Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device.c
29285 views
1
// SPDX-License-Identifier: GPL-2.0 OR MIT
2
/*
3
* Copyright 2014-2022 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#include <linux/bsearch.h>
25
#include <linux/pci.h>
26
#include <linux/slab.h>
27
#include "kfd_priv.h"
28
#include "kfd_device_queue_manager.h"
29
#include "kfd_pm4_headers_vi.h"
30
#include "kfd_pm4_headers_aldebaran.h"
31
#include "cwsr_trap_handler.h"
32
#include "amdgpu_amdkfd.h"
33
#include "kfd_smi_events.h"
34
#include "kfd_svm.h"
35
#include "kfd_migrate.h"
36
#include "amdgpu.h"
37
#include "amdgpu_xcp.h"
38
39
#define MQD_SIZE_ALIGNED 768
40
41
/*
42
* kfd_locked is used to lock the kfd driver during suspend or reset
43
* once locked, kfd driver will stop any further GPU execution.
44
* create process (open) will return -EAGAIN.
45
*/
46
static int kfd_locked;
47
48
#ifdef CONFIG_DRM_AMDGPU_CIK
49
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50
#endif
51
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54
extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55
extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57
extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58
extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59
extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60
61
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62
unsigned int chunk_size);
63
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64
65
static int kfd_resume(struct kfd_node *kfd);
66
67
static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68
{
69
uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70
71
switch (sdma_version) {
72
case IP_VERSION(4, 0, 0):/* VEGA10 */
73
case IP_VERSION(4, 0, 1):/* VEGA12 */
74
case IP_VERSION(4, 1, 0):/* RAVEN */
75
case IP_VERSION(4, 1, 1):/* RAVEN */
76
case IP_VERSION(4, 1, 2):/* RENOIR */
77
case IP_VERSION(5, 2, 1):/* VANGOGH */
78
case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79
case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80
case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81
kfd->device_info.num_sdma_queues_per_engine = 2;
82
break;
83
case IP_VERSION(4, 2, 0):/* VEGA20 */
84
case IP_VERSION(4, 2, 2):/* ARCTURUS */
85
case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86
case IP_VERSION(4, 4, 2):
87
case IP_VERSION(4, 4, 5):
88
case IP_VERSION(4, 4, 4):
89
case IP_VERSION(5, 0, 0):/* NAVI10 */
90
case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91
case IP_VERSION(5, 0, 2):/* NAVI14 */
92
case IP_VERSION(5, 0, 5):/* NAVI12 */
93
case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94
case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95
case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96
case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97
case IP_VERSION(6, 0, 0):
98
case IP_VERSION(6, 0, 1):
99
case IP_VERSION(6, 0, 2):
100
case IP_VERSION(6, 0, 3):
101
case IP_VERSION(6, 1, 0):
102
case IP_VERSION(6, 1, 1):
103
case IP_VERSION(6, 1, 2):
104
case IP_VERSION(6, 1, 3):
105
case IP_VERSION(7, 0, 0):
106
case IP_VERSION(7, 0, 1):
107
kfd->device_info.num_sdma_queues_per_engine = 8;
108
break;
109
default:
110
dev_warn(kfd_device,
111
"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
112
sdma_version);
113
kfd->device_info.num_sdma_queues_per_engine = 8;
114
}
115
116
bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
117
118
switch (sdma_version) {
119
case IP_VERSION(6, 0, 0):
120
case IP_VERSION(6, 0, 1):
121
case IP_VERSION(6, 0, 2):
122
case IP_VERSION(6, 0, 3):
123
case IP_VERSION(6, 1, 0):
124
case IP_VERSION(6, 1, 1):
125
case IP_VERSION(6, 1, 2):
126
case IP_VERSION(6, 1, 3):
127
case IP_VERSION(7, 0, 0):
128
case IP_VERSION(7, 0, 1):
129
/* Reserve 1 for paging and 1 for gfx */
130
kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
131
/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
132
bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
133
kfd->adev->sdma.num_instances *
134
kfd->device_info.num_reserved_sdma_queues_per_engine);
135
break;
136
default:
137
break;
138
}
139
}
140
141
static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
142
{
143
uint32_t gc_version = KFD_GC_VERSION(kfd);
144
145
switch (gc_version) {
146
case IP_VERSION(9, 0, 1): /* VEGA10 */
147
case IP_VERSION(9, 1, 0): /* RAVEN */
148
case IP_VERSION(9, 2, 1): /* VEGA12 */
149
case IP_VERSION(9, 2, 2): /* RAVEN */
150
case IP_VERSION(9, 3, 0): /* RENOIR */
151
case IP_VERSION(9, 4, 0): /* VEGA20 */
152
case IP_VERSION(9, 4, 1): /* ARCTURUS */
153
case IP_VERSION(9, 4, 2): /* ALDEBARAN */
154
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
155
break;
156
case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
157
case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
158
case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
159
kfd->device_info.event_interrupt_class =
160
&event_interrupt_class_v9_4_3;
161
break;
162
case IP_VERSION(10, 3, 1): /* VANGOGH */
163
case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
164
case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
165
case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
166
case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
167
case IP_VERSION(10, 1, 4):
168
case IP_VERSION(10, 1, 10): /* NAVI10 */
169
case IP_VERSION(10, 1, 2): /* NAVI12 */
170
case IP_VERSION(10, 1, 1): /* NAVI14 */
171
case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
172
case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
173
case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
174
case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
175
kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
176
break;
177
case IP_VERSION(11, 0, 0):
178
case IP_VERSION(11, 0, 1):
179
case IP_VERSION(11, 0, 2):
180
case IP_VERSION(11, 0, 3):
181
case IP_VERSION(11, 0, 4):
182
case IP_VERSION(11, 5, 0):
183
case IP_VERSION(11, 5, 1):
184
case IP_VERSION(11, 5, 2):
185
case IP_VERSION(11, 5, 3):
186
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187
break;
188
case IP_VERSION(12, 0, 0):
189
case IP_VERSION(12, 0, 1):
190
/* GFX12_TODO: Change to v12 version. */
191
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
192
break;
193
default:
194
dev_warn(kfd_device, "v9 event interrupt handler is set due to "
195
"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
196
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
197
}
198
}
199
200
static void kfd_device_info_init(struct kfd_dev *kfd,
201
bool vf, uint32_t gfx_target_version)
202
{
203
uint32_t gc_version = KFD_GC_VERSION(kfd);
204
uint32_t asic_type = kfd->adev->asic_type;
205
206
kfd->device_info.max_pasid_bits = 16;
207
kfd->device_info.max_no_of_hqd = 24;
208
kfd->device_info.num_of_watch_points = 4;
209
kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
210
kfd->device_info.gfx_target_version = gfx_target_version;
211
212
if (KFD_IS_SOC15(kfd)) {
213
kfd->device_info.doorbell_size = 8;
214
kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
215
kfd->device_info.supports_cwsr = true;
216
217
kfd_device_info_set_sdma_info(kfd);
218
219
kfd_device_info_set_event_interrupt_class(kfd);
220
221
if (gc_version < IP_VERSION(11, 0, 0)) {
222
/* Navi2x+, Navi1x+ */
223
if (gc_version == IP_VERSION(10, 3, 6))
224
kfd->device_info.no_atomic_fw_version = 14;
225
else if (gc_version == IP_VERSION(10, 3, 7))
226
kfd->device_info.no_atomic_fw_version = 3;
227
else if (gc_version >= IP_VERSION(10, 3, 0))
228
kfd->device_info.no_atomic_fw_version = 92;
229
else if (gc_version >= IP_VERSION(10, 1, 1))
230
kfd->device_info.no_atomic_fw_version = 145;
231
232
/* Navi1x+ */
233
if (gc_version >= IP_VERSION(10, 1, 1))
234
kfd->device_info.needs_pci_atomics = true;
235
} else if (gc_version < IP_VERSION(12, 0, 0)) {
236
/*
237
* PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
238
* MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
239
* PCIe atomics support.
240
*/
241
kfd->device_info.needs_pci_atomics = true;
242
kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
243
} else if (gc_version < IP_VERSION(13, 0, 0)) {
244
kfd->device_info.needs_pci_atomics = true;
245
kfd->device_info.no_atomic_fw_version = 2090;
246
} else {
247
kfd->device_info.needs_pci_atomics = true;
248
}
249
} else {
250
kfd->device_info.doorbell_size = 4;
251
kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
252
kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
253
kfd->device_info.num_sdma_queues_per_engine = 2;
254
255
if (asic_type != CHIP_KAVERI &&
256
asic_type != CHIP_HAWAII &&
257
asic_type != CHIP_TONGA)
258
kfd->device_info.supports_cwsr = true;
259
260
if (asic_type != CHIP_HAWAII && !vf)
261
kfd->device_info.needs_pci_atomics = true;
262
}
263
}
264
265
struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
266
{
267
struct kfd_dev *kfd = NULL;
268
const struct kfd2kgd_calls *f2g = NULL;
269
uint32_t gfx_target_version = 0;
270
271
switch (adev->asic_type) {
272
#ifdef CONFIG_DRM_AMDGPU_CIK
273
case CHIP_KAVERI:
274
gfx_target_version = 70000;
275
if (!vf)
276
f2g = &gfx_v7_kfd2kgd;
277
break;
278
#endif
279
case CHIP_CARRIZO:
280
gfx_target_version = 80001;
281
if (!vf)
282
f2g = &gfx_v8_kfd2kgd;
283
break;
284
#ifdef CONFIG_DRM_AMDGPU_CIK
285
case CHIP_HAWAII:
286
gfx_target_version = 70001;
287
if (!amdgpu_exp_hw_support)
288
pr_info(
289
"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
290
);
291
else if (!vf)
292
f2g = &gfx_v7_kfd2kgd;
293
break;
294
#endif
295
case CHIP_TONGA:
296
gfx_target_version = 80002;
297
if (!vf)
298
f2g = &gfx_v8_kfd2kgd;
299
break;
300
case CHIP_FIJI:
301
case CHIP_POLARIS10:
302
gfx_target_version = 80003;
303
f2g = &gfx_v8_kfd2kgd;
304
break;
305
case CHIP_POLARIS11:
306
case CHIP_POLARIS12:
307
case CHIP_VEGAM:
308
gfx_target_version = 80003;
309
if (!vf)
310
f2g = &gfx_v8_kfd2kgd;
311
break;
312
default:
313
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
314
/* Vega 10 */
315
case IP_VERSION(9, 0, 1):
316
gfx_target_version = 90000;
317
f2g = &gfx_v9_kfd2kgd;
318
break;
319
/* Raven */
320
case IP_VERSION(9, 1, 0):
321
case IP_VERSION(9, 2, 2):
322
gfx_target_version = 90002;
323
if (!vf)
324
f2g = &gfx_v9_kfd2kgd;
325
break;
326
/* Vega12 */
327
case IP_VERSION(9, 2, 1):
328
gfx_target_version = 90004;
329
if (!vf)
330
f2g = &gfx_v9_kfd2kgd;
331
break;
332
/* Renoir */
333
case IP_VERSION(9, 3, 0):
334
gfx_target_version = 90012;
335
if (!vf)
336
f2g = &gfx_v9_kfd2kgd;
337
break;
338
/* Vega20 */
339
case IP_VERSION(9, 4, 0):
340
gfx_target_version = 90006;
341
if (!vf)
342
f2g = &gfx_v9_kfd2kgd;
343
break;
344
/* Arcturus */
345
case IP_VERSION(9, 4, 1):
346
gfx_target_version = 90008;
347
f2g = &arcturus_kfd2kgd;
348
break;
349
/* Aldebaran */
350
case IP_VERSION(9, 4, 2):
351
gfx_target_version = 90010;
352
f2g = &aldebaran_kfd2kgd;
353
break;
354
case IP_VERSION(9, 4, 3):
355
case IP_VERSION(9, 4, 4):
356
gfx_target_version = 90402;
357
f2g = &gc_9_4_3_kfd2kgd;
358
break;
359
case IP_VERSION(9, 5, 0):
360
gfx_target_version = 90500;
361
f2g = &gc_9_4_3_kfd2kgd;
362
break;
363
/* Navi10 */
364
case IP_VERSION(10, 1, 10):
365
gfx_target_version = 100100;
366
if (!vf)
367
f2g = &gfx_v10_kfd2kgd;
368
break;
369
/* Navi12 */
370
case IP_VERSION(10, 1, 2):
371
gfx_target_version = 100101;
372
f2g = &gfx_v10_kfd2kgd;
373
break;
374
/* Navi14 */
375
case IP_VERSION(10, 1, 1):
376
gfx_target_version = 100102;
377
if (!vf)
378
f2g = &gfx_v10_kfd2kgd;
379
break;
380
/* Cyan Skillfish */
381
case IP_VERSION(10, 1, 3):
382
case IP_VERSION(10, 1, 4):
383
gfx_target_version = 100103;
384
if (!vf)
385
f2g = &gfx_v10_kfd2kgd;
386
break;
387
/* Sienna Cichlid */
388
case IP_VERSION(10, 3, 0):
389
gfx_target_version = 100300;
390
f2g = &gfx_v10_3_kfd2kgd;
391
break;
392
/* Navy Flounder */
393
case IP_VERSION(10, 3, 2):
394
gfx_target_version = 100301;
395
f2g = &gfx_v10_3_kfd2kgd;
396
break;
397
/* Van Gogh */
398
case IP_VERSION(10, 3, 1):
399
gfx_target_version = 100303;
400
if (!vf)
401
f2g = &gfx_v10_3_kfd2kgd;
402
break;
403
/* Dimgrey Cavefish */
404
case IP_VERSION(10, 3, 4):
405
gfx_target_version = 100302;
406
f2g = &gfx_v10_3_kfd2kgd;
407
break;
408
/* Beige Goby */
409
case IP_VERSION(10, 3, 5):
410
gfx_target_version = 100304;
411
f2g = &gfx_v10_3_kfd2kgd;
412
break;
413
/* Yellow Carp */
414
case IP_VERSION(10, 3, 3):
415
gfx_target_version = 100305;
416
if (!vf)
417
f2g = &gfx_v10_3_kfd2kgd;
418
break;
419
case IP_VERSION(10, 3, 6):
420
case IP_VERSION(10, 3, 7):
421
gfx_target_version = 100306;
422
if (!vf)
423
f2g = &gfx_v10_3_kfd2kgd;
424
break;
425
case IP_VERSION(11, 0, 0):
426
gfx_target_version = 110000;
427
f2g = &gfx_v11_kfd2kgd;
428
break;
429
case IP_VERSION(11, 0, 1):
430
case IP_VERSION(11, 0, 4):
431
gfx_target_version = 110003;
432
f2g = &gfx_v11_kfd2kgd;
433
break;
434
case IP_VERSION(11, 0, 2):
435
gfx_target_version = 110002;
436
f2g = &gfx_v11_kfd2kgd;
437
break;
438
case IP_VERSION(11, 0, 3):
439
/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
440
gfx_target_version = 110001;
441
f2g = &gfx_v11_kfd2kgd;
442
break;
443
case IP_VERSION(11, 5, 0):
444
gfx_target_version = 110500;
445
f2g = &gfx_v11_kfd2kgd;
446
break;
447
case IP_VERSION(11, 5, 1):
448
gfx_target_version = 110501;
449
f2g = &gfx_v11_kfd2kgd;
450
break;
451
case IP_VERSION(11, 5, 2):
452
gfx_target_version = 110502;
453
f2g = &gfx_v11_kfd2kgd;
454
break;
455
case IP_VERSION(11, 5, 3):
456
gfx_target_version = 110503;
457
f2g = &gfx_v11_kfd2kgd;
458
break;
459
case IP_VERSION(12, 0, 0):
460
gfx_target_version = 120000;
461
f2g = &gfx_v12_kfd2kgd;
462
break;
463
case IP_VERSION(12, 0, 1):
464
gfx_target_version = 120001;
465
f2g = &gfx_v12_kfd2kgd;
466
break;
467
default:
468
break;
469
}
470
break;
471
}
472
473
if (!f2g) {
474
if (amdgpu_ip_version(adev, GC_HWIP, 0))
475
dev_info(kfd_device,
476
"GC IP %06x %s not supported in kfd\n",
477
amdgpu_ip_version(adev, GC_HWIP, 0),
478
vf ? "VF" : "");
479
else
480
dev_info(kfd_device, "%s %s not supported in kfd\n",
481
amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
482
return NULL;
483
}
484
485
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
486
if (!kfd)
487
return NULL;
488
489
kfd->adev = adev;
490
kfd_device_info_init(kfd, vf, gfx_target_version);
491
kfd->init_complete = false;
492
kfd->kfd2kgd = f2g;
493
atomic_set(&kfd->compute_profile, 0);
494
495
mutex_init(&kfd->doorbell_mutex);
496
497
ida_init(&kfd->doorbell_ida);
498
atomic_set(&kfd->kfd_processes_count, 0);
499
500
return kfd;
501
}
502
503
static void kfd_cwsr_init(struct kfd_dev *kfd)
504
{
505
if (cwsr_enable && kfd->device_info.supports_cwsr) {
506
if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
507
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
508
> KFD_CWSR_TMA_OFFSET);
509
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
510
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
511
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
512
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
513
> KFD_CWSR_TMA_OFFSET);
514
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
515
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
516
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
517
BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
518
> KFD_CWSR_TMA_OFFSET);
519
kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
520
kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
521
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
522
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
523
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
524
> KFD_CWSR_TMA_OFFSET);
525
kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
526
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
527
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
528
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
529
kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
530
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
531
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
532
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
533
> KFD_CWSR_TMA_OFFSET);
534
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
535
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
536
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
537
BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
538
> KFD_CWSR_TMA_OFFSET);
539
kfd->cwsr_isa = cwsr_trap_nv1x_hex;
540
kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
541
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
542
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
543
> KFD_CWSR_TMA_OFFSET);
544
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
545
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
546
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
547
/* The gfx11 cwsr trap handler must fit inside a single
548
page. */
549
BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
550
kfd->cwsr_isa = cwsr_trap_gfx11_hex;
551
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
552
} else {
553
BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
554
> KFD_CWSR_TMA_OFFSET);
555
kfd->cwsr_isa = cwsr_trap_gfx12_hex;
556
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
557
}
558
559
kfd->cwsr_enabled = true;
560
}
561
}
562
563
static int kfd_gws_init(struct kfd_node *node)
564
{
565
int ret = 0;
566
struct kfd_dev *kfd = node->kfd;
567
uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
568
569
if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
570
return 0;
571
572
if (hws_gws_support || (KFD_IS_SOC15(node) &&
573
((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
574
&& kfd->mec2_fw_version >= 0x81b3) ||
575
(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
576
&& kfd->mec2_fw_version >= 0x1b3) ||
577
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
578
&& kfd->mec2_fw_version >= 0x30) ||
579
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
580
&& kfd->mec2_fw_version >= 0x28) ||
581
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
582
KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
583
(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
584
(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
585
&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
586
&& kfd->mec2_fw_version >= 0x6b) ||
587
(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
588
&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
589
&& mes_rev >= 68) ||
590
(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
591
if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
592
node->adev->gds.gws_size = 64;
593
ret = amdgpu_amdkfd_alloc_gws(node->adev,
594
node->adev->gds.gws_size, &node->gws);
595
}
596
597
return ret;
598
}
599
600
static void kfd_smi_init(struct kfd_node *dev)
601
{
602
INIT_LIST_HEAD(&dev->smi_clients);
603
spin_lock_init(&dev->smi_lock);
604
}
605
606
static int kfd_init_node(struct kfd_node *node)
607
{
608
int err = -1;
609
610
if (kfd_interrupt_init(node)) {
611
dev_err(kfd_device, "Error initializing interrupts\n");
612
goto kfd_interrupt_error;
613
}
614
615
node->dqm = device_queue_manager_init(node);
616
if (!node->dqm) {
617
dev_err(kfd_device, "Error initializing queue manager\n");
618
goto device_queue_manager_error;
619
}
620
621
if (kfd_gws_init(node)) {
622
dev_err(kfd_device, "Could not allocate %d gws\n",
623
node->adev->gds.gws_size);
624
goto gws_error;
625
}
626
627
if (kfd_resume(node))
628
goto kfd_resume_error;
629
630
if (kfd_topology_add_device(node)) {
631
dev_err(kfd_device, "Error adding device to topology\n");
632
goto kfd_topology_add_device_error;
633
}
634
635
kfd_smi_init(node);
636
637
return 0;
638
639
kfd_topology_add_device_error:
640
kfd_resume_error:
641
gws_error:
642
device_queue_manager_uninit(node->dqm);
643
device_queue_manager_error:
644
kfd_interrupt_exit(node);
645
kfd_interrupt_error:
646
if (node->gws)
647
amdgpu_amdkfd_free_gws(node->adev, node->gws);
648
649
/* Cleanup the node memory here */
650
kfree(node);
651
return err;
652
}
653
654
static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
655
{
656
struct kfd_node *knode;
657
unsigned int i;
658
659
/*
660
* flush_work ensures that there are no outstanding
661
* work-queue items that will access interrupt_ring. New work items
662
* can't be created because we stopped interrupt handling above.
663
*/
664
flush_workqueue(kfd->ih_wq);
665
destroy_workqueue(kfd->ih_wq);
666
667
for (i = 0; i < num_nodes; i++) {
668
knode = kfd->nodes[i];
669
device_queue_manager_uninit(knode->dqm);
670
kfd_interrupt_exit(knode);
671
kfd_topology_remove_device(knode);
672
if (knode->gws)
673
amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
674
kfree(knode);
675
kfd->nodes[i] = NULL;
676
}
677
}
678
679
static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
680
unsigned int kfd_node_idx)
681
{
682
struct amdgpu_device *adev = node->adev;
683
uint32_t xcc_mask = node->xcc_mask;
684
uint32_t xcc, mapped_xcc;
685
/*
686
* Interrupt bitmap is setup for processing interrupts from
687
* different XCDs and AIDs.
688
* Interrupt bitmap is defined as follows:
689
* 1. Bits 0-15 - correspond to the NodeId field.
690
* Each bit corresponds to NodeId number. For example, if
691
* a KFD node has interrupt bitmap set to 0x7, then this
692
* KFD node will process interrupts with NodeId = 0, 1 and 2
693
* in the IH cookie.
694
* 2. Bits 16-31 - unused.
695
*
696
* Please note that the kfd_node_idx argument passed to this
697
* function is not related to NodeId field received in the
698
* IH cookie.
699
*
700
* In CPX mode, a KFD node will process an interrupt if:
701
* - the Node Id matches the corresponding bit set in
702
* Bits 0-15.
703
* - AND VMID reported in the interrupt lies within the
704
* VMID range of the node.
705
*/
706
for_each_inst(xcc, xcc_mask) {
707
mapped_xcc = GET_INST(GC, xcc);
708
node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
709
}
710
dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
711
node->interrupt_bitmap);
712
}
713
714
bool kgd2kfd_device_init(struct kfd_dev *kfd,
715
const struct kgd2kfd_shared_resources *gpu_resources)
716
{
717
unsigned int size, map_process_packet_size, i;
718
struct kfd_node *node;
719
uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
720
unsigned int max_proc_per_quantum;
721
int partition_mode;
722
int xcp_idx;
723
724
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
725
KGD_ENGINE_MEC1);
726
kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
727
KGD_ENGINE_MEC2);
728
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
729
KGD_ENGINE_SDMA1);
730
kfd->shared_resources = *gpu_resources;
731
732
kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
733
734
if (kfd->num_nodes == 0) {
735
dev_err(kfd_device,
736
"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
737
kfd->adev->gfx.num_xcc_per_xcp);
738
goto out;
739
}
740
741
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
742
* 32 and 64-bit requests are possible and must be
743
* supported.
744
*/
745
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
746
if (!kfd->pci_atomic_requested &&
747
kfd->device_info.needs_pci_atomics &&
748
(!kfd->device_info.no_atomic_fw_version ||
749
kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
750
dev_info(kfd_device,
751
"skipped device %x:%x, PCI rejects atomics %d<%d\n",
752
kfd->adev->pdev->vendor, kfd->adev->pdev->device,
753
kfd->mec_fw_version,
754
kfd->device_info.no_atomic_fw_version);
755
return false;
756
}
757
758
first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
759
last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
760
vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
761
762
/* For multi-partition capable GPUs, we need special handling for VMIDs
763
* depending on partition mode.
764
* In CPX mode, the VMID range needs to be shared between XCDs.
765
* Additionally, there are 13 VMIDs (3-15) available for KFD. To
766
* divide them equally, we change starting VMID to 4 and not use
767
* VMID 3.
768
* If the VMID range changes for multi-partition capable GPUs, then
769
* this code MUST be revisited.
770
*/
771
if (kfd->adev->xcp_mgr) {
772
partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
773
AMDGPU_XCP_FL_LOCKED);
774
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
775
kfd->num_nodes != 1) {
776
vmid_num_kfd /= 2;
777
first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
778
}
779
}
780
781
/* Verify module parameters regarding mapped process number*/
782
if (hws_max_conc_proc >= 0)
783
max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
784
else
785
max_proc_per_quantum = vmid_num_kfd;
786
787
/* calculate max size of mqds needed for queues */
788
size = max_num_of_queues_per_device *
789
kfd->device_info.mqd_size_aligned;
790
791
/*
792
* calculate max size of runlist packet.
793
* There can be only 2 packets at once
794
*/
795
map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
796
sizeof(struct pm4_mes_map_process_aldebaran) :
797
sizeof(struct pm4_mes_map_process);
798
size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
799
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
800
+ sizeof(struct pm4_mes_runlist)) * 2;
801
802
/* Add size of HIQ & DIQ */
803
size += KFD_KERNEL_QUEUE_SIZE * 2;
804
805
/* add another 512KB for all other allocations on gart (HPD, fences) */
806
size += 512 * 1024;
807
808
if (amdgpu_amdkfd_alloc_gtt_mem(
809
kfd->adev, size, &kfd->gtt_mem,
810
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
811
false)) {
812
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
813
goto alloc_gtt_mem_failure;
814
}
815
816
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
817
818
/* Initialize GTT sa with 512 byte chunk size */
819
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
820
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
821
goto kfd_gtt_sa_init_error;
822
}
823
824
if (kfd_doorbell_init(kfd)) {
825
dev_err(kfd_device,
826
"Error initializing doorbell aperture\n");
827
goto kfd_doorbell_error;
828
}
829
830
if (amdgpu_use_xgmi_p2p)
831
kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
832
833
/*
834
* For multi-partition capable GPUs, the KFD abstracts all partitions
835
* within a socket as xGMI connected in the topology so assign a unique
836
* hive id per device based on the pci device location if device is in
837
* PCIe mode.
838
*/
839
if (!kfd->hive_id && kfd->num_nodes > 1)
840
kfd->hive_id = pci_dev_id(kfd->adev->pdev);
841
842
kfd->noretry = kfd->adev->gmc.noretry;
843
844
kfd_cwsr_init(kfd);
845
846
dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
847
kfd->num_nodes);
848
849
/* Allocate the KFD nodes */
850
for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
851
node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
852
if (!node)
853
goto node_alloc_error;
854
855
node->node_id = i;
856
node->adev = kfd->adev;
857
node->kfd = kfd;
858
node->kfd2kgd = kfd->kfd2kgd;
859
node->vm_info.vmid_num_kfd = vmid_num_kfd;
860
node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
861
/* TODO : Check if error handling is needed */
862
if (node->xcp) {
863
amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
864
&node->xcc_mask);
865
++xcp_idx;
866
} else {
867
node->xcc_mask =
868
(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
869
}
870
871
if (node->xcp) {
872
dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
873
node->node_id, node->xcp->mem_id,
874
KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
875
}
876
877
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
878
kfd->num_nodes != 1) {
879
/* For multi-partition capable GPUs and CPX mode, first
880
* XCD gets VMID range 4-9 and second XCD gets VMID
881
* range 10-15.
882
*/
883
884
node->vm_info.first_vmid_kfd = (i%2 == 0) ?
885
first_vmid_kfd :
886
first_vmid_kfd+vmid_num_kfd;
887
node->vm_info.last_vmid_kfd = (i%2 == 0) ?
888
last_vmid_kfd-vmid_num_kfd :
889
last_vmid_kfd;
890
node->compute_vmid_bitmap =
891
((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
892
((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
893
} else {
894
node->vm_info.first_vmid_kfd = first_vmid_kfd;
895
node->vm_info.last_vmid_kfd = last_vmid_kfd;
896
node->compute_vmid_bitmap =
897
gpu_resources->compute_vmid_bitmap;
898
}
899
node->max_proc_per_quantum = max_proc_per_quantum;
900
atomic_set(&node->sram_ecc_flag, 0);
901
902
amdgpu_amdkfd_get_local_mem_info(kfd->adev,
903
&node->local_mem_info, node->xcp);
904
905
if (kfd->adev->xcp_mgr)
906
kfd_setup_interrupt_bitmap(node, i);
907
908
/* Initialize the KFD node */
909
if (kfd_init_node(node)) {
910
dev_err(kfd_device, "Error initializing KFD node\n");
911
goto node_init_error;
912
}
913
914
spin_lock_init(&node->watch_points_lock);
915
916
kfd->nodes[i] = node;
917
}
918
919
svm_range_set_max_pages(kfd->adev);
920
921
kfd->init_complete = true;
922
dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
923
kfd->adev->pdev->device);
924
925
pr_debug("Starting kfd with the following scheduling policy %d\n",
926
node->dqm->sched_policy);
927
928
goto out;
929
930
node_init_error:
931
node_alloc_error:
932
kfd_cleanup_nodes(kfd, i);
933
kfd_doorbell_fini(kfd);
934
kfd_doorbell_error:
935
kfd_gtt_sa_fini(kfd);
936
kfd_gtt_sa_init_error:
937
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
938
alloc_gtt_mem_failure:
939
dev_err(kfd_device,
940
"device %x:%x NOT added due to errors\n",
941
kfd->adev->pdev->vendor, kfd->adev->pdev->device);
942
out:
943
return kfd->init_complete;
944
}
945
946
void kgd2kfd_device_exit(struct kfd_dev *kfd)
947
{
948
if (kfd->init_complete) {
949
/* Cleanup KFD nodes */
950
kfd_cleanup_nodes(kfd, kfd->num_nodes);
951
/* Cleanup common/shared resources */
952
kfd_doorbell_fini(kfd);
953
ida_destroy(&kfd->doorbell_ida);
954
kfd_gtt_sa_fini(kfd);
955
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
956
}
957
958
kfree(kfd);
959
}
960
961
int kgd2kfd_pre_reset(struct kfd_dev *kfd,
962
struct amdgpu_reset_context *reset_context)
963
{
964
struct kfd_node *node;
965
int i;
966
967
if (!kfd->init_complete)
968
return 0;
969
970
for (i = 0; i < kfd->num_nodes; i++) {
971
node = kfd->nodes[i];
972
kfd_smi_event_update_gpu_reset(node, false, reset_context);
973
}
974
975
kgd2kfd_suspend(kfd, true);
976
977
for (i = 0; i < kfd->num_nodes; i++)
978
kfd_signal_reset_event(kfd->nodes[i]);
979
980
return 0;
981
}
982
983
/*
984
* Fix me. KFD won't be able to resume existing process for now.
985
* We will keep all existing process in a evicted state and
986
* wait the process to be terminated.
987
*/
988
989
int kgd2kfd_post_reset(struct kfd_dev *kfd)
990
{
991
int ret;
992
struct kfd_node *node;
993
int i;
994
995
if (!kfd->init_complete)
996
return 0;
997
998
for (i = 0; i < kfd->num_nodes; i++) {
999
ret = kfd_resume(kfd->nodes[i]);
1000
if (ret)
1001
return ret;
1002
}
1003
1004
mutex_lock(&kfd_processes_mutex);
1005
--kfd_locked;
1006
mutex_unlock(&kfd_processes_mutex);
1007
1008
for (i = 0; i < kfd->num_nodes; i++) {
1009
node = kfd->nodes[i];
1010
atomic_set(&node->sram_ecc_flag, 0);
1011
kfd_smi_event_update_gpu_reset(node, true, NULL);
1012
}
1013
1014
return 0;
1015
}
1016
1017
bool kfd_is_locked(struct kfd_dev *kfd)
1018
{
1019
uint8_t id = 0;
1020
struct kfd_node *dev;
1021
1022
lockdep_assert_held(&kfd_processes_mutex);
1023
1024
/* check reset/suspend lock */
1025
if (kfd_locked > 0)
1026
return true;
1027
1028
if (kfd)
1029
return kfd->kfd_dev_lock > 0;
1030
1031
/* check lock on all cgroup accessible devices */
1032
while (kfd_topology_enum_kfd_devices(id++, &dev) == 0) {
1033
if (!dev || kfd_devcgroup_check_permission(dev))
1034
continue;
1035
1036
if (dev->kfd->kfd_dev_lock > 0)
1037
return true;
1038
}
1039
1040
return false;
1041
}
1042
1043
void kgd2kfd_suspend(struct kfd_dev *kfd, bool suspend_proc)
1044
{
1045
struct kfd_node *node;
1046
int i;
1047
1048
if (!kfd->init_complete)
1049
return;
1050
1051
if (suspend_proc)
1052
kgd2kfd_suspend_process(kfd);
1053
1054
for (i = 0; i < kfd->num_nodes; i++) {
1055
node = kfd->nodes[i];
1056
node->dqm->ops.stop(node->dqm);
1057
}
1058
}
1059
1060
int kgd2kfd_resume(struct kfd_dev *kfd, bool resume_proc)
1061
{
1062
int ret, i;
1063
1064
if (!kfd->init_complete)
1065
return 0;
1066
1067
for (i = 0; i < kfd->num_nodes; i++) {
1068
ret = kfd_resume(kfd->nodes[i]);
1069
if (ret)
1070
return ret;
1071
}
1072
1073
if (resume_proc)
1074
ret = kgd2kfd_resume_process(kfd);
1075
1076
return ret;
1077
}
1078
1079
void kgd2kfd_suspend_process(struct kfd_dev *kfd)
1080
{
1081
if (!kfd->init_complete)
1082
return;
1083
1084
mutex_lock(&kfd_processes_mutex);
1085
/* For first KFD device suspend all the KFD processes */
1086
if (++kfd_locked == 1)
1087
kfd_suspend_all_processes();
1088
mutex_unlock(&kfd_processes_mutex);
1089
}
1090
1091
int kgd2kfd_resume_process(struct kfd_dev *kfd)
1092
{
1093
int ret = 0;
1094
1095
if (!kfd->init_complete)
1096
return 0;
1097
1098
mutex_lock(&kfd_processes_mutex);
1099
if (--kfd_locked == 0)
1100
ret = kfd_resume_all_processes();
1101
WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1102
mutex_unlock(&kfd_processes_mutex);
1103
1104
return ret;
1105
}
1106
1107
static int kfd_resume(struct kfd_node *node)
1108
{
1109
int err = 0;
1110
1111
err = node->dqm->ops.start(node->dqm);
1112
if (err)
1113
dev_err(kfd_device,
1114
"Error starting queue manager for device %x:%x\n",
1115
node->adev->pdev->vendor, node->adev->pdev->device);
1116
1117
return err;
1118
}
1119
1120
/* This is called directly from KGD at ISR. */
1121
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1122
{
1123
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1124
bool is_patched = false;
1125
unsigned long flags;
1126
struct kfd_node *node;
1127
1128
if (!kfd->init_complete)
1129
return;
1130
1131
if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1132
dev_err_once(kfd_device, "Ring entry too small\n");
1133
return;
1134
}
1135
1136
for (i = 0; i < kfd->num_nodes; i++) {
1137
/* Race if another thread in b/w
1138
* kfd_cleanup_nodes and kfree(kfd),
1139
* when kfd->nodes[i] = NULL
1140
*/
1141
if (kfd->nodes[i])
1142
node = kfd->nodes[i];
1143
else
1144
return;
1145
1146
spin_lock_irqsave(&node->interrupt_lock, flags);
1147
1148
if (node->interrupts_active
1149
&& interrupt_is_wanted(node, ih_ring_entry,
1150
patched_ihre, &is_patched)
1151
&& enqueue_ih_ring_entry(node,
1152
is_patched ? patched_ihre : ih_ring_entry)) {
1153
queue_work(node->kfd->ih_wq, &node->interrupt_work);
1154
spin_unlock_irqrestore(&node->interrupt_lock, flags);
1155
return;
1156
}
1157
spin_unlock_irqrestore(&node->interrupt_lock, flags);
1158
}
1159
1160
}
1161
1162
int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1163
{
1164
struct kfd_process *p;
1165
int r;
1166
1167
/* Because we are called from arbitrary context (workqueue) as opposed
1168
* to process context, kfd_process could attempt to exit while we are
1169
* running so the lookup function increments the process ref count.
1170
*/
1171
p = kfd_lookup_process_by_mm(mm);
1172
if (!p)
1173
return -ESRCH;
1174
1175
WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1176
r = kfd_process_evict_queues(p, trigger);
1177
1178
kfd_unref_process(p);
1179
return r;
1180
}
1181
1182
int kgd2kfd_resume_mm(struct mm_struct *mm)
1183
{
1184
struct kfd_process *p;
1185
int r;
1186
1187
/* Because we are called from arbitrary context (workqueue) as opposed
1188
* to process context, kfd_process could attempt to exit while we are
1189
* running so the lookup function increments the process ref count.
1190
*/
1191
p = kfd_lookup_process_by_mm(mm);
1192
if (!p)
1193
return -ESRCH;
1194
1195
r = kfd_process_restore_queues(p);
1196
1197
kfd_unref_process(p);
1198
return r;
1199
}
1200
1201
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1202
* prepare for safe eviction of KFD BOs that belong to the specified
1203
* process.
1204
*
1205
* @mm: mm_struct that identifies the specified KFD process
1206
* @fence: eviction fence attached to KFD process BOs
1207
*
1208
*/
1209
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1210
struct dma_fence *fence)
1211
{
1212
struct kfd_process *p;
1213
unsigned long active_time;
1214
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1215
1216
if (!fence)
1217
return -EINVAL;
1218
1219
if (dma_fence_is_signaled(fence))
1220
return 0;
1221
1222
p = kfd_lookup_process_by_mm(mm);
1223
if (!p)
1224
return -ENODEV;
1225
1226
if (fence->seqno == p->last_eviction_seqno)
1227
goto out;
1228
1229
p->last_eviction_seqno = fence->seqno;
1230
1231
/* Avoid KFD process starvation. Wait for at least
1232
* PROCESS_ACTIVE_TIME_MS before evicting the process again
1233
*/
1234
active_time = get_jiffies_64() - p->last_restore_timestamp;
1235
if (delay_jiffies > active_time)
1236
delay_jiffies -= active_time;
1237
else
1238
delay_jiffies = 0;
1239
1240
/* During process initialization eviction_work.dwork is initialized
1241
* to kfd_evict_bo_worker
1242
*/
1243
WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1244
p->lead_thread->pid, delay_jiffies);
1245
schedule_delayed_work(&p->eviction_work, delay_jiffies);
1246
out:
1247
kfd_unref_process(p);
1248
return 0;
1249
}
1250
1251
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1252
unsigned int chunk_size)
1253
{
1254
if (WARN_ON(buf_size < chunk_size))
1255
return -EINVAL;
1256
if (WARN_ON(buf_size == 0))
1257
return -EINVAL;
1258
if (WARN_ON(chunk_size == 0))
1259
return -EINVAL;
1260
1261
kfd->gtt_sa_chunk_size = chunk_size;
1262
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1263
1264
kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1265
GFP_KERNEL);
1266
if (!kfd->gtt_sa_bitmap)
1267
return -ENOMEM;
1268
1269
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1270
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1271
1272
mutex_init(&kfd->gtt_sa_lock);
1273
1274
return 0;
1275
}
1276
1277
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1278
{
1279
mutex_destroy(&kfd->gtt_sa_lock);
1280
bitmap_free(kfd->gtt_sa_bitmap);
1281
}
1282
1283
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1284
unsigned int bit_num,
1285
unsigned int chunk_size)
1286
{
1287
return start_addr + bit_num * chunk_size;
1288
}
1289
1290
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1291
unsigned int bit_num,
1292
unsigned int chunk_size)
1293
{
1294
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1295
}
1296
1297
int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1298
struct kfd_mem_obj **mem_obj)
1299
{
1300
unsigned int found, start_search, cur_size;
1301
struct kfd_dev *kfd = node->kfd;
1302
1303
if (size == 0)
1304
return -EINVAL;
1305
1306
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1307
return -ENOMEM;
1308
1309
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1310
if (!(*mem_obj))
1311
return -ENOMEM;
1312
1313
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1314
1315
start_search = 0;
1316
1317
mutex_lock(&kfd->gtt_sa_lock);
1318
1319
kfd_gtt_restart_search:
1320
/* Find the first chunk that is free */
1321
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1322
kfd->gtt_sa_num_of_chunks,
1323
start_search);
1324
1325
pr_debug("Found = %d\n", found);
1326
1327
/* If there wasn't any free chunk, bail out */
1328
if (found == kfd->gtt_sa_num_of_chunks)
1329
goto kfd_gtt_no_free_chunk;
1330
1331
/* Update fields of mem_obj */
1332
(*mem_obj)->range_start = found;
1333
(*mem_obj)->range_end = found;
1334
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1335
kfd->gtt_start_gpu_addr,
1336
found,
1337
kfd->gtt_sa_chunk_size);
1338
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1339
kfd->gtt_start_cpu_ptr,
1340
found,
1341
kfd->gtt_sa_chunk_size);
1342
1343
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1344
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1345
1346
/* If we need only one chunk, mark it as allocated and get out */
1347
if (size <= kfd->gtt_sa_chunk_size) {
1348
pr_debug("Single bit\n");
1349
__set_bit(found, kfd->gtt_sa_bitmap);
1350
goto kfd_gtt_out;
1351
}
1352
1353
/* Otherwise, try to see if we have enough contiguous chunks */
1354
cur_size = size - kfd->gtt_sa_chunk_size;
1355
do {
1356
(*mem_obj)->range_end =
1357
find_next_zero_bit(kfd->gtt_sa_bitmap,
1358
kfd->gtt_sa_num_of_chunks, ++found);
1359
/*
1360
* If next free chunk is not contiguous than we need to
1361
* restart our search from the last free chunk we found (which
1362
* wasn't contiguous to the previous ones
1363
*/
1364
if ((*mem_obj)->range_end != found) {
1365
start_search = found;
1366
goto kfd_gtt_restart_search;
1367
}
1368
1369
/*
1370
* If we reached end of buffer, bail out with error
1371
*/
1372
if (found == kfd->gtt_sa_num_of_chunks)
1373
goto kfd_gtt_no_free_chunk;
1374
1375
/* Check if we don't need another chunk */
1376
if (cur_size <= kfd->gtt_sa_chunk_size)
1377
cur_size = 0;
1378
else
1379
cur_size -= kfd->gtt_sa_chunk_size;
1380
1381
} while (cur_size > 0);
1382
1383
pr_debug("range_start = %d, range_end = %d\n",
1384
(*mem_obj)->range_start, (*mem_obj)->range_end);
1385
1386
/* Mark the chunks as allocated */
1387
bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1388
(*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1389
1390
kfd_gtt_out:
1391
mutex_unlock(&kfd->gtt_sa_lock);
1392
return 0;
1393
1394
kfd_gtt_no_free_chunk:
1395
pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1396
mutex_unlock(&kfd->gtt_sa_lock);
1397
kfree(*mem_obj);
1398
return -ENOMEM;
1399
}
1400
1401
int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1402
{
1403
struct kfd_dev *kfd = node->kfd;
1404
1405
/* Act like kfree when trying to free a NULL object */
1406
if (!mem_obj)
1407
return 0;
1408
1409
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1410
mem_obj, mem_obj->range_start, mem_obj->range_end);
1411
1412
mutex_lock(&kfd->gtt_sa_lock);
1413
1414
/* Mark the chunks as free */
1415
bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1416
mem_obj->range_end - mem_obj->range_start + 1);
1417
1418
mutex_unlock(&kfd->gtt_sa_lock);
1419
1420
kfree(mem_obj);
1421
return 0;
1422
}
1423
1424
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1425
{
1426
/*
1427
* TODO: Currently update SRAM ECC flag for first node.
1428
* This needs to be updated later when we can
1429
* identify SRAM ECC error on other nodes also.
1430
*/
1431
if (kfd)
1432
atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1433
}
1434
1435
void kfd_inc_compute_active(struct kfd_node *node)
1436
{
1437
if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1438
amdgpu_amdkfd_set_compute_idle(node->adev, false);
1439
}
1440
1441
void kfd_dec_compute_active(struct kfd_node *node)
1442
{
1443
int count = atomic_dec_return(&node->kfd->compute_profile);
1444
1445
if (count == 0)
1446
amdgpu_amdkfd_set_compute_idle(node->adev, true);
1447
WARN_ONCE(count < 0, "Compute profile ref. count error");
1448
}
1449
1450
static bool kfd_compute_active(struct kfd_node *node)
1451
{
1452
if (atomic_read(&node->kfd->compute_profile))
1453
return true;
1454
return false;
1455
}
1456
1457
void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1458
{
1459
/*
1460
* TODO: For now, raise the throttling event only on first node.
1461
* This will need to change after we are able to determine
1462
* which node raised the throttling event.
1463
*/
1464
if (kfd && kfd->init_complete)
1465
kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1466
throttle_bitmask);
1467
}
1468
1469
/* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1470
* kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1471
* When the device has more than two engines, we reserve two for PCIe to enable
1472
* full-duplex and the rest are used as XGMI.
1473
*/
1474
unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1475
{
1476
/* If XGMI is not supported, all SDMA engines are PCIe */
1477
if (!node->adev->gmc.xgmi.supported)
1478
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1479
1480
return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1481
}
1482
1483
unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1484
{
1485
/* After reserved for PCIe, the rest of engines are XGMI */
1486
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1487
kfd_get_num_sdma_engines(node);
1488
}
1489
1490
int kgd2kfd_check_and_lock_kfd(struct kfd_dev *kfd)
1491
{
1492
struct kfd_process *p;
1493
int r = 0, temp, idx;
1494
1495
mutex_lock(&kfd_processes_mutex);
1496
1497
/* kfd_processes_count is per kfd_dev, return -EBUSY without
1498
* further check
1499
*/
1500
if (!!atomic_read(&kfd->kfd_processes_count)) {
1501
pr_debug("process_wq_release not finished\n");
1502
r = -EBUSY;
1503
goto out;
1504
}
1505
1506
if (hash_empty(kfd_processes_table) && !kfd_is_locked(kfd))
1507
goto out;
1508
1509
/* fail under system reset/resume or kfd device is partition switching. */
1510
if (kfd_is_locked(kfd)) {
1511
r = -EBUSY;
1512
goto out;
1513
}
1514
1515
/*
1516
* ensure all running processes are cgroup excluded from device before mode switch.
1517
* i.e. no pdd was created on the process socket.
1518
*/
1519
idx = srcu_read_lock(&kfd_processes_srcu);
1520
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1521
int i;
1522
1523
for (i = 0; i < p->n_pdds; i++) {
1524
if (p->pdds[i]->dev->kfd != kfd)
1525
continue;
1526
1527
r = -EBUSY;
1528
goto proc_check_unlock;
1529
}
1530
}
1531
1532
proc_check_unlock:
1533
srcu_read_unlock(&kfd_processes_srcu, idx);
1534
out:
1535
if (!r)
1536
++kfd->kfd_dev_lock;
1537
mutex_unlock(&kfd_processes_mutex);
1538
1539
return r;
1540
}
1541
1542
void kgd2kfd_unlock_kfd(struct kfd_dev *kfd)
1543
{
1544
mutex_lock(&kfd_processes_mutex);
1545
--kfd->kfd_dev_lock;
1546
mutex_unlock(&kfd_processes_mutex);
1547
}
1548
1549
int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1550
{
1551
struct kfd_node *node;
1552
int ret;
1553
1554
if (!kfd->init_complete)
1555
return 0;
1556
1557
if (node_id >= kfd->num_nodes) {
1558
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1559
node_id, kfd->num_nodes - 1);
1560
return -EINVAL;
1561
}
1562
node = kfd->nodes[node_id];
1563
1564
ret = node->dqm->ops.unhalt(node->dqm);
1565
if (ret)
1566
dev_err(kfd_device, "Error in starting scheduler\n");
1567
1568
return ret;
1569
}
1570
1571
int kgd2kfd_start_sched_all_nodes(struct kfd_dev *kfd)
1572
{
1573
struct kfd_node *node;
1574
int i, r;
1575
1576
if (!kfd->init_complete)
1577
return 0;
1578
1579
for (i = 0; i < kfd->num_nodes; i++) {
1580
node = kfd->nodes[i];
1581
r = node->dqm->ops.unhalt(node->dqm);
1582
if (r) {
1583
dev_err(kfd_device, "Error in starting scheduler\n");
1584
return r;
1585
}
1586
}
1587
return 0;
1588
}
1589
1590
int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1591
{
1592
struct kfd_node *node;
1593
1594
if (!kfd->init_complete)
1595
return 0;
1596
1597
if (node_id >= kfd->num_nodes) {
1598
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1599
node_id, kfd->num_nodes - 1);
1600
return -EINVAL;
1601
}
1602
1603
node = kfd->nodes[node_id];
1604
return node->dqm->ops.halt(node->dqm);
1605
}
1606
1607
int kgd2kfd_stop_sched_all_nodes(struct kfd_dev *kfd)
1608
{
1609
struct kfd_node *node;
1610
int i, r;
1611
1612
if (!kfd->init_complete)
1613
return 0;
1614
1615
for (i = 0; i < kfd->num_nodes; i++) {
1616
node = kfd->nodes[i];
1617
r = node->dqm->ops.halt(node->dqm);
1618
if (r)
1619
return r;
1620
}
1621
return 0;
1622
}
1623
1624
bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1625
{
1626
struct kfd_node *node;
1627
1628
if (!kfd->init_complete)
1629
return false;
1630
1631
if (node_id >= kfd->num_nodes) {
1632
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1633
node_id, kfd->num_nodes - 1);
1634
return false;
1635
}
1636
1637
node = kfd->nodes[node_id];
1638
1639
return kfd_compute_active(node);
1640
}
1641
1642
/**
1643
* kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1644
* @adev: amdgpu device
1645
* @entry: vm fault interrupt vector
1646
* @retry_fault: if this is retry fault
1647
*
1648
* retry fault -
1649
* with CAM enabled, adev primary ring
1650
* | gmc_v9_0_process_interrupt()
1651
* adev soft_ring
1652
* | gmc_v9_0_process_interrupt() worker failed to recover page fault
1653
* KFD node ih_fifo
1654
* | KFD interrupt_wq worker
1655
* kfd_signal_vm_fault_event
1656
*
1657
* without CAM, adev primary ring1
1658
* | gmc_v9_0_process_interrupt worker failed to recvoer page fault
1659
* KFD node ih_fifo
1660
* | KFD interrupt_wq worker
1661
* kfd_signal_vm_fault_event
1662
*
1663
* no-retry fault -
1664
* adev primary ring
1665
* | gmc_v9_0_process_interrupt()
1666
* KFD node ih_fifo
1667
* | KFD interrupt_wq worker
1668
* kfd_signal_vm_fault_event
1669
*
1670
* fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1671
* of same process, don't copy interrupt to KFD node ih_fifo.
1672
* With gdb debugger enabled, need convert the retry fault to no-retry fault for
1673
* debugger, cannot use the fast path.
1674
*
1675
* Return:
1676
* true - use the fast path to handle this fault
1677
* false - use normal path to handle it
1678
*/
1679
bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1680
bool retry_fault)
1681
{
1682
struct kfd_process *p;
1683
u32 cam_index;
1684
1685
if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1686
p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
1687
if (!p)
1688
return true;
1689
1690
if (p->gpu_page_fault && !p->debug_trap_enabled) {
1691
if (retry_fault && adev->irq.retry_cam_enabled) {
1692
cam_index = entry->src_data[2] & 0x3ff;
1693
WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1694
}
1695
1696
kfd_unref_process(p);
1697
return true;
1698
}
1699
1700
/*
1701
* This is the first page fault, set flag and then signal user space
1702
*/
1703
p->gpu_page_fault = true;
1704
kfd_unref_process(p);
1705
}
1706
return false;
1707
}
1708
1709
#if defined(CONFIG_DEBUG_FS)
1710
1711
/* This function will send a package to HIQ to hang the HWS
1712
* which will trigger a GPU reset and bring the HWS back to normal state
1713
*/
1714
int kfd_debugfs_hang_hws(struct kfd_node *dev)
1715
{
1716
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1717
pr_err("HWS is not enabled");
1718
return -EINVAL;
1719
}
1720
1721
if (dev->kfd->shared_resources.enable_mes) {
1722
dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1723
return -EINVAL;
1724
}
1725
1726
return dqm_debugfs_hang_hws(dev->dqm);
1727
}
1728
1729
#endif
1730
1731