Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gpuvm.c
29285 views
1
// SPDX-License-Identifier: MIT
2
/*
3
* Copyright 2014-2018 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
#include <linux/dma-buf.h>
24
#include <linux/list.h>
25
#include <linux/pagemap.h>
26
#include <linux/sched/mm.h>
27
#include <linux/sched/task.h>
28
#include <drm/ttm/ttm_tt.h>
29
30
#include <drm/drm_exec.h>
31
32
#include "amdgpu_object.h"
33
#include "amdgpu_gem.h"
34
#include "amdgpu_vm.h"
35
#include "amdgpu_hmm.h"
36
#include "amdgpu_amdkfd.h"
37
#include "amdgpu_dma_buf.h"
38
#include <uapi/linux/kfd_ioctl.h>
39
#include "amdgpu_xgmi.h"
40
#include "kfd_priv.h"
41
#include "kfd_smi_events.h"
42
43
/* Userptr restore delay, just long enough to allow consecutive VM
44
* changes to accumulate
45
*/
46
#define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
47
#define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29)
48
49
/*
50
* Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
51
* BO chunk
52
*/
53
#define VRAM_AVAILABLITY_ALIGN (1 << 21)
54
55
/* Impose limit on how much memory KFD can use */
56
static struct {
57
uint64_t max_system_mem_limit;
58
uint64_t max_ttm_mem_limit;
59
int64_t system_mem_used;
60
int64_t ttm_mem_used;
61
spinlock_t mem_limit_lock;
62
} kfd_mem_limit;
63
64
static const char * const domain_bit_to_string[] = {
65
"CPU",
66
"GTT",
67
"VRAM",
68
"GDS",
69
"GWS",
70
"OA"
71
};
72
73
#define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
74
75
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
76
77
static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
78
struct kgd_mem *mem)
79
{
80
struct kfd_mem_attachment *entry;
81
82
list_for_each_entry(entry, &mem->attachments, list)
83
if (entry->bo_va->base.vm == avm)
84
return true;
85
86
return false;
87
}
88
89
/**
90
* reuse_dmamap() - Check whether adev can share the original
91
* userptr BO
92
*
93
* If both adev and bo_adev are in direct mapping or
94
* in the same iommu group, they can share the original BO.
95
*
96
* @adev: Device to which can or cannot share the original BO
97
* @bo_adev: Device to which allocated BO belongs to
98
*
99
* Return: returns true if adev can share original userptr BO,
100
* false otherwise.
101
*/
102
static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
103
{
104
return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
105
(adev->dev->iommu_group == bo_adev->dev->iommu_group);
106
}
107
108
/* Set memory usage limits. Current, limits are
109
* System (TTM + userptr) memory - 15/16th System RAM
110
* TTM memory - 3/8th System RAM
111
*/
112
void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
113
{
114
struct sysinfo si;
115
uint64_t mem;
116
117
if (kfd_mem_limit.max_system_mem_limit)
118
return;
119
120
si_meminfo(&si);
121
mem = si.totalram - si.totalhigh;
122
mem *= si.mem_unit;
123
124
spin_lock_init(&kfd_mem_limit.mem_limit_lock);
125
kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
126
if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
127
kfd_mem_limit.max_system_mem_limit >>= 1;
128
else
129
kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
130
131
kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
132
pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
133
(kfd_mem_limit.max_system_mem_limit >> 20),
134
(kfd_mem_limit.max_ttm_mem_limit >> 20));
135
}
136
137
void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
138
{
139
kfd_mem_limit.system_mem_used += size;
140
}
141
142
/* Estimate page table size needed to represent a given memory size
143
*
144
* With 4KB pages, we need one 8 byte PTE for each 4KB of memory
145
* (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
146
* of memory (factor 256K, >> 18). ROCm user mode tries to optimize
147
* for 2MB pages for TLB efficiency. However, small allocations and
148
* fragmented system memory still need some 4KB pages. We choose a
149
* compromise that should work in most cases without reserving too
150
* much memory for page tables unnecessarily (factor 16K, >> 14).
151
*/
152
153
#define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
154
155
/**
156
* amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
157
* of buffer.
158
*
159
* @adev: Device to which allocated BO belongs to
160
* @size: Size of buffer, in bytes, encapsulated by B0. This should be
161
* equivalent to amdgpu_bo_size(BO)
162
* @alloc_flag: Flag used in allocating a BO as noted above
163
* @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
164
* managed as one compute node in driver for app
165
*
166
* Return:
167
* returns -ENOMEM in case of error, ZERO otherwise
168
*/
169
int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
170
uint64_t size, u32 alloc_flag, int8_t xcp_id)
171
{
172
uint64_t reserved_for_pt =
173
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
174
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
175
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
176
size_t system_mem_needed, ttm_mem_needed, vram_needed;
177
int ret = 0;
178
uint64_t vram_size = 0;
179
180
system_mem_needed = 0;
181
ttm_mem_needed = 0;
182
vram_needed = 0;
183
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
184
system_mem_needed = size;
185
ttm_mem_needed = size;
186
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
187
/*
188
* Conservatively round up the allocation requirement to 2 MB
189
* to avoid fragmentation caused by 4K allocations in the tail
190
* 2M BO chunk.
191
*/
192
vram_needed = size;
193
/*
194
* For GFX 9.4.3, get the VRAM size from XCP structs
195
*/
196
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
197
return -EINVAL;
198
199
vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
200
if (adev->apu_prefer_gtt) {
201
system_mem_needed = size;
202
ttm_mem_needed = size;
203
}
204
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
205
system_mem_needed = size;
206
} else if (!(alloc_flag &
207
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
208
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
209
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
210
return -ENOMEM;
211
}
212
213
spin_lock(&kfd_mem_limit.mem_limit_lock);
214
215
if (kfd_mem_limit.system_mem_used + system_mem_needed >
216
kfd_mem_limit.max_system_mem_limit) {
217
pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
218
if (!no_system_mem_limit) {
219
ret = -ENOMEM;
220
goto release;
221
}
222
}
223
224
if (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
225
kfd_mem_limit.max_ttm_mem_limit) {
226
ret = -ENOMEM;
227
goto release;
228
}
229
230
/*if is_app_apu is false and apu_prefer_gtt is true, it is an APU with
231
* carve out < gtt. In that case, VRAM allocation will go to gtt domain, skip
232
* VRAM check since ttm_mem_limit check already cover this allocation
233
*/
234
235
if (adev && xcp_id >= 0 && (!adev->apu_prefer_gtt || adev->gmc.is_app_apu)) {
236
uint64_t vram_available =
237
vram_size - reserved_for_pt - reserved_for_ras -
238
atomic64_read(&adev->vram_pin_size);
239
if (adev->kfd.vram_used[xcp_id] + vram_needed > vram_available) {
240
ret = -ENOMEM;
241
goto release;
242
}
243
}
244
245
/* Update memory accounting by decreasing available system
246
* memory, TTM memory and GPU memory as computed above
247
*/
248
WARN_ONCE(vram_needed && !adev,
249
"adev reference can't be null when vram is used");
250
if (adev && xcp_id >= 0) {
251
adev->kfd.vram_used[xcp_id] += vram_needed;
252
adev->kfd.vram_used_aligned[xcp_id] +=
253
adev->apu_prefer_gtt ?
254
vram_needed :
255
ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
256
}
257
kfd_mem_limit.system_mem_used += system_mem_needed;
258
kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
259
260
release:
261
spin_unlock(&kfd_mem_limit.mem_limit_lock);
262
return ret;
263
}
264
265
void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
266
uint64_t size, u32 alloc_flag, int8_t xcp_id)
267
{
268
spin_lock(&kfd_mem_limit.mem_limit_lock);
269
270
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
271
kfd_mem_limit.system_mem_used -= size;
272
kfd_mem_limit.ttm_mem_used -= size;
273
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
274
WARN_ONCE(!adev,
275
"adev reference can't be null when alloc mem flags vram is set");
276
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
277
goto release;
278
279
if (adev) {
280
adev->kfd.vram_used[xcp_id] -= size;
281
if (adev->apu_prefer_gtt) {
282
adev->kfd.vram_used_aligned[xcp_id] -= size;
283
kfd_mem_limit.system_mem_used -= size;
284
kfd_mem_limit.ttm_mem_used -= size;
285
} else {
286
adev->kfd.vram_used_aligned[xcp_id] -=
287
ALIGN(size, VRAM_AVAILABLITY_ALIGN);
288
}
289
}
290
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
291
kfd_mem_limit.system_mem_used -= size;
292
} else if (!(alloc_flag &
293
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
294
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
295
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
296
goto release;
297
}
298
WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
299
"KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
300
WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
301
"KFD TTM memory accounting unbalanced");
302
WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
303
"KFD system memory accounting unbalanced");
304
305
release:
306
spin_unlock(&kfd_mem_limit.mem_limit_lock);
307
}
308
309
void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
310
{
311
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
312
u32 alloc_flags = bo->kfd_bo->alloc_flags;
313
u64 size = amdgpu_bo_size(bo);
314
315
amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
316
bo->xcp_id);
317
318
kfree(bo->kfd_bo);
319
}
320
321
/**
322
* create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
323
* about USERPTR or DOOREBELL or MMIO BO.
324
*
325
* @adev: Device for which dmamap BO is being created
326
* @mem: BO of peer device that is being DMA mapped. Provides parameters
327
* in building the dmamap BO
328
* @bo_out: Output parameter updated with handle of dmamap BO
329
*/
330
static int
331
create_dmamap_sg_bo(struct amdgpu_device *adev,
332
struct kgd_mem *mem, struct amdgpu_bo **bo_out)
333
{
334
struct drm_gem_object *gem_obj;
335
int ret;
336
uint64_t flags = 0;
337
338
ret = amdgpu_bo_reserve(mem->bo, false);
339
if (ret)
340
return ret;
341
342
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
343
flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
344
AMDGPU_GEM_CREATE_UNCACHED);
345
346
ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
347
AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
348
ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
349
350
amdgpu_bo_unreserve(mem->bo);
351
352
if (ret) {
353
pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
354
return -EINVAL;
355
}
356
357
*bo_out = gem_to_amdgpu_bo(gem_obj);
358
(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
359
return ret;
360
}
361
362
/* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
363
* reservation object.
364
*
365
* @bo: [IN] Remove eviction fence(s) from this BO
366
* @ef: [IN] This eviction fence is removed if it
367
* is present in the shared list.
368
*
369
* NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
370
*/
371
static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
372
struct amdgpu_amdkfd_fence *ef)
373
{
374
struct dma_fence *replacement;
375
376
if (!ef)
377
return -EINVAL;
378
379
/* TODO: Instead of block before we should use the fence of the page
380
* table update and TLB flush here directly.
381
*/
382
replacement = dma_fence_get_stub();
383
dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
384
replacement, DMA_RESV_USAGE_BOOKKEEP);
385
dma_fence_put(replacement);
386
return 0;
387
}
388
389
/**
390
* amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences
391
* @bo: the BO where to remove the evictions fences from.
392
*
393
* This functions should only be used on release when all references to the BO
394
* are already dropped. We remove the eviction fence from the private copy of
395
* the dma_resv object here since that is what is used during release to
396
* determine of the BO is idle or not.
397
*/
398
void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo)
399
{
400
struct dma_resv *resv = &bo->tbo.base._resv;
401
struct dma_fence *fence, *stub;
402
struct dma_resv_iter cursor;
403
404
dma_resv_assert_held(resv);
405
406
stub = dma_fence_get_stub();
407
dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
408
if (!to_amdgpu_amdkfd_fence(fence))
409
continue;
410
411
dma_resv_replace_fences(resv, fence->context, stub,
412
DMA_RESV_USAGE_BOOKKEEP);
413
}
414
dma_fence_put(stub);
415
}
416
417
static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
418
bool wait)
419
{
420
struct ttm_operation_ctx ctx = { false, false };
421
int ret;
422
423
if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
424
"Called with userptr BO"))
425
return -EINVAL;
426
427
/* bo has been pinned, not need validate it */
428
if (bo->tbo.pin_count)
429
return 0;
430
431
amdgpu_bo_placement_from_domain(bo, domain);
432
433
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
434
if (ret)
435
goto validate_fail;
436
if (wait)
437
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
438
439
validate_fail:
440
return ret;
441
}
442
443
int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
444
uint32_t domain,
445
struct dma_fence *fence)
446
{
447
int ret = amdgpu_bo_reserve(bo, false);
448
449
if (ret)
450
return ret;
451
452
ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
453
if (ret)
454
goto unreserve_out;
455
456
ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
457
if (ret)
458
goto unreserve_out;
459
460
dma_resv_add_fence(bo->tbo.base.resv, fence,
461
DMA_RESV_USAGE_BOOKKEEP);
462
463
unreserve_out:
464
amdgpu_bo_unreserve(bo);
465
466
return ret;
467
}
468
469
static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
470
{
471
return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
472
}
473
474
/* vm_validate_pt_pd_bos - Validate page table and directory BOs
475
*
476
* Page directories are not updated here because huge page handling
477
* during page table updates can invalidate page directory entries
478
* again. Page directories are only updated after updating page
479
* tables.
480
*/
481
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
482
struct ww_acquire_ctx *ticket)
483
{
484
struct amdgpu_bo *pd = vm->root.bo;
485
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
486
int ret;
487
488
ret = amdgpu_vm_validate(adev, vm, ticket,
489
amdgpu_amdkfd_validate_vm_bo, NULL);
490
if (ret) {
491
pr_err("failed to validate PT BOs\n");
492
return ret;
493
}
494
495
vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
496
497
return 0;
498
}
499
500
static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
501
{
502
struct amdgpu_bo *pd = vm->root.bo;
503
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
504
int ret;
505
506
ret = amdgpu_vm_update_pdes(adev, vm, false);
507
if (ret)
508
return ret;
509
510
return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL);
511
}
512
513
static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm,
514
struct kgd_mem *mem)
515
{
516
uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
517
AMDGPU_VM_MTYPE_DEFAULT;
518
519
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
520
mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
521
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
522
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
523
524
return mapping_flags;
525
}
526
527
/**
528
* create_sg_table() - Create an sg_table for a contiguous DMA addr range
529
* @addr: The starting address to point to
530
* @size: Size of memory area in bytes being pointed to
531
*
532
* Allocates an instance of sg_table and initializes it to point to memory
533
* area specified by input parameters. The address used to build is assumed
534
* to be DMA mapped, if needed.
535
*
536
* DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
537
* because they are physically contiguous.
538
*
539
* Return: Initialized instance of SG Table or NULL
540
*/
541
static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
542
{
543
struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
544
545
if (!sg)
546
return NULL;
547
if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
548
kfree(sg);
549
return NULL;
550
}
551
sg_dma_address(sg->sgl) = addr;
552
sg->sgl->length = size;
553
#ifdef CONFIG_NEED_SG_DMA_LENGTH
554
sg->sgl->dma_length = size;
555
#endif
556
return sg;
557
}
558
559
static int
560
kfd_mem_dmamap_userptr(struct kgd_mem *mem,
561
struct kfd_mem_attachment *attachment)
562
{
563
enum dma_data_direction direction =
564
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
565
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
566
struct ttm_operation_ctx ctx = {.interruptible = true};
567
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
568
struct amdgpu_device *adev = attachment->adev;
569
struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
570
struct ttm_tt *ttm = bo->tbo.ttm;
571
int ret;
572
573
if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
574
return -EINVAL;
575
576
ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
577
if (unlikely(!ttm->sg))
578
return -ENOMEM;
579
580
/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
581
ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
582
ttm->num_pages, 0,
583
(u64)ttm->num_pages << PAGE_SHIFT,
584
GFP_KERNEL);
585
if (unlikely(ret))
586
goto free_sg;
587
588
ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
589
if (unlikely(ret))
590
goto release_sg;
591
592
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
593
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
594
if (ret)
595
goto unmap_sg;
596
597
return 0;
598
599
unmap_sg:
600
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
601
release_sg:
602
pr_err("DMA map userptr failed: %d\n", ret);
603
sg_free_table(ttm->sg);
604
free_sg:
605
kfree(ttm->sg);
606
ttm->sg = NULL;
607
return ret;
608
}
609
610
static int
611
kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
612
{
613
struct ttm_operation_ctx ctx = {.interruptible = true};
614
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
615
616
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
617
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
618
}
619
620
/**
621
* kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
622
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
623
* @attachment: Virtual address attachment of the BO on accessing device
624
*
625
* An access request from the device that owns DOORBELL does not require DMA mapping.
626
* This is because the request doesn't go through PCIe root complex i.e. it instead
627
* loops back. The need to DMA map arises only when accessing peer device's DOORBELL
628
*
629
* In contrast, all access requests for MMIO need to be DMA mapped without regard to
630
* device ownership. This is because access requests for MMIO go through PCIe root
631
* complex.
632
*
633
* This is accomplished in two steps:
634
* - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
635
* in updating requesting device's page table
636
* - Signal TTM to mark memory pointed to by requesting device's BO as GPU
637
* accessible. This allows an update of requesting device's page table
638
* with entries associated with DOOREBELL or MMIO memory
639
*
640
* This method is invoked in the following contexts:
641
* - Mapping of DOORBELL or MMIO BO of same or peer device
642
* - Validating an evicted DOOREBELL or MMIO BO on device seeking access
643
*
644
* Return: ZERO if successful, NON-ZERO otherwise
645
*/
646
static int
647
kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
648
struct kfd_mem_attachment *attachment)
649
{
650
struct ttm_operation_ctx ctx = {.interruptible = true};
651
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
652
struct amdgpu_device *adev = attachment->adev;
653
struct ttm_tt *ttm = bo->tbo.ttm;
654
enum dma_data_direction dir;
655
dma_addr_t dma_addr;
656
bool mmio;
657
int ret;
658
659
/* Expect SG Table of dmapmap BO to be NULL */
660
mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
661
if (unlikely(ttm->sg)) {
662
pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
663
return -EINVAL;
664
}
665
666
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
667
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
668
dma_addr = mem->bo->tbo.sg->sgl->dma_address;
669
pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
670
pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
671
dma_addr = dma_map_resource(adev->dev, dma_addr,
672
mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
673
ret = dma_mapping_error(adev->dev, dma_addr);
674
if (unlikely(ret))
675
return ret;
676
pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
677
678
ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
679
if (unlikely(!ttm->sg)) {
680
ret = -ENOMEM;
681
goto unmap_sg;
682
}
683
684
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
685
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
686
if (unlikely(ret))
687
goto free_sg;
688
689
return ret;
690
691
free_sg:
692
sg_free_table(ttm->sg);
693
kfree(ttm->sg);
694
ttm->sg = NULL;
695
unmap_sg:
696
dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
697
dir, DMA_ATTR_SKIP_CPU_SYNC);
698
return ret;
699
}
700
701
static int
702
kfd_mem_dmamap_attachment(struct kgd_mem *mem,
703
struct kfd_mem_attachment *attachment)
704
{
705
switch (attachment->type) {
706
case KFD_MEM_ATT_SHARED:
707
return 0;
708
case KFD_MEM_ATT_USERPTR:
709
return kfd_mem_dmamap_userptr(mem, attachment);
710
case KFD_MEM_ATT_DMABUF:
711
return kfd_mem_dmamap_dmabuf(attachment);
712
case KFD_MEM_ATT_SG:
713
return kfd_mem_dmamap_sg_bo(mem, attachment);
714
default:
715
WARN_ON_ONCE(1);
716
}
717
return -EINVAL;
718
}
719
720
static void
721
kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
722
struct kfd_mem_attachment *attachment)
723
{
724
enum dma_data_direction direction =
725
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
726
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
727
struct ttm_operation_ctx ctx = {.interruptible = false};
728
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
729
struct amdgpu_device *adev = attachment->adev;
730
struct ttm_tt *ttm = bo->tbo.ttm;
731
732
if (unlikely(!ttm->sg))
733
return;
734
735
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
736
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
737
738
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
739
sg_free_table(ttm->sg);
740
kfree(ttm->sg);
741
ttm->sg = NULL;
742
}
743
744
static void
745
kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
746
{
747
/* This is a no-op. We don't want to trigger eviction fences when
748
* unmapping DMABufs. Therefore the invalidation (moving to system
749
* domain) is done in kfd_mem_dmamap_dmabuf.
750
*/
751
}
752
753
/**
754
* kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
755
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
756
* @attachment: Virtual address attachment of the BO on accessing device
757
*
758
* The method performs following steps:
759
* - Signal TTM to mark memory pointed to by BO as GPU inaccessible
760
* - Free SG Table that is used to encapsulate DMA mapped memory of
761
* peer device's DOORBELL or MMIO memory
762
*
763
* This method is invoked in the following contexts:
764
* UNMapping of DOORBELL or MMIO BO on a device having access to its memory
765
* Eviction of DOOREBELL or MMIO BO on device having access to its memory
766
*
767
* Return: void
768
*/
769
static void
770
kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
771
struct kfd_mem_attachment *attachment)
772
{
773
struct ttm_operation_ctx ctx = {.interruptible = true};
774
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
775
struct amdgpu_device *adev = attachment->adev;
776
struct ttm_tt *ttm = bo->tbo.ttm;
777
enum dma_data_direction dir;
778
779
if (unlikely(!ttm->sg)) {
780
pr_debug("SG Table of BO is NULL");
781
return;
782
}
783
784
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
785
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
786
787
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
788
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
789
dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
790
ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
791
sg_free_table(ttm->sg);
792
kfree(ttm->sg);
793
ttm->sg = NULL;
794
bo->tbo.sg = NULL;
795
}
796
797
static void
798
kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
799
struct kfd_mem_attachment *attachment)
800
{
801
switch (attachment->type) {
802
case KFD_MEM_ATT_SHARED:
803
break;
804
case KFD_MEM_ATT_USERPTR:
805
kfd_mem_dmaunmap_userptr(mem, attachment);
806
break;
807
case KFD_MEM_ATT_DMABUF:
808
kfd_mem_dmaunmap_dmabuf(attachment);
809
break;
810
case KFD_MEM_ATT_SG:
811
kfd_mem_dmaunmap_sg_bo(mem, attachment);
812
break;
813
default:
814
WARN_ON_ONCE(1);
815
}
816
}
817
818
static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
819
{
820
if (!mem->dmabuf) {
821
struct amdgpu_device *bo_adev;
822
struct dma_buf *dmabuf;
823
824
bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
825
dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file,
826
mem->gem_handle,
827
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
828
DRM_RDWR : 0);
829
if (IS_ERR(dmabuf))
830
return PTR_ERR(dmabuf);
831
mem->dmabuf = dmabuf;
832
}
833
834
return 0;
835
}
836
837
static int
838
kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
839
struct amdgpu_bo **bo)
840
{
841
struct drm_gem_object *gobj;
842
int ret;
843
844
ret = kfd_mem_export_dmabuf(mem);
845
if (ret)
846
return ret;
847
848
gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
849
if (IS_ERR(gobj))
850
return PTR_ERR(gobj);
851
852
*bo = gem_to_amdgpu_bo(gobj);
853
(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
854
855
return 0;
856
}
857
858
/* kfd_mem_attach - Add a BO to a VM
859
*
860
* Everything that needs to bo done only once when a BO is first added
861
* to a VM. It can later be mapped and unmapped many times without
862
* repeating these steps.
863
*
864
* 0. Create BO for DMA mapping, if needed
865
* 1. Allocate and initialize BO VA entry data structure
866
* 2. Add BO to the VM
867
* 3. Determine ASIC-specific PTE flags
868
* 4. Alloc page tables and directories if needed
869
* 4a. Validate new page tables and directories
870
*/
871
static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
872
struct amdgpu_vm *vm, bool is_aql)
873
{
874
struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
875
unsigned long bo_size = mem->bo->tbo.base.size;
876
uint64_t va = mem->va;
877
struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
878
struct amdgpu_bo *bo[2] = {NULL, NULL};
879
struct amdgpu_bo_va *bo_va;
880
bool same_hive = false;
881
int i, ret;
882
883
if (!va) {
884
pr_err("Invalid VA when adding BO to VM\n");
885
return -EINVAL;
886
}
887
888
/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
889
*
890
* The access path of MMIO and DOORBELL BOs of is always over PCIe.
891
* In contrast the access path of VRAM BOs depens upon the type of
892
* link that connects the peer device. Access over PCIe is allowed
893
* if peer device has large BAR. In contrast, access over xGMI is
894
* allowed for both small and large BAR configurations of peer device
895
*/
896
if ((adev != bo_adev && !adev->apu_prefer_gtt) &&
897
((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
898
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
899
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
900
if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
901
same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
902
if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
903
return -EINVAL;
904
}
905
906
for (i = 0; i <= is_aql; i++) {
907
attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
908
if (unlikely(!attachment[i])) {
909
ret = -ENOMEM;
910
goto unwind;
911
}
912
913
pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
914
va + bo_size, vm);
915
916
if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
917
(amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
918
(mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
919
same_hive) {
920
/* Mappings on the local GPU, or VRAM mappings in the
921
* local hive, or userptr, or GTT mapping can reuse dma map
922
* address space share the original BO
923
*/
924
attachment[i]->type = KFD_MEM_ATT_SHARED;
925
bo[i] = mem->bo;
926
drm_gem_object_get(&bo[i]->tbo.base);
927
} else if (i > 0) {
928
/* Multiple mappings on the same GPU share the BO */
929
attachment[i]->type = KFD_MEM_ATT_SHARED;
930
bo[i] = bo[0];
931
drm_gem_object_get(&bo[i]->tbo.base);
932
} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
933
/* Create an SG BO to DMA-map userptrs on other GPUs */
934
attachment[i]->type = KFD_MEM_ATT_USERPTR;
935
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
936
if (ret)
937
goto unwind;
938
/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
939
} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
940
WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
941
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
942
"Handing invalid SG BO in ATTACH request");
943
attachment[i]->type = KFD_MEM_ATT_SG;
944
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
945
if (ret)
946
goto unwind;
947
/* Enable acces to GTT and VRAM BOs of peer devices */
948
} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
949
mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
950
attachment[i]->type = KFD_MEM_ATT_DMABUF;
951
ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
952
if (ret)
953
goto unwind;
954
pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
955
} else {
956
WARN_ONCE(true, "Handling invalid ATTACH request");
957
ret = -EINVAL;
958
goto unwind;
959
}
960
961
/* Add BO to VM internal data structures */
962
ret = amdgpu_bo_reserve(bo[i], false);
963
if (ret) {
964
pr_debug("Unable to reserve BO during memory attach");
965
goto unwind;
966
}
967
bo_va = amdgpu_vm_bo_find(vm, bo[i]);
968
if (!bo_va)
969
bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
970
else
971
++bo_va->ref_count;
972
attachment[i]->bo_va = bo_va;
973
amdgpu_bo_unreserve(bo[i]);
974
if (unlikely(!attachment[i]->bo_va)) {
975
ret = -ENOMEM;
976
pr_err("Failed to add BO object to VM. ret == %d\n",
977
ret);
978
goto unwind;
979
}
980
attachment[i]->va = va;
981
attachment[i]->pte_flags = get_pte_flags(adev, vm, mem);
982
attachment[i]->adev = adev;
983
list_add(&attachment[i]->list, &mem->attachments);
984
985
va += bo_size;
986
}
987
988
return 0;
989
990
unwind:
991
for (; i >= 0; i--) {
992
if (!attachment[i])
993
continue;
994
if (attachment[i]->bo_va) {
995
(void)amdgpu_bo_reserve(bo[i], true);
996
if (--attachment[i]->bo_va->ref_count == 0)
997
amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
998
amdgpu_bo_unreserve(bo[i]);
999
list_del(&attachment[i]->list);
1000
}
1001
if (bo[i])
1002
drm_gem_object_put(&bo[i]->tbo.base);
1003
kfree(attachment[i]);
1004
}
1005
return ret;
1006
}
1007
1008
static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
1009
{
1010
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
1011
1012
pr_debug("\t remove VA 0x%llx in entry %p\n",
1013
attachment->va, attachment);
1014
if (--attachment->bo_va->ref_count == 0)
1015
amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
1016
drm_gem_object_put(&bo->tbo.base);
1017
list_del(&attachment->list);
1018
kfree(attachment);
1019
}
1020
1021
static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
1022
struct amdkfd_process_info *process_info,
1023
bool userptr)
1024
{
1025
mutex_lock(&process_info->lock);
1026
if (userptr)
1027
list_add_tail(&mem->validate_list,
1028
&process_info->userptr_valid_list);
1029
else
1030
list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
1031
mutex_unlock(&process_info->lock);
1032
}
1033
1034
static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
1035
struct amdkfd_process_info *process_info)
1036
{
1037
mutex_lock(&process_info->lock);
1038
list_del(&mem->validate_list);
1039
mutex_unlock(&process_info->lock);
1040
}
1041
1042
/* Initializes user pages. It registers the MMU notifier and validates
1043
* the userptr BO in the GTT domain.
1044
*
1045
* The BO must already be on the userptr_valid_list. Otherwise an
1046
* eviction and restore may happen that leaves the new BO unmapped
1047
* with the user mode queues running.
1048
*
1049
* Takes the process_info->lock to protect against concurrent restore
1050
* workers.
1051
*
1052
* Returns 0 for success, negative errno for errors.
1053
*/
1054
static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1055
bool criu_resume)
1056
{
1057
struct amdkfd_process_info *process_info = mem->process_info;
1058
struct amdgpu_bo *bo = mem->bo;
1059
struct ttm_operation_ctx ctx = { true, false };
1060
struct hmm_range *range;
1061
int ret = 0;
1062
1063
mutex_lock(&process_info->lock);
1064
1065
ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1066
if (ret) {
1067
pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1068
goto out;
1069
}
1070
1071
ret = amdgpu_hmm_register(bo, user_addr);
1072
if (ret) {
1073
pr_err("%s: Failed to register MMU notifier: %d\n",
1074
__func__, ret);
1075
goto out;
1076
}
1077
1078
if (criu_resume) {
1079
/*
1080
* During a CRIU restore operation, the userptr buffer objects
1081
* will be validated in the restore_userptr_work worker at a
1082
* later stage when it is scheduled by another ioctl called by
1083
* CRIU master process for the target pid for restore.
1084
*/
1085
mutex_lock(&process_info->notifier_lock);
1086
mem->invalid++;
1087
mutex_unlock(&process_info->notifier_lock);
1088
mutex_unlock(&process_info->lock);
1089
return 0;
1090
}
1091
1092
ret = amdgpu_ttm_tt_get_user_pages(bo, &range);
1093
if (ret) {
1094
if (ret == -EAGAIN)
1095
pr_debug("Failed to get user pages, try again\n");
1096
else
1097
pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1098
goto unregister_out;
1099
}
1100
1101
ret = amdgpu_bo_reserve(bo, true);
1102
if (ret) {
1103
pr_err("%s: Failed to reserve BO\n", __func__);
1104
goto release_out;
1105
}
1106
1107
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, range);
1108
1109
amdgpu_bo_placement_from_domain(bo, mem->domain);
1110
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1111
if (ret)
1112
pr_err("%s: failed to validate BO\n", __func__);
1113
amdgpu_bo_unreserve(bo);
1114
1115
release_out:
1116
amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range);
1117
unregister_out:
1118
if (ret)
1119
amdgpu_hmm_unregister(bo);
1120
out:
1121
mutex_unlock(&process_info->lock);
1122
return ret;
1123
}
1124
1125
/* Reserving a BO and its page table BOs must happen atomically to
1126
* avoid deadlocks. Some operations update multiple VMs at once. Track
1127
* all the reservation info in a context structure. Optionally a sync
1128
* object can track VM updates.
1129
*/
1130
struct bo_vm_reservation_context {
1131
/* DRM execution context for the reservation */
1132
struct drm_exec exec;
1133
/* Number of VMs reserved */
1134
unsigned int n_vms;
1135
/* Pointer to sync object */
1136
struct amdgpu_sync *sync;
1137
};
1138
1139
enum bo_vm_match {
1140
BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */
1141
BO_VM_MAPPED, /* Match VMs where a BO is mapped */
1142
BO_VM_ALL, /* Match all VMs a BO was added to */
1143
};
1144
1145
/**
1146
* reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1147
* @mem: KFD BO structure.
1148
* @vm: the VM to reserve.
1149
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1150
*/
1151
static int reserve_bo_and_vm(struct kgd_mem *mem,
1152
struct amdgpu_vm *vm,
1153
struct bo_vm_reservation_context *ctx)
1154
{
1155
struct amdgpu_bo *bo = mem->bo;
1156
int ret;
1157
1158
WARN_ON(!vm);
1159
1160
ctx->n_vms = 1;
1161
ctx->sync = &mem->sync;
1162
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1163
drm_exec_until_all_locked(&ctx->exec) {
1164
ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1165
drm_exec_retry_on_contention(&ctx->exec);
1166
if (unlikely(ret))
1167
goto error;
1168
1169
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1170
drm_exec_retry_on_contention(&ctx->exec);
1171
if (unlikely(ret))
1172
goto error;
1173
}
1174
return 0;
1175
1176
error:
1177
pr_err("Failed to reserve buffers in ttm.\n");
1178
drm_exec_fini(&ctx->exec);
1179
return ret;
1180
}
1181
1182
/**
1183
* reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1184
* @mem: KFD BO structure.
1185
* @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1186
* is used. Otherwise, a single VM associated with the BO.
1187
* @map_type: the mapping status that will be used to filter the VMs.
1188
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1189
*
1190
* Returns 0 for success, negative for failure.
1191
*/
1192
static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1193
struct amdgpu_vm *vm, enum bo_vm_match map_type,
1194
struct bo_vm_reservation_context *ctx)
1195
{
1196
struct kfd_mem_attachment *entry;
1197
struct amdgpu_bo *bo = mem->bo;
1198
int ret;
1199
1200
ctx->sync = &mem->sync;
1201
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
1202
DRM_EXEC_IGNORE_DUPLICATES, 0);
1203
drm_exec_until_all_locked(&ctx->exec) {
1204
ctx->n_vms = 0;
1205
list_for_each_entry(entry, &mem->attachments, list) {
1206
if ((vm && vm != entry->bo_va->base.vm) ||
1207
(entry->is_mapped != map_type
1208
&& map_type != BO_VM_ALL))
1209
continue;
1210
1211
ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
1212
&ctx->exec, 2);
1213
drm_exec_retry_on_contention(&ctx->exec);
1214
if (unlikely(ret))
1215
goto error;
1216
++ctx->n_vms;
1217
}
1218
1219
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1220
drm_exec_retry_on_contention(&ctx->exec);
1221
if (unlikely(ret))
1222
goto error;
1223
}
1224
return 0;
1225
1226
error:
1227
pr_err("Failed to reserve buffers in ttm.\n");
1228
drm_exec_fini(&ctx->exec);
1229
return ret;
1230
}
1231
1232
/**
1233
* unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1234
* @ctx: Reservation context to unreserve
1235
* @wait: Optionally wait for a sync object representing pending VM updates
1236
* @intr: Whether the wait is interruptible
1237
*
1238
* Also frees any resources allocated in
1239
* reserve_bo_and_(cond_)vm(s). Returns the status from
1240
* amdgpu_sync_wait.
1241
*/
1242
static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1243
bool wait, bool intr)
1244
{
1245
int ret = 0;
1246
1247
if (wait)
1248
ret = amdgpu_sync_wait(ctx->sync, intr);
1249
1250
drm_exec_fini(&ctx->exec);
1251
ctx->sync = NULL;
1252
return ret;
1253
}
1254
1255
static int unmap_bo_from_gpuvm(struct kgd_mem *mem,
1256
struct kfd_mem_attachment *entry,
1257
struct amdgpu_sync *sync)
1258
{
1259
struct amdgpu_bo_va *bo_va = entry->bo_va;
1260
struct amdgpu_device *adev = entry->adev;
1261
struct amdgpu_vm *vm = bo_va->base.vm;
1262
1263
if (bo_va->queue_refcount) {
1264
pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount);
1265
return -EBUSY;
1266
}
1267
1268
(void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1269
1270
(void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1271
1272
(void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1273
1274
return 0;
1275
}
1276
1277
static int update_gpuvm_pte(struct kgd_mem *mem,
1278
struct kfd_mem_attachment *entry,
1279
struct amdgpu_sync *sync)
1280
{
1281
struct amdgpu_bo_va *bo_va = entry->bo_va;
1282
struct amdgpu_device *adev = entry->adev;
1283
int ret;
1284
1285
ret = kfd_mem_dmamap_attachment(mem, entry);
1286
if (ret)
1287
return ret;
1288
1289
/* Update the page tables */
1290
ret = amdgpu_vm_bo_update(adev, bo_va, false);
1291
if (ret) {
1292
pr_err("amdgpu_vm_bo_update failed\n");
1293
return ret;
1294
}
1295
1296
return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1297
}
1298
1299
static int map_bo_to_gpuvm(struct kgd_mem *mem,
1300
struct kfd_mem_attachment *entry,
1301
struct amdgpu_sync *sync,
1302
bool no_update_pte)
1303
{
1304
int ret;
1305
1306
/* Set virtual address for the allocation */
1307
ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1308
amdgpu_bo_size(entry->bo_va->base.bo),
1309
entry->pte_flags);
1310
if (ret) {
1311
pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1312
entry->va, ret);
1313
return ret;
1314
}
1315
1316
if (no_update_pte)
1317
return 0;
1318
1319
ret = update_gpuvm_pte(mem, entry, sync);
1320
if (ret) {
1321
pr_err("update_gpuvm_pte() failed\n");
1322
goto update_gpuvm_pte_failed;
1323
}
1324
1325
return 0;
1326
1327
update_gpuvm_pte_failed:
1328
unmap_bo_from_gpuvm(mem, entry, sync);
1329
kfd_mem_dmaunmap_attachment(mem, entry);
1330
return ret;
1331
}
1332
1333
static int process_validate_vms(struct amdkfd_process_info *process_info,
1334
struct ww_acquire_ctx *ticket)
1335
{
1336
struct amdgpu_vm *peer_vm;
1337
int ret;
1338
1339
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1340
vm_list_node) {
1341
ret = vm_validate_pt_pd_bos(peer_vm, ticket);
1342
if (ret)
1343
return ret;
1344
}
1345
1346
return 0;
1347
}
1348
1349
static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1350
struct amdgpu_sync *sync)
1351
{
1352
struct amdgpu_vm *peer_vm;
1353
int ret;
1354
1355
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1356
vm_list_node) {
1357
struct amdgpu_bo *pd = peer_vm->root.bo;
1358
1359
ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1360
AMDGPU_SYNC_NE_OWNER,
1361
AMDGPU_FENCE_OWNER_KFD);
1362
if (ret)
1363
return ret;
1364
}
1365
1366
return 0;
1367
}
1368
1369
static int process_update_pds(struct amdkfd_process_info *process_info,
1370
struct amdgpu_sync *sync)
1371
{
1372
struct amdgpu_vm *peer_vm;
1373
int ret;
1374
1375
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1376
vm_list_node) {
1377
ret = vm_update_pds(peer_vm, sync);
1378
if (ret)
1379
return ret;
1380
}
1381
1382
return 0;
1383
}
1384
1385
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1386
struct dma_fence **ef)
1387
{
1388
struct amdkfd_process_info *info = NULL;
1389
int ret;
1390
1391
if (!*process_info) {
1392
info = kzalloc(sizeof(*info), GFP_KERNEL);
1393
if (!info)
1394
return -ENOMEM;
1395
1396
mutex_init(&info->lock);
1397
mutex_init(&info->notifier_lock);
1398
INIT_LIST_HEAD(&info->vm_list_head);
1399
INIT_LIST_HEAD(&info->kfd_bo_list);
1400
INIT_LIST_HEAD(&info->userptr_valid_list);
1401
INIT_LIST_HEAD(&info->userptr_inval_list);
1402
1403
info->eviction_fence =
1404
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1405
current->mm,
1406
NULL);
1407
if (!info->eviction_fence) {
1408
pr_err("Failed to create eviction fence\n");
1409
ret = -ENOMEM;
1410
goto create_evict_fence_fail;
1411
}
1412
1413
info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1414
INIT_DELAYED_WORK(&info->restore_userptr_work,
1415
amdgpu_amdkfd_restore_userptr_worker);
1416
1417
*process_info = info;
1418
}
1419
1420
vm->process_info = *process_info;
1421
1422
/* Validate page directory and attach eviction fence */
1423
ret = amdgpu_bo_reserve(vm->root.bo, true);
1424
if (ret)
1425
goto reserve_pd_fail;
1426
ret = vm_validate_pt_pd_bos(vm, NULL);
1427
if (ret) {
1428
pr_err("validate_pt_pd_bos() failed\n");
1429
goto validate_pd_fail;
1430
}
1431
ret = amdgpu_bo_sync_wait(vm->root.bo,
1432
AMDGPU_FENCE_OWNER_KFD, false);
1433
if (ret)
1434
goto wait_pd_fail;
1435
ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1436
if (ret)
1437
goto reserve_shared_fail;
1438
dma_resv_add_fence(vm->root.bo->tbo.base.resv,
1439
&vm->process_info->eviction_fence->base,
1440
DMA_RESV_USAGE_BOOKKEEP);
1441
amdgpu_bo_unreserve(vm->root.bo);
1442
1443
/* Update process info */
1444
mutex_lock(&vm->process_info->lock);
1445
list_add_tail(&vm->vm_list_node,
1446
&(vm->process_info->vm_list_head));
1447
vm->process_info->n_vms++;
1448
if (ef)
1449
*ef = dma_fence_get(&vm->process_info->eviction_fence->base);
1450
mutex_unlock(&vm->process_info->lock);
1451
1452
return 0;
1453
1454
reserve_shared_fail:
1455
wait_pd_fail:
1456
validate_pd_fail:
1457
amdgpu_bo_unreserve(vm->root.bo);
1458
reserve_pd_fail:
1459
vm->process_info = NULL;
1460
if (info) {
1461
dma_fence_put(&info->eviction_fence->base);
1462
*process_info = NULL;
1463
put_pid(info->pid);
1464
create_evict_fence_fail:
1465
mutex_destroy(&info->lock);
1466
mutex_destroy(&info->notifier_lock);
1467
kfree(info);
1468
}
1469
return ret;
1470
}
1471
1472
/**
1473
* amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1474
* @bo: Handle of buffer object being pinned
1475
* @domain: Domain into which BO should be pinned
1476
*
1477
* - USERPTR BOs are UNPINNABLE and will return error
1478
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1479
* PIN count incremented. It is valid to PIN a BO multiple times
1480
*
1481
* Return: ZERO if successful in pinning, Non-Zero in case of error.
1482
*/
1483
static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1484
{
1485
int ret = 0;
1486
1487
ret = amdgpu_bo_reserve(bo, false);
1488
if (unlikely(ret))
1489
return ret;
1490
1491
if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) {
1492
/*
1493
* If bo is not contiguous on VRAM, move to system memory first to ensure
1494
* we can get contiguous VRAM space after evicting other BOs.
1495
*/
1496
if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1497
struct ttm_operation_ctx ctx = { true, false };
1498
1499
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
1500
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1501
if (unlikely(ret)) {
1502
pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret);
1503
goto out;
1504
}
1505
}
1506
}
1507
1508
ret = amdgpu_bo_pin(bo, domain);
1509
if (ret)
1510
pr_err("Error in Pinning BO to domain: %d\n", domain);
1511
1512
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1513
out:
1514
amdgpu_bo_unreserve(bo);
1515
return ret;
1516
}
1517
1518
/**
1519
* amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1520
* @bo: Handle of buffer object being unpinned
1521
*
1522
* - Is a illegal request for USERPTR BOs and is ignored
1523
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1524
* PIN count decremented. Calls to UNPIN must balance calls to PIN
1525
*/
1526
static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1527
{
1528
int ret = 0;
1529
1530
ret = amdgpu_bo_reserve(bo, false);
1531
if (unlikely(ret))
1532
return;
1533
1534
amdgpu_bo_unpin(bo);
1535
amdgpu_bo_unreserve(bo);
1536
}
1537
1538
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1539
struct amdgpu_vm *avm,
1540
void **process_info,
1541
struct dma_fence **ef)
1542
{
1543
int ret;
1544
1545
/* Already a compute VM? */
1546
if (avm->process_info)
1547
return -EINVAL;
1548
1549
/* Convert VM into a compute VM */
1550
ret = amdgpu_vm_make_compute(adev, avm);
1551
if (ret)
1552
return ret;
1553
1554
/* Initialize KFD part of the VM and process info */
1555
ret = init_kfd_vm(avm, process_info, ef);
1556
if (ret)
1557
return ret;
1558
1559
amdgpu_vm_set_task_info(avm);
1560
1561
return 0;
1562
}
1563
1564
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1565
struct amdgpu_vm *vm)
1566
{
1567
struct amdkfd_process_info *process_info = vm->process_info;
1568
1569
if (!process_info)
1570
return;
1571
1572
/* Update process info */
1573
mutex_lock(&process_info->lock);
1574
process_info->n_vms--;
1575
list_del(&vm->vm_list_node);
1576
mutex_unlock(&process_info->lock);
1577
1578
vm->process_info = NULL;
1579
1580
/* Release per-process resources when last compute VM is destroyed */
1581
if (!process_info->n_vms) {
1582
WARN_ON(!list_empty(&process_info->kfd_bo_list));
1583
WARN_ON(!list_empty(&process_info->userptr_valid_list));
1584
WARN_ON(!list_empty(&process_info->userptr_inval_list));
1585
1586
dma_fence_put(&process_info->eviction_fence->base);
1587
cancel_delayed_work_sync(&process_info->restore_userptr_work);
1588
put_pid(process_info->pid);
1589
mutex_destroy(&process_info->lock);
1590
mutex_destroy(&process_info->notifier_lock);
1591
kfree(process_info);
1592
}
1593
}
1594
1595
uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1596
{
1597
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1598
struct amdgpu_bo *pd = avm->root.bo;
1599
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1600
1601
if (adev->asic_type < CHIP_VEGA10)
1602
return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1603
return avm->pd_phys_addr;
1604
}
1605
1606
void amdgpu_amdkfd_block_mmu_notifications(void *p)
1607
{
1608
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1609
1610
mutex_lock(&pinfo->lock);
1611
WRITE_ONCE(pinfo->block_mmu_notifications, true);
1612
mutex_unlock(&pinfo->lock);
1613
}
1614
1615
int amdgpu_amdkfd_criu_resume(void *p)
1616
{
1617
int ret = 0;
1618
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1619
1620
mutex_lock(&pinfo->lock);
1621
pr_debug("scheduling work\n");
1622
mutex_lock(&pinfo->notifier_lock);
1623
pinfo->evicted_bos++;
1624
mutex_unlock(&pinfo->notifier_lock);
1625
if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1626
ret = -EINVAL;
1627
goto out_unlock;
1628
}
1629
WRITE_ONCE(pinfo->block_mmu_notifications, false);
1630
queue_delayed_work(system_freezable_wq,
1631
&pinfo->restore_userptr_work, 0);
1632
1633
out_unlock:
1634
mutex_unlock(&pinfo->lock);
1635
return ret;
1636
}
1637
1638
size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
1639
uint8_t xcp_id)
1640
{
1641
uint64_t reserved_for_pt =
1642
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1643
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
1644
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
1645
ssize_t available;
1646
uint64_t vram_available, system_mem_available, ttm_mem_available;
1647
1648
spin_lock(&kfd_mem_limit.mem_limit_lock);
1649
if (adev->apu_prefer_gtt && !adev->gmc.is_app_apu)
1650
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1651
- adev->kfd.vram_used_aligned[xcp_id];
1652
else
1653
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1654
- adev->kfd.vram_used_aligned[xcp_id]
1655
- atomic64_read(&adev->vram_pin_size)
1656
- reserved_for_pt
1657
- reserved_for_ras;
1658
1659
if (adev->apu_prefer_gtt) {
1660
system_mem_available = no_system_mem_limit ?
1661
kfd_mem_limit.max_system_mem_limit :
1662
kfd_mem_limit.max_system_mem_limit -
1663
kfd_mem_limit.system_mem_used;
1664
1665
ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
1666
kfd_mem_limit.ttm_mem_used;
1667
1668
available = min3(system_mem_available, ttm_mem_available,
1669
vram_available);
1670
available = ALIGN_DOWN(available, PAGE_SIZE);
1671
} else {
1672
available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
1673
}
1674
1675
spin_unlock(&kfd_mem_limit.mem_limit_lock);
1676
1677
if (available < 0)
1678
available = 0;
1679
1680
return available;
1681
}
1682
1683
int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1684
struct amdgpu_device *adev, uint64_t va, uint64_t size,
1685
void *drm_priv, struct kgd_mem **mem,
1686
uint64_t *offset, uint32_t flags, bool criu_resume)
1687
{
1688
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1689
struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
1690
enum ttm_bo_type bo_type = ttm_bo_type_device;
1691
struct sg_table *sg = NULL;
1692
uint64_t user_addr = 0;
1693
struct amdgpu_bo *bo;
1694
struct drm_gem_object *gobj = NULL;
1695
u32 domain, alloc_domain;
1696
uint64_t aligned_size;
1697
int8_t xcp_id = -1;
1698
u64 alloc_flags;
1699
int ret;
1700
1701
/*
1702
* Check on which domain to allocate BO
1703
*/
1704
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1705
domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1706
1707
if (adev->apu_prefer_gtt) {
1708
domain = AMDGPU_GEM_DOMAIN_GTT;
1709
alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1710
alloc_flags = 0;
1711
} else {
1712
alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1713
alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1714
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1715
1716
/* For contiguous VRAM allocation */
1717
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS)
1718
alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1719
}
1720
xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
1721
0 : fpriv->xcp_id;
1722
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1723
domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1724
alloc_flags = 0;
1725
} else {
1726
domain = AMDGPU_GEM_DOMAIN_GTT;
1727
alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1728
alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1729
1730
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1731
if (!offset || !*offset)
1732
return -EINVAL;
1733
user_addr = untagged_addr(*offset);
1734
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1735
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1736
bo_type = ttm_bo_type_sg;
1737
if (size > UINT_MAX)
1738
return -EINVAL;
1739
sg = create_sg_table(*offset, size);
1740
if (!sg)
1741
return -ENOMEM;
1742
} else {
1743
return -EINVAL;
1744
}
1745
}
1746
1747
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
1748
alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
1749
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
1750
alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
1751
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
1752
alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
1753
1754
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1755
if (!*mem) {
1756
ret = -ENOMEM;
1757
goto err;
1758
}
1759
INIT_LIST_HEAD(&(*mem)->attachments);
1760
mutex_init(&(*mem)->lock);
1761
(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1762
1763
/* Workaround for AQL queue wraparound bug. Map the same
1764
* memory twice. That means we only actually allocate half
1765
* the memory.
1766
*/
1767
if ((*mem)->aql_queue)
1768
size >>= 1;
1769
aligned_size = PAGE_ALIGN(size);
1770
1771
(*mem)->alloc_flags = flags;
1772
1773
amdgpu_sync_create(&(*mem)->sync);
1774
1775
ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
1776
xcp_id);
1777
if (ret) {
1778
pr_debug("Insufficient memory\n");
1779
goto err_reserve_limit;
1780
}
1781
1782
pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
1783
va, (*mem)->aql_queue ? size << 1 : size,
1784
domain_string(alloc_domain), xcp_id);
1785
1786
ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
1787
bo_type, NULL, &gobj, xcp_id + 1);
1788
if (ret) {
1789
pr_debug("Failed to create BO on domain %s. ret %d\n",
1790
domain_string(alloc_domain), ret);
1791
goto err_bo_create;
1792
}
1793
ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1794
if (ret) {
1795
pr_debug("Failed to allow vma node access. ret %d\n", ret);
1796
goto err_node_allow;
1797
}
1798
ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
1799
if (ret)
1800
goto err_gem_handle_create;
1801
bo = gem_to_amdgpu_bo(gobj);
1802
if (bo_type == ttm_bo_type_sg) {
1803
bo->tbo.sg = sg;
1804
bo->tbo.ttm->sg = sg;
1805
}
1806
bo->kfd_bo = *mem;
1807
(*mem)->bo = bo;
1808
if (user_addr)
1809
bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1810
1811
(*mem)->va = va;
1812
(*mem)->domain = domain;
1813
(*mem)->mapped_to_gpu_memory = 0;
1814
(*mem)->process_info = avm->process_info;
1815
1816
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1817
1818
if (user_addr) {
1819
pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
1820
ret = init_user_pages(*mem, user_addr, criu_resume);
1821
if (ret)
1822
goto allocate_init_user_pages_failed;
1823
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1824
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1825
ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1826
if (ret) {
1827
pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1828
goto err_pin_bo;
1829
}
1830
bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1831
bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1832
} else {
1833
mutex_lock(&avm->process_info->lock);
1834
if (avm->process_info->eviction_fence &&
1835
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
1836
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
1837
&avm->process_info->eviction_fence->base);
1838
mutex_unlock(&avm->process_info->lock);
1839
if (ret)
1840
goto err_validate_bo;
1841
}
1842
1843
if (offset)
1844
*offset = amdgpu_bo_mmap_offset(bo);
1845
1846
return 0;
1847
1848
allocate_init_user_pages_failed:
1849
err_pin_bo:
1850
err_validate_bo:
1851
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1852
drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
1853
err_gem_handle_create:
1854
drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1855
err_node_allow:
1856
/* Don't unreserve system mem limit twice */
1857
goto err_reserve_limit;
1858
err_bo_create:
1859
amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
1860
err_reserve_limit:
1861
amdgpu_sync_free(&(*mem)->sync);
1862
mutex_destroy(&(*mem)->lock);
1863
if (gobj)
1864
drm_gem_object_put(gobj);
1865
else
1866
kfree(*mem);
1867
err:
1868
if (sg) {
1869
sg_free_table(sg);
1870
kfree(sg);
1871
}
1872
return ret;
1873
}
1874
1875
int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1876
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1877
uint64_t *size)
1878
{
1879
struct amdkfd_process_info *process_info = mem->process_info;
1880
unsigned long bo_size = mem->bo->tbo.base.size;
1881
bool use_release_notifier = (mem->bo->kfd_bo == mem);
1882
struct kfd_mem_attachment *entry, *tmp;
1883
struct bo_vm_reservation_context ctx;
1884
unsigned int mapped_to_gpu_memory;
1885
int ret;
1886
bool is_imported = false;
1887
1888
mutex_lock(&mem->lock);
1889
1890
/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1891
if (mem->alloc_flags &
1892
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1893
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1894
amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1895
}
1896
1897
mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1898
is_imported = mem->is_imported;
1899
mutex_unlock(&mem->lock);
1900
/* lock is not needed after this, since mem is unused and will
1901
* be freed anyway
1902
*/
1903
1904
if (mapped_to_gpu_memory > 0) {
1905
pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1906
mem->va, bo_size);
1907
return -EBUSY;
1908
}
1909
1910
/* Make sure restore workers don't access the BO any more */
1911
mutex_lock(&process_info->lock);
1912
list_del(&mem->validate_list);
1913
mutex_unlock(&process_info->lock);
1914
1915
/* Cleanup user pages and MMU notifiers */
1916
if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
1917
amdgpu_hmm_unregister(mem->bo);
1918
mutex_lock(&process_info->notifier_lock);
1919
amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range);
1920
mutex_unlock(&process_info->notifier_lock);
1921
}
1922
1923
ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1924
if (unlikely(ret))
1925
return ret;
1926
1927
amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1928
process_info->eviction_fence);
1929
pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1930
mem->va + bo_size * (1 + mem->aql_queue));
1931
1932
/* Remove from VM internal data structures */
1933
list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
1934
kfd_mem_dmaunmap_attachment(mem, entry);
1935
kfd_mem_detach(entry);
1936
}
1937
1938
ret = unreserve_bo_and_vms(&ctx, false, false);
1939
1940
/* Free the sync object */
1941
amdgpu_sync_free(&mem->sync);
1942
1943
/* If the SG is not NULL, it's one we created for a doorbell or mmio
1944
* remap BO. We need to free it.
1945
*/
1946
if (mem->bo->tbo.sg) {
1947
sg_free_table(mem->bo->tbo.sg);
1948
kfree(mem->bo->tbo.sg);
1949
}
1950
1951
/* Update the size of the BO being freed if it was allocated from
1952
* VRAM and is not imported. For APP APU VRAM allocations are done
1953
* in GTT domain
1954
*/
1955
if (size) {
1956
if (!is_imported &&
1957
(mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM ||
1958
(adev->apu_prefer_gtt &&
1959
mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT)))
1960
*size = bo_size;
1961
else
1962
*size = 0;
1963
}
1964
1965
/* Free the BO*/
1966
drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1967
drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
1968
if (mem->dmabuf) {
1969
dma_buf_put(mem->dmabuf);
1970
mem->dmabuf = NULL;
1971
}
1972
mutex_destroy(&mem->lock);
1973
1974
/* If this releases the last reference, it will end up calling
1975
* amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1976
* this needs to be the last call here.
1977
*/
1978
drm_gem_object_put(&mem->bo->tbo.base);
1979
1980
/*
1981
* For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
1982
* explicitly free it here.
1983
*/
1984
if (!use_release_notifier)
1985
kfree(mem);
1986
1987
return ret;
1988
}
1989
1990
int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1991
struct amdgpu_device *adev, struct kgd_mem *mem,
1992
void *drm_priv)
1993
{
1994
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1995
int ret;
1996
struct amdgpu_bo *bo;
1997
uint32_t domain;
1998
struct kfd_mem_attachment *entry;
1999
struct bo_vm_reservation_context ctx;
2000
unsigned long bo_size;
2001
bool is_invalid_userptr = false;
2002
2003
bo = mem->bo;
2004
if (!bo) {
2005
pr_err("Invalid BO when mapping memory to GPU\n");
2006
return -EINVAL;
2007
}
2008
2009
/* Make sure restore is not running concurrently. Since we
2010
* don't map invalid userptr BOs, we rely on the next restore
2011
* worker to do the mapping
2012
*/
2013
mutex_lock(&mem->process_info->lock);
2014
2015
/* Lock notifier lock. If we find an invalid userptr BO, we can be
2016
* sure that the MMU notifier is no longer running
2017
* concurrently and the queues are actually stopped
2018
*/
2019
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2020
mutex_lock(&mem->process_info->notifier_lock);
2021
is_invalid_userptr = !!mem->invalid;
2022
mutex_unlock(&mem->process_info->notifier_lock);
2023
}
2024
2025
mutex_lock(&mem->lock);
2026
2027
domain = mem->domain;
2028
bo_size = bo->tbo.base.size;
2029
2030
pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
2031
mem->va,
2032
mem->va + bo_size * (1 + mem->aql_queue),
2033
avm, domain_string(domain));
2034
2035
if (!kfd_mem_is_attached(avm, mem)) {
2036
ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
2037
if (ret)
2038
goto out;
2039
}
2040
2041
ret = reserve_bo_and_vm(mem, avm, &ctx);
2042
if (unlikely(ret))
2043
goto out;
2044
2045
/* Userptr can be marked as "not invalid", but not actually be
2046
* validated yet (still in the system domain). In that case
2047
* the queues are still stopped and we can leave mapping for
2048
* the next restore worker
2049
*/
2050
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
2051
bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
2052
is_invalid_userptr = true;
2053
2054
ret = vm_validate_pt_pd_bos(avm, NULL);
2055
if (unlikely(ret))
2056
goto out_unreserve;
2057
2058
list_for_each_entry(entry, &mem->attachments, list) {
2059
if (entry->bo_va->base.vm != avm || entry->is_mapped)
2060
continue;
2061
2062
pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2063
entry->va, entry->va + bo_size, entry);
2064
2065
ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2066
is_invalid_userptr);
2067
if (ret) {
2068
pr_err("Failed to map bo to gpuvm\n");
2069
goto out_unreserve;
2070
}
2071
2072
ret = vm_update_pds(avm, ctx.sync);
2073
if (ret) {
2074
pr_err("Failed to update page directories\n");
2075
goto out_unreserve;
2076
}
2077
2078
entry->is_mapped = true;
2079
mem->mapped_to_gpu_memory++;
2080
pr_debug("\t INC mapping count %d\n",
2081
mem->mapped_to_gpu_memory);
2082
}
2083
2084
ret = unreserve_bo_and_vms(&ctx, false, false);
2085
2086
goto out;
2087
2088
out_unreserve:
2089
unreserve_bo_and_vms(&ctx, false, false);
2090
out:
2091
mutex_unlock(&mem->process_info->lock);
2092
mutex_unlock(&mem->lock);
2093
return ret;
2094
}
2095
2096
int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
2097
{
2098
struct kfd_mem_attachment *entry;
2099
struct amdgpu_vm *vm;
2100
int ret;
2101
2102
vm = drm_priv_to_vm(drm_priv);
2103
2104
mutex_lock(&mem->lock);
2105
2106
ret = amdgpu_bo_reserve(mem->bo, true);
2107
if (ret)
2108
goto out;
2109
2110
list_for_each_entry(entry, &mem->attachments, list) {
2111
if (entry->bo_va->base.vm != vm)
2112
continue;
2113
if (entry->bo_va->base.bo->tbo.ttm &&
2114
!entry->bo_va->base.bo->tbo.ttm->sg)
2115
continue;
2116
2117
kfd_mem_dmaunmap_attachment(mem, entry);
2118
}
2119
2120
amdgpu_bo_unreserve(mem->bo);
2121
out:
2122
mutex_unlock(&mem->lock);
2123
2124
return ret;
2125
}
2126
2127
int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2128
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2129
{
2130
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2131
unsigned long bo_size = mem->bo->tbo.base.size;
2132
struct kfd_mem_attachment *entry;
2133
struct bo_vm_reservation_context ctx;
2134
int ret;
2135
2136
mutex_lock(&mem->lock);
2137
2138
ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2139
if (unlikely(ret))
2140
goto out;
2141
/* If no VMs were reserved, it means the BO wasn't actually mapped */
2142
if (ctx.n_vms == 0) {
2143
ret = -EINVAL;
2144
goto unreserve_out;
2145
}
2146
2147
ret = vm_validate_pt_pd_bos(avm, NULL);
2148
if (unlikely(ret))
2149
goto unreserve_out;
2150
2151
pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2152
mem->va,
2153
mem->va + bo_size * (1 + mem->aql_queue),
2154
avm);
2155
2156
list_for_each_entry(entry, &mem->attachments, list) {
2157
if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2158
continue;
2159
2160
pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2161
entry->va, entry->va + bo_size, entry);
2162
2163
ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2164
if (ret)
2165
goto unreserve_out;
2166
2167
entry->is_mapped = false;
2168
2169
mem->mapped_to_gpu_memory--;
2170
pr_debug("\t DEC mapping count %d\n",
2171
mem->mapped_to_gpu_memory);
2172
}
2173
2174
unreserve_out:
2175
unreserve_bo_and_vms(&ctx, false, false);
2176
out:
2177
mutex_unlock(&mem->lock);
2178
return ret;
2179
}
2180
2181
int amdgpu_amdkfd_gpuvm_sync_memory(
2182
struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2183
{
2184
struct amdgpu_sync sync;
2185
int ret;
2186
2187
amdgpu_sync_create(&sync);
2188
2189
mutex_lock(&mem->lock);
2190
amdgpu_sync_clone(&mem->sync, &sync);
2191
mutex_unlock(&mem->lock);
2192
2193
ret = amdgpu_sync_wait(&sync, intr);
2194
amdgpu_sync_free(&sync);
2195
return ret;
2196
}
2197
2198
/**
2199
* amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2200
* @bo: Buffer object to be mapped
2201
* @bo_gart: Return bo reference
2202
*
2203
* Before return, bo reference count is incremented. To release the reference and unpin/
2204
* unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2205
*/
2206
int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart)
2207
{
2208
int ret;
2209
2210
ret = amdgpu_bo_reserve(bo, true);
2211
if (ret) {
2212
pr_err("Failed to reserve bo. ret %d\n", ret);
2213
goto err_reserve_bo_failed;
2214
}
2215
2216
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2217
if (ret) {
2218
pr_err("Failed to pin bo. ret %d\n", ret);
2219
goto err_pin_bo_failed;
2220
}
2221
2222
ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2223
if (ret) {
2224
pr_err("Failed to bind bo to GART. ret %d\n", ret);
2225
goto err_map_bo_gart_failed;
2226
}
2227
2228
amdgpu_amdkfd_remove_eviction_fence(
2229
bo, bo->vm_bo->vm->process_info->eviction_fence);
2230
2231
amdgpu_bo_unreserve(bo);
2232
2233
*bo_gart = amdgpu_bo_ref(bo);
2234
2235
return 0;
2236
2237
err_map_bo_gart_failed:
2238
amdgpu_bo_unpin(bo);
2239
err_pin_bo_failed:
2240
amdgpu_bo_unreserve(bo);
2241
err_reserve_bo_failed:
2242
2243
return ret;
2244
}
2245
2246
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2247
*
2248
* @mem: Buffer object to be mapped for CPU access
2249
* @kptr[out]: pointer in kernel CPU address space
2250
* @size[out]: size of the buffer
2251
*
2252
* Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2253
* from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2254
* validate_list, so the GPU mapping can be restored after a page table was
2255
* evicted.
2256
*
2257
* Return: 0 on success, error code on failure
2258
*/
2259
int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2260
void **kptr, uint64_t *size)
2261
{
2262
int ret;
2263
struct amdgpu_bo *bo = mem->bo;
2264
2265
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2266
pr_err("userptr can't be mapped to kernel\n");
2267
return -EINVAL;
2268
}
2269
2270
mutex_lock(&mem->process_info->lock);
2271
2272
ret = amdgpu_bo_reserve(bo, true);
2273
if (ret) {
2274
pr_err("Failed to reserve bo. ret %d\n", ret);
2275
goto bo_reserve_failed;
2276
}
2277
2278
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2279
if (ret) {
2280
pr_err("Failed to pin bo. ret %d\n", ret);
2281
goto pin_failed;
2282
}
2283
2284
ret = amdgpu_bo_kmap(bo, kptr);
2285
if (ret) {
2286
pr_err("Failed to map bo to kernel. ret %d\n", ret);
2287
goto kmap_failed;
2288
}
2289
2290
amdgpu_amdkfd_remove_eviction_fence(
2291
bo, mem->process_info->eviction_fence);
2292
2293
if (size)
2294
*size = amdgpu_bo_size(bo);
2295
2296
amdgpu_bo_unreserve(bo);
2297
2298
mutex_unlock(&mem->process_info->lock);
2299
return 0;
2300
2301
kmap_failed:
2302
amdgpu_bo_unpin(bo);
2303
pin_failed:
2304
amdgpu_bo_unreserve(bo);
2305
bo_reserve_failed:
2306
mutex_unlock(&mem->process_info->lock);
2307
2308
return ret;
2309
}
2310
2311
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2312
*
2313
* @mem: Buffer object to be unmapped for CPU access
2314
*
2315
* Removes the kernel CPU mapping and unpins the BO. It does not restore the
2316
* eviction fence, so this function should only be used for cleanup before the
2317
* BO is destroyed.
2318
*/
2319
void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2320
{
2321
struct amdgpu_bo *bo = mem->bo;
2322
2323
(void)amdgpu_bo_reserve(bo, true);
2324
amdgpu_bo_kunmap(bo);
2325
amdgpu_bo_unpin(bo);
2326
amdgpu_bo_unreserve(bo);
2327
}
2328
2329
int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2330
struct kfd_vm_fault_info *mem)
2331
{
2332
if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2333
*mem = *adev->gmc.vm_fault_info;
2334
mb(); /* make sure read happened */
2335
atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2336
}
2337
return 0;
2338
}
2339
2340
static int import_obj_create(struct amdgpu_device *adev,
2341
struct dma_buf *dma_buf,
2342
struct drm_gem_object *obj,
2343
uint64_t va, void *drm_priv,
2344
struct kgd_mem **mem, uint64_t *size,
2345
uint64_t *mmap_offset)
2346
{
2347
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2348
struct amdgpu_bo *bo;
2349
int ret;
2350
2351
bo = gem_to_amdgpu_bo(obj);
2352
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2353
AMDGPU_GEM_DOMAIN_GTT)))
2354
/* Only VRAM and GTT BOs are supported */
2355
return -EINVAL;
2356
2357
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2358
if (!*mem)
2359
return -ENOMEM;
2360
2361
ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2362
if (ret)
2363
goto err_free_mem;
2364
2365
if (size)
2366
*size = amdgpu_bo_size(bo);
2367
2368
if (mmap_offset)
2369
*mmap_offset = amdgpu_bo_mmap_offset(bo);
2370
2371
INIT_LIST_HEAD(&(*mem)->attachments);
2372
mutex_init(&(*mem)->lock);
2373
2374
(*mem)->alloc_flags =
2375
((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2376
KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2377
| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2378
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2379
2380
get_dma_buf(dma_buf);
2381
(*mem)->dmabuf = dma_buf;
2382
(*mem)->bo = bo;
2383
(*mem)->va = va;
2384
(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) &&
2385
!adev->apu_prefer_gtt ?
2386
AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2387
2388
(*mem)->mapped_to_gpu_memory = 0;
2389
(*mem)->process_info = avm->process_info;
2390
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2391
amdgpu_sync_create(&(*mem)->sync);
2392
(*mem)->is_imported = true;
2393
2394
mutex_lock(&avm->process_info->lock);
2395
if (avm->process_info->eviction_fence &&
2396
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
2397
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
2398
&avm->process_info->eviction_fence->base);
2399
mutex_unlock(&avm->process_info->lock);
2400
if (ret)
2401
goto err_remove_mem;
2402
2403
return 0;
2404
2405
err_remove_mem:
2406
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
2407
drm_vma_node_revoke(&obj->vma_node, drm_priv);
2408
err_free_mem:
2409
kfree(*mem);
2410
return ret;
2411
}
2412
2413
int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
2414
uint64_t va, void *drm_priv,
2415
struct kgd_mem **mem, uint64_t *size,
2416
uint64_t *mmap_offset)
2417
{
2418
struct drm_gem_object *obj;
2419
uint32_t handle;
2420
int ret;
2421
2422
ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
2423
&handle);
2424
if (ret)
2425
return ret;
2426
obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
2427
if (!obj) {
2428
ret = -EINVAL;
2429
goto err_release_handle;
2430
}
2431
2432
ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
2433
mmap_offset);
2434
if (ret)
2435
goto err_put_obj;
2436
2437
(*mem)->gem_handle = handle;
2438
2439
return 0;
2440
2441
err_put_obj:
2442
drm_gem_object_put(obj);
2443
err_release_handle:
2444
drm_gem_handle_delete(adev->kfd.client.file, handle);
2445
return ret;
2446
}
2447
2448
int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
2449
struct dma_buf **dma_buf)
2450
{
2451
int ret;
2452
2453
mutex_lock(&mem->lock);
2454
ret = kfd_mem_export_dmabuf(mem);
2455
if (ret)
2456
goto out;
2457
2458
get_dma_buf(mem->dmabuf);
2459
*dma_buf = mem->dmabuf;
2460
out:
2461
mutex_unlock(&mem->lock);
2462
return ret;
2463
}
2464
2465
/* Evict a userptr BO by stopping the queues if necessary
2466
*
2467
* Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2468
* cannot do any memory allocations, and cannot take any locks that
2469
* are held elsewhere while allocating memory.
2470
*
2471
* It doesn't do anything to the BO itself. The real work happens in
2472
* restore, where we get updated page addresses. This function only
2473
* ensures that GPU access to the BO is stopped.
2474
*/
2475
int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
2476
unsigned long cur_seq, struct kgd_mem *mem)
2477
{
2478
struct amdkfd_process_info *process_info = mem->process_info;
2479
int r = 0;
2480
2481
/* Do not process MMU notifications during CRIU restore until
2482
* KFD_CRIU_OP_RESUME IOCTL is received
2483
*/
2484
if (READ_ONCE(process_info->block_mmu_notifications))
2485
return 0;
2486
2487
mutex_lock(&process_info->notifier_lock);
2488
mmu_interval_set_seq(mni, cur_seq);
2489
2490
mem->invalid++;
2491
if (++process_info->evicted_bos == 1) {
2492
/* First eviction, stop the queues */
2493
r = kgd2kfd_quiesce_mm(mni->mm,
2494
KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2495
2496
if (r && r != -ESRCH)
2497
pr_err("Failed to quiesce KFD\n");
2498
2499
if (r != -ESRCH)
2500
queue_delayed_work(system_freezable_wq,
2501
&process_info->restore_userptr_work,
2502
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2503
}
2504
mutex_unlock(&process_info->notifier_lock);
2505
2506
return r;
2507
}
2508
2509
/* Update invalid userptr BOs
2510
*
2511
* Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2512
* userptr_inval_list and updates user pages for all BOs that have
2513
* been invalidated since their last update.
2514
*/
2515
static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2516
struct mm_struct *mm)
2517
{
2518
struct kgd_mem *mem, *tmp_mem;
2519
struct amdgpu_bo *bo;
2520
struct ttm_operation_ctx ctx = { false, false };
2521
uint32_t invalid;
2522
int ret = 0;
2523
2524
mutex_lock(&process_info->notifier_lock);
2525
2526
/* Move all invalidated BOs to the userptr_inval_list */
2527
list_for_each_entry_safe(mem, tmp_mem,
2528
&process_info->userptr_valid_list,
2529
validate_list)
2530
if (mem->invalid)
2531
list_move_tail(&mem->validate_list,
2532
&process_info->userptr_inval_list);
2533
2534
/* Go through userptr_inval_list and update any invalid user_pages */
2535
list_for_each_entry(mem, &process_info->userptr_inval_list,
2536
validate_list) {
2537
invalid = mem->invalid;
2538
if (!invalid)
2539
/* BO hasn't been invalidated since the last
2540
* revalidation attempt. Keep its page list.
2541
*/
2542
continue;
2543
2544
bo = mem->bo;
2545
2546
amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range);
2547
mem->range = NULL;
2548
2549
/* BO reservations and getting user pages (hmm_range_fault)
2550
* must happen outside the notifier lock
2551
*/
2552
mutex_unlock(&process_info->notifier_lock);
2553
2554
/* Move the BO to system (CPU) domain if necessary to unmap
2555
* and free the SG table
2556
*/
2557
if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
2558
if (amdgpu_bo_reserve(bo, true))
2559
return -EAGAIN;
2560
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2561
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2562
amdgpu_bo_unreserve(bo);
2563
if (ret) {
2564
pr_err("%s: Failed to invalidate userptr BO\n",
2565
__func__);
2566
return -EAGAIN;
2567
}
2568
}
2569
2570
/* Get updated user pages */
2571
ret = amdgpu_ttm_tt_get_user_pages(bo, &mem->range);
2572
if (ret) {
2573
pr_debug("Failed %d to get user pages\n", ret);
2574
2575
/* Return -EFAULT bad address error as success. It will
2576
* fail later with a VM fault if the GPU tries to access
2577
* it. Better than hanging indefinitely with stalled
2578
* user mode queues.
2579
*
2580
* Return other error -EBUSY or -ENOMEM to retry restore
2581
*/
2582
if (ret != -EFAULT)
2583
return ret;
2584
2585
/* If applications unmap memory before destroying the userptr
2586
* from the KFD, trigger a segmentation fault in VM debug mode.
2587
*/
2588
if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) {
2589
pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n",
2590
pid_nr(process_info->pid), mem->va);
2591
2592
// Send GPU VM fault to user space
2593
kfd_signal_vm_fault_event_with_userptr(kfd_lookup_process_by_pid(process_info->pid),
2594
mem->va);
2595
}
2596
2597
ret = 0;
2598
}
2599
2600
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->range);
2601
2602
mutex_lock(&process_info->notifier_lock);
2603
2604
/* Mark the BO as valid unless it was invalidated
2605
* again concurrently.
2606
*/
2607
if (mem->invalid != invalid) {
2608
ret = -EAGAIN;
2609
goto unlock_out;
2610
}
2611
/* set mem valid if mem has hmm range associated */
2612
if (mem->range)
2613
mem->invalid = 0;
2614
}
2615
2616
unlock_out:
2617
mutex_unlock(&process_info->notifier_lock);
2618
2619
return ret;
2620
}
2621
2622
/* Validate invalid userptr BOs
2623
*
2624
* Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
2625
* with new page addresses and waits for the page table updates to complete.
2626
*/
2627
static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2628
{
2629
struct ttm_operation_ctx ctx = { false, false };
2630
struct amdgpu_sync sync;
2631
struct drm_exec exec;
2632
2633
struct amdgpu_vm *peer_vm;
2634
struct kgd_mem *mem, *tmp_mem;
2635
struct amdgpu_bo *bo;
2636
int ret;
2637
2638
amdgpu_sync_create(&sync);
2639
2640
drm_exec_init(&exec, 0, 0);
2641
/* Reserve all BOs and page tables for validation */
2642
drm_exec_until_all_locked(&exec) {
2643
/* Reserve all the page directories */
2644
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2645
vm_list_node) {
2646
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2647
drm_exec_retry_on_contention(&exec);
2648
if (unlikely(ret))
2649
goto unreserve_out;
2650
}
2651
2652
/* Reserve the userptr_inval_list entries to resv_list */
2653
list_for_each_entry(mem, &process_info->userptr_inval_list,
2654
validate_list) {
2655
struct drm_gem_object *gobj;
2656
2657
gobj = &mem->bo->tbo.base;
2658
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2659
drm_exec_retry_on_contention(&exec);
2660
if (unlikely(ret))
2661
goto unreserve_out;
2662
}
2663
}
2664
2665
ret = process_validate_vms(process_info, NULL);
2666
if (ret)
2667
goto unreserve_out;
2668
2669
/* Validate BOs and update GPUVM page tables */
2670
list_for_each_entry_safe(mem, tmp_mem,
2671
&process_info->userptr_inval_list,
2672
validate_list) {
2673
struct kfd_mem_attachment *attachment;
2674
2675
bo = mem->bo;
2676
2677
/* Validate the BO if we got user pages */
2678
if (bo->tbo.ttm->pages[0]) {
2679
amdgpu_bo_placement_from_domain(bo, mem->domain);
2680
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2681
if (ret) {
2682
pr_err("%s: failed to validate BO\n", __func__);
2683
goto unreserve_out;
2684
}
2685
}
2686
2687
/* Update mapping. If the BO was not validated
2688
* (because we couldn't get user pages), this will
2689
* clear the page table entries, which will result in
2690
* VM faults if the GPU tries to access the invalid
2691
* memory.
2692
*/
2693
list_for_each_entry(attachment, &mem->attachments, list) {
2694
if (!attachment->is_mapped)
2695
continue;
2696
2697
kfd_mem_dmaunmap_attachment(mem, attachment);
2698
ret = update_gpuvm_pte(mem, attachment, &sync);
2699
if (ret) {
2700
pr_err("%s: update PTE failed\n", __func__);
2701
/* make sure this gets validated again */
2702
mutex_lock(&process_info->notifier_lock);
2703
mem->invalid++;
2704
mutex_unlock(&process_info->notifier_lock);
2705
goto unreserve_out;
2706
}
2707
}
2708
}
2709
2710
/* Update page directories */
2711
ret = process_update_pds(process_info, &sync);
2712
2713
unreserve_out:
2714
drm_exec_fini(&exec);
2715
amdgpu_sync_wait(&sync, false);
2716
amdgpu_sync_free(&sync);
2717
2718
return ret;
2719
}
2720
2721
/* Confirm that all user pages are valid while holding the notifier lock
2722
*
2723
* Moves valid BOs from the userptr_inval_list back to userptr_val_list.
2724
*/
2725
static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
2726
{
2727
struct kgd_mem *mem, *tmp_mem;
2728
int ret = 0;
2729
2730
list_for_each_entry_safe(mem, tmp_mem,
2731
&process_info->userptr_inval_list,
2732
validate_list) {
2733
bool valid;
2734
2735
/* keep mem without hmm range at userptr_inval_list */
2736
if (!mem->range)
2737
continue;
2738
2739
/* Only check mem with hmm range associated */
2740
valid = amdgpu_ttm_tt_get_user_pages_done(
2741
mem->bo->tbo.ttm, mem->range);
2742
2743
mem->range = NULL;
2744
if (!valid) {
2745
WARN(!mem->invalid, "Invalid BO not marked invalid");
2746
ret = -EAGAIN;
2747
continue;
2748
}
2749
2750
if (mem->invalid) {
2751
WARN(1, "Valid BO is marked invalid");
2752
ret = -EAGAIN;
2753
continue;
2754
}
2755
2756
list_move_tail(&mem->validate_list,
2757
&process_info->userptr_valid_list);
2758
}
2759
2760
return ret;
2761
}
2762
2763
/* Worker callback to restore evicted userptr BOs
2764
*
2765
* Tries to update and validate all userptr BOs. If successful and no
2766
* concurrent evictions happened, the queues are restarted. Otherwise,
2767
* reschedule for another attempt later.
2768
*/
2769
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2770
{
2771
struct delayed_work *dwork = to_delayed_work(work);
2772
struct amdkfd_process_info *process_info =
2773
container_of(dwork, struct amdkfd_process_info,
2774
restore_userptr_work);
2775
struct task_struct *usertask;
2776
struct mm_struct *mm;
2777
uint32_t evicted_bos;
2778
2779
mutex_lock(&process_info->notifier_lock);
2780
evicted_bos = process_info->evicted_bos;
2781
mutex_unlock(&process_info->notifier_lock);
2782
if (!evicted_bos)
2783
return;
2784
2785
/* Reference task and mm in case of concurrent process termination */
2786
usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2787
if (!usertask)
2788
return;
2789
mm = get_task_mm(usertask);
2790
if (!mm) {
2791
put_task_struct(usertask);
2792
return;
2793
}
2794
2795
mutex_lock(&process_info->lock);
2796
2797
if (update_invalid_user_pages(process_info, mm))
2798
goto unlock_out;
2799
/* userptr_inval_list can be empty if all evicted userptr BOs
2800
* have been freed. In that case there is nothing to validate
2801
* and we can just restart the queues.
2802
*/
2803
if (!list_empty(&process_info->userptr_inval_list)) {
2804
if (validate_invalid_user_pages(process_info))
2805
goto unlock_out;
2806
}
2807
/* Final check for concurrent evicton and atomic update. If
2808
* another eviction happens after successful update, it will
2809
* be a first eviction that calls quiesce_mm. The eviction
2810
* reference counting inside KFD will handle this case.
2811
*/
2812
mutex_lock(&process_info->notifier_lock);
2813
if (process_info->evicted_bos != evicted_bos)
2814
goto unlock_notifier_out;
2815
2816
if (confirm_valid_user_pages_locked(process_info)) {
2817
WARN(1, "User pages unexpectedly invalid");
2818
goto unlock_notifier_out;
2819
}
2820
2821
process_info->evicted_bos = evicted_bos = 0;
2822
2823
if (kgd2kfd_resume_mm(mm)) {
2824
pr_err("%s: Failed to resume KFD\n", __func__);
2825
/* No recovery from this failure. Probably the CP is
2826
* hanging. No point trying again.
2827
*/
2828
}
2829
2830
unlock_notifier_out:
2831
mutex_unlock(&process_info->notifier_lock);
2832
unlock_out:
2833
mutex_unlock(&process_info->lock);
2834
2835
/* If validation failed, reschedule another attempt */
2836
if (evicted_bos) {
2837
queue_delayed_work(system_freezable_wq,
2838
&process_info->restore_userptr_work,
2839
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2840
2841
kfd_smi_event_queue_restore_rescheduled(mm);
2842
}
2843
mmput(mm);
2844
put_task_struct(usertask);
2845
}
2846
2847
static void replace_eviction_fence(struct dma_fence __rcu **ef,
2848
struct dma_fence *new_ef)
2849
{
2850
struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
2851
/* protected by process_info->lock */);
2852
2853
/* If we're replacing an unsignaled eviction fence, that fence will
2854
* never be signaled, and if anyone is still waiting on that fence,
2855
* they will hang forever. This should never happen. We should only
2856
* replace the fence in restore_work that only gets scheduled after
2857
* eviction work signaled the fence.
2858
*/
2859
WARN_ONCE(!dma_fence_is_signaled(old_ef),
2860
"Replacing unsignaled eviction fence");
2861
dma_fence_put(old_ef);
2862
}
2863
2864
/** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2865
* KFD process identified by process_info
2866
*
2867
* @process_info: amdkfd_process_info of the KFD process
2868
*
2869
* After memory eviction, restore thread calls this function. The function
2870
* should be called when the Process is still valid. BO restore involves -
2871
*
2872
* 1. Release old eviction fence and create new one
2873
* 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2874
* 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2875
* BOs that need to be reserved.
2876
* 4. Reserve all the BOs
2877
* 5. Validate of PD and PT BOs.
2878
* 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2879
* 7. Add fence to all PD and PT BOs.
2880
* 8. Unreserve all BOs
2881
*/
2882
int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
2883
{
2884
struct amdkfd_process_info *process_info = info;
2885
struct amdgpu_vm *peer_vm;
2886
struct kgd_mem *mem;
2887
struct list_head duplicate_save;
2888
struct amdgpu_sync sync_obj;
2889
unsigned long failed_size = 0;
2890
unsigned long total_size = 0;
2891
struct drm_exec exec;
2892
int ret;
2893
2894
INIT_LIST_HEAD(&duplicate_save);
2895
2896
mutex_lock(&process_info->lock);
2897
2898
drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
2899
drm_exec_until_all_locked(&exec) {
2900
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2901
vm_list_node) {
2902
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2903
drm_exec_retry_on_contention(&exec);
2904
if (unlikely(ret)) {
2905
pr_err("Locking VM PD failed, ret: %d\n", ret);
2906
goto ttm_reserve_fail;
2907
}
2908
}
2909
2910
/* Reserve all BOs and page tables/directory. Add all BOs from
2911
* kfd_bo_list to ctx.list
2912
*/
2913
list_for_each_entry(mem, &process_info->kfd_bo_list,
2914
validate_list) {
2915
struct drm_gem_object *gobj;
2916
2917
gobj = &mem->bo->tbo.base;
2918
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2919
drm_exec_retry_on_contention(&exec);
2920
if (unlikely(ret)) {
2921
pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
2922
goto ttm_reserve_fail;
2923
}
2924
}
2925
}
2926
2927
amdgpu_sync_create(&sync_obj);
2928
2929
/* Validate BOs managed by KFD */
2930
list_for_each_entry(mem, &process_info->kfd_bo_list,
2931
validate_list) {
2932
2933
struct amdgpu_bo *bo = mem->bo;
2934
uint32_t domain = mem->domain;
2935
struct dma_resv_iter cursor;
2936
struct dma_fence *fence;
2937
2938
total_size += amdgpu_bo_size(bo);
2939
2940
ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2941
if (ret) {
2942
pr_debug("Memory eviction: Validate BOs failed\n");
2943
failed_size += amdgpu_bo_size(bo);
2944
ret = amdgpu_amdkfd_bo_validate(bo,
2945
AMDGPU_GEM_DOMAIN_GTT, false);
2946
if (ret) {
2947
pr_debug("Memory eviction: Try again\n");
2948
goto validate_map_fail;
2949
}
2950
}
2951
dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2952
DMA_RESV_USAGE_KERNEL, fence) {
2953
ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL);
2954
if (ret) {
2955
pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2956
goto validate_map_fail;
2957
}
2958
}
2959
}
2960
2961
if (failed_size)
2962
pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2963
2964
/* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
2965
* validations above would invalidate DMABuf imports again.
2966
*/
2967
ret = process_validate_vms(process_info, &exec.ticket);
2968
if (ret) {
2969
pr_debug("Validating VMs failed, ret: %d\n", ret);
2970
goto validate_map_fail;
2971
}
2972
2973
/* Update mappings managed by KFD. */
2974
list_for_each_entry(mem, &process_info->kfd_bo_list,
2975
validate_list) {
2976
struct kfd_mem_attachment *attachment;
2977
2978
list_for_each_entry(attachment, &mem->attachments, list) {
2979
if (!attachment->is_mapped)
2980
continue;
2981
2982
kfd_mem_dmaunmap_attachment(mem, attachment);
2983
ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2984
if (ret) {
2985
pr_debug("Memory eviction: update PTE failed. Try again\n");
2986
goto validate_map_fail;
2987
}
2988
}
2989
}
2990
2991
/* Update mappings not managed by KFD */
2992
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2993
vm_list_node) {
2994
struct amdgpu_device *adev = amdgpu_ttm_adev(
2995
peer_vm->root.bo->tbo.bdev);
2996
2997
struct amdgpu_fpriv *fpriv =
2998
container_of(peer_vm, struct amdgpu_fpriv, vm);
2999
3000
ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
3001
if (ret) {
3002
dev_dbg(adev->dev,
3003
"Memory eviction: handle PRT moved failed, pid %8d. Try again.\n",
3004
pid_nr(process_info->pid));
3005
goto validate_map_fail;
3006
}
3007
3008
ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
3009
if (ret) {
3010
dev_dbg(adev->dev,
3011
"Memory eviction: handle moved failed, pid %8d. Try again.\n",
3012
pid_nr(process_info->pid));
3013
goto validate_map_fail;
3014
}
3015
}
3016
3017
/* Update page directories */
3018
ret = process_update_pds(process_info, &sync_obj);
3019
if (ret) {
3020
pr_debug("Memory eviction: update PDs failed. Try again\n");
3021
goto validate_map_fail;
3022
}
3023
3024
/* Sync with fences on all the page tables. They implicitly depend on any
3025
* move fences from amdgpu_vm_handle_moved above.
3026
*/
3027
ret = process_sync_pds_resv(process_info, &sync_obj);
3028
if (ret) {
3029
pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
3030
goto validate_map_fail;
3031
}
3032
3033
/* Wait for validate and PT updates to finish */
3034
amdgpu_sync_wait(&sync_obj, false);
3035
3036
/* The old eviction fence may be unsignaled if restore happens
3037
* after a GPU reset or suspend/resume. Keep the old fence in that
3038
* case. Otherwise release the old eviction fence and create new
3039
* one, because fence only goes from unsignaled to signaled once
3040
* and cannot be reused. Use context and mm from the old fence.
3041
*
3042
* If an old eviction fence signals after this check, that's OK.
3043
* Anyone signaling an eviction fence must stop the queues first
3044
* and schedule another restore worker.
3045
*/
3046
if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
3047
struct amdgpu_amdkfd_fence *new_fence =
3048
amdgpu_amdkfd_fence_create(
3049
process_info->eviction_fence->base.context,
3050
process_info->eviction_fence->mm,
3051
NULL);
3052
3053
if (!new_fence) {
3054
pr_err("Failed to create eviction fence\n");
3055
ret = -ENOMEM;
3056
goto validate_map_fail;
3057
}
3058
dma_fence_put(&process_info->eviction_fence->base);
3059
process_info->eviction_fence = new_fence;
3060
replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
3061
} else {
3062
WARN_ONCE(*ef != &process_info->eviction_fence->base,
3063
"KFD eviction fence doesn't match KGD process_info");
3064
}
3065
3066
/* Attach new eviction fence to all BOs except pinned ones */
3067
list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
3068
if (mem->bo->tbo.pin_count)
3069
continue;
3070
3071
dma_resv_add_fence(mem->bo->tbo.base.resv,
3072
&process_info->eviction_fence->base,
3073
DMA_RESV_USAGE_BOOKKEEP);
3074
}
3075
/* Attach eviction fence to PD / PT BOs and DMABuf imports */
3076
list_for_each_entry(peer_vm, &process_info->vm_list_head,
3077
vm_list_node) {
3078
struct amdgpu_bo *bo = peer_vm->root.bo;
3079
3080
dma_resv_add_fence(bo->tbo.base.resv,
3081
&process_info->eviction_fence->base,
3082
DMA_RESV_USAGE_BOOKKEEP);
3083
}
3084
3085
validate_map_fail:
3086
amdgpu_sync_free(&sync_obj);
3087
ttm_reserve_fail:
3088
drm_exec_fini(&exec);
3089
mutex_unlock(&process_info->lock);
3090
return ret;
3091
}
3092
3093
int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
3094
{
3095
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3096
struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
3097
int ret;
3098
3099
if (!info || !gws)
3100
return -EINVAL;
3101
3102
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
3103
if (!*mem)
3104
return -ENOMEM;
3105
3106
mutex_init(&(*mem)->lock);
3107
INIT_LIST_HEAD(&(*mem)->attachments);
3108
(*mem)->bo = amdgpu_bo_ref(gws_bo);
3109
(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
3110
(*mem)->process_info = process_info;
3111
add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
3112
amdgpu_sync_create(&(*mem)->sync);
3113
3114
3115
/* Validate gws bo the first time it is added to process */
3116
mutex_lock(&(*mem)->process_info->lock);
3117
ret = amdgpu_bo_reserve(gws_bo, false);
3118
if (unlikely(ret)) {
3119
pr_err("Reserve gws bo failed %d\n", ret);
3120
goto bo_reservation_failure;
3121
}
3122
3123
ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
3124
if (ret) {
3125
pr_err("GWS BO validate failed %d\n", ret);
3126
goto bo_validation_failure;
3127
}
3128
/* GWS resource is shared b/t amdgpu and amdkfd
3129
* Add process eviction fence to bo so they can
3130
* evict each other.
3131
*/
3132
ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
3133
if (ret)
3134
goto reserve_shared_fail;
3135
dma_resv_add_fence(gws_bo->tbo.base.resv,
3136
&process_info->eviction_fence->base,
3137
DMA_RESV_USAGE_BOOKKEEP);
3138
amdgpu_bo_unreserve(gws_bo);
3139
mutex_unlock(&(*mem)->process_info->lock);
3140
3141
return ret;
3142
3143
reserve_shared_fail:
3144
bo_validation_failure:
3145
amdgpu_bo_unreserve(gws_bo);
3146
bo_reservation_failure:
3147
mutex_unlock(&(*mem)->process_info->lock);
3148
amdgpu_sync_free(&(*mem)->sync);
3149
remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
3150
amdgpu_bo_unref(&gws_bo);
3151
mutex_destroy(&(*mem)->lock);
3152
kfree(*mem);
3153
*mem = NULL;
3154
return ret;
3155
}
3156
3157
int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
3158
{
3159
int ret;
3160
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3161
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
3162
struct amdgpu_bo *gws_bo = kgd_mem->bo;
3163
3164
/* Remove BO from process's validate list so restore worker won't touch
3165
* it anymore
3166
*/
3167
remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
3168
3169
ret = amdgpu_bo_reserve(gws_bo, false);
3170
if (unlikely(ret)) {
3171
pr_err("Reserve gws bo failed %d\n", ret);
3172
//TODO add BO back to validate_list?
3173
return ret;
3174
}
3175
amdgpu_amdkfd_remove_eviction_fence(gws_bo,
3176
process_info->eviction_fence);
3177
amdgpu_bo_unreserve(gws_bo);
3178
amdgpu_sync_free(&kgd_mem->sync);
3179
amdgpu_bo_unref(&gws_bo);
3180
mutex_destroy(&kgd_mem->lock);
3181
kfree(mem);
3182
return 0;
3183
}
3184
3185
/* Returns GPU-specific tiling mode information */
3186
int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
3187
struct tile_config *config)
3188
{
3189
config->gb_addr_config = adev->gfx.config.gb_addr_config;
3190
config->tile_config_ptr = adev->gfx.config.tile_mode_array;
3191
config->num_tile_configs =
3192
ARRAY_SIZE(adev->gfx.config.tile_mode_array);
3193
config->macro_tile_config_ptr =
3194
adev->gfx.config.macrotile_mode_array;
3195
config->num_macro_tile_configs =
3196
ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
3197
3198
/* Those values are not set from GFX9 onwards */
3199
config->num_banks = adev->gfx.config.num_banks;
3200
config->num_ranks = adev->gfx.config.num_ranks;
3201
3202
return 0;
3203
}
3204
3205
bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem)
3206
{
3207
struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv);
3208
struct kfd_mem_attachment *entry;
3209
3210
list_for_each_entry(entry, &mem->attachments, list) {
3211
if (entry->is_mapped && entry->bo_va->base.vm == vm)
3212
return true;
3213
}
3214
return false;
3215
}
3216
3217
#if defined(CONFIG_DEBUG_FS)
3218
3219
int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
3220
{
3221
3222
spin_lock(&kfd_mem_limit.mem_limit_lock);
3223
seq_printf(m, "System mem used %lldM out of %lluM\n",
3224
(kfd_mem_limit.system_mem_used >> 20),
3225
(kfd_mem_limit.max_system_mem_limit >> 20));
3226
seq_printf(m, "TTM mem used %lldM out of %lluM\n",
3227
(kfd_mem_limit.ttm_mem_used >> 20),
3228
(kfd_mem_limit.max_ttm_mem_limit >> 20));
3229
spin_unlock(&kfd_mem_limit.mem_limit_lock);
3230
3231
return 0;
3232
}
3233
3234
#endif
3235
3236