA_RET_BUSY */
71
-EINTR, /* FFA_RET_INTERRUPTED */
72
-EACCES, /* FFA_RET_DENIED */
73
-EAGAIN, /* FFA_RET_RETRY */
74
-ECANCELED, /* FFA_RET_ABORTED */
75
-ENODATA, /* FFA_RET_NO_DATA */
76
-EAGAIN, /* FFA_RET_NOT_READY */
77
};
78
79
static inline int ffa_to_linux_errno(int errno)
80
{
81
int err_idx = -errno;
82
83
if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
84
return ffa_linux_errmap[err_idx];
85
return -EINVAL;
86
}
87
88
struct ffa_pcpu_irq {
89
struct ffa_drv_info *info;
90
};
91
92
struct ffa_drv_info {
93
u32 version;
94
u16 vm_id;
95
struct mutex rx_lock; /* lock to protect Rx buffer */
96
struct mutex tx_lock; /* lock to protect Tx buffer */
97
void *rx_buffer;
98
void *tx_buffer;
99
size_t rxtx_bufsz;
100
bool mem_ops_native;
101
bool msg_direct_req2_supp;
102
bool bitmap_created;
103
bool notif_enabled;
104
unsigned int sched_recv_irq;
105
unsigned int notif_pend_irq;
106
unsigned int cpuhp_state;
107
struct ffa_pcpu_irq __percpu *irq_pcpu;
108
struct workqueue_struct *notif_pcpu_wq;
109
struct work_struct notif_pcpu_work;
110
struct work_struct sched_recv_irq_work;
111
struct xarray partition_info;
112
DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS));
113
rwlock_t notify_lock; /* lock to protect notifier hashtable */
114
};
115
116
static struct ffa_drv_info *drv_info;
117
118
/*
119
* The driver must be able to support all the versions from the earliest
120
* supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
121
* The specification states that if firmware supports a FFA implementation
122
* that is incompatible with and at a greater version number than specified
123
* by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
124
* it must return the NOT_SUPPORTED error code.
125
*/
126
static u32 ffa_compatible_version_find(u32 version)
127
{
128
u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
129
u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
130
u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
131
132
if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
133
return version;
134
135
pr_info("Firmware version higher than driver version, downgrading\n");
136
return FFA_DRIVER_VERSION;
137
}
138
139
static int ffa_version_check(u32 *version)
140
{
141
ffa_value_t ver;
142
143
invoke_ffa_fn((ffa_value_t){
144
.a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
145
}, &ver);
146
147
if ((s32)ver.a0 == FFA_RET_NOT_SUPPORTED) {
148
pr_info("FFA_VERSION returned not supported\n");
149
return -EOPNOTSUPP;
150
}
151
152
if (FFA_MAJOR_VERSION(ver.a0) > FFA_MAJOR_VERSION(FFA_DRIVER_VERSION)) {
153
pr_err("Incompatible v%d.%d! Latest supported v%d.%d\n",
154
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
155
FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
156
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
157
return -EINVAL;
158
}
159
160
if (ver.a0 < FFA_MIN_VERSION) {
161
pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
162
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
163
FFA_MAJOR_VERSION(FFA_MIN_VERSION),
164
FFA_MINOR_VERSION(FFA_MIN_VERSION));
165
return -EINVAL;
166
}
167
168
pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
169
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
170
pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
171
FFA_MINOR_VERSION(ver.a0));
172
*version = ffa_compatible_version_find(ver.a0);
173
174
return 0;
175
}
176
177
static int ffa_rx_release(void)
178
{
179
ffa_value_t ret;
180
181
invoke_ffa_fn((ffa_value_t){
182
.a0 = FFA_RX_RELEASE,
183
}, &ret);
184
185
if (ret.a0 == FFA_ERROR)
186
return ffa_to_linux_errno((int)ret.a2);
187
188
/* check for ret.a0 == FFA_RX_RELEASE ? */
189
190
return 0;
191
}
192
193
static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
194
{
195
ffa_value_t ret;
196
197
invoke_ffa_fn((ffa_value_t){
198
.a0 = FFA_FN_NATIVE(RXTX_MAP),
199
.a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
200
}, &ret);
201
202
if (ret.a0 == FFA_ERROR)
203
return ffa_to_linux_errno((int)ret.a2);
204
205
return 0;
206
}
207
208
static int ffa_rxtx_unmap(u16 vm_id)
209
{
210
ffa_value_t ret;
211
212
invoke_ffa_fn((ffa_value_t){
213
.a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
214
}, &ret);
215
216
if (ret.a0 == FFA_ERROR)
217
return ffa_to_linux_errno((int)ret.a2);
218
219
return 0;
220
}
221
222
static int ffa_features(u32 func_feat_id, u32 input_props,
223
u32 *if_props_1, u32 *if_props_2)
224
{
225
ffa_value_t id;
226
227
if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
228
pr_err("%s: Invalid Parameters: %x, %x", __func__,
229
func_feat_id, input_props);
230
return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
231
}
232
233
invoke_ffa_fn((ffa_value_t){
234
.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
235
}, &id);
236
237
if (id.a0 == FFA_ERROR)
238
return ffa_to_linux_errno((int)id.a2);
239
240
if (if_props_1)
241
*if_props_1 = id.a2;
242
if (if_props_2)
243
*if_props_2 = id.a3;
244
245
return 0;
246
}
247
248
#define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
249
#define FFA_SUPPORTS_GET_COUNT_ONLY(version) ((version) > FFA_VERSION_1_0)
250
#define FFA_PART_INFO_HAS_SIZE_IN_RESP(version) ((version) > FFA_VERSION_1_0)
251
#define FFA_PART_INFO_HAS_UUID_IN_RESP(version) ((version) > FFA_VERSION_1_0)
252
#define FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(version) \
253
((version) > FFA_VERSION_1_0)
254
255
/* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
256
static int
257
__ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
258
struct ffa_partition_info *buffer, int num_partitions)
259
{
260
int idx, count, flags = 0, sz, buf_sz;
261
ffa_value_t partition_info;
262
263
if (FFA_SUPPORTS_GET_COUNT_ONLY(drv_info->version) &&
264
(!buffer || !num_partitions)) /* Just get the count for now */
265
flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
266
267
mutex_lock(&drv_info->rx_lock);
268
invoke_ffa_fn((ffa_value_t){
269
.a0 = FFA_PARTITION_INFO_GET,
270
.a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
271
.a5 = flags,
272
}, &partition_info);
273
274
if (partition_info.a0 == FFA_ERROR) {
275
mutex_unlock(&drv_info->rx_lock);
276
return ffa_to_linux_errno((int)partition_info.a2);
277
}
278
279
count = partition_info.a2;
280
281
if (FFA_PART_INFO_HAS_SIZE_IN_RESP(drv_info->version)) {
282
buf_sz = sz = partition_info.a3;
283
if (sz > sizeof(*buffer))
284
buf_sz = sizeof(*buffer);
285
} else {
286
buf_sz = sz = 8;
287
}
288
289
if (buffer && count <= num_partitions)
290
for (idx = 0; idx < count; idx++) {
291
struct ffa_partition_info_le {
292
__le16 id;
293
__le16 exec_ctxt;
294
__le32 properties;
295
uuid_t uuid;
296
} *rx_buf = drv_info->rx_buffer + idx * sz;
297
struct ffa_partition_info *buf = buffer + idx;
298
299
buf->id = le16_to_cpu(rx_buf->id);
300
buf->exec_ctxt = le16_to_cpu(rx_buf->exec_ctxt);
301
buf->properties = le32_to_cpu(rx_buf->properties);
302
if (buf_sz > 8)
303
import_uuid(&buf->uuid, (u8 *)&rx_buf->uuid);
304
}
305
306
if (!(flags & PARTITION_INFO_GET_RETURN_COUNT_ONLY))
307
ffa_rx_release();
308
309
mutex_unlock(&drv_info->rx_lock);
310
311
return count;
312
}
313
314
#define LAST_INDEX_MASK GENMASK(15, 0)
315
#define CURRENT_INDEX_MASK GENMASK(31, 16)
316
#define UUID_INFO_TAG_MASK GENMASK(47, 32)
317
#define PARTITION_INFO_SZ_MASK GENMASK(63, 48)
318
#define PARTITION_COUNT(x) ((u16)(FIELD_GET(LAST_INDEX_MASK, (x))) + 1)
319
#define CURRENT_INDEX(x) ((u16)(FIELD_GET(CURRENT_INDEX_MASK, (x))))
320
#define UUID_INFO_TAG(x) ((u16)(FIELD_GET(UUID_INFO_TAG_MASK, (x))))
321
#define PARTITION_INFO_SZ(x) ((u16)(FIELD_GET(PARTITION_INFO_SZ_MASK, (x))))
322
#define PART_INFO_ID_MASK GENMASK(15, 0)
323
#define PART_INFO_EXEC_CXT_MASK GENMASK(31, 16)
324
#define PART_INFO_PROPS_MASK GENMASK(63, 32)
325
#define PART_INFO_ID(x) ((u16)(FIELD_GET(PART_INFO_ID_MASK, (x))))
326
#define PART_INFO_EXEC_CXT(x) ((u16)(FIELD_GET(PART_INFO_EXEC_CXT_MASK, (x))))
327
#define PART_INFO_PROPERTIES(x) ((u32)(FIELD_GET(PART_INFO_PROPS_MASK, (x))))
328
static int
329
__ffa_partition_info_get_regs(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
330
struct ffa_partition_info *buffer, int num_parts)
331
{
332
u16 buf_sz, start_idx, cur_idx, count = 0, prev_idx = 0, tag = 0;
333
struct ffa_partition_info *buf = buffer;
334
ffa_value_t partition_info;
335
336
do {
337
__le64 *regs;
338
int idx;
339
340
start_idx = prev_idx ? prev_idx + 1 : 0;
341
342
invoke_ffa_fn((ffa_value_t){
343
.a0 = FFA_PARTITION_INFO_GET_REGS,
344
.a1 = (u64)uuid1 << 32 | uuid0,
345
.a2 = (u64)uuid3 << 32 | uuid2,
346
.a3 = start_idx | tag << 16,
347
}, &partition_info);
348
349
if (partition_info.a0 == FFA_ERROR)
350
return ffa_to_linux_errno((int)partition_info.a2);
351
352
if (!count)
353
count = PARTITION_COUNT(partition_info.a2);
354
if (!buffer || !num_parts) /* count only */
355
return count;
356
357
cur_idx = CURRENT_INDEX(partition_info.a2);
358
tag = UUID_INFO_TAG(partition_info.a2);
359
buf_sz = PARTITION_INFO_SZ(partition_info.a2);
360
if (buf_sz > sizeof(*buffer))
361
buf_sz = sizeof(*buffer);
362
363
regs = (void *)&partition_info.a3;
364
for (idx = 0; idx < cur_idx - start_idx + 1; idx++, buf++) {
365
union {
366
uuid_t uuid;
367
u64 regs[2];
368
} uuid_regs = {
369
.regs = {
370
le64_to_cpu(*(regs + 1)),
371
le64_to_cpu(*(regs + 2)),
372
}
373
};
374
u64 val = *(u64 *)regs;
375
376
buf->id = PART_INFO_ID(val);
377
buf->exec_ctxt = PART_INFO_EXEC_CXT(val);
378
buf->properties = PART_INFO_PROPERTIES(val);
379
uuid_copy(&buf->uuid, &uuid_regs.uuid);
380
regs += 3;
381
}
382
prev_idx = cur_idx;
383
384
} while (cur_idx < (count - 1));
385
386
return count;
387
}
388
389
/* buffer is allocated and caller must free the same if returned count > 0 */
390
static int
391
ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
392
{
393
int count;
394
u32 uuid0_4[4];
395
bool reg_mode = false;
396
struct ffa_partition_info *pbuf;
397
398
if (!ffa_features(FFA_PARTITION_INFO_GET_REGS, 0, NULL, NULL))
399
reg_mode = true;
400
401
export_uuid((u8 *)uuid0_4, uuid);
402
if (reg_mode)
403
count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
404
uuid0_4[2], uuid0_4[3],
405
NULL, 0);
406
else
407
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
408
uuid0_4[2], uuid0_4[3],
409
NULL, 0);
410
if (count <= 0)
411
return count;
412
413
pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
414
if (!pbuf)
415
return -ENOMEM;
416
417
if (reg_mode)
418
count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
419
uuid0_4[2], uuid0_4[3],
420
pbuf, count);
421
else
422
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
423
uuid0_4[2], uuid0_4[3],
424
pbuf, count);
425
if (count <= 0)
426
kfree(pbuf);
427
else
428
*buffer = pbuf;
429
430
return count;
431
}
432
433
#define VM_ID_MASK GENMASK(15, 0)
434
static int ffa_id_get(u16 *vm_id)
435
{
436
ffa_value_t id;
437
438
invoke_ffa_fn((ffa_value_t){
439
.a0 = FFA_ID_GET,
440
}, &id);
441
442
if (id.a0 == FFA_ERROR)
443
return ffa_to_linux_errno((int)id.a2);
444
445
*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
446
447
return 0;
448
}
449
450
static inline void ffa_msg_send_wait_for_completion(ffa_value_t *ret)
451
{
452
while (ret->a0 == FFA_INTERRUPT || ret->a0 == FFA_YIELD) {
453
if (ret->a0 == FFA_YIELD)
454
fsleep(1000);
455
456
invoke_ffa_fn((ffa_value_t){
457
.a0 = FFA_RUN, .a1 = ret->a1,
458
}, ret);
459
}
460
}
461
462
static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
463
struct ffa_send_direct_data *data)
464
{
465
u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
466
ffa_value_t ret;
467
468
if (mode_32bit) {
469
req_id = FFA_MSG_SEND_DIRECT_REQ;
470
resp_id = FFA_MSG_SEND_DIRECT_RESP;
471
} else {
472
req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
473
resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
474
}
475
476
invoke_ffa_fn((ffa_value_t){
477
.a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
478
.a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
479
.a6 = data->data3, .a7 = data->data4,
480
}, &ret);
481
482
ffa_msg_send_wait_for_completion(&ret);
483
484
if (ret.a0 == FFA_ERROR)
485
return ffa_to_linux_errno((int)ret.a2);
486
487
if (ret.a0 == resp_id) {
488
data->data0 = ret.a3;
489
data->data1 = ret.a4;
490
data->data2 = ret.a5;
491
data->data3 = ret.a6;
492
data->data4 = ret.a7;
493
return 0;
494
}
495
496
return -EINVAL;
497
}
498
499
static int ffa_msg_send2(struct ffa_device *dev, u16 src_id, void *buf, size_t sz)
500
{
501
u32 src_dst_ids = PACK_TARGET_INFO(src_id, dev->vm_id);
502
struct ffa_indirect_msg_hdr *msg;
503
ffa_value_t ret;
504
int retval = 0;
505
506
if (sz > (drv_info->rxtx_bufsz - sizeof(*msg)))
507
return -ERANGE;
508
509
mutex_lock(&drv_info->tx_lock);
510
511
msg = drv_info->tx_buffer;
512
msg->flags = 0;
513
msg->res0 = 0;
514
msg->offset = sizeof(*msg);
515
msg->send_recv_id = src_dst_ids;
516
msg->size = sz;
517
uuid_copy(&msg->uuid, &dev->uuid);
518
memcpy((u8 *)msg + msg->offset, buf, sz);
519
520
/* flags = 0, sender VMID = 0 works for both physical/virtual NS */
521
invoke_ffa_fn((ffa_value_t){
522
.a0 = FFA_MSG_SEND2, .a1 = 0, .a2 = 0
523
}, &ret);
524
525
if (ret.a0 == FFA_ERROR)
526
retval = ffa_to_linux_errno((int)ret.a2);
527
528
mutex_unlock(&drv_info->tx_lock);
529
return retval;
530
}
531
532
static int ffa_msg_send_direct_req2(u16 src_id, u16 dst_id, const uuid_t *uuid,
533
struct ffa_send_direct_data2 *data)
534
{
535
u32 src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
536
union {
537
uuid_t uuid;
538
__le64 regs[2];
539
} uuid_regs = { .uuid = *uuid };
540
ffa_value_t ret, args = {
541
.a0 = FFA_MSG_SEND_DIRECT_REQ2,
542
.a1 = src_dst_ids,
543
.a2 = le64_to_cpu(uuid_regs.regs[0]),
544
.a3 = le64_to_cpu(uuid_regs.regs[1]),
545
};
546
memcpy((void *)&args + offsetof(ffa_value_t, a4), data, sizeof(*data));
547
548
invoke_ffa_fn(args, &ret);
549
550
ffa_msg_send_wait_for_completion(&ret);
551
552
if (ret.a0 == FFA_ERROR)
553
return ffa_to_linux_errno((int)ret.a2);
554
555
if (ret.a0 == FFA_MSG_SEND_DIRECT_RESP2) {
556
memcpy(data, (void *)&ret + offsetof(ffa_value_t, a4), sizeof(*data));
557
return 0;
558
}
559
560
return -EINVAL;
561
}
562
563
static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
564
u32 frag_len, u32 len, u64 *handle)
565
{
566
ffa_value_t ret;
567
568
invoke_ffa_fn((ffa_value_t){
569
.a0 = func_id, .a1 = len, .a2 = frag_len,
570
.a3 = buf, .a4 = buf_sz,
571
}, &ret);
572
573
while (ret.a0 == FFA_MEM_OP_PAUSE)
574
invoke_ffa_fn((ffa_value_t){
575
.a0 = FFA_MEM_OP_RESUME,
576
.a1 = ret.a1, .a2 = ret.a2,
577
}, &ret);
578
579
if (ret.a0 == FFA_ERROR)
580
return ffa_to_linux_errno((int)ret.a2);
581
582
if (ret.a0 == FFA_SUCCESS) {
583
if (handle)
584
*handle = PACK_HANDLE(ret.a2, ret.a3);
585
} else if (ret.a0 == FFA_MEM_FRAG_RX) {
586
if (handle)
587
*handle = PACK_HANDLE(ret.a1, ret.a2);
588
} else {
589
return -EOPNOTSUPP;
590
}
591
592
return frag_len;
593
}
594
595
static int ffa_mem_next_frag(u64 handle, u32 frag_len)
596
{
597
ffa_value_t ret;
598
599
invoke_ffa_fn((ffa_value_t){
600
.a0 = FFA_MEM_FRAG_TX,
601
.a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
602
.a3 = frag_len,
603
}, &ret);
604
605
while (ret.a0 == FFA_MEM_OP_PAUSE)
606
invoke_ffa_fn((ffa_value_t){
607
.a0 = FFA_MEM_OP_RESUME,
608
.a1 = ret.a1, .a2 = ret.a2,
609
}, &ret);
610
611
if (ret.a0 == FFA_ERROR)
612
return ffa_to_linux_errno((int)ret.a2);
613
614
if (ret.a0 == FFA_MEM_FRAG_RX)
615
return ret.a3;
616
else if (ret.a0 == FFA_SUCCESS)
617
return 0;
618
619
return -EOPNOTSUPP;
620
}
621
622
static int
623
ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
624
u32 len, u64 *handle, bool first)
625
{
626
if (!first)
627
return ffa_mem_next_frag(*handle, frag_len);
628
629
return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
630
}
631
632
static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
633
{
634
u32 num_pages = 0;
635
636
do {
637
num_pages += sg->length / FFA_PAGE_SIZE;
638
} while ((sg = sg_next(sg)));
639
640
return num_pages;
641
}
642
643
static u16 ffa_memory_attributes_get(u32 func_id)
644
{
645
/*
646
* For the memory lend or donate operation, if the receiver is a PE or
647
* a proxy endpoint, the owner/sender must not specify the attributes
648
*/
649
if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
650
func_id == FFA_MEM_LEND)
651
return 0;
652
653
return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
654
}
655
656
static void ffa_emad_impdef_value_init(u32 version, void *dst, void *src)
657
{
658
struct ffa_mem_region_attributes *ep_mem_access;
659
660
if (FFA_EMAD_HAS_IMPDEF_FIELD(version))
661
memcpy(dst, src, sizeof(ep_mem_access->impdef_val));
662
}
663
664
static void
665
ffa_mem_region_additional_setup(u32 version, struct ffa_mem_region *mem_region)
666
{
667
if (!FFA_MEM_REGION_HAS_EP_MEM_OFFSET(version)) {
668
mem_region->ep_mem_size = 0;
669
} else {
670
mem_region->ep_mem_size = ffa_emad_size_get(version);
671
mem_region->ep_mem_offset = sizeof(*mem_region);
672
memset(mem_region->reserved, 0, 12);
673
}
674
}
675
676
static int
677
ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
678
struct ffa_mem_ops_args *args)
679
{
680
int rc = 0;
681
bool first = true;
682
u32 composite_offset;
683
phys_addr_t addr = 0;
684
struct ffa_mem_region *mem_region = buffer;
685
struct ffa_composite_mem_region *composite;
686
struct ffa_mem_region_addr_range *constituents;
687
struct ffa_mem_region_attributes *ep_mem_access;
688
u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
689
690
mem_region->tag = args->tag;
691
mem_region->flags = args->flags;
692
mem_region->sender_id = drv_info->vm_id;
693
mem_region->attributes = ffa_memory_attributes_get(func_id);
694
composite_offset = ffa_mem_desc_offset(buffer, args->nattrs,
695
drv_info->version);
696
697
for (idx = 0; idx < args->nattrs; idx++) {
698
ep_mem_access = buffer +
699
ffa_mem_desc_offset(buffer, idx, drv_info->version);
700
ep_mem_access->receiver = args->attrs[idx].receiver;
701
ep_mem_access->attrs = args->attrs[idx].attrs;
702
ep_mem_access->composite_off = composite_offset;
703
ep_mem_access->flag = 0;
704
ep_mem_access->reserved = 0;
705
ffa_emad_impdef_value_init(drv_info->version,
706
ep_mem_access->impdef_val,
707
args->attrs[idx].impdef_val);
708
}
709
mem_region->handle = 0;
710
mem_region->ep_count = args->nattrs;
711
ffa_mem_region_additional_setup(drv_info->version, mem_region);
712
713
composite = buffer + composite_offset;
714
composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
715
composite->addr_range_cnt = num_entries;
716
composite->reserved = 0;
717
718
length = composite_offset + CONSTITUENTS_OFFSET(num_entries);
719
frag_len = composite_offset + CONSTITUENTS_OFFSET(0);
720
if (frag_len > max_fragsize)
721
return -ENXIO;
722
723
if (!args->use_txbuf) {
724
addr = virt_to_phys(buffer);
725
buf_sz = max_fragsize / FFA_PAGE_SIZE;
726
}
727
728
constituents = buffer + frag_len;
729
idx = 0;
730
do {
731
if (frag_len == max_fragsize) {
732
rc = ffa_transmit_fragment(func_id, addr, buf_sz,
733
frag_len, length,
734
&args->g_handle, first);
735
if (rc < 0)
736
return -ENXIO;
737
738
first = false;
739
idx = 0;
740
frag_len = 0;
741
constituents = buffer;
742
}
743
744
if ((void *)constituents - buffer > max_fragsize) {
745
pr_err("Memory Region Fragment > Tx Buffer size\n");
746
return -EFAULT;
747
}
748
749
constituents->address = sg_phys(args->sg);
750
constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
751
constituents->reserved = 0;
752
constituents++;
753
frag_len += sizeof(struct ffa_mem_region_addr_range);
754
} while ((args->sg = sg_next(args->sg)));
755
756
return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
757
length, &args->g_handle, first);
758
}
759
760
static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
761
{
762
int ret;
763
void *buffer;
764
size_t rxtx_bufsz = drv_info->rxtx_bufsz;
765
766
if (!args->use_txbuf) {
767
buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
768
if (!buffer)
769
return -ENOMEM;
770
} else {
771
buffer = drv_info->tx_buffer;
772
mutex_lock(&drv_info->tx_lock);
773
}
774
775
ret = ffa_setup_and_transmit(func_id, buffer, rxtx_bufsz, args);
776
777
if (args->use_txbuf)
778
mutex_unlock(&drv_info->tx_lock);
779
else
780
free_pages_exact(buffer, rxtx_bufsz);
781
782
return ret < 0 ? ret : 0;
783
}
784
785
static int ffa_memory_reclaim(u64 g_handle, u32 flags)
786
{
787
ffa_value_t ret;
788
789
invoke_ffa_fn((ffa_value_t){
790
.a0 = FFA_MEM_RECLAIM,
791
.a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
792
.a3 = flags,
793
}, &ret);
794
795
if (ret.a0 == FFA_ERROR)
796
return ffa_to_linux_errno((int)ret.a2);
797
798
return 0;
799
}
800
801
static int ffa_notification_bitmap_create(void)
802
{
803
ffa_value_t ret;
804
u16 vcpu_count = nr_cpu_ids;
805
806
invoke_ffa_fn((ffa_value_t){
807
.a0 = FFA_NOTIFICATION_BITMAP_CREATE,
808
.a1 = drv_info->vm_id, .a2 = vcpu_count,
809
}, &ret);
810
811
if (ret.a0 == FFA_ERROR)
812
return ffa_to_linux_errno((int)ret.a2);
813
814
return 0;
815
}
816
817
static int ffa_notification_bitmap_destroy(void)
818
{
819
ffa_value_t ret;
820
821
invoke_ffa_fn((ffa_value_t){
822
.a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
823
.a1 = drv_info->vm_id,
824
}, &ret);
825
826
if (ret.a0 == FFA_ERROR)
827
return ffa_to_linux_errno((int)ret.a2);
828
829
return 0;
830
}
831
832
enum notify_type {
833
SECURE_PARTITION,
834
NON_SECURE_VM,
835
SPM_FRAMEWORK,
836
NS_HYP_FRAMEWORK,
837
};
838
839
#define NOTIFICATION_LOW_MASK GENMASK(31, 0)
840
#define NOTIFICATION_HIGH_MASK GENMASK(63, 32)
841
#define NOTIFICATION_BITMAP_HIGH(x) \
842
((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
843
#define NOTIFICATION_BITMAP_LOW(x) \
844
((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
845
#define PACK_NOTIFICATION_BITMAP(low, high) \
846
(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
847
FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
848
849
#define RECEIVER_VCPU_MASK GENMASK(31, 16)
850
#define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
851
(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
852
FIELD_PREP(RECEIVER_ID_MASK, (r)))
853
854
#define NOTIFICATION_INFO_GET_MORE_PEND_MASK BIT(0)
855
#define NOTIFICATION_INFO_GET_ID_COUNT GENMASK(11, 7)
856
#define ID_LIST_MASK_64 GENMASK(51, 12)
857
#define ID_LIST_MASK_32 GENMASK(31, 12)
858
#define MAX_IDS_64 20
859
#define MAX_IDS_32 10
860
861
#define PER_VCPU_NOTIFICATION_FLAG BIT(0)
862
#define SECURE_PARTITION_BITMAP_ENABLE BIT(SECURE_PARTITION)
863
#define NON_SECURE_VM_BITMAP_ENABLE BIT(NON_SECURE_VM)
864
#define SPM_FRAMEWORK_BITMAP_ENABLE BIT(SPM_FRAMEWORK)
865
#define NS_HYP_FRAMEWORK_BITMAP_ENABLE BIT(NS_HYP_FRAMEWORK)
866
#define FFA_BITMAP_SECURE_ENABLE_MASK \
867
(SECURE_PARTITION_BITMAP_ENABLE | SPM_FRAMEWORK_BITMAP_ENABLE)
868
#define FFA_BITMAP_NS_ENABLE_MASK \
869
(NON_SECURE_VM_BITMAP_ENABLE | NS_HYP_FRAMEWORK_BITMAP_ENABLE)
870
#define FFA_BITMAP_ALL_ENABLE_MASK \
871
(FFA_BITMAP_SECURE_ENABLE_MASK | FFA_BITMAP_NS_ENABLE_MASK)
872
873
#define FFA_SECURE_PARTITION_ID_FLAG BIT(15)
874
875
#define SPM_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_LOW(x)
876
#define NS_HYP_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_HIGH(x)
877
#define FRAMEWORK_NOTIFY_RX_BUFFER_FULL BIT(0)
878
879
static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
880
u32 flags, bool is_bind)
881
{
882
ffa_value_t ret;
883
u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
884
885
func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
886
887
invoke_ffa_fn((ffa_value_t){
888
.a0 = func, .a1 = src_dst_ids, .a2 = flags,
889
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
890
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
891
}, &ret);
892
893
if (ret.a0 == FFA_ERROR)
894
return ffa_to_linux_errno((int)ret.a2);
895
else if (ret.a0 != FFA_SUCCESS)
896
return -EINVAL;
897
898
return 0;
899
}
900
901
static
902
int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
903
{
904
ffa_value_t ret;
905
u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
906
907
invoke_ffa_fn((ffa_value_t) {
908
.a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
909
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
910
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
911
}, &ret);
912
913
if (ret.a0 == FFA_ERROR)
914
return ffa_to_linux_errno((int)ret.a2);
915
else if (ret.a0 != FFA_SUCCESS)
916
return -EINVAL;
917
918
return 0;
919
}
920
921
struct ffa_notify_bitmaps {
922
u64 sp_map;
923
u64 vm_map;
924
u64 arch_map;
925
};
926
927
static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
928
{
929
ffa_value_t ret;
930
u16 src_id = drv_info->vm_id;
931
u16 cpu_id = smp_processor_id();
932
u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
933
934
invoke_ffa_fn((ffa_value_t){
935
.a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
936
}, &ret);
937
938
if (ret.a0 == FFA_ERROR)
939
return ffa_to_linux_errno((int)ret.a2);
940
else if (ret.a0 != FFA_SUCCESS)
941
return -EINVAL; /* Something else went wrong. */
942
943
if (flags & SECURE_PARTITION_BITMAP_ENABLE)
944
notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
945
if (flags & NON_SECURE_VM_BITMAP_ENABLE)
946
notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
947
if (flags & SPM_FRAMEWORK_BITMAP_ENABLE)
948
notify->arch_map = SPM_FRAMEWORK_BITMAP(ret.a6);
949
if (flags & NS_HYP_FRAMEWORK_BITMAP_ENABLE)
950
notify->arch_map = PACK_NOTIFICATION_BITMAP(notify->arch_map,
951
ret.a7);
952
953
return 0;
954
}
955
956
struct ffa_dev_part_info {
957
ffa_sched_recv_cb callback;
958
void *cb_data;
959
rwlock_t rw_lock;
960
struct ffa_device *dev;
961
struct list_head node;
962
};
963
964
static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu)
965
{
966
struct ffa_dev_part_info *partition = NULL, *tmp;
967
ffa_sched_recv_cb callback;
968
struct list_head *phead;
969
void *cb_data;
970
971
phead = xa_load(&drv_info->partition_info, part_id);
972
if (!phead) {
973
pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id);
974
return;
975
}
976
977
list_for_each_entry_safe(partition, tmp, phead, node) {
978
read_lock(&partition->rw_lock);
979
callback = partition->callback;
980
cb_data = partition->cb_data;
981
read_unlock(&partition->rw_lock);
982
983
if (callback)
984
callback(vcpu, is_per_vcpu, cb_data);
985
}
986
}
987
988
/*
989
* Map logical ID index to the u16 index within the packed ID list.
990
*
991
* For native responses (FF-A width == kernel word size), IDs are
992
* tightly packed: idx -> idx.
993
*
994
* For 32-bit responses on a 64-bit kernel, each 64-bit register
995
* contributes 4 x u16 values but only the lower 2 are defined; the
996
* upper 2 are garbage. This mapping skips those upper halves:
997
* 0,1,2,3,4,5,... -> 0,1,4,5,8,9,...
998
*/
999
static int list_idx_to_u16_idx(int idx, bool is_native_resp)
1000
{
1001
return is_native_resp ? idx : idx + 2 * (idx >> 1);
1002
}
1003
1004
static void ffa_notification_info_get(void)
1005
{
1006
int ids_processed, ids_count[MAX_IDS_64];
1007
int idx, list, max_ids, lists_cnt;
1008
bool is_64b_resp, is_native_resp;
1009
ffa_value_t ret;
1010
u64 id_list;
1011
1012
do {
1013
invoke_ffa_fn((ffa_value_t){
1014
.a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET),
1015
}, &ret);
1016
1017
if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) {
1018
if ((s32)ret.a2 != FFA_RET_NO_DATA)
1019
pr_err("Notification Info fetch failed: 0x%lx (0x%lx)",
1020
ret.a0, ret.a2);
1021
return;
1022
}
1023
1024
is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS);
1025
is_native_resp = (ret.a0 == FFA_FN_NATIVE(SUCCESS));
1026
1027
ids_processed = 0;
1028
lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2);
1029
if (is_64b_resp) {
1030
max_ids = MAX_IDS_64;
1031
id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2);
1032
} else {
1033
max_ids = MAX_IDS_32;
1034
id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2);
1035
}
1036
1037
for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2)
1038
ids_count[idx] = (id_list & 0x3) + 1;
1039
1040
/* Process IDs */
1041
for (list = 0; list < lists_cnt; list++) {
1042
int u16_idx;
1043
u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3;
1044
1045
if (ids_processed >= max_ids - 1)
1046
break;
1047
1048
u16_idx = list_idx_to_u16_idx(ids_processed,
1049
is_native_resp);
1050
part_id = packed_id_list[u16_idx];
1051
ids_processed++;
1052
1053
if (ids_count[list] == 1) { /* Global Notification */
1054
__do_sched_recv_cb(part_id, 0, false);
1055
continue;
1056
}
1057
1058
/* Per vCPU Notification */
1059
for (idx = 1; idx < ids_count[list]; idx++) {
1060
if (ids_processed >= max_ids - 1)
1061
break;
1062
1063
u16_idx = list_idx_to_u16_idx(ids_processed,
1064
is_native_resp);
1065
vcpu_id = packed_id_list[u16_idx];
1066
ids_processed++;
1067
1068
__do_sched_recv_cb(part_id, vcpu_id, true);
1069
}
1070
}
1071
} while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK);
1072
}
1073
1074
static int ffa_run(struct ffa_device *dev, u16 vcpu)
1075
{
1076
ffa_value_t ret;
1077
u32 target = dev->vm_id << 16 | vcpu;
1078
1079
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
1080
1081
while (ret.a0 == FFA_INTERRUPT)
1082
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
1083
&ret);
1084
1085
if (ret.a0 == FFA_ERROR)
1086
return ffa_to_linux_errno((int)ret.a2);
1087
1088
return 0;
1089
}
1090
1091
static void ffa_drvinfo_flags_init(void)
1092
{
1093
if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
1094
!ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
1095
drv_info->mem_ops_native = true;
1096
1097
if (!ffa_features(FFA_MSG_SEND_DIRECT_REQ2, 0, NULL, NULL) ||
1098
!ffa_features(FFA_MSG_SEND_DIRECT_RESP2, 0, NULL, NULL))
1099
drv_info->msg_direct_req2_supp = true;
1100
}
1101
1102
static u32 ffa_api_version_get(void)
1103
{
1104
return drv_info->version;
1105
}
1106
1107
static int ffa_partition_info_get(const char *uuid_str,
1108
struct ffa_partition_info *buffer)
1109
{
1110
int count;
1111
uuid_t uuid;
1112
struct ffa_partition_info *pbuf;
1113
1114
if (uuid_parse(uuid_str, &uuid)) {
1115
pr_err("invalid uuid (%s)\n", uuid_str);
1116
return -ENODEV;
1117
}
1118
1119
count = ffa_partition_probe(&uuid, &pbuf);
1120
if (count <= 0)
1121
return -ENOENT;
1122
1123
memcpy(buffer, pbuf, sizeof(*pbuf) * count);
1124
kfree(pbuf);
1125
return 0;
1126
}
1127
1128
static void ffa_mode_32bit_set(struct ffa_device *dev)
1129
{
1130
dev->mode_32bit = true;
1131
}
1132
1133
static int ffa_sync_send_receive(struct ffa_device *dev,
1134
struct ffa_send_direct_data *data)
1135
{
1136
return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
1137
dev->mode_32bit, data);
1138
}
1139
1140
static int ffa_indirect_msg_send(struct ffa_device *dev, void *buf, size_t sz)
1141
{
1142
return ffa_msg_send2(dev, drv_info->vm_id, buf, sz);
1143
}
1144
1145
static int ffa_sync_send_receive2(struct ffa_device *dev,
1146
struct ffa_send_direct_data2 *data)
1147
{
1148
if (!drv_info->msg_direct_req2_supp)
1149
return -EOPNOTSUPP;
1150
1151
return ffa_msg_send_direct_req2(drv_info->vm_id, dev->vm_id,
1152
&dev->uuid, data);
1153
}
1154
1155
static int ffa_memory_share(struct ffa_mem_ops_args *args)
1156
{
1157
if (drv_info->mem_ops_native)
1158
return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
1159
1160
return ffa_memory_ops(FFA_MEM_SHARE, args);
1161
}
1162
1163
static int ffa_memory_lend(struct ffa_mem_ops_args *args)
1164
{
1165
/* Note that upon a successful MEM_LEND request the caller
1166
* must ensure that the memory region specified is not accessed
1167
* until a successful MEM_RECALIM call has been made.
1168
* On systems with a hypervisor present this will been enforced,
1169
* however on systems without a hypervisor the responsibility
1170
* falls to the calling kernel driver to prevent access.
1171
*/
1172
if (drv_info->mem_ops_native)
1173
return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
1174
1175
return ffa_memory_ops(FFA_MEM_LEND, args);
1176
}
1177
1178
#define ffa_notifications_disabled() (!drv_info->notif_enabled)
1179
1180
struct notifier_cb_info {
1181
struct hlist_node hnode;
1182
struct ffa_device *dev;
1183
ffa_fwk_notifier_cb fwk_cb;
1184
ffa_notifier_cb cb;
1185
void *cb_data;
1186
};
1187
1188
static int
1189
ffa_sched_recv_cb_update(struct ffa_device *dev, ffa_sched_recv_cb callback,
1190
void *cb_data, bool is_registration)
1191
{
1192
struct ffa_dev_part_info *partition = NULL, *tmp;
1193
struct list_head *phead;
1194
bool cb_valid;
1195
1196
if (ffa_notifications_disabled())
1197
return -EOPNOTSUPP;
1198
1199
phead = xa_load(&drv_info->partition_info, dev->vm_id);
1200
if (!phead) {
1201
pr_err("%s: Invalid partition ID 0x%x\n", __func__, dev->vm_id);
1202
return -EINVAL;
1203
}
1204
1205
list_for_each_entry_safe(partition, tmp, phead, node)
1206
if (partition->dev == dev)
1207
break;
1208
1209
if (!partition) {
1210
pr_err("%s: No such partition ID 0x%x\n", __func__, dev->vm_id);
1211
return -EINVAL;
1212
}
1213
1214
write_lock(&partition->rw_lock);
1215
1216
cb_valid = !!partition->callback;
1217
if (!(is_registration ^ cb_valid)) {
1218
write_unlock(&partition->rw_lock);
1219
return -EINVAL;
1220
}
1221
1222
partition->callback = callback;
1223
partition->cb_data = cb_data;
1224
1225
write_unlock(&partition->rw_lock);
1226
return 0;
1227
}
1228
1229
static int ffa_sched_recv_cb_register(struct ffa_device *dev,
1230
ffa_sched_recv_cb cb, void *cb_data)
1231
{
1232
return ffa_sched_recv_cb_update(dev, cb, cb_data, true);
1233
}
1234
1235
static int ffa_sched_recv_cb_unregister(struct ffa_device *dev)
1236
{
1237
return ffa_sched_recv_cb_update(dev, NULL, NULL, false);
1238
}
1239
1240
static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags)
1241
{
1242
return ffa_notification_bind_common(dst_id, bitmap, flags, true);
1243
}
1244
1245
static int ffa_notification_unbind(u16 dst_id, u64 bitmap)
1246
{
1247
return ffa_notification_bind_common(dst_id, bitmap, 0, false);
1248
}
1249
1250
static enum notify_type ffa_notify_type_get(u16 vm_id)
1251
{
1252
if (vm_id & FFA_SECURE_PARTITION_ID_FLAG)
1253
return SECURE_PARTITION;
1254
else
1255
return NON_SECURE_VM;
1256
}
1257
1258
/* notifier_hnode_get* should be called with notify_lock held */
1259
static struct notifier_cb_info *
1260
notifier_hnode_get_by_vmid(u16 notify_id, int vmid)
1261
{
1262
struct notifier_cb_info *node;
1263
1264
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1265
if (node->fwk_cb && vmid == node->dev->vm_id)
1266
return node;
1267
1268
return NULL;
1269
}
1270
1271
static struct notifier_cb_info *
1272
notifier_hnode_get_by_vmid_uuid(u16 notify_id, int vmid, const uuid_t *uuid)
1273
{
1274
struct notifier_cb_info *node;
1275
1276
if (uuid_is_null(uuid))
1277
return notifier_hnode_get_by_vmid(notify_id, vmid);
1278
1279
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1280
if (node->fwk_cb && vmid == node->dev->vm_id &&
1281
uuid_equal(&node->dev->uuid, uuid))
1282
return node;
1283
1284
return NULL;
1285
}
1286
1287
static struct notifier_cb_info *
1288
notifier_hnode_get_by_type(u16 notify_id, enum notify_type type)
1289
{
1290
struct notifier_cb_info *node;
1291
1292
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1293
if (node->cb && type == ffa_notify_type_get(node->dev->vm_id))
1294
return node;
1295
1296
return NULL;
1297
}
1298
1299
static int update_notifier_cb(struct ffa_device *dev, int notify_id,
1300
struct notifier_cb_info *cb, bool is_framework)
1301
{
1302
struct notifier_cb_info *cb_info = NULL;
1303
enum notify_type type = ffa_notify_type_get(dev->vm_id);
1304
bool cb_found, is_registration = !!cb;
1305
1306
if (is_framework)
1307
cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, dev->vm_id,
1308
&dev->uuid);
1309
else
1310
cb_info = notifier_hnode_get_by_type(notify_id, type);
1311
1312
cb_found = !!cb_info;
1313
1314
if (!(is_registration ^ cb_found))
1315
return -EINVAL;
1316
1317
if (is_registration) {
1318
hash_add(drv_info->notifier_hash, &cb->hnode, notify_id);
1319
} else {
1320
hash_del(&cb_info->hnode);
1321
kfree(cb_info);
1322
}
1323
1324
return 0;
1325
}
1326
1327
static int __ffa_notify_relinquish(struct ffa_device *dev, int notify_id,
1328
bool is_framework)
1329
{
1330
int rc;
1331
1332
if (ffa_notifications_disabled())
1333
return -EOPNOTSUPP;
1334
1335
if (notify_id >= FFA_MAX_NOTIFICATIONS)
1336
return -EINVAL;
1337
1338
write_lock(&drv_info->notify_lock);
1339
1340
rc = update_notifier_cb(dev, notify_id, NULL, is_framework);
1341
if (rc) {
1342
pr_err("Could not unregister notification callback\n");
1343
write_unlock(&drv_info->notify_lock);
1344
return rc;
1345
}
1346
1347
if (!is_framework)
1348
rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1349
1350
write_unlock(&drv_info->notify_lock);
1351
1352
return rc;
1353
}
1354
1355
static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id)
1356
{
1357
return __ffa_notify_relinquish(dev, notify_id, false);
1358
}
1359
1360
static int ffa_fwk_notify_relinquish(struct ffa_device *dev, int notify_id)
1361
{
1362
return __ffa_notify_relinquish(dev, notify_id, true);
1363
}
1364
1365
static int __ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1366
void *cb, void *cb_data,
1367
int notify_id, bool is_framework)
1368
{
1369
int rc;
1370
u32 flags = 0;
1371
struct notifier_cb_info *cb_info = NULL;
1372
1373
if (ffa_notifications_disabled())
1374
return -EOPNOTSUPP;
1375
1376
if (notify_id >= FFA_MAX_NOTIFICATIONS)
1377
return -EINVAL;
1378
1379
cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL);
1380
if (!cb_info)
1381
return -ENOMEM;
1382
1383
cb_info->dev = dev;
1384
cb_info->cb_data = cb_data;
1385
if (is_framework)
1386
cb_info->fwk_cb = cb;
1387
else
1388
cb_info->cb = cb;
1389
1390
write_lock(&drv_info->notify_lock);
1391
1392
if (!is_framework) {
1393
if (is_per_vcpu)
1394
flags = PER_VCPU_NOTIFICATION_FLAG;
1395
1396
rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags);
1397
if (rc)
1398
goto out_unlock_free;
1399
}
1400
1401
rc = update_notifier_cb(dev, notify_id, cb_info, is_framework);
1402
if (rc) {
1403
pr_err("Failed to register callback for %d - %d\n",
1404
notify_id, rc);
1405
if (!is_framework)
1406
ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1407
}
1408
1409
out_unlock_free:
1410
write_unlock(&drv_info->notify_lock);
1411
if (rc)
1412
kfree(cb_info);
1413
1414
return rc;
1415
}
1416
1417
static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1418
ffa_notifier_cb cb, void *cb_data, int notify_id)
1419
{
1420
return __ffa_notify_request(dev, is_per_vcpu, cb, cb_data, notify_id,
1421
false);
1422
}
1423
1424
static int
1425
ffa_fwk_notify_request(struct ffa_device *dev, ffa_fwk_notifier_cb cb,
1426
void *cb_data, int notify_id)
1427
{
1428
return __ffa_notify_request(dev, false, cb, cb_data, notify_id, true);
1429
}
1430
1431
static int ffa_notify_send(struct ffa_device *dev, int notify_id,
1432
bool is_per_vcpu, u16 vcpu)
1433
{
1434
u32 flags = 0;
1435
1436
if (ffa_notifications_disabled())
1437
return -EOPNOTSUPP;
1438
1439
if (is_per_vcpu)
1440
flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16);
1441
1442
return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags,
1443
BIT(notify_id));
1444
}
1445
1446
static void handle_notif_callbacks(u64 bitmap, enum notify_type type)
1447
{
1448
int notify_id;
1449
struct notifier_cb_info *cb_info = NULL;
1450
1451
for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap;
1452
notify_id++, bitmap >>= 1) {
1453
if (!(bitmap & 1))
1454
continue;
1455
1456
read_lock(&drv_info->notify_lock);
1457
cb_info = notifier_hnode_get_by_type(notify_id, type);
1458
read_unlock(&drv_info->notify_lock);
1459
1460
if (cb_info && cb_info->cb)
1461
cb_info->cb(notify_id, cb_info->cb_data);
1462
}
1463
}
1464
1465
static void handle_fwk_notif_callbacks(u32 bitmap)
1466
{
1467
void *buf;
1468
uuid_t uuid;
1469
int notify_id = 0, target;
1470
struct ffa_indirect_msg_hdr *msg;
1471
struct notifier_cb_info *cb_info = NULL;
1472
1473
/* Only one framework notification defined and supported for now */
1474
if (!(bitmap & FRAMEWORK_NOTIFY_RX_BUFFER_FULL))
1475
return;
1476
1477
mutex_lock(&drv_info->rx_lock);
1478
1479
msg = drv_info->rx_buffer;
1480
buf = kmemdup((void *)msg + msg->offset, msg->size, GFP_KERNEL);
1481
if (!buf) {
1482
mutex_unlock(&drv_info->rx_lock);
1483
return;
1484
}
1485
1486
target = SENDER_ID(msg->send_recv_id);
1487
if (msg->offset >= sizeof(*msg))
1488
uuid_copy(&uuid, &msg->uuid);
1489
else
1490
uuid_copy(&uuid, &uuid_null);
1491
1492
mutex_unlock(&drv_info->rx_lock);
1493
1494
ffa_rx_release();
1495
1496
read_lock(&drv_info->notify_lock);
1497
cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, target, &uuid);
1498
read_unlock(&drv_info->notify_lock);
1499
1500
if (cb_info && cb_info->fwk_cb)
1501
cb_info->fwk_cb(notify_id, cb_info->cb_data, buf);
1502
kfree(buf);
1503
}
1504
1505
static void notif_get_and_handle(void *cb_data)
1506
{
1507
int rc;
1508
u32 flags;
1509
struct ffa_drv_info *info = cb_data;
1510
struct ffa_notify_bitmaps bitmaps = { 0 };
1511
1512
if (info->vm_id == 0) /* Non secure physical instance */
1513
flags = FFA_BITMAP_SECURE_ENABLE_MASK;
1514
else
1515
flags = FFA_BITMAP_ALL_ENABLE_MASK;
1516
1517
rc = ffa_notification_get(flags, &bitmaps);
1518
if (rc) {
1519
pr_err("Failed to retrieve notifications with %d!\n", rc);
1520
return;
1521
}
1522
1523
handle_fwk_notif_callbacks(SPM_FRAMEWORK_BITMAP(bitmaps.arch_map));
1524
handle_fwk_notif_callbacks(NS_HYP_FRAMEWORK_BITMAP(bitmaps.arch_map));
1525
handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM);
1526
handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION);
1527
}
1528
1529
static void
1530
ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data)
1531
{
1532
struct ffa_drv_info *info = cb_data;
1533
1534
if (!is_per_vcpu)
1535
notif_get_and_handle(info);
1536
else
1537
smp_call_function_single(vcpu, notif_get_and_handle, info, 0);
1538
}
1539
1540
static void notif_pcpu_irq_work_fn(struct work_struct *work)
1541
{
1542
struct ffa_drv_info *info = container_of(work, struct ffa_drv_info,
1543
notif_pcpu_work);
1544
1545
ffa_self_notif_handle(smp_processor_id(), true, info);
1546
}
1547
1548
static const struct ffa_info_ops ffa_drv_info_ops = {
1549
.api_version_get = ffa_api_version_get,
1550
.partition_info_get = ffa_partition_info_get,
1551
};
1552
1553
static const struct ffa_msg_ops ffa_drv_msg_ops = {
1554
.mode_32bit_set = ffa_mode_32bit_set,
1555
.sync_send_receive = ffa_sync_send_receive,
1556
.indirect_send = ffa_indirect_msg_send,
1557
.sync_send_receive2 = ffa_sync_send_receive2,
1558
};
1559
1560
static const struct ffa_mem_ops ffa_drv_mem_ops = {
1561
.memory_reclaim = ffa_memory_reclaim,
1562
.memory_share = ffa_memory_share,
1563
.memory_lend = ffa_memory_lend,
1564
};
1565
1566
static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
1567
.run = ffa_run,
1568
};
1569
1570
static const struct ffa_notifier_ops ffa_drv_notifier_ops = {
1571
.sched_recv_cb_register = ffa_sched_recv_cb_register,
1572
.sched_recv_cb_unregister = ffa_sched_recv_cb_unregister,
1573
.notify_request = ffa_notify_request,
1574
.notify_relinquish = ffa_notify_relinquish,
1575
.fwk_notify_request = ffa_fwk_notify_request,
1576
.fwk_notify_relinquish = ffa_fwk_notify_relinquish,
1577
.notify_send = ffa_notify_send,
1578
};
1579
1580
static const struct ffa_ops ffa_drv_ops = {
1581
.info_ops = &ffa_drv_info_ops,
1582
.msg_ops = &ffa_drv_msg_ops,
1583
.mem_ops = &ffa_drv_mem_ops,
1584
.cpu_ops = &ffa_drv_cpu_ops,
1585
.notifier_ops = &ffa_drv_notifier_ops,
1586
};
1587
1588
void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
1589
{
1590
int count, idx;
1591
struct ffa_partition_info *pbuf, *tpbuf;
1592
1593
count = ffa_partition_probe(uuid, &pbuf);
1594
if (count <= 0)
1595
return;
1596
1597
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
1598
if (tpbuf->id == ffa_dev->vm_id)
1599
uuid_copy(&ffa_dev->uuid, uuid);
1600
kfree(pbuf);
1601
}
1602
1603
static int
1604
ffa_bus_notifier(struct notifier_block *nb, unsigned long action, void *data)
1605
{
1606
struct device *dev = data;
1607
struct ffa_device *fdev = to_ffa_dev(dev);
1608
1609
if (action == BUS_NOTIFY_BIND_DRIVER) {
1610
struct ffa_driver *ffa_drv = to_ffa_driver(dev->driver);
1611
const struct ffa_device_id *id_table = ffa_drv->id_table;
1612
1613
/*
1614
* FF-A v1.1 provides UUID for each partition as part of the
1615
* discovery API, the discovered UUID must be populated in the
1616
* device's UUID and there is no need to workaround by copying
1617
* the same from the driver table.
1618
*/
1619
if (uuid_is_null(&fdev->uuid))
1620
ffa_device_match_uuid(fdev, &id_table->uuid);
1621
1622
return NOTIFY_OK;
1623
}
1624
1625
return NOTIFY_DONE;
1626
}
1627
1628
static struct notifier_block ffa_bus_nb = {
1629
.notifier_call = ffa_bus_notifier,
1630
};
1631
1632
static int ffa_xa_add_partition_info(struct ffa_device *dev)
1633
{
1634
struct ffa_dev_part_info *info;
1635
struct list_head *head, *phead;
1636
int ret = -ENOMEM;
1637
1638
phead = xa_load(&drv_info->partition_info, dev->vm_id);
1639
if (phead) {
1640
head = phead;
1641
list_for_each_entry(info, head, node) {
1642
if (info->dev == dev) {
1643
pr_err("%s: duplicate dev %p part ID 0x%x\n",
1644
__func__, dev, dev->vm_id);
1645
return -EEXIST;
1646
}
1647
}
1648
}
1649
1650
info = kzalloc(sizeof(*info), GFP_KERNEL);
1651
if (!info)
1652
return ret;
1653
1654
rwlock_init(&info->rw_lock);
1655
info->dev = dev;
1656
1657
if (!phead) {
1658
phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1659
if (!phead)
1660
goto free_out;
1661
1662
INIT_LIST_HEAD(phead);
1663
1664
ret = xa_insert(&drv_info->partition_info, dev->vm_id, phead,
1665
GFP_KERNEL);
1666
if (ret) {
1667
pr_err("%s: failed to save part ID 0x%x Ret:%d\n",
1668
__func__, dev->vm_id, ret);
1669
goto free_out;
1670
}
1671
}
1672
list_add(&info->node, phead);
1673
return 0;
1674
1675
free_out:
1676
kfree(phead);
1677
kfree(info);
1678
return ret;
1679
}
1680
1681
static int ffa_setup_host_partition(int vm_id)
1682
{
1683
struct ffa_partition_info buf = { 0 };
1684
struct ffa_device *ffa_dev;
1685
int ret;
1686
1687
buf.id = vm_id;
1688
ffa_dev = ffa_device_register(&buf, &ffa_drv_ops);
1689
if (!ffa_dev) {
1690
pr_err("%s: failed to register host partition ID 0x%x\n",
1691
__func__, vm_id);
1692
return -EINVAL;
1693
}
1694
1695
ret = ffa_xa_add_partition_info(ffa_dev);
1696
if (ret)
1697
return ret;
1698
1699
if (ffa_notifications_disabled())
1700
return 0;
1701
1702
ret = ffa_sched_recv_cb_update(ffa_dev, ffa_self_notif_handle,
1703
drv_info, true);
1704
if (ret)
1705
pr_info("Failed to register driver sched callback %d\n", ret);
1706
1707
return ret;
1708
}
1709
1710
static void ffa_partitions_cleanup(void)
1711
{
1712
struct list_head *phead;
1713
unsigned long idx;
1714
1715
/* Clean up/free all registered devices */
1716
ffa_devices_unregister();
1717
1718
xa_for_each(&drv_info->partition_info, idx, phead) {
1719
struct ffa_dev_part_info *info, *tmp;
1720
1721
xa_erase(&drv_info->partition_info, idx);
1722
list_for_each_entry_safe(info, tmp, phead, node) {
1723
list_del(&info->node);
1724
kfree(info);
1725
}
1726
kfree(phead);
1727
}
1728
1729
xa_destroy(&drv_info->partition_info);
1730
}
1731
1732
static int ffa_setup_partitions(void)
1733
{
1734
int count, idx, ret;
1735
struct ffa_device *ffa_dev;
1736
struct ffa_partition_info *pbuf, *tpbuf;
1737
1738
if (!FFA_PART_INFO_HAS_UUID_IN_RESP(drv_info->version)) {
1739
ret = bus_register_notifier(&ffa_bus_type, &ffa_bus_nb);
1740
if (ret)
1741
pr_err("Failed to register FF-A bus notifiers\n");
1742
}
1743
1744
count = ffa_partition_probe(&uuid_null, &pbuf);
1745
if (count <= 0) {
1746
pr_info("%s: No partitions found, error %d\n", __func__, count);
1747
return -EINVAL;
1748
}
1749
1750
xa_init(&drv_info->partition_info);
1751
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
1752
/* Note that if the UUID will be uuid_null, that will require
1753
* ffa_bus_notifier() to find the UUID of this partition id
1754
* with help of ffa_device_match_uuid(). FF-A v1.1 and above
1755
* provides UUID here for each partition as part of the
1756
* discovery API and the same is passed.
1757
*/
1758
ffa_dev = ffa_device_register(tpbuf, &ffa_drv_ops);
1759
if (!ffa_dev) {
1760
pr_err("%s: failed to register partition ID 0x%x\n",
1761
__func__, tpbuf->id);
1762
continue;
1763
}
1764
1765
if (FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(drv_info->version) &&
1766
!(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
1767
ffa_mode_32bit_set(ffa_dev);
1768
1769
if (ffa_xa_add_partition_info(ffa_dev)) {
1770
ffa_device_unregister(ffa_dev);
1771
continue;
1772
}
1773
}
1774
1775
kfree(pbuf);
1776
1777
/*
1778
* Check if the host is already added as part of partition info
1779
* No multiple UUID possible for the host, so just checking if
1780
* there is an entry will suffice
1781
*/
1782
if (xa_load(&drv_info->partition_info, drv_info->vm_id))
1783
return 0;
1784
1785
/* Allocate for the host */
1786
ret = ffa_setup_host_partition(drv_info->vm_id);
1787
if (ret)
1788
ffa_partitions_cleanup();
1789
1790
return ret;
1791
}
1792
1793
/* FFA FEATURE IDs */
1794
#define FFA_FEAT_NOTIFICATION_PENDING_INT (1)
1795
#define FFA_FEAT_SCHEDULE_RECEIVER_INT (2)
1796
#define FFA_FEAT_MANAGED_EXIT_INT (3)
1797
1798
static irqreturn_t ffa_sched_recv_irq_handler(int irq, void *irq_data)
1799
{
1800
struct ffa_pcpu_irq *pcpu = irq_data;
1801
struct ffa_drv_info *info = pcpu->info;
1802
1803
queue_work(info->notif_pcpu_wq, &info->sched_recv_irq_work);
1804
1805
return IRQ_HANDLED;
1806
}
1807
1808
static irqreturn_t notif_pend_irq_handler(int irq, void *irq_data)
1809
{
1810
struct ffa_pcpu_irq *pcpu = irq_data;
1811
struct ffa_drv_info *info = pcpu->info;
1812
1813
queue_work_on(smp_processor_id(), info->notif_pcpu_wq,
1814
&info->notif_pcpu_work);
1815
1816
return IRQ_HANDLED;
1817
}
1818
1819
static void ffa_sched_recv_irq_work_fn(struct work_struct *work)
1820
{
1821
ffa_notification_info_get();
1822
}
1823
1824
static int ffa_irq_map(u32 id)
1825
{
1826
char *err_str;
1827
int ret, irq, intid;
1828
1829
if (id == FFA_FEAT_NOTIFICATION_PENDING_INT)
1830
err_str = "Notification Pending Interrupt";
1831
else if (id == FFA_FEAT_SCHEDULE_RECEIVER_INT)
1832
err_str = "Schedule Receiver Interrupt";
1833
else
1834
err_str = "Unknown ID";
1835
1836
/* The returned intid is assumed to be SGI donated to NS world */
1837
ret = ffa_features(id, 0, &intid, NULL);
1838
if (ret < 0) {
1839
if (ret != -EOPNOTSUPP)
1840
pr_err("Failed to retrieve FF-A %s %u\n", err_str, id);
1841
return ret;
1842
}
1843
1844
if (acpi_disabled) {
1845
struct of_phandle_args oirq = {};
1846
struct device_node *gic;
1847
1848
/* Only GICv3 supported currently with the device tree */
1849
gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1850
if (!gic)
1851
return -ENXIO;
1852
1853
oirq.np = gic;
1854
oirq.args_count = 1;
1855
oirq.args[0] = intid;
1856
irq = irq_create_of_mapping(&oirq);
1857
of_node_put(gic);
1858
#ifdef CONFIG_ACPI
1859
} else {
1860
irq = acpi_register_gsi(NULL, intid, ACPI_EDGE_SENSITIVE,
1861
ACPI_ACTIVE_HIGH);
1862
#endif
1863
}
1864
1865
if (irq <= 0) {
1866
pr_err("Failed to create IRQ mapping!\n");
1867
return -ENODATA;
1868
}
1869
1870
return irq;
1871
}
1872
1873
static void ffa_irq_unmap(unsigned int irq)
1874
{
1875
if (!irq)
1876
return;
1877
irq_dispose_mapping(irq);
1878
}
1879
1880
static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu)
1881
{
1882
if (drv_info->sched_recv_irq)
1883
enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE);
1884
if (drv_info->notif_pend_irq)
1885
enable_percpu_irq(drv_info->notif_pend_irq, IRQ_TYPE_NONE);
1886
return 0;
1887
}
1888
1889
static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu)
1890
{
1891
if (drv_info->sched_recv_irq)
1892
disable_percpu_irq(drv_info->sched_recv_irq);
1893
if (drv_info->notif_pend_irq)
1894
disable_percpu_irq(drv_info->notif_pend_irq);
1895
return 0;
1896
}
1897
1898
static void ffa_uninit_pcpu_irq(void)
1899
{
1900
if (drv_info->cpuhp_state) {
1901
cpuhp_remove_state(drv_info->cpuhp_state);
1902
drv_info->cpuhp_state = 0;
1903
}
1904
1905
if (drv_info->notif_pcpu_wq) {
1906
destroy_workqueue(drv_info->notif_pcpu_wq);
1907
drv_info->notif_pcpu_wq = NULL;
1908
}
1909
1910
if (drv_info->sched_recv_irq)
1911
free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu);
1912
1913
if (drv_info->notif_pend_irq)
1914
free_percpu_irq(drv_info->notif_pend_irq, drv_info->irq_pcpu);
1915
1916
if (drv_info->irq_pcpu) {
1917
free_percpu(drv_info->irq_pcpu);
1918
drv_info->irq_pcpu = NULL;
1919
}
1920
}
1921
1922
static int ffa_init_pcpu_irq(void)
1923
{
1924
struct ffa_pcpu_irq __percpu *irq_pcpu;
1925
int ret, cpu;
1926
1927
irq_pcpu = alloc_percpu(struct ffa_pcpu_irq);
1928
if (!irq_pcpu)
1929
return -ENOMEM;
1930
1931
for_each_present_cpu(cpu)
1932
per_cpu_ptr(irq_pcpu, cpu)->info = drv_info;
1933
1934
drv_info->irq_pcpu = irq_pcpu;
1935
1936
if (drv_info->sched_recv_irq) {
1937
ret = request_percpu_irq(drv_info->sched_recv_irq,
1938
ffa_sched_recv_irq_handler,
1939
"ARM-FFA-SRI", irq_pcpu);
1940
if (ret) {
1941
pr_err("Error registering percpu SRI nIRQ %d : %d\n",
1942
drv_info->sched_recv_irq, ret);
1943
drv_info->sched_recv_irq = 0;
1944
return ret;
1945
}
1946
}
1947
1948
if (drv_info->notif_pend_irq) {
1949
ret = request_percpu_irq(drv_info->notif_pend_irq,
1950
notif_pend_irq_handler,
1951
"ARM-FFA-NPI", irq_pcpu);
1952
if (ret) {
1953
pr_err("Error registering percpu NPI nIRQ %d : %d\n",
1954
drv_info->notif_pend_irq, ret);
1955
drv_info->notif_pend_irq = 0;
1956
return ret;
1957
}
1958
}
1959
1960
INIT_WORK(&drv_info->sched_recv_irq_work, ffa_sched_recv_irq_work_fn);
1961
INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn);
1962
drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification");
1963
if (!drv_info->notif_pcpu_wq)
1964
return -EINVAL;
1965
1966
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting",
1967
ffa_cpuhp_pcpu_irq_enable,
1968
ffa_cpuhp_pcpu_irq_disable);
1969
1970
if (ret < 0)
1971
return ret;
1972
1973
drv_info->cpuhp_state = ret;
1974
return 0;
1975
}
1976
1977
static void ffa_notifications_cleanup(void)
1978
{
1979
ffa_uninit_pcpu_irq();
1980
ffa_irq_unmap(drv_info->sched_recv_irq);
1981
drv_info->sched_recv_irq = 0;
1982
ffa_irq_unmap(drv_info->notif_pend_irq);
1983
drv_info->notif_pend_irq = 0;
1984
1985
if (drv_info->bitmap_created) {
1986
ffa_notification_bitmap_destroy();
1987
drv_info->bitmap_created = false;
1988
}
1989
drv_info->notif_enabled = false;
1990
}
1991
1992
static void ffa_notifications_setup(void)
1993
{
1994
int ret;
1995
1996
ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
1997
if (!ret) {
1998
ret = ffa_notification_bitmap_create();
1999
if (ret) {
2000
pr_err("Notification bitmap create error %d\n", ret);
2001
return;
2002
}
2003
2004
drv_info->bitmap_created = true;
2005
}
2006
2007
ret = ffa_irq_map(FFA_FEAT_SCHEDULE_RECEIVER_INT);
2008
if (ret > 0)
2009
drv_info->sched_recv_irq = ret;
2010
2011
ret = ffa_irq_map(FFA_FEAT_NOTIFICATION_PENDING_INT);
2012
if (ret > 0)
2013
drv_info->notif_pend_irq = ret;
2014
2015
if (!drv_info->sched_recv_irq && !drv_info->notif_pend_irq)
2016
goto cleanup;
2017
2018
ret = ffa_init_pcpu_irq();
2019
if (ret)
2020
goto cleanup;
2021
2022
hash_init(drv_info->notifier_hash);
2023
rwlock_init(&drv_info->notify_lock);
2024
2025
drv_info->notif_enabled = true;
2026
return;
2027
cleanup:
2028
pr_info("Notification setup failed %d, not enabled\n", ret);
2029
ffa_notifications_cleanup();
2030
}
2031
2032
static int __init ffa_init(void)
2033
{
2034
int ret;
2035
u32 buf_sz;
2036
size_t rxtx_bufsz = SZ_4K;
2037
2038
ret = ffa_transport_init(&invoke_ffa_fn);
2039
if (ret)
2040
return ret;
2041
2042
drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
2043
if (!drv_info)
2044
return -ENOMEM;
2045
2046
ret = ffa_version_check(&drv_info->version);
2047
if (ret)
2048
goto free_drv_info;
2049
2050
if (ffa_id_get(&drv_info->vm_id)) {
2051
pr_err("failed to obtain VM id for self\n");
2052
ret = -ENODEV;
2053
goto free_drv_info;
2054
}
2055
2056
ret = ffa_features(FFA_FN_NATIVE(RXTX_MAP), 0, &buf_sz, NULL);
2057
if (!ret) {
2058
if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 1)
2059
rxtx_bufsz = SZ_64K;
2060
else if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 2)
2061
rxtx_bufsz = SZ_16K;
2062
else
2063
rxtx_bufsz = SZ_4K;
2064
}
2065
2066
drv_info->rxtx_bufsz = rxtx_bufsz;
2067
drv_info->rx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2068
if (!drv_info->rx_buffer) {
2069
ret = -ENOMEM;
2070
goto free_pages;
2071
}
2072
2073
drv_info->tx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2074
if (!drv_info->tx_buffer) {
2075
ret = -ENOMEM;
2076
goto free_pages;
2077
}
2078
2079
ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
2080
virt_to_phys(drv_info->rx_buffer),
2081
rxtx_bufsz / FFA_PAGE_SIZE);
2082
if (ret) {
2083
pr_err("failed to register FFA RxTx buffers\n");
2084
goto free_pages;
2085
}
2086
2087
mutex_init(&drv_info->rx_lock);
2088
mutex_init(&drv_info->tx_lock);
2089
2090
ffa_drvinfo_flags_init();
2091
2092
ffa_notifications_setup();
2093
2094
ret = ffa_setup_partitions();
2095
if (!ret)
2096
return ret;
2097
2098
pr_err("failed to setup partitions\n");
2099
ffa_notifications_cleanup();
2100
ffa_rxtx_unmap(drv_info->vm_id);
2101
free_pages:
2102
if (drv_info->tx_buffer)
2103
free_pages_exact(drv_info->tx_buffer, rxtx_bufsz);
2104
free_pages_exact(drv_info->rx_buffer, rxtx_bufsz);
2105
free_drv_info:
2106
kfree(drv_info);
2107
return ret;
2108
}
2109
rootfs_initcall(ffa_init);
2110
2111
static void __exit ffa_exit(void)
2112
{
2113
ffa_notifications_cleanup();
2114
ffa_partitions_cleanup();
2115
ffa_rxtx_unmap(drv_info->vm_id);
2116
free_pages_exact(drv_info->tx_buffer, drv_info->rxtx_bufsz);
2117
free_pages_exact(drv_info->rx_buffer, drv_info->rxtx_bufsz);
2118
kfree(drv_info);
2119
}
2120
module_exit(ffa_exit);
2121
2122
MODULE_ALIAS("arm-ffa");
2123
MODULE_AUTHOR("Sudeep Holla <[email protected]>");
2124
MODULE_DESCRIPTION("Arm FF-A interface driver");
2125
MODULE_LICENSE("GPL v2");
2126
2127