Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c
29285 views
1
// SPDX-License-Identifier: GPL-2.0 OR MIT
2
/*
3
* Copyright 2014-2022 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#include <linux/device.h>
25
#include <linux/err.h>
26
#include <linux/fs.h>
27
#include <linux/file.h>
28
#include <linux/sched.h>
29
#include <linux/slab.h>
30
#include <linux/uaccess.h>
31
#include <linux/compat.h>
32
#include <uapi/linux/kfd_ioctl.h>
33
#include <linux/time.h>
34
#include <linux/mm.h>
35
#include <linux/mman.h>
36
#include <linux/ptrace.h>
37
#include <linux/dma-buf.h>
38
#include <linux/processor.h>
39
#include "kfd_priv.h"
40
#include "kfd_device_queue_manager.h"
41
#include "kfd_svm.h"
42
#include "amdgpu_amdkfd.h"
43
#include "kfd_smi_events.h"
44
#include "amdgpu_dma_buf.h"
45
#include "kfd_debug.h"
46
47
static long kfd_ioctl(struct file *, unsigned int, unsigned long);
48
static int kfd_open(struct inode *, struct file *);
49
static int kfd_release(struct inode *, struct file *);
50
static int kfd_mmap(struct file *, struct vm_area_struct *);
51
52
static const char kfd_dev_name[] = "kfd";
53
54
static const struct file_operations kfd_fops = {
55
.owner = THIS_MODULE,
56
.unlocked_ioctl = kfd_ioctl,
57
.compat_ioctl = compat_ptr_ioctl,
58
.open = kfd_open,
59
.release = kfd_release,
60
.mmap = kfd_mmap,
61
};
62
63
static int kfd_char_dev_major = -1;
64
struct device *kfd_device;
65
static const struct class kfd_class = {
66
.name = kfd_dev_name,
67
};
68
69
static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70
{
71
struct kfd_process_device *pdd;
72
73
mutex_lock(&p->mutex);
74
pdd = kfd_process_device_data_by_id(p, gpu_id);
75
76
if (pdd)
77
return pdd;
78
79
mutex_unlock(&p->mutex);
80
return NULL;
81
}
82
83
static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84
{
85
mutex_unlock(&pdd->process->mutex);
86
}
87
88
int kfd_chardev_init(void)
89
{
90
int err = 0;
91
92
kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93
err = kfd_char_dev_major;
94
if (err < 0)
95
goto err_register_chrdev;
96
97
err = class_register(&kfd_class);
98
if (err)
99
goto err_class_create;
100
101
kfd_device = device_create(&kfd_class, NULL,
102
MKDEV(kfd_char_dev_major, 0),
103
NULL, kfd_dev_name);
104
err = PTR_ERR(kfd_device);
105
if (IS_ERR(kfd_device))
106
goto err_device_create;
107
108
return 0;
109
110
err_device_create:
111
class_unregister(&kfd_class);
112
err_class_create:
113
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114
err_register_chrdev:
115
return err;
116
}
117
118
void kfd_chardev_exit(void)
119
{
120
device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
121
class_unregister(&kfd_class);
122
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123
kfd_device = NULL;
124
}
125
126
127
static int kfd_open(struct inode *inode, struct file *filep)
128
{
129
struct kfd_process *process;
130
bool is_32bit_user_mode;
131
132
if (iminor(inode) != 0)
133
return -ENODEV;
134
135
is_32bit_user_mode = in_compat_syscall();
136
137
if (is_32bit_user_mode) {
138
dev_warn(kfd_device,
139
"Process %d (32-bit) failed to open /dev/kfd\n"
140
"32-bit processes are not supported by amdkfd\n",
141
current->pid);
142
return -EPERM;
143
}
144
145
process = kfd_create_process(current);
146
if (IS_ERR(process))
147
return PTR_ERR(process);
148
149
if (kfd_process_init_cwsr_apu(process, filep)) {
150
kfd_unref_process(process);
151
return -EFAULT;
152
}
153
154
/* filep now owns the reference returned by kfd_create_process */
155
filep->private_data = process;
156
157
dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
158
process->lead_thread->pid, process->is_32bit_user_mode);
159
160
return 0;
161
}
162
163
static int kfd_release(struct inode *inode, struct file *filep)
164
{
165
struct kfd_process *process = filep->private_data;
166
167
if (process)
168
kfd_unref_process(process);
169
170
return 0;
171
}
172
173
static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
174
void *data)
175
{
176
struct kfd_ioctl_get_version_args *args = data;
177
178
args->major_version = KFD_IOCTL_MAJOR_VERSION;
179
args->minor_version = KFD_IOCTL_MINOR_VERSION;
180
181
return 0;
182
}
183
184
static int set_queue_properties_from_user(struct queue_properties *q_properties,
185
struct kfd_ioctl_create_queue_args *args)
186
{
187
/*
188
* Repurpose queue percentage to accommodate new features:
189
* bit 0-7: queue percentage
190
* bit 8-15: pm4_target_xcc
191
*/
192
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
193
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
194
return -EINVAL;
195
}
196
197
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
198
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
199
return -EINVAL;
200
}
201
202
if ((args->ring_base_address) &&
203
(!access_ok((const void __user *) args->ring_base_address,
204
sizeof(uint64_t)))) {
205
pr_err("Can't access ring base address\n");
206
return -EFAULT;
207
}
208
209
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
210
pr_err("Ring size must be a power of 2 or 0\n");
211
return -EINVAL;
212
}
213
214
if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
215
args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
216
pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
217
}
218
219
if (!access_ok((const void __user *) args->read_pointer_address,
220
sizeof(uint32_t))) {
221
pr_err("Can't access read pointer\n");
222
return -EFAULT;
223
}
224
225
if (!access_ok((const void __user *) args->write_pointer_address,
226
sizeof(uint32_t))) {
227
pr_err("Can't access write pointer\n");
228
return -EFAULT;
229
}
230
231
if (args->eop_buffer_address &&
232
!access_ok((const void __user *) args->eop_buffer_address,
233
sizeof(uint32_t))) {
234
pr_debug("Can't access eop buffer");
235
return -EFAULT;
236
}
237
238
if (args->ctx_save_restore_address &&
239
!access_ok((const void __user *) args->ctx_save_restore_address,
240
sizeof(uint32_t))) {
241
pr_debug("Can't access ctx save restore buffer");
242
return -EFAULT;
243
}
244
245
q_properties->is_interop = false;
246
q_properties->is_gws = false;
247
q_properties->queue_percent = args->queue_percentage & 0xFF;
248
/* bit 8-15 are repurposed to be PM4 target XCC */
249
q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
250
q_properties->priority = args->queue_priority;
251
q_properties->queue_address = args->ring_base_address;
252
q_properties->queue_size = args->ring_size;
253
q_properties->read_ptr = (void __user *)args->read_pointer_address;
254
q_properties->write_ptr = (void __user *)args->write_pointer_address;
255
q_properties->eop_ring_buffer_address = args->eop_buffer_address;
256
q_properties->eop_ring_buffer_size = args->eop_buffer_size;
257
q_properties->ctx_save_restore_area_address =
258
args->ctx_save_restore_address;
259
q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
260
q_properties->ctl_stack_size = args->ctl_stack_size;
261
q_properties->sdma_engine_id = args->sdma_engine_id;
262
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
263
args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
264
q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
265
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
266
q_properties->type = KFD_QUEUE_TYPE_SDMA;
267
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
268
q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
269
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
270
q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
271
else
272
return -ENOTSUPP;
273
274
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
275
q_properties->format = KFD_QUEUE_FORMAT_AQL;
276
else
277
q_properties->format = KFD_QUEUE_FORMAT_PM4;
278
279
pr_debug("Queue Percentage: %d, %d\n",
280
q_properties->queue_percent, args->queue_percentage);
281
282
pr_debug("Queue Priority: %d, %d\n",
283
q_properties->priority, args->queue_priority);
284
285
pr_debug("Queue Address: 0x%llX, 0x%llX\n",
286
q_properties->queue_address, args->ring_base_address);
287
288
pr_debug("Queue Size: 0x%llX, %u\n",
289
q_properties->queue_size, args->ring_size);
290
291
pr_debug("Queue r/w Pointers: %px, %px\n",
292
q_properties->read_ptr,
293
q_properties->write_ptr);
294
295
pr_debug("Queue Format: %d\n", q_properties->format);
296
297
pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
298
299
pr_debug("Queue CTX save area: 0x%llX\n",
300
q_properties->ctx_save_restore_area_address);
301
302
return 0;
303
}
304
305
static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
306
void *data)
307
{
308
struct kfd_ioctl_create_queue_args *args = data;
309
struct kfd_node *dev;
310
int err = 0;
311
unsigned int queue_id;
312
struct kfd_process_device *pdd;
313
struct queue_properties q_properties;
314
uint32_t doorbell_offset_in_process = 0;
315
316
memset(&q_properties, 0, sizeof(struct queue_properties));
317
318
pr_debug("Creating queue ioctl\n");
319
320
err = set_queue_properties_from_user(&q_properties, args);
321
if (err)
322
return err;
323
324
pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
325
326
mutex_lock(&p->mutex);
327
328
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
329
if (!pdd) {
330
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
331
err = -EINVAL;
332
goto err_pdd;
333
}
334
dev = pdd->dev;
335
336
pdd = kfd_bind_process_to_device(dev, p);
337
if (IS_ERR(pdd)) {
338
err = -ESRCH;
339
goto err_bind_process;
340
}
341
342
if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
343
int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
344
kfd_get_num_xgmi_sdma_engines(dev) - 1;
345
346
if (q_properties.sdma_engine_id > max_sdma_eng_id) {
347
err = -EINVAL;
348
pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
349
q_properties.sdma_engine_id, max_sdma_eng_id);
350
goto err_sdma_engine_id;
351
}
352
}
353
354
if (!pdd->qpd.proc_doorbells) {
355
err = kfd_alloc_process_doorbells(dev->kfd, pdd);
356
if (err) {
357
pr_debug("failed to allocate process doorbells\n");
358
goto err_bind_process;
359
}
360
}
361
362
err = kfd_queue_acquire_buffers(pdd, &q_properties);
363
if (err) {
364
pr_debug("failed to acquire user queue buffers\n");
365
goto err_acquire_queue_buf;
366
}
367
368
pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
369
p->lead_thread->pid,
370
dev->id);
371
372
err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
373
NULL, NULL, NULL, &doorbell_offset_in_process);
374
if (err != 0)
375
goto err_create_queue;
376
377
args->queue_id = queue_id;
378
379
380
/* Return gpu_id as doorbell offset for mmap usage */
381
args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
382
args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
383
if (KFD_IS_SOC15(dev))
384
/* On SOC15 ASICs, include the doorbell offset within the
385
* process doorbell frame, which is 2 pages.
386
*/
387
args->doorbell_offset |= doorbell_offset_in_process;
388
389
mutex_unlock(&p->mutex);
390
391
pr_debug("Queue id %d was created successfully\n", args->queue_id);
392
393
pr_debug("Ring buffer address == 0x%016llX\n",
394
args->ring_base_address);
395
396
pr_debug("Read ptr address == 0x%016llX\n",
397
args->read_pointer_address);
398
399
pr_debug("Write ptr address == 0x%016llX\n",
400
args->write_pointer_address);
401
402
kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
403
return 0;
404
405
err_create_queue:
406
kfd_queue_unref_bo_vas(pdd, &q_properties);
407
kfd_queue_release_buffers(pdd, &q_properties);
408
err_acquire_queue_buf:
409
err_sdma_engine_id:
410
err_bind_process:
411
err_pdd:
412
mutex_unlock(&p->mutex);
413
return err;
414
}
415
416
static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
417
void *data)
418
{
419
int retval;
420
struct kfd_ioctl_destroy_queue_args *args = data;
421
422
pr_debug("Destroying queue id %d for process pid %d\n",
423
args->queue_id,
424
p->lead_thread->pid);
425
426
mutex_lock(&p->mutex);
427
428
retval = pqm_destroy_queue(&p->pqm, args->queue_id);
429
430
mutex_unlock(&p->mutex);
431
return retval;
432
}
433
434
static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
435
void *data)
436
{
437
int retval;
438
struct kfd_ioctl_update_queue_args *args = data;
439
struct queue_properties properties;
440
441
/*
442
* Repurpose queue percentage to accommodate new features:
443
* bit 0-7: queue percentage
444
* bit 8-15: pm4_target_xcc
445
*/
446
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
447
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
448
return -EINVAL;
449
}
450
451
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
452
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
453
return -EINVAL;
454
}
455
456
if ((args->ring_base_address) &&
457
(!access_ok((const void __user *) args->ring_base_address,
458
sizeof(uint64_t)))) {
459
pr_err("Can't access ring base address\n");
460
return -EFAULT;
461
}
462
463
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
464
pr_err("Ring size must be a power of 2 or 0\n");
465
return -EINVAL;
466
}
467
468
if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
469
args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
470
pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
471
}
472
473
properties.queue_address = args->ring_base_address;
474
properties.queue_size = args->ring_size;
475
properties.queue_percent = args->queue_percentage & 0xFF;
476
/* bit 8-15 are repurposed to be PM4 target XCC */
477
properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
478
properties.priority = args->queue_priority;
479
480
pr_debug("Updating queue id %d for process pid %d\n",
481
args->queue_id, p->lead_thread->pid);
482
483
mutex_lock(&p->mutex);
484
485
retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
486
487
mutex_unlock(&p->mutex);
488
489
return retval;
490
}
491
492
static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
493
void *data)
494
{
495
int retval;
496
const int max_num_cus = 1024;
497
struct kfd_ioctl_set_cu_mask_args *args = data;
498
struct mqd_update_info minfo = {0};
499
uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
500
size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
501
502
if ((args->num_cu_mask % 32) != 0) {
503
pr_debug("num_cu_mask 0x%x must be a multiple of 32",
504
args->num_cu_mask);
505
return -EINVAL;
506
}
507
508
minfo.cu_mask.count = args->num_cu_mask;
509
if (minfo.cu_mask.count == 0) {
510
pr_debug("CU mask cannot be 0");
511
return -EINVAL;
512
}
513
514
/* To prevent an unreasonably large CU mask size, set an arbitrary
515
* limit of max_num_cus bits. We can then just drop any CU mask bits
516
* past max_num_cus bits and just use the first max_num_cus bits.
517
*/
518
if (minfo.cu_mask.count > max_num_cus) {
519
pr_debug("CU mask cannot be greater than 1024 bits");
520
minfo.cu_mask.count = max_num_cus;
521
cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
522
}
523
524
minfo.cu_mask.ptr = memdup_user(cu_mask_ptr, cu_mask_size);
525
if (IS_ERR(minfo.cu_mask.ptr)) {
526
pr_debug("Could not copy CU mask from userspace");
527
return PTR_ERR(minfo.cu_mask.ptr);
528
}
529
530
mutex_lock(&p->mutex);
531
532
retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
533
534
mutex_unlock(&p->mutex);
535
536
kfree(minfo.cu_mask.ptr);
537
return retval;
538
}
539
540
static int kfd_ioctl_get_queue_wave_state(struct file *filep,
541
struct kfd_process *p, void *data)
542
{
543
struct kfd_ioctl_get_queue_wave_state_args *args = data;
544
int r;
545
546
mutex_lock(&p->mutex);
547
548
r = pqm_get_wave_state(&p->pqm, args->queue_id,
549
(void __user *)args->ctl_stack_address,
550
&args->ctl_stack_used_size,
551
&args->save_area_used_size);
552
553
mutex_unlock(&p->mutex);
554
555
return r;
556
}
557
558
static int kfd_ioctl_set_memory_policy(struct file *filep,
559
struct kfd_process *p, void *data)
560
{
561
struct kfd_ioctl_set_memory_policy_args *args = data;
562
int err = 0;
563
struct kfd_process_device *pdd;
564
enum cache_policy default_policy, alternate_policy;
565
566
if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
567
&& args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
568
return -EINVAL;
569
}
570
571
if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
572
&& args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
573
return -EINVAL;
574
}
575
576
mutex_lock(&p->mutex);
577
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
578
if (!pdd) {
579
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
580
err = -EINVAL;
581
goto err_pdd;
582
}
583
584
pdd = kfd_bind_process_to_device(pdd->dev, p);
585
if (IS_ERR(pdd)) {
586
err = -ESRCH;
587
goto out;
588
}
589
590
default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
591
? cache_policy_coherent : cache_policy_noncoherent;
592
593
alternate_policy =
594
(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
595
? cache_policy_coherent : cache_policy_noncoherent;
596
597
if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
598
&pdd->qpd,
599
default_policy,
600
alternate_policy,
601
(void __user *)args->alternate_aperture_base,
602
args->alternate_aperture_size,
603
args->misc_process_flag))
604
err = -EINVAL;
605
606
out:
607
err_pdd:
608
mutex_unlock(&p->mutex);
609
610
return err;
611
}
612
613
static int kfd_ioctl_set_trap_handler(struct file *filep,
614
struct kfd_process *p, void *data)
615
{
616
struct kfd_ioctl_set_trap_handler_args *args = data;
617
int err = 0;
618
struct kfd_process_device *pdd;
619
620
mutex_lock(&p->mutex);
621
622
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
623
if (!pdd) {
624
err = -EINVAL;
625
goto err_pdd;
626
}
627
628
pdd = kfd_bind_process_to_device(pdd->dev, p);
629
if (IS_ERR(pdd)) {
630
err = -ESRCH;
631
goto out;
632
}
633
634
kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
635
636
out:
637
err_pdd:
638
mutex_unlock(&p->mutex);
639
640
return err;
641
}
642
643
static int kfd_ioctl_dbg_register(struct file *filep,
644
struct kfd_process *p, void *data)
645
{
646
return -EPERM;
647
}
648
649
static int kfd_ioctl_dbg_unregister(struct file *filep,
650
struct kfd_process *p, void *data)
651
{
652
return -EPERM;
653
}
654
655
static int kfd_ioctl_dbg_address_watch(struct file *filep,
656
struct kfd_process *p, void *data)
657
{
658
return -EPERM;
659
}
660
661
/* Parse and generate fixed size data structure for wave control */
662
static int kfd_ioctl_dbg_wave_control(struct file *filep,
663
struct kfd_process *p, void *data)
664
{
665
return -EPERM;
666
}
667
668
static int kfd_ioctl_get_clock_counters(struct file *filep,
669
struct kfd_process *p, void *data)
670
{
671
struct kfd_ioctl_get_clock_counters_args *args = data;
672
struct kfd_process_device *pdd;
673
674
mutex_lock(&p->mutex);
675
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
676
mutex_unlock(&p->mutex);
677
if (pdd)
678
/* Reading GPU clock counter from KGD */
679
args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
680
else
681
/* Node without GPU resource */
682
args->gpu_clock_counter = 0;
683
684
/* No access to rdtsc. Using raw monotonic time */
685
args->cpu_clock_counter = ktime_get_raw_ns();
686
args->system_clock_counter = ktime_get_boottime_ns();
687
688
/* Since the counter is in nano-seconds we use 1GHz frequency */
689
args->system_clock_freq = 1000000000;
690
691
return 0;
692
}
693
694
695
static int kfd_ioctl_get_process_apertures(struct file *filp,
696
struct kfd_process *p, void *data)
697
{
698
struct kfd_ioctl_get_process_apertures_args *args = data;
699
struct kfd_process_device_apertures *pAperture;
700
int i;
701
702
dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
703
704
args->num_of_nodes = 0;
705
706
mutex_lock(&p->mutex);
707
/* Run over all pdd of the process */
708
for (i = 0; i < p->n_pdds; i++) {
709
struct kfd_process_device *pdd = p->pdds[i];
710
711
pAperture =
712
&args->process_apertures[args->num_of_nodes];
713
pAperture->gpu_id = pdd->dev->id;
714
pAperture->lds_base = pdd->lds_base;
715
pAperture->lds_limit = pdd->lds_limit;
716
pAperture->gpuvm_base = pdd->gpuvm_base;
717
pAperture->gpuvm_limit = pdd->gpuvm_limit;
718
pAperture->scratch_base = pdd->scratch_base;
719
pAperture->scratch_limit = pdd->scratch_limit;
720
721
dev_dbg(kfd_device,
722
"node id %u\n", args->num_of_nodes);
723
dev_dbg(kfd_device,
724
"gpu id %u\n", pdd->dev->id);
725
dev_dbg(kfd_device,
726
"lds_base %llX\n", pdd->lds_base);
727
dev_dbg(kfd_device,
728
"lds_limit %llX\n", pdd->lds_limit);
729
dev_dbg(kfd_device,
730
"gpuvm_base %llX\n", pdd->gpuvm_base);
731
dev_dbg(kfd_device,
732
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
733
dev_dbg(kfd_device,
734
"scratch_base %llX\n", pdd->scratch_base);
735
dev_dbg(kfd_device,
736
"scratch_limit %llX\n", pdd->scratch_limit);
737
738
if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
739
break;
740
}
741
mutex_unlock(&p->mutex);
742
743
return 0;
744
}
745
746
static int kfd_ioctl_get_process_apertures_new(struct file *filp,
747
struct kfd_process *p, void *data)
748
{
749
struct kfd_ioctl_get_process_apertures_new_args *args = data;
750
struct kfd_process_device_apertures *pa;
751
int ret;
752
int i;
753
754
dev_dbg(kfd_device, "get apertures for process pid %d",
755
p->lead_thread->pid);
756
757
if (args->num_of_nodes == 0) {
758
/* Return number of nodes, so that user space can alloacate
759
* sufficient memory
760
*/
761
mutex_lock(&p->mutex);
762
args->num_of_nodes = p->n_pdds;
763
goto out_unlock;
764
}
765
766
/* Fill in process-aperture information for all available
767
* nodes, but not more than args->num_of_nodes as that is
768
* the amount of memory allocated by user
769
*/
770
pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
771
GFP_KERNEL);
772
if (!pa)
773
return -ENOMEM;
774
775
mutex_lock(&p->mutex);
776
777
if (!p->n_pdds) {
778
args->num_of_nodes = 0;
779
kfree(pa);
780
goto out_unlock;
781
}
782
783
/* Run over all pdd of the process */
784
for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
785
struct kfd_process_device *pdd = p->pdds[i];
786
787
pa[i].gpu_id = pdd->dev->id;
788
pa[i].lds_base = pdd->lds_base;
789
pa[i].lds_limit = pdd->lds_limit;
790
pa[i].gpuvm_base = pdd->gpuvm_base;
791
pa[i].gpuvm_limit = pdd->gpuvm_limit;
792
pa[i].scratch_base = pdd->scratch_base;
793
pa[i].scratch_limit = pdd->scratch_limit;
794
795
dev_dbg(kfd_device,
796
"gpu id %u\n", pdd->dev->id);
797
dev_dbg(kfd_device,
798
"lds_base %llX\n", pdd->lds_base);
799
dev_dbg(kfd_device,
800
"lds_limit %llX\n", pdd->lds_limit);
801
dev_dbg(kfd_device,
802
"gpuvm_base %llX\n", pdd->gpuvm_base);
803
dev_dbg(kfd_device,
804
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
805
dev_dbg(kfd_device,
806
"scratch_base %llX\n", pdd->scratch_base);
807
dev_dbg(kfd_device,
808
"scratch_limit %llX\n", pdd->scratch_limit);
809
}
810
mutex_unlock(&p->mutex);
811
812
args->num_of_nodes = i;
813
ret = copy_to_user(
814
(void __user *)args->kfd_process_device_apertures_ptr,
815
pa,
816
(i * sizeof(struct kfd_process_device_apertures)));
817
kfree(pa);
818
return ret ? -EFAULT : 0;
819
820
out_unlock:
821
mutex_unlock(&p->mutex);
822
return 0;
823
}
824
825
static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
826
void *data)
827
{
828
struct kfd_ioctl_create_event_args *args = data;
829
int err;
830
831
/* For dGPUs the event page is allocated in user mode. The
832
* handle is passed to KFD with the first call to this IOCTL
833
* through the event_page_offset field.
834
*/
835
if (args->event_page_offset) {
836
mutex_lock(&p->mutex);
837
err = kfd_kmap_event_page(p, args->event_page_offset);
838
mutex_unlock(&p->mutex);
839
if (err)
840
return err;
841
}
842
843
err = kfd_event_create(filp, p, args->event_type,
844
args->auto_reset != 0, args->node_id,
845
&args->event_id, &args->event_trigger_data,
846
&args->event_page_offset,
847
&args->event_slot_index);
848
849
pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
850
return err;
851
}
852
853
static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
854
void *data)
855
{
856
struct kfd_ioctl_destroy_event_args *args = data;
857
858
return kfd_event_destroy(p, args->event_id);
859
}
860
861
static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
862
void *data)
863
{
864
struct kfd_ioctl_set_event_args *args = data;
865
866
return kfd_set_event(p, args->event_id);
867
}
868
869
static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
870
void *data)
871
{
872
struct kfd_ioctl_reset_event_args *args = data;
873
874
return kfd_reset_event(p, args->event_id);
875
}
876
877
static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
878
void *data)
879
{
880
struct kfd_ioctl_wait_events_args *args = data;
881
882
return kfd_wait_on_events(p, args->num_events,
883
(void __user *)args->events_ptr,
884
(args->wait_for_all != 0),
885
&args->timeout, &args->wait_result);
886
}
887
static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
888
struct kfd_process *p, void *data)
889
{
890
struct kfd_ioctl_set_scratch_backing_va_args *args = data;
891
struct kfd_process_device *pdd;
892
struct kfd_node *dev;
893
long err;
894
895
mutex_lock(&p->mutex);
896
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
897
if (!pdd) {
898
err = -EINVAL;
899
goto err_pdd;
900
}
901
dev = pdd->dev;
902
903
pdd = kfd_bind_process_to_device(dev, p);
904
if (IS_ERR(pdd)) {
905
err = PTR_ERR(pdd);
906
goto bind_process_to_device_fail;
907
}
908
909
pdd->qpd.sh_hidden_private_base = args->va_addr;
910
911
mutex_unlock(&p->mutex);
912
913
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
914
pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
915
dev->kfd2kgd->set_scratch_backing_va(
916
dev->adev, args->va_addr, pdd->qpd.vmid);
917
918
return 0;
919
920
bind_process_to_device_fail:
921
err_pdd:
922
mutex_unlock(&p->mutex);
923
return err;
924
}
925
926
static int kfd_ioctl_get_tile_config(struct file *filep,
927
struct kfd_process *p, void *data)
928
{
929
struct kfd_ioctl_get_tile_config_args *args = data;
930
struct kfd_process_device *pdd;
931
struct tile_config config;
932
int err = 0;
933
934
mutex_lock(&p->mutex);
935
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
936
mutex_unlock(&p->mutex);
937
if (!pdd)
938
return -EINVAL;
939
940
amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
941
942
args->gb_addr_config = config.gb_addr_config;
943
args->num_banks = config.num_banks;
944
args->num_ranks = config.num_ranks;
945
946
if (args->num_tile_configs > config.num_tile_configs)
947
args->num_tile_configs = config.num_tile_configs;
948
err = copy_to_user((void __user *)args->tile_config_ptr,
949
config.tile_config_ptr,
950
args->num_tile_configs * sizeof(uint32_t));
951
if (err) {
952
args->num_tile_configs = 0;
953
return -EFAULT;
954
}
955
956
if (args->num_macro_tile_configs > config.num_macro_tile_configs)
957
args->num_macro_tile_configs =
958
config.num_macro_tile_configs;
959
err = copy_to_user((void __user *)args->macro_tile_config_ptr,
960
config.macro_tile_config_ptr,
961
args->num_macro_tile_configs * sizeof(uint32_t));
962
if (err) {
963
args->num_macro_tile_configs = 0;
964
return -EFAULT;
965
}
966
967
return 0;
968
}
969
970
static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
971
void *data)
972
{
973
struct kfd_ioctl_acquire_vm_args *args = data;
974
struct kfd_process_device *pdd;
975
struct file *drm_file;
976
int ret;
977
978
drm_file = fget(args->drm_fd);
979
if (!drm_file)
980
return -EINVAL;
981
982
mutex_lock(&p->mutex);
983
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
984
if (!pdd) {
985
ret = -EINVAL;
986
goto err_pdd;
987
}
988
989
if (pdd->drm_file) {
990
ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
991
goto err_drm_file;
992
}
993
994
ret = kfd_process_device_init_vm(pdd, drm_file);
995
if (ret)
996
goto err_unlock;
997
998
/* On success, the PDD keeps the drm_file reference */
999
mutex_unlock(&p->mutex);
1000
1001
return 0;
1002
1003
err_unlock:
1004
err_pdd:
1005
err_drm_file:
1006
mutex_unlock(&p->mutex);
1007
fput(drm_file);
1008
return ret;
1009
}
1010
1011
bool kfd_dev_is_large_bar(struct kfd_node *dev)
1012
{
1013
if (dev->kfd->adev->debug_largebar) {
1014
pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1015
return true;
1016
}
1017
1018
if (dev->local_mem_info.local_mem_size_private == 0 &&
1019
dev->local_mem_info.local_mem_size_public > 0)
1020
return true;
1021
1022
if (dev->local_mem_info.local_mem_size_public == 0 &&
1023
dev->kfd->adev->gmc.is_app_apu) {
1024
pr_debug("APP APU, Consider like a large bar system\n");
1025
return true;
1026
}
1027
1028
return false;
1029
}
1030
1031
static int kfd_ioctl_get_available_memory(struct file *filep,
1032
struct kfd_process *p, void *data)
1033
{
1034
struct kfd_ioctl_get_available_memory_args *args = data;
1035
struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1036
1037
if (!pdd)
1038
return -EINVAL;
1039
args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1040
pdd->dev->node_id);
1041
kfd_unlock_pdd(pdd);
1042
return 0;
1043
}
1044
1045
static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1046
struct kfd_process *p, void *data)
1047
{
1048
struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1049
struct kfd_process_device *pdd;
1050
void *mem;
1051
struct kfd_node *dev;
1052
int idr_handle;
1053
long err;
1054
uint64_t offset = args->mmap_offset;
1055
uint32_t flags = args->flags;
1056
1057
if (args->size == 0)
1058
return -EINVAL;
1059
1060
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1061
/* Flush pending deferred work to avoid racing with deferred actions
1062
* from previous memory map changes (e.g. munmap).
1063
*/
1064
svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1065
mutex_lock(&p->svms.lock);
1066
mmap_write_unlock(current->mm);
1067
1068
/* Skip a special case that allocates VRAM without VA,
1069
* VA will be invalid of 0.
1070
*/
1071
if (!(!args->va_addr && (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)) &&
1072
interval_tree_iter_first(&p->svms.objects,
1073
args->va_addr >> PAGE_SHIFT,
1074
(args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1075
pr_err("Address: 0x%llx already allocated by SVM\n",
1076
args->va_addr);
1077
mutex_unlock(&p->svms.lock);
1078
return -EADDRINUSE;
1079
}
1080
1081
/* When register user buffer check if it has been registered by svm by
1082
* buffer cpu virtual address.
1083
*/
1084
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1085
interval_tree_iter_first(&p->svms.objects,
1086
args->mmap_offset >> PAGE_SHIFT,
1087
(args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1088
pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1089
args->mmap_offset);
1090
mutex_unlock(&p->svms.lock);
1091
return -EADDRINUSE;
1092
}
1093
1094
mutex_unlock(&p->svms.lock);
1095
#endif
1096
mutex_lock(&p->mutex);
1097
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1098
if (!pdd) {
1099
err = -EINVAL;
1100
goto err_pdd;
1101
}
1102
1103
dev = pdd->dev;
1104
1105
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1106
(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1107
!kfd_dev_is_large_bar(dev)) {
1108
pr_err("Alloc host visible vram on small bar is not allowed\n");
1109
err = -EINVAL;
1110
goto err_large_bar;
1111
}
1112
1113
pdd = kfd_bind_process_to_device(dev, p);
1114
if (IS_ERR(pdd)) {
1115
err = PTR_ERR(pdd);
1116
goto err_unlock;
1117
}
1118
1119
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1120
if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1121
err = -EINVAL;
1122
goto err_unlock;
1123
}
1124
offset = kfd_get_process_doorbells(pdd);
1125
if (!offset) {
1126
err = -ENOMEM;
1127
goto err_unlock;
1128
}
1129
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1130
if (args->size != PAGE_SIZE) {
1131
err = -EINVAL;
1132
goto err_unlock;
1133
}
1134
offset = dev->adev->rmmio_remap.bus_addr;
1135
if (!offset || (PAGE_SIZE > 4096)) {
1136
err = -ENOMEM;
1137
goto err_unlock;
1138
}
1139
}
1140
1141
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1142
dev->adev, args->va_addr, args->size,
1143
pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1144
flags, false);
1145
1146
if (err)
1147
goto err_unlock;
1148
1149
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1150
if (idr_handle < 0) {
1151
err = -EFAULT;
1152
goto err_free;
1153
}
1154
1155
/* Update the VRAM usage count */
1156
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1157
uint64_t size = args->size;
1158
1159
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1160
size >>= 1;
1161
atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1162
}
1163
1164
mutex_unlock(&p->mutex);
1165
1166
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1167
args->mmap_offset = offset;
1168
1169
/* MMIO is mapped through kfd device
1170
* Generate a kfd mmap offset
1171
*/
1172
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1173
args->mmap_offset = KFD_MMAP_TYPE_MMIO
1174
| KFD_MMAP_GPU_ID(args->gpu_id);
1175
1176
return 0;
1177
1178
err_free:
1179
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1180
pdd->drm_priv, NULL);
1181
err_unlock:
1182
err_pdd:
1183
err_large_bar:
1184
mutex_unlock(&p->mutex);
1185
return err;
1186
}
1187
1188
static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1189
struct kfd_process *p, void *data)
1190
{
1191
struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1192
struct kfd_process_device *pdd;
1193
void *mem;
1194
int ret;
1195
uint64_t size = 0;
1196
1197
mutex_lock(&p->mutex);
1198
/*
1199
* Safeguard to prevent user space from freeing signal BO.
1200
* It will be freed at process termination.
1201
*/
1202
if (p->signal_handle && (p->signal_handle == args->handle)) {
1203
pr_err("Free signal BO is not allowed\n");
1204
ret = -EPERM;
1205
goto err_unlock;
1206
}
1207
1208
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1209
if (!pdd) {
1210
pr_err("Process device data doesn't exist\n");
1211
ret = -EINVAL;
1212
goto err_pdd;
1213
}
1214
1215
mem = kfd_process_device_translate_handle(
1216
pdd, GET_IDR_HANDLE(args->handle));
1217
if (!mem) {
1218
ret = -EINVAL;
1219
goto err_unlock;
1220
}
1221
1222
ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1223
(struct kgd_mem *)mem, pdd->drm_priv, &size);
1224
1225
/* If freeing the buffer failed, leave the handle in place for
1226
* clean-up during process tear-down.
1227
*/
1228
if (!ret)
1229
kfd_process_device_remove_obj_handle(
1230
pdd, GET_IDR_HANDLE(args->handle));
1231
1232
atomic64_sub(size, &pdd->vram_usage);
1233
1234
err_unlock:
1235
err_pdd:
1236
mutex_unlock(&p->mutex);
1237
return ret;
1238
}
1239
1240
static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1241
struct kfd_process *p, void *data)
1242
{
1243
struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1244
struct kfd_process_device *pdd, *peer_pdd;
1245
void *mem;
1246
struct kfd_node *dev;
1247
long err = 0;
1248
int i;
1249
uint32_t *devices_arr = NULL;
1250
1251
if (!args->n_devices) {
1252
pr_debug("Device IDs array empty\n");
1253
return -EINVAL;
1254
}
1255
if (args->n_success > args->n_devices) {
1256
pr_debug("n_success exceeds n_devices\n");
1257
return -EINVAL;
1258
}
1259
1260
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1261
GFP_KERNEL);
1262
if (!devices_arr)
1263
return -ENOMEM;
1264
1265
err = copy_from_user(devices_arr,
1266
(void __user *)args->device_ids_array_ptr,
1267
args->n_devices * sizeof(*devices_arr));
1268
if (err != 0) {
1269
err = -EFAULT;
1270
goto copy_from_user_failed;
1271
}
1272
1273
mutex_lock(&p->mutex);
1274
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1275
if (!pdd) {
1276
err = -EINVAL;
1277
goto get_process_device_data_failed;
1278
}
1279
dev = pdd->dev;
1280
1281
pdd = kfd_bind_process_to_device(dev, p);
1282
if (IS_ERR(pdd)) {
1283
err = PTR_ERR(pdd);
1284
goto bind_process_to_device_failed;
1285
}
1286
1287
mem = kfd_process_device_translate_handle(pdd,
1288
GET_IDR_HANDLE(args->handle));
1289
if (!mem) {
1290
err = -ENOMEM;
1291
goto get_mem_obj_from_handle_failed;
1292
}
1293
1294
for (i = args->n_success; i < args->n_devices; i++) {
1295
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1296
if (!peer_pdd) {
1297
pr_debug("Getting device by id failed for 0x%x\n",
1298
devices_arr[i]);
1299
err = -EINVAL;
1300
goto get_mem_obj_from_handle_failed;
1301
}
1302
1303
peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1304
if (IS_ERR(peer_pdd)) {
1305
err = PTR_ERR(peer_pdd);
1306
goto get_mem_obj_from_handle_failed;
1307
}
1308
1309
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1310
peer_pdd->dev->adev, (struct kgd_mem *)mem,
1311
peer_pdd->drm_priv);
1312
if (err) {
1313
struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1314
1315
dev_err(dev->adev->dev,
1316
"Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1317
pci_domain_nr(pdev->bus),
1318
pdev->bus->number,
1319
PCI_SLOT(pdev->devfn),
1320
PCI_FUNC(pdev->devfn),
1321
((struct kgd_mem *)mem)->domain);
1322
goto map_memory_to_gpu_failed;
1323
}
1324
args->n_success = i+1;
1325
}
1326
1327
err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1328
if (err) {
1329
pr_debug("Sync memory failed, wait interrupted by user signal\n");
1330
goto sync_memory_failed;
1331
}
1332
1333
mutex_unlock(&p->mutex);
1334
1335
/* Flush TLBs after waiting for the page table updates to complete */
1336
for (i = 0; i < args->n_devices; i++) {
1337
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1338
if (WARN_ON_ONCE(!peer_pdd))
1339
continue;
1340
kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1341
}
1342
kfree(devices_arr);
1343
1344
return err;
1345
1346
get_process_device_data_failed:
1347
bind_process_to_device_failed:
1348
get_mem_obj_from_handle_failed:
1349
map_memory_to_gpu_failed:
1350
sync_memory_failed:
1351
mutex_unlock(&p->mutex);
1352
copy_from_user_failed:
1353
kfree(devices_arr);
1354
1355
return err;
1356
}
1357
1358
static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1359
struct kfd_process *p, void *data)
1360
{
1361
struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1362
struct kfd_process_device *pdd, *peer_pdd;
1363
void *mem;
1364
long err = 0;
1365
uint32_t *devices_arr = NULL, i;
1366
bool flush_tlb;
1367
1368
if (!args->n_devices) {
1369
pr_debug("Device IDs array empty\n");
1370
return -EINVAL;
1371
}
1372
if (args->n_success > args->n_devices) {
1373
pr_debug("n_success exceeds n_devices\n");
1374
return -EINVAL;
1375
}
1376
1377
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1378
GFP_KERNEL);
1379
if (!devices_arr)
1380
return -ENOMEM;
1381
1382
err = copy_from_user(devices_arr,
1383
(void __user *)args->device_ids_array_ptr,
1384
args->n_devices * sizeof(*devices_arr));
1385
if (err != 0) {
1386
err = -EFAULT;
1387
goto copy_from_user_failed;
1388
}
1389
1390
mutex_lock(&p->mutex);
1391
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1392
if (!pdd) {
1393
err = -EINVAL;
1394
goto bind_process_to_device_failed;
1395
}
1396
1397
mem = kfd_process_device_translate_handle(pdd,
1398
GET_IDR_HANDLE(args->handle));
1399
if (!mem) {
1400
err = -ENOMEM;
1401
goto get_mem_obj_from_handle_failed;
1402
}
1403
1404
for (i = args->n_success; i < args->n_devices; i++) {
1405
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1406
if (!peer_pdd) {
1407
err = -EINVAL;
1408
goto get_mem_obj_from_handle_failed;
1409
}
1410
err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1411
peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1412
if (err) {
1413
pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1414
goto unmap_memory_from_gpu_failed;
1415
}
1416
args->n_success = i+1;
1417
}
1418
1419
flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1420
if (flush_tlb) {
1421
err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1422
(struct kgd_mem *) mem, true);
1423
if (err) {
1424
pr_debug("Sync memory failed, wait interrupted by user signal\n");
1425
goto sync_memory_failed;
1426
}
1427
}
1428
1429
/* Flush TLBs after waiting for the page table updates to complete */
1430
for (i = 0; i < args->n_devices; i++) {
1431
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1432
if (WARN_ON_ONCE(!peer_pdd))
1433
continue;
1434
if (flush_tlb)
1435
kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1436
1437
/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1438
err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1439
if (err)
1440
goto sync_memory_failed;
1441
}
1442
1443
mutex_unlock(&p->mutex);
1444
1445
kfree(devices_arr);
1446
1447
return 0;
1448
1449
bind_process_to_device_failed:
1450
get_mem_obj_from_handle_failed:
1451
unmap_memory_from_gpu_failed:
1452
sync_memory_failed:
1453
mutex_unlock(&p->mutex);
1454
copy_from_user_failed:
1455
kfree(devices_arr);
1456
return err;
1457
}
1458
1459
static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1460
struct kfd_process *p, void *data)
1461
{
1462
int retval;
1463
struct kfd_ioctl_alloc_queue_gws_args *args = data;
1464
struct queue *q;
1465
struct kfd_node *dev;
1466
1467
mutex_lock(&p->mutex);
1468
q = pqm_get_user_queue(&p->pqm, args->queue_id);
1469
1470
if (q) {
1471
dev = q->device;
1472
} else {
1473
retval = -EINVAL;
1474
goto out_unlock;
1475
}
1476
1477
if (!dev->gws) {
1478
retval = -ENODEV;
1479
goto out_unlock;
1480
}
1481
1482
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1483
retval = -ENODEV;
1484
goto out_unlock;
1485
}
1486
1487
if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1488
kfd_dbg_has_cwsr_workaround(dev))) {
1489
retval = -EBUSY;
1490
goto out_unlock;
1491
}
1492
1493
retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1494
mutex_unlock(&p->mutex);
1495
1496
args->first_gws = 0;
1497
return retval;
1498
1499
out_unlock:
1500
mutex_unlock(&p->mutex);
1501
return retval;
1502
}
1503
1504
static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1505
struct kfd_process *p, void *data)
1506
{
1507
struct kfd_ioctl_get_dmabuf_info_args *args = data;
1508
struct kfd_node *dev = NULL;
1509
struct amdgpu_device *dmabuf_adev;
1510
void *metadata_buffer = NULL;
1511
uint32_t flags;
1512
int8_t xcp_id;
1513
unsigned int i;
1514
int r;
1515
1516
/* Find a KFD GPU device that supports the get_dmabuf_info query */
1517
for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1518
if (dev && !kfd_devcgroup_check_permission(dev))
1519
break;
1520
if (!dev)
1521
return -EINVAL;
1522
1523
if (args->metadata_ptr) {
1524
metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1525
if (!metadata_buffer)
1526
return -ENOMEM;
1527
}
1528
1529
/* Get dmabuf info from KGD */
1530
r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1531
&dmabuf_adev, &args->size,
1532
metadata_buffer, args->metadata_size,
1533
&args->metadata_size, &flags, &xcp_id);
1534
if (r)
1535
goto exit;
1536
1537
if (xcp_id >= 0)
1538
args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1539
else
1540
args->gpu_id = dev->id;
1541
args->flags = flags;
1542
1543
/* Copy metadata buffer to user mode */
1544
if (metadata_buffer) {
1545
r = copy_to_user((void __user *)args->metadata_ptr,
1546
metadata_buffer, args->metadata_size);
1547
if (r != 0)
1548
r = -EFAULT;
1549
}
1550
1551
exit:
1552
kfree(metadata_buffer);
1553
1554
return r;
1555
}
1556
1557
static int kfd_ioctl_import_dmabuf(struct file *filep,
1558
struct kfd_process *p, void *data)
1559
{
1560
struct kfd_ioctl_import_dmabuf_args *args = data;
1561
struct kfd_process_device *pdd;
1562
int idr_handle;
1563
uint64_t size;
1564
void *mem;
1565
int r;
1566
1567
mutex_lock(&p->mutex);
1568
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1569
if (!pdd) {
1570
r = -EINVAL;
1571
goto err_unlock;
1572
}
1573
1574
pdd = kfd_bind_process_to_device(pdd->dev, p);
1575
if (IS_ERR(pdd)) {
1576
r = PTR_ERR(pdd);
1577
goto err_unlock;
1578
}
1579
1580
r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1581
args->va_addr, pdd->drm_priv,
1582
(struct kgd_mem **)&mem, &size,
1583
NULL);
1584
if (r)
1585
goto err_unlock;
1586
1587
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1588
if (idr_handle < 0) {
1589
r = -EFAULT;
1590
goto err_free;
1591
}
1592
1593
mutex_unlock(&p->mutex);
1594
1595
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1596
1597
return 0;
1598
1599
err_free:
1600
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1601
pdd->drm_priv, NULL);
1602
err_unlock:
1603
mutex_unlock(&p->mutex);
1604
return r;
1605
}
1606
1607
static int kfd_ioctl_export_dmabuf(struct file *filep,
1608
struct kfd_process *p, void *data)
1609
{
1610
struct kfd_ioctl_export_dmabuf_args *args = data;
1611
struct kfd_process_device *pdd;
1612
struct dma_buf *dmabuf;
1613
struct kfd_node *dev;
1614
void *mem;
1615
int ret = 0;
1616
1617
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1618
if (!dev)
1619
return -EINVAL;
1620
1621
mutex_lock(&p->mutex);
1622
1623
pdd = kfd_get_process_device_data(dev, p);
1624
if (!pdd) {
1625
ret = -EINVAL;
1626
goto err_unlock;
1627
}
1628
1629
mem = kfd_process_device_translate_handle(pdd,
1630
GET_IDR_HANDLE(args->handle));
1631
if (!mem) {
1632
ret = -EINVAL;
1633
goto err_unlock;
1634
}
1635
1636
ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1637
mutex_unlock(&p->mutex);
1638
if (ret)
1639
goto err_out;
1640
1641
ret = dma_buf_fd(dmabuf, args->flags);
1642
if (ret < 0) {
1643
dma_buf_put(dmabuf);
1644
goto err_out;
1645
}
1646
/* dma_buf_fd assigns the reference count to the fd, no need to
1647
* put the reference here.
1648
*/
1649
args->dmabuf_fd = ret;
1650
1651
return 0;
1652
1653
err_unlock:
1654
mutex_unlock(&p->mutex);
1655
err_out:
1656
return ret;
1657
}
1658
1659
/* Handle requests for watching SMI events */
1660
static int kfd_ioctl_smi_events(struct file *filep,
1661
struct kfd_process *p, void *data)
1662
{
1663
struct kfd_ioctl_smi_events_args *args = data;
1664
struct kfd_process_device *pdd;
1665
1666
mutex_lock(&p->mutex);
1667
1668
pdd = kfd_process_device_data_by_id(p, args->gpuid);
1669
mutex_unlock(&p->mutex);
1670
if (!pdd)
1671
return -EINVAL;
1672
1673
return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1674
}
1675
1676
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1677
1678
static int kfd_ioctl_set_xnack_mode(struct file *filep,
1679
struct kfd_process *p, void *data)
1680
{
1681
struct kfd_ioctl_set_xnack_mode_args *args = data;
1682
int r = 0;
1683
1684
mutex_lock(&p->mutex);
1685
if (args->xnack_enabled >= 0) {
1686
if (!list_empty(&p->pqm.queues)) {
1687
pr_debug("Process has user queues running\n");
1688
r = -EBUSY;
1689
goto out_unlock;
1690
}
1691
1692
if (p->xnack_enabled == args->xnack_enabled)
1693
goto out_unlock;
1694
1695
if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1696
r = -EPERM;
1697
goto out_unlock;
1698
}
1699
1700
r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1701
} else {
1702
args->xnack_enabled = p->xnack_enabled;
1703
}
1704
1705
out_unlock:
1706
mutex_unlock(&p->mutex);
1707
1708
return r;
1709
}
1710
1711
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1712
{
1713
struct kfd_ioctl_svm_args *args = data;
1714
int r = 0;
1715
1716
pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1717
args->start_addr, args->size, args->op, args->nattr);
1718
1719
if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1720
return -EINVAL;
1721
if (!args->start_addr || !args->size)
1722
return -EINVAL;
1723
1724
r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1725
args->attrs);
1726
1727
return r;
1728
}
1729
#else
1730
static int kfd_ioctl_set_xnack_mode(struct file *filep,
1731
struct kfd_process *p, void *data)
1732
{
1733
return -EPERM;
1734
}
1735
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1736
{
1737
return -EPERM;
1738
}
1739
#endif
1740
1741
static int criu_checkpoint_process(struct kfd_process *p,
1742
uint8_t __user *user_priv_data,
1743
uint64_t *priv_offset)
1744
{
1745
struct kfd_criu_process_priv_data process_priv;
1746
int ret;
1747
1748
memset(&process_priv, 0, sizeof(process_priv));
1749
1750
process_priv.version = KFD_CRIU_PRIV_VERSION;
1751
/* For CR, we don't consider negative xnack mode which is used for
1752
* querying without changing it, here 0 simply means disabled and 1
1753
* means enabled so retry for finding a valid PTE.
1754
*/
1755
process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1756
1757
ret = copy_to_user(user_priv_data + *priv_offset,
1758
&process_priv, sizeof(process_priv));
1759
1760
if (ret) {
1761
pr_err("Failed to copy process information to user\n");
1762
ret = -EFAULT;
1763
}
1764
1765
*priv_offset += sizeof(process_priv);
1766
return ret;
1767
}
1768
1769
static int criu_checkpoint_devices(struct kfd_process *p,
1770
uint32_t num_devices,
1771
uint8_t __user *user_addr,
1772
uint8_t __user *user_priv_data,
1773
uint64_t *priv_offset)
1774
{
1775
struct kfd_criu_device_priv_data *device_priv = NULL;
1776
struct kfd_criu_device_bucket *device_buckets = NULL;
1777
int ret = 0, i;
1778
1779
device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1780
if (!device_buckets) {
1781
ret = -ENOMEM;
1782
goto exit;
1783
}
1784
1785
device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1786
if (!device_priv) {
1787
ret = -ENOMEM;
1788
goto exit;
1789
}
1790
1791
for (i = 0; i < num_devices; i++) {
1792
struct kfd_process_device *pdd = p->pdds[i];
1793
1794
device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1795
device_buckets[i].actual_gpu_id = pdd->dev->id;
1796
1797
/*
1798
* priv_data does not contain useful information for now and is reserved for
1799
* future use, so we do not set its contents.
1800
*/
1801
}
1802
1803
ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1804
if (ret) {
1805
pr_err("Failed to copy device information to user\n");
1806
ret = -EFAULT;
1807
goto exit;
1808
}
1809
1810
ret = copy_to_user(user_priv_data + *priv_offset,
1811
device_priv,
1812
num_devices * sizeof(*device_priv));
1813
if (ret) {
1814
pr_err("Failed to copy device information to user\n");
1815
ret = -EFAULT;
1816
}
1817
*priv_offset += num_devices * sizeof(*device_priv);
1818
1819
exit:
1820
kvfree(device_buckets);
1821
kvfree(device_priv);
1822
return ret;
1823
}
1824
1825
static uint32_t get_process_num_bos(struct kfd_process *p)
1826
{
1827
uint32_t num_of_bos = 0;
1828
int i;
1829
1830
/* Run over all PDDs of the process */
1831
for (i = 0; i < p->n_pdds; i++) {
1832
struct kfd_process_device *pdd = p->pdds[i];
1833
void *mem;
1834
int id;
1835
1836
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1837
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1838
1839
if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1840
num_of_bos++;
1841
}
1842
}
1843
return num_of_bos;
1844
}
1845
1846
static int criu_get_prime_handle(struct kgd_mem *mem,
1847
int flags, u32 *shared_fd,
1848
struct file **file)
1849
{
1850
struct dma_buf *dmabuf;
1851
int ret;
1852
1853
ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1854
if (ret) {
1855
pr_err("dmabuf export failed for the BO\n");
1856
return ret;
1857
}
1858
1859
ret = get_unused_fd_flags(flags);
1860
if (ret < 0) {
1861
pr_err("dmabuf create fd failed, ret:%d\n", ret);
1862
goto out_free_dmabuf;
1863
}
1864
1865
*shared_fd = ret;
1866
*file = dmabuf->file;
1867
return 0;
1868
1869
out_free_dmabuf:
1870
dma_buf_put(dmabuf);
1871
return ret;
1872
}
1873
1874
static void commit_files(struct file **files,
1875
struct kfd_criu_bo_bucket *bo_buckets,
1876
unsigned int count,
1877
int err)
1878
{
1879
while (count--) {
1880
struct file *file = files[count];
1881
1882
if (!file)
1883
continue;
1884
if (err) {
1885
fput(file);
1886
put_unused_fd(bo_buckets[count].dmabuf_fd);
1887
} else {
1888
fd_install(bo_buckets[count].dmabuf_fd, file);
1889
}
1890
}
1891
}
1892
1893
static int criu_checkpoint_bos(struct kfd_process *p,
1894
uint32_t num_bos,
1895
uint8_t __user *user_bos,
1896
uint8_t __user *user_priv_data,
1897
uint64_t *priv_offset)
1898
{
1899
struct kfd_criu_bo_bucket *bo_buckets;
1900
struct kfd_criu_bo_priv_data *bo_privs;
1901
struct file **files = NULL;
1902
int ret = 0, pdd_index, bo_index = 0, id;
1903
void *mem;
1904
1905
bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1906
if (!bo_buckets)
1907
return -ENOMEM;
1908
1909
bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1910
if (!bo_privs) {
1911
ret = -ENOMEM;
1912
goto exit;
1913
}
1914
1915
files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1916
if (!files) {
1917
ret = -ENOMEM;
1918
goto exit;
1919
}
1920
1921
for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1922
struct kfd_process_device *pdd = p->pdds[pdd_index];
1923
struct amdgpu_bo *dumper_bo;
1924
struct kgd_mem *kgd_mem;
1925
1926
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1927
struct kfd_criu_bo_bucket *bo_bucket;
1928
struct kfd_criu_bo_priv_data *bo_priv;
1929
int i, dev_idx = 0;
1930
1931
kgd_mem = (struct kgd_mem *)mem;
1932
dumper_bo = kgd_mem->bo;
1933
1934
/* Skip checkpointing BOs that are used for Trap handler
1935
* code and state. Currently, these BOs have a VA that
1936
* is less GPUVM Base
1937
*/
1938
if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1939
continue;
1940
1941
bo_bucket = &bo_buckets[bo_index];
1942
bo_priv = &bo_privs[bo_index];
1943
1944
bo_bucket->gpu_id = pdd->user_gpu_id;
1945
bo_bucket->addr = (uint64_t)kgd_mem->va;
1946
bo_bucket->size = amdgpu_bo_size(dumper_bo);
1947
bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1948
bo_priv->idr_handle = id;
1949
1950
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1951
ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1952
&bo_priv->user_addr);
1953
if (ret) {
1954
pr_err("Failed to obtain user address for user-pointer bo\n");
1955
goto exit;
1956
}
1957
}
1958
if (bo_bucket->alloc_flags
1959
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1960
ret = criu_get_prime_handle(kgd_mem,
1961
bo_bucket->alloc_flags &
1962
KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1963
&bo_bucket->dmabuf_fd, &files[bo_index]);
1964
if (ret)
1965
goto exit;
1966
} else {
1967
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1968
}
1969
1970
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1971
bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1972
KFD_MMAP_GPU_ID(pdd->dev->id);
1973
else if (bo_bucket->alloc_flags &
1974
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1975
bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1976
KFD_MMAP_GPU_ID(pdd->dev->id);
1977
else
1978
bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1979
1980
for (i = 0; i < p->n_pdds; i++) {
1981
if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1982
bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1983
}
1984
1985
pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1986
"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1987
bo_bucket->size,
1988
bo_bucket->addr,
1989
bo_bucket->offset,
1990
bo_bucket->gpu_id,
1991
bo_bucket->alloc_flags,
1992
bo_priv->idr_handle);
1993
bo_index++;
1994
}
1995
}
1996
1997
ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1998
if (ret) {
1999
pr_err("Failed to copy BO information to user\n");
2000
ret = -EFAULT;
2001
goto exit;
2002
}
2003
2004
ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2005
if (ret) {
2006
pr_err("Failed to copy BO priv information to user\n");
2007
ret = -EFAULT;
2008
goto exit;
2009
}
2010
2011
*priv_offset += num_bos * sizeof(*bo_privs);
2012
2013
exit:
2014
commit_files(files, bo_buckets, bo_index, ret);
2015
kvfree(files);
2016
kvfree(bo_buckets);
2017
kvfree(bo_privs);
2018
return ret;
2019
}
2020
2021
static int criu_get_process_object_info(struct kfd_process *p,
2022
uint32_t *num_devices,
2023
uint32_t *num_bos,
2024
uint32_t *num_objects,
2025
uint64_t *objs_priv_size)
2026
{
2027
uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2028
uint32_t num_queues, num_events, num_svm_ranges;
2029
int ret;
2030
2031
*num_devices = p->n_pdds;
2032
*num_bos = get_process_num_bos(p);
2033
2034
ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2035
if (ret)
2036
return ret;
2037
2038
num_events = kfd_get_num_events(p);
2039
2040
svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2041
2042
*num_objects = num_queues + num_events + num_svm_ranges;
2043
2044
if (objs_priv_size) {
2045
priv_size = sizeof(struct kfd_criu_process_priv_data);
2046
priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2047
priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2048
priv_size += queues_priv_data_size;
2049
priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2050
priv_size += svm_priv_data_size;
2051
*objs_priv_size = priv_size;
2052
}
2053
return 0;
2054
}
2055
2056
static int criu_checkpoint(struct file *filep,
2057
struct kfd_process *p,
2058
struct kfd_ioctl_criu_args *args)
2059
{
2060
int ret;
2061
uint32_t num_devices, num_bos, num_objects;
2062
uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2063
2064
if (!args->devices || !args->bos || !args->priv_data)
2065
return -EINVAL;
2066
2067
mutex_lock(&p->mutex);
2068
2069
if (!p->n_pdds) {
2070
pr_err("No pdd for given process\n");
2071
ret = -ENODEV;
2072
goto exit_unlock;
2073
}
2074
2075
/* Confirm all process queues are evicted */
2076
if (!p->queues_paused) {
2077
pr_err("Cannot dump process when queues are not in evicted state\n");
2078
/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2079
ret = -EINVAL;
2080
goto exit_unlock;
2081
}
2082
2083
ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2084
if (ret)
2085
goto exit_unlock;
2086
2087
if (num_devices != args->num_devices ||
2088
num_bos != args->num_bos ||
2089
num_objects != args->num_objects ||
2090
priv_size != args->priv_data_size) {
2091
2092
ret = -EINVAL;
2093
goto exit_unlock;
2094
}
2095
2096
/* each function will store private data inside priv_data and adjust priv_offset */
2097
ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2098
if (ret)
2099
goto exit_unlock;
2100
2101
ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2102
(uint8_t __user *)args->priv_data, &priv_offset);
2103
if (ret)
2104
goto exit_unlock;
2105
2106
/* Leave room for BOs in the private data. They need to be restored
2107
* before events, but we checkpoint them last to simplify the error
2108
* handling.
2109
*/
2110
bo_priv_offset = priv_offset;
2111
priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2112
2113
if (num_objects) {
2114
ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2115
&priv_offset);
2116
if (ret)
2117
goto exit_unlock;
2118
2119
ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2120
&priv_offset);
2121
if (ret)
2122
goto exit_unlock;
2123
2124
ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2125
if (ret)
2126
goto exit_unlock;
2127
}
2128
2129
/* This must be the last thing in this function that can fail.
2130
* Otherwise we leak dmabuf file descriptors.
2131
*/
2132
ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2133
(uint8_t __user *)args->priv_data, &bo_priv_offset);
2134
2135
exit_unlock:
2136
mutex_unlock(&p->mutex);
2137
if (ret)
2138
pr_err("Failed to dump CRIU ret:%d\n", ret);
2139
else
2140
pr_debug("CRIU dump ret:%d\n", ret);
2141
2142
return ret;
2143
}
2144
2145
static int criu_restore_process(struct kfd_process *p,
2146
struct kfd_ioctl_criu_args *args,
2147
uint64_t *priv_offset,
2148
uint64_t max_priv_data_size)
2149
{
2150
int ret = 0;
2151
struct kfd_criu_process_priv_data process_priv;
2152
2153
if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2154
return -EINVAL;
2155
2156
ret = copy_from_user(&process_priv,
2157
(void __user *)(args->priv_data + *priv_offset),
2158
sizeof(process_priv));
2159
if (ret) {
2160
pr_err("Failed to copy process private information from user\n");
2161
ret = -EFAULT;
2162
goto exit;
2163
}
2164
*priv_offset += sizeof(process_priv);
2165
2166
if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2167
pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2168
process_priv.version, KFD_CRIU_PRIV_VERSION);
2169
return -EINVAL;
2170
}
2171
2172
pr_debug("Setting XNACK mode\n");
2173
if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2174
pr_err("xnack mode cannot be set\n");
2175
ret = -EPERM;
2176
goto exit;
2177
} else {
2178
pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2179
p->xnack_enabled = process_priv.xnack_mode;
2180
}
2181
2182
exit:
2183
return ret;
2184
}
2185
2186
static int criu_restore_devices(struct kfd_process *p,
2187
struct kfd_ioctl_criu_args *args,
2188
uint64_t *priv_offset,
2189
uint64_t max_priv_data_size)
2190
{
2191
struct kfd_criu_device_bucket *device_buckets;
2192
struct kfd_criu_device_priv_data *device_privs;
2193
int ret = 0;
2194
uint32_t i;
2195
2196
if (args->num_devices != p->n_pdds)
2197
return -EINVAL;
2198
2199
if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2200
return -EINVAL;
2201
2202
device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2203
if (!device_buckets)
2204
return -ENOMEM;
2205
2206
ret = copy_from_user(device_buckets, (void __user *)args->devices,
2207
args->num_devices * sizeof(*device_buckets));
2208
if (ret) {
2209
pr_err("Failed to copy devices buckets from user\n");
2210
ret = -EFAULT;
2211
goto exit;
2212
}
2213
2214
for (i = 0; i < args->num_devices; i++) {
2215
struct kfd_node *dev;
2216
struct kfd_process_device *pdd;
2217
struct file *drm_file;
2218
2219
/* device private data is not currently used */
2220
2221
if (!device_buckets[i].user_gpu_id) {
2222
pr_err("Invalid user gpu_id\n");
2223
ret = -EINVAL;
2224
goto exit;
2225
}
2226
2227
dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2228
if (!dev) {
2229
pr_err("Failed to find device with gpu_id = %x\n",
2230
device_buckets[i].actual_gpu_id);
2231
ret = -EINVAL;
2232
goto exit;
2233
}
2234
2235
pdd = kfd_get_process_device_data(dev, p);
2236
if (!pdd) {
2237
pr_err("Failed to get pdd for gpu_id = %x\n",
2238
device_buckets[i].actual_gpu_id);
2239
ret = -EINVAL;
2240
goto exit;
2241
}
2242
pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2243
2244
drm_file = fget(device_buckets[i].drm_fd);
2245
if (!drm_file) {
2246
pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2247
device_buckets[i].drm_fd);
2248
ret = -EINVAL;
2249
goto exit;
2250
}
2251
2252
if (pdd->drm_file) {
2253
ret = -EINVAL;
2254
goto exit;
2255
}
2256
2257
/* create the vm using render nodes for kfd pdd */
2258
if (kfd_process_device_init_vm(pdd, drm_file)) {
2259
pr_err("could not init vm for given pdd\n");
2260
/* On success, the PDD keeps the drm_file reference */
2261
fput(drm_file);
2262
ret = -EINVAL;
2263
goto exit;
2264
}
2265
/*
2266
* pdd now already has the vm bound to render node so below api won't create a new
2267
* exclusive kfd mapping but use existing one with renderDXXX but is still needed
2268
* for iommu v2 binding and runtime pm.
2269
*/
2270
pdd = kfd_bind_process_to_device(dev, p);
2271
if (IS_ERR(pdd)) {
2272
ret = PTR_ERR(pdd);
2273
goto exit;
2274
}
2275
2276
if (!pdd->qpd.proc_doorbells) {
2277
ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2278
if (ret)
2279
goto exit;
2280
}
2281
}
2282
2283
/*
2284
* We are not copying device private data from user as we are not using the data for now,
2285
* but we still adjust for its private data.
2286
*/
2287
*priv_offset += args->num_devices * sizeof(*device_privs);
2288
2289
exit:
2290
kfree(device_buckets);
2291
return ret;
2292
}
2293
2294
static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2295
struct kfd_criu_bo_bucket *bo_bucket,
2296
struct kfd_criu_bo_priv_data *bo_priv,
2297
struct kgd_mem **kgd_mem)
2298
{
2299
int idr_handle;
2300
int ret;
2301
const bool criu_resume = true;
2302
u64 offset;
2303
2304
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2305
if (bo_bucket->size !=
2306
kfd_doorbell_process_slice(pdd->dev->kfd))
2307
return -EINVAL;
2308
2309
offset = kfd_get_process_doorbells(pdd);
2310
if (!offset)
2311
return -ENOMEM;
2312
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2313
/* MMIO BOs need remapped bus address */
2314
if (bo_bucket->size != PAGE_SIZE) {
2315
pr_err("Invalid page size\n");
2316
return -EINVAL;
2317
}
2318
offset = pdd->dev->adev->rmmio_remap.bus_addr;
2319
if (!offset || (PAGE_SIZE > 4096)) {
2320
pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2321
return -ENOMEM;
2322
}
2323
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2324
offset = bo_priv->user_addr;
2325
}
2326
/* Create the BO */
2327
ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2328
bo_bucket->size, pdd->drm_priv, kgd_mem,
2329
&offset, bo_bucket->alloc_flags, criu_resume);
2330
if (ret) {
2331
pr_err("Could not create the BO\n");
2332
return ret;
2333
}
2334
pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2335
bo_bucket->size, bo_bucket->addr, offset);
2336
2337
/* Restore previous IDR handle */
2338
pr_debug("Restoring old IDR handle for the BO");
2339
idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2340
bo_priv->idr_handle + 1, GFP_KERNEL);
2341
2342
if (idr_handle < 0) {
2343
pr_err("Could not allocate idr\n");
2344
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2345
NULL);
2346
return -ENOMEM;
2347
}
2348
2349
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2350
bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2351
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2352
bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2353
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2354
bo_bucket->restored_offset = offset;
2355
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2356
bo_bucket->restored_offset = offset;
2357
/* Update the VRAM usage count */
2358
atomic64_add(bo_bucket->size, &pdd->vram_usage);
2359
}
2360
return 0;
2361
}
2362
2363
static int criu_restore_bo(struct kfd_process *p,
2364
struct kfd_criu_bo_bucket *bo_bucket,
2365
struct kfd_criu_bo_priv_data *bo_priv,
2366
struct file **file)
2367
{
2368
struct kfd_process_device *pdd;
2369
struct kgd_mem *kgd_mem;
2370
int ret;
2371
int j;
2372
2373
pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2374
bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2375
bo_priv->idr_handle);
2376
2377
pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2378
if (!pdd) {
2379
pr_err("Failed to get pdd\n");
2380
return -ENODEV;
2381
}
2382
2383
ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2384
if (ret)
2385
return ret;
2386
2387
/* now map these BOs to GPU/s */
2388
for (j = 0; j < p->n_pdds; j++) {
2389
struct kfd_node *peer;
2390
struct kfd_process_device *peer_pdd;
2391
2392
if (!bo_priv->mapped_gpuids[j])
2393
break;
2394
2395
peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2396
if (!peer_pdd)
2397
return -EINVAL;
2398
2399
peer = peer_pdd->dev;
2400
2401
peer_pdd = kfd_bind_process_to_device(peer, p);
2402
if (IS_ERR(peer_pdd))
2403
return PTR_ERR(peer_pdd);
2404
2405
ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2406
peer_pdd->drm_priv);
2407
if (ret) {
2408
pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2409
return ret;
2410
}
2411
}
2412
2413
pr_debug("map memory was successful for the BO\n");
2414
/* create the dmabuf object and export the bo */
2415
if (bo_bucket->alloc_flags
2416
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2417
ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2418
&bo_bucket->dmabuf_fd, file);
2419
if (ret)
2420
return ret;
2421
} else {
2422
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2423
}
2424
2425
return 0;
2426
}
2427
2428
static int criu_restore_bos(struct kfd_process *p,
2429
struct kfd_ioctl_criu_args *args,
2430
uint64_t *priv_offset,
2431
uint64_t max_priv_data_size)
2432
{
2433
struct kfd_criu_bo_bucket *bo_buckets = NULL;
2434
struct kfd_criu_bo_priv_data *bo_privs = NULL;
2435
struct file **files = NULL;
2436
int ret = 0;
2437
uint32_t i = 0;
2438
2439
if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2440
return -EINVAL;
2441
2442
/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2443
amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2444
2445
bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2446
if (!bo_buckets)
2447
return -ENOMEM;
2448
2449
files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2450
if (!files) {
2451
ret = -ENOMEM;
2452
goto exit;
2453
}
2454
2455
ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2456
args->num_bos * sizeof(*bo_buckets));
2457
if (ret) {
2458
pr_err("Failed to copy BOs information from user\n");
2459
ret = -EFAULT;
2460
goto exit;
2461
}
2462
2463
bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2464
if (!bo_privs) {
2465
ret = -ENOMEM;
2466
goto exit;
2467
}
2468
2469
ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2470
args->num_bos * sizeof(*bo_privs));
2471
if (ret) {
2472
pr_err("Failed to copy BOs information from user\n");
2473
ret = -EFAULT;
2474
goto exit;
2475
}
2476
*priv_offset += args->num_bos * sizeof(*bo_privs);
2477
2478
/* Create and map new BOs */
2479
for (; i < args->num_bos; i++) {
2480
ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2481
if (ret) {
2482
pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2483
goto exit;
2484
}
2485
} /* done */
2486
2487
/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2488
ret = copy_to_user((void __user *)args->bos,
2489
bo_buckets,
2490
(args->num_bos * sizeof(*bo_buckets)));
2491
if (ret)
2492
ret = -EFAULT;
2493
2494
exit:
2495
commit_files(files, bo_buckets, i, ret);
2496
kvfree(files);
2497
kvfree(bo_buckets);
2498
kvfree(bo_privs);
2499
return ret;
2500
}
2501
2502
static int criu_restore_objects(struct file *filep,
2503
struct kfd_process *p,
2504
struct kfd_ioctl_criu_args *args,
2505
uint64_t *priv_offset,
2506
uint64_t max_priv_data_size)
2507
{
2508
int ret = 0;
2509
uint32_t i;
2510
2511
BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2512
BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2513
BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2514
2515
for (i = 0; i < args->num_objects; i++) {
2516
uint32_t object_type;
2517
2518
if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2519
pr_err("Invalid private data size\n");
2520
return -EINVAL;
2521
}
2522
2523
ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2524
if (ret) {
2525
pr_err("Failed to copy private information from user\n");
2526
goto exit;
2527
}
2528
2529
switch (object_type) {
2530
case KFD_CRIU_OBJECT_TYPE_QUEUE:
2531
ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2532
priv_offset, max_priv_data_size);
2533
if (ret)
2534
goto exit;
2535
break;
2536
case KFD_CRIU_OBJECT_TYPE_EVENT:
2537
ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2538
priv_offset, max_priv_data_size);
2539
if (ret)
2540
goto exit;
2541
break;
2542
case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2543
ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2544
priv_offset, max_priv_data_size);
2545
if (ret)
2546
goto exit;
2547
break;
2548
default:
2549
pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2550
ret = -EINVAL;
2551
goto exit;
2552
}
2553
}
2554
exit:
2555
return ret;
2556
}
2557
2558
static int criu_restore(struct file *filep,
2559
struct kfd_process *p,
2560
struct kfd_ioctl_criu_args *args)
2561
{
2562
uint64_t priv_offset = 0;
2563
int ret = 0;
2564
2565
pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2566
args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2567
2568
if ((args->num_bos > 0 && !args->bos) || !args->devices || !args->priv_data ||
2569
!args->priv_data_size || !args->num_devices)
2570
return -EINVAL;
2571
2572
mutex_lock(&p->mutex);
2573
2574
/*
2575
* Set the process to evicted state to avoid running any new queues before all the memory
2576
* mappings are ready.
2577
*/
2578
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2579
if (ret)
2580
goto exit_unlock;
2581
2582
/* Each function will adjust priv_offset based on how many bytes they consumed */
2583
ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2584
if (ret)
2585
goto exit_unlock;
2586
2587
ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2588
if (ret)
2589
goto exit_unlock;
2590
2591
ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2592
if (ret)
2593
goto exit_unlock;
2594
2595
ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2596
if (ret)
2597
goto exit_unlock;
2598
2599
if (priv_offset != args->priv_data_size) {
2600
pr_err("Invalid private data size\n");
2601
ret = -EINVAL;
2602
}
2603
2604
exit_unlock:
2605
mutex_unlock(&p->mutex);
2606
if (ret)
2607
pr_err("Failed to restore CRIU ret:%d\n", ret);
2608
else
2609
pr_debug("CRIU restore successful\n");
2610
2611
return ret;
2612
}
2613
2614
static int criu_unpause(struct file *filep,
2615
struct kfd_process *p,
2616
struct kfd_ioctl_criu_args *args)
2617
{
2618
int ret;
2619
2620
mutex_lock(&p->mutex);
2621
2622
if (!p->queues_paused) {
2623
mutex_unlock(&p->mutex);
2624
return -EINVAL;
2625
}
2626
2627
ret = kfd_process_restore_queues(p);
2628
if (ret)
2629
pr_err("Failed to unpause queues ret:%d\n", ret);
2630
else
2631
p->queues_paused = false;
2632
2633
mutex_unlock(&p->mutex);
2634
2635
return ret;
2636
}
2637
2638
static int criu_resume(struct file *filep,
2639
struct kfd_process *p,
2640
struct kfd_ioctl_criu_args *args)
2641
{
2642
struct kfd_process *target = NULL;
2643
struct pid *pid = NULL;
2644
int ret = 0;
2645
2646
pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2647
args->pid);
2648
2649
pid = find_get_pid(args->pid);
2650
if (!pid) {
2651
pr_err("Cannot find pid info for %i\n", args->pid);
2652
return -ESRCH;
2653
}
2654
2655
pr_debug("calling kfd_lookup_process_by_pid\n");
2656
target = kfd_lookup_process_by_pid(pid);
2657
2658
put_pid(pid);
2659
2660
if (!target) {
2661
pr_debug("Cannot find process info for %i\n", args->pid);
2662
return -ESRCH;
2663
}
2664
2665
mutex_lock(&target->mutex);
2666
ret = kfd_criu_resume_svm(target);
2667
if (ret) {
2668
pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2669
goto exit;
2670
}
2671
2672
ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2673
if (ret)
2674
pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2675
2676
exit:
2677
mutex_unlock(&target->mutex);
2678
2679
kfd_unref_process(target);
2680
return ret;
2681
}
2682
2683
static int criu_process_info(struct file *filep,
2684
struct kfd_process *p,
2685
struct kfd_ioctl_criu_args *args)
2686
{
2687
int ret = 0;
2688
2689
mutex_lock(&p->mutex);
2690
2691
if (!p->n_pdds) {
2692
pr_err("No pdd for given process\n");
2693
ret = -ENODEV;
2694
goto err_unlock;
2695
}
2696
2697
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2698
if (ret)
2699
goto err_unlock;
2700
2701
p->queues_paused = true;
2702
2703
args->pid = task_pid_nr_ns(p->lead_thread,
2704
task_active_pid_ns(p->lead_thread));
2705
2706
ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2707
&args->num_objects, &args->priv_data_size);
2708
if (ret)
2709
goto err_unlock;
2710
2711
dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2712
args->num_devices, args->num_bos, args->num_objects,
2713
args->priv_data_size);
2714
2715
err_unlock:
2716
if (ret) {
2717
kfd_process_restore_queues(p);
2718
p->queues_paused = false;
2719
}
2720
mutex_unlock(&p->mutex);
2721
return ret;
2722
}
2723
2724
static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2725
{
2726
struct kfd_ioctl_criu_args *args = data;
2727
int ret;
2728
2729
dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2730
switch (args->op) {
2731
case KFD_CRIU_OP_PROCESS_INFO:
2732
ret = criu_process_info(filep, p, args);
2733
break;
2734
case KFD_CRIU_OP_CHECKPOINT:
2735
ret = criu_checkpoint(filep, p, args);
2736
break;
2737
case KFD_CRIU_OP_UNPAUSE:
2738
ret = criu_unpause(filep, p, args);
2739
break;
2740
case KFD_CRIU_OP_RESTORE:
2741
ret = criu_restore(filep, p, args);
2742
break;
2743
case KFD_CRIU_OP_RESUME:
2744
ret = criu_resume(filep, p, args);
2745
break;
2746
default:
2747
dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2748
ret = -EINVAL;
2749
break;
2750
}
2751
2752
if (ret)
2753
dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2754
2755
return ret;
2756
}
2757
2758
static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2759
bool enable_ttmp_setup)
2760
{
2761
int i = 0, ret = 0;
2762
2763
if (p->is_runtime_retry)
2764
goto retry;
2765
2766
if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2767
return -EBUSY;
2768
2769
for (i = 0; i < p->n_pdds; i++) {
2770
struct kfd_process_device *pdd = p->pdds[i];
2771
2772
if (pdd->qpd.queue_count)
2773
return -EEXIST;
2774
2775
/*
2776
* Setup TTMPs by default.
2777
* Note that this call must remain here for MES ADD QUEUE to
2778
* skip_process_ctx_clear unconditionally as the first call to
2779
* SET_SHADER_DEBUGGER clears any stale process context data
2780
* saved in MES.
2781
*/
2782
if (pdd->dev->kfd->shared_resources.enable_mes)
2783
kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2784
}
2785
2786
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2787
p->runtime_info.r_debug = r_debug;
2788
p->runtime_info.ttmp_setup = enable_ttmp_setup;
2789
2790
if (p->runtime_info.ttmp_setup) {
2791
for (i = 0; i < p->n_pdds; i++) {
2792
struct kfd_process_device *pdd = p->pdds[i];
2793
2794
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2795
amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2796
pdd->dev->kfd2kgd->enable_debug_trap(
2797
pdd->dev->adev,
2798
true,
2799
pdd->dev->vm_info.last_vmid_kfd);
2800
} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2801
pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2802
pdd->dev->adev,
2803
false,
2804
0);
2805
}
2806
}
2807
}
2808
2809
retry:
2810
if (p->debug_trap_enabled) {
2811
if (!p->is_runtime_retry) {
2812
kfd_dbg_trap_activate(p);
2813
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2814
p, NULL, 0, false, NULL, 0);
2815
}
2816
2817
mutex_unlock(&p->mutex);
2818
ret = down_interruptible(&p->runtime_enable_sema);
2819
mutex_lock(&p->mutex);
2820
2821
p->is_runtime_retry = !!ret;
2822
}
2823
2824
return ret;
2825
}
2826
2827
static int runtime_disable(struct kfd_process *p)
2828
{
2829
int i = 0, ret;
2830
bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2831
2832
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2833
p->runtime_info.r_debug = 0;
2834
2835
if (p->debug_trap_enabled) {
2836
if (was_enabled)
2837
kfd_dbg_trap_deactivate(p, false, 0);
2838
2839
if (!p->is_runtime_retry)
2840
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2841
p, NULL, 0, false, NULL, 0);
2842
2843
mutex_unlock(&p->mutex);
2844
ret = down_interruptible(&p->runtime_enable_sema);
2845
mutex_lock(&p->mutex);
2846
2847
p->is_runtime_retry = !!ret;
2848
if (ret)
2849
return ret;
2850
}
2851
2852
if (was_enabled && p->runtime_info.ttmp_setup) {
2853
for (i = 0; i < p->n_pdds; i++) {
2854
struct kfd_process_device *pdd = p->pdds[i];
2855
2856
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2857
amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2858
}
2859
}
2860
2861
p->runtime_info.ttmp_setup = false;
2862
2863
/* disable ttmp setup */
2864
for (i = 0; i < p->n_pdds; i++) {
2865
struct kfd_process_device *pdd = p->pdds[i];
2866
2867
if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2868
pdd->spi_dbg_override =
2869
pdd->dev->kfd2kgd->disable_debug_trap(
2870
pdd->dev->adev,
2871
false,
2872
pdd->dev->vm_info.last_vmid_kfd);
2873
2874
if (!pdd->dev->kfd->shared_resources.enable_mes)
2875
debug_refresh_runlist(pdd->dev->dqm);
2876
else
2877
kfd_dbg_set_mes_debug_mode(pdd,
2878
!kfd_dbg_has_cwsr_workaround(pdd->dev));
2879
}
2880
}
2881
2882
return 0;
2883
}
2884
2885
static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2886
{
2887
struct kfd_ioctl_runtime_enable_args *args = data;
2888
int r;
2889
2890
mutex_lock(&p->mutex);
2891
2892
if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2893
r = runtime_enable(p, args->r_debug,
2894
!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2895
else
2896
r = runtime_disable(p);
2897
2898
mutex_unlock(&p->mutex);
2899
2900
return r;
2901
}
2902
2903
static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2904
{
2905
struct kfd_ioctl_dbg_trap_args *args = data;
2906
struct task_struct *thread = NULL;
2907
struct mm_struct *mm = NULL;
2908
struct pid *pid = NULL;
2909
struct kfd_process *target = NULL;
2910
struct kfd_process_device *pdd = NULL;
2911
int r = 0;
2912
2913
if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2914
pr_err("Debugging does not support sched_policy %i", sched_policy);
2915
return -EINVAL;
2916
}
2917
2918
pid = find_get_pid(args->pid);
2919
if (!pid) {
2920
pr_debug("Cannot find pid info for %i\n", args->pid);
2921
r = -ESRCH;
2922
goto out;
2923
}
2924
2925
thread = get_pid_task(pid, PIDTYPE_PID);
2926
if (!thread) {
2927
r = -ESRCH;
2928
goto out;
2929
}
2930
2931
mm = get_task_mm(thread);
2932
if (!mm) {
2933
r = -ESRCH;
2934
goto out;
2935
}
2936
2937
if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2938
bool create_process;
2939
2940
rcu_read_lock();
2941
create_process = thread && thread != current && ptrace_parent(thread) == current;
2942
rcu_read_unlock();
2943
2944
target = create_process ? kfd_create_process(thread) :
2945
kfd_lookup_process_by_pid(pid);
2946
} else {
2947
target = kfd_lookup_process_by_pid(pid);
2948
}
2949
2950
if (IS_ERR_OR_NULL(target)) {
2951
pr_debug("Cannot find process PID %i to debug\n", args->pid);
2952
r = target ? PTR_ERR(target) : -ESRCH;
2953
target = NULL;
2954
goto out;
2955
}
2956
2957
/* Check if target is still PTRACED. */
2958
rcu_read_lock();
2959
if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2960
&& ptrace_parent(target->lead_thread) != current) {
2961
pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2962
r = -EPERM;
2963
}
2964
rcu_read_unlock();
2965
2966
if (r)
2967
goto out;
2968
2969
mutex_lock(&target->mutex);
2970
2971
if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2972
pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2973
r = -EINVAL;
2974
goto unlock_out;
2975
}
2976
2977
if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2978
(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2979
args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2980
args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2981
args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2982
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2983
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2984
args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2985
r = -EPERM;
2986
goto unlock_out;
2987
}
2988
2989
if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2990
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2991
int user_gpu_id = kfd_process_get_user_gpu_id(target,
2992
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2993
args->set_node_address_watch.gpu_id :
2994
args->clear_node_address_watch.gpu_id);
2995
2996
pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2997
if (user_gpu_id == -EINVAL || !pdd) {
2998
r = -ENODEV;
2999
goto unlock_out;
3000
}
3001
}
3002
3003
switch (args->op) {
3004
case KFD_IOC_DBG_TRAP_ENABLE:
3005
if (target != p)
3006
target->debugger_process = p;
3007
3008
r = kfd_dbg_trap_enable(target,
3009
args->enable.dbg_fd,
3010
(void __user *)args->enable.rinfo_ptr,
3011
&args->enable.rinfo_size);
3012
if (!r)
3013
target->exception_enable_mask = args->enable.exception_mask;
3014
3015
break;
3016
case KFD_IOC_DBG_TRAP_DISABLE:
3017
r = kfd_dbg_trap_disable(target);
3018
break;
3019
case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3020
r = kfd_dbg_send_exception_to_runtime(target,
3021
args->send_runtime_event.gpu_id,
3022
args->send_runtime_event.queue_id,
3023
args->send_runtime_event.exception_mask);
3024
break;
3025
case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3026
kfd_dbg_set_enabled_debug_exception_mask(target,
3027
args->set_exceptions_enabled.exception_mask);
3028
break;
3029
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3030
r = kfd_dbg_trap_set_wave_launch_override(target,
3031
args->launch_override.override_mode,
3032
args->launch_override.enable_mask,
3033
args->launch_override.support_request_mask,
3034
&args->launch_override.enable_mask,
3035
&args->launch_override.support_request_mask);
3036
break;
3037
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3038
r = kfd_dbg_trap_set_wave_launch_mode(target,
3039
args->launch_mode.launch_mode);
3040
break;
3041
case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3042
r = suspend_queues(target,
3043
args->suspend_queues.num_queues,
3044
args->suspend_queues.grace_period,
3045
args->suspend_queues.exception_mask,
3046
(uint32_t *)args->suspend_queues.queue_array_ptr);
3047
3048
break;
3049
case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3050
r = resume_queues(target, args->resume_queues.num_queues,
3051
(uint32_t *)args->resume_queues.queue_array_ptr);
3052
break;
3053
case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3054
r = kfd_dbg_trap_set_dev_address_watch(pdd,
3055
args->set_node_address_watch.address,
3056
args->set_node_address_watch.mask,
3057
&args->set_node_address_watch.id,
3058
args->set_node_address_watch.mode);
3059
break;
3060
case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3061
r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3062
args->clear_node_address_watch.id);
3063
break;
3064
case KFD_IOC_DBG_TRAP_SET_FLAGS:
3065
r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3066
break;
3067
case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3068
r = kfd_dbg_ev_query_debug_event(target,
3069
&args->query_debug_event.queue_id,
3070
&args->query_debug_event.gpu_id,
3071
args->query_debug_event.exception_mask,
3072
&args->query_debug_event.exception_mask);
3073
break;
3074
case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3075
r = kfd_dbg_trap_query_exception_info(target,
3076
args->query_exception_info.source_id,
3077
args->query_exception_info.exception_code,
3078
args->query_exception_info.clear_exception,
3079
(void __user *)args->query_exception_info.info_ptr,
3080
&args->query_exception_info.info_size);
3081
break;
3082
case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3083
r = pqm_get_queue_snapshot(&target->pqm,
3084
args->queue_snapshot.exception_mask,
3085
(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3086
&args->queue_snapshot.num_queues,
3087
&args->queue_snapshot.entry_size);
3088
break;
3089
case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3090
r = kfd_dbg_trap_device_snapshot(target,
3091
args->device_snapshot.exception_mask,
3092
(void __user *)args->device_snapshot.snapshot_buf_ptr,
3093
&args->device_snapshot.num_devices,
3094
&args->device_snapshot.entry_size);
3095
break;
3096
default:
3097
pr_err("Invalid option: %i\n", args->op);
3098
r = -EINVAL;
3099
}
3100
3101
unlock_out:
3102
mutex_unlock(&target->mutex);
3103
3104
out:
3105
if (thread)
3106
put_task_struct(thread);
3107
3108
if (mm)
3109
mmput(mm);
3110
3111
if (pid)
3112
put_pid(pid);
3113
3114
if (target)
3115
kfd_unref_process(target);
3116
3117
return r;
3118
}
3119
3120
#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3121
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3122
.cmd_drv = 0, .name = #ioctl}
3123
3124
/** Ioctl table */
3125
static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3126
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3127
kfd_ioctl_get_version, 0),
3128
3129
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3130
kfd_ioctl_create_queue, 0),
3131
3132
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3133
kfd_ioctl_destroy_queue, 0),
3134
3135
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3136
kfd_ioctl_set_memory_policy, 0),
3137
3138
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3139
kfd_ioctl_get_clock_counters, 0),
3140
3141
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3142
kfd_ioctl_get_process_apertures, 0),
3143
3144
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3145
kfd_ioctl_update_queue, 0),
3146
3147
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3148
kfd_ioctl_create_event, 0),
3149
3150
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3151
kfd_ioctl_destroy_event, 0),
3152
3153
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3154
kfd_ioctl_set_event, 0),
3155
3156
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3157
kfd_ioctl_reset_event, 0),
3158
3159
AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3160
kfd_ioctl_wait_events, 0),
3161
3162
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3163
kfd_ioctl_dbg_register, 0),
3164
3165
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3166
kfd_ioctl_dbg_unregister, 0),
3167
3168
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3169
kfd_ioctl_dbg_address_watch, 0),
3170
3171
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3172
kfd_ioctl_dbg_wave_control, 0),
3173
3174
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3175
kfd_ioctl_set_scratch_backing_va, 0),
3176
3177
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3178
kfd_ioctl_get_tile_config, 0),
3179
3180
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3181
kfd_ioctl_set_trap_handler, 0),
3182
3183
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3184
kfd_ioctl_get_process_apertures_new, 0),
3185
3186
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3187
kfd_ioctl_acquire_vm, 0),
3188
3189
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3190
kfd_ioctl_alloc_memory_of_gpu, 0),
3191
3192
AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3193
kfd_ioctl_free_memory_of_gpu, 0),
3194
3195
AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3196
kfd_ioctl_map_memory_to_gpu, 0),
3197
3198
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3199
kfd_ioctl_unmap_memory_from_gpu, 0),
3200
3201
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3202
kfd_ioctl_set_cu_mask, 0),
3203
3204
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3205
kfd_ioctl_get_queue_wave_state, 0),
3206
3207
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3208
kfd_ioctl_get_dmabuf_info, 0),
3209
3210
AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3211
kfd_ioctl_import_dmabuf, 0),
3212
3213
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3214
kfd_ioctl_alloc_queue_gws, 0),
3215
3216
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3217
kfd_ioctl_smi_events, 0),
3218
3219
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3220
3221
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3222
kfd_ioctl_set_xnack_mode, 0),
3223
3224
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3225
kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3226
3227
AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3228
kfd_ioctl_get_available_memory, 0),
3229
3230
AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3231
kfd_ioctl_export_dmabuf, 0),
3232
3233
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3234
kfd_ioctl_runtime_enable, 0),
3235
3236
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3237
kfd_ioctl_set_debug_trap, 0),
3238
};
3239
3240
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3241
3242
static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3243
{
3244
struct kfd_process *process;
3245
amdkfd_ioctl_t *func;
3246
const struct amdkfd_ioctl_desc *ioctl = NULL;
3247
unsigned int nr = _IOC_NR(cmd);
3248
char stack_kdata[128];
3249
char *kdata = NULL;
3250
unsigned int usize, asize;
3251
int retcode = -EINVAL;
3252
bool ptrace_attached = false;
3253
3254
if (nr >= AMDKFD_CORE_IOCTL_COUNT) {
3255
retcode = -ENOTTY;
3256
goto err_i1;
3257
}
3258
3259
if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3260
u32 amdkfd_size;
3261
3262
ioctl = &amdkfd_ioctls[nr];
3263
3264
amdkfd_size = _IOC_SIZE(ioctl->cmd);
3265
usize = asize = _IOC_SIZE(cmd);
3266
if (amdkfd_size > asize)
3267
asize = amdkfd_size;
3268
3269
cmd = ioctl->cmd;
3270
} else {
3271
retcode = -ENOTTY;
3272
goto err_i1;
3273
}
3274
3275
dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3276
3277
/* Get the process struct from the filep. Only the process
3278
* that opened /dev/kfd can use the file descriptor. Child
3279
* processes need to create their own KFD device context.
3280
*/
3281
process = filep->private_data;
3282
3283
rcu_read_lock();
3284
if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3285
ptrace_parent(process->lead_thread) == current)
3286
ptrace_attached = true;
3287
rcu_read_unlock();
3288
3289
if (process->lead_thread != current->group_leader
3290
&& !ptrace_attached) {
3291
dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3292
retcode = -EBADF;
3293
goto err_i1;
3294
}
3295
3296
/* Do not trust userspace, use our own definition */
3297
func = ioctl->func;
3298
3299
if (unlikely(!func)) {
3300
dev_dbg(kfd_device, "no function\n");
3301
retcode = -EINVAL;
3302
goto err_i1;
3303
}
3304
3305
/*
3306
* Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3307
* CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3308
* more priviledged access.
3309
*/
3310
if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3311
if (!capable(CAP_CHECKPOINT_RESTORE) &&
3312
!capable(CAP_SYS_ADMIN)) {
3313
retcode = -EACCES;
3314
goto err_i1;
3315
}
3316
}
3317
3318
if (cmd & (IOC_IN | IOC_OUT)) {
3319
if (asize <= sizeof(stack_kdata)) {
3320
kdata = stack_kdata;
3321
} else {
3322
kdata = kmalloc(asize, GFP_KERNEL);
3323
if (!kdata) {
3324
retcode = -ENOMEM;
3325
goto err_i1;
3326
}
3327
}
3328
if (asize > usize)
3329
memset(kdata + usize, 0, asize - usize);
3330
}
3331
3332
if (cmd & IOC_IN) {
3333
if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3334
retcode = -EFAULT;
3335
goto err_i1;
3336
}
3337
} else if (cmd & IOC_OUT) {
3338
memset(kdata, 0, usize);
3339
}
3340
3341
retcode = func(filep, process, kdata);
3342
3343
if (cmd & IOC_OUT)
3344
if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3345
retcode = -EFAULT;
3346
3347
err_i1:
3348
if (!ioctl)
3349
dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3350
task_pid_nr(current), cmd, nr);
3351
3352
if (kdata != stack_kdata)
3353
kfree(kdata);
3354
3355
if (retcode)
3356
dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3357
nr, arg, retcode);
3358
3359
return retcode;
3360
}
3361
3362
static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3363
struct vm_area_struct *vma)
3364
{
3365
phys_addr_t address;
3366
3367
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3368
return -EINVAL;
3369
3370
if (PAGE_SIZE > 4096)
3371
return -EINVAL;
3372
3373
address = dev->adev->rmmio_remap.bus_addr;
3374
3375
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3376
VM_DONTDUMP | VM_PFNMAP);
3377
3378
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3379
3380
pr_debug("process pid %d mapping mmio page\n"
3381
" target user address == 0x%08llX\n"
3382
" physical address == 0x%08llX\n"
3383
" vm_flags == 0x%04lX\n"
3384
" size == 0x%04lX\n",
3385
process->lead_thread->pid, (unsigned long long) vma->vm_start,
3386
address, vma->vm_flags, PAGE_SIZE);
3387
3388
return io_remap_pfn_range(vma,
3389
vma->vm_start,
3390
address >> PAGE_SHIFT,
3391
PAGE_SIZE,
3392
vma->vm_page_prot);
3393
}
3394
3395
3396
static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3397
{
3398
struct kfd_process *process;
3399
struct kfd_node *dev = NULL;
3400
unsigned long mmap_offset;
3401
unsigned int gpu_id;
3402
3403
process = kfd_get_process(current);
3404
if (IS_ERR(process))
3405
return PTR_ERR(process);
3406
3407
mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3408
gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3409
if (gpu_id)
3410
dev = kfd_device_by_id(gpu_id);
3411
3412
switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3413
case KFD_MMAP_TYPE_DOORBELL:
3414
if (!dev)
3415
return -ENODEV;
3416
return kfd_doorbell_mmap(dev, process, vma);
3417
3418
case KFD_MMAP_TYPE_EVENTS:
3419
return kfd_event_mmap(process, vma);
3420
3421
case KFD_MMAP_TYPE_RESERVED_MEM:
3422
if (!dev)
3423
return -ENODEV;
3424
return kfd_reserved_mem_mmap(dev, process, vma);
3425
case KFD_MMAP_TYPE_MMIO:
3426
if (!dev)
3427
return -ENODEV;
3428
return kfd_mmio_mmap(dev, process, vma);
3429
}
3430
3431
return -EFAULT;
3432
}
3433
3434