Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/binfmt_elf.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/fs/binfmt_elf.c
4
*
5
* These are the functions used to load ELF format executables as used
6
* on SVr4 machines. Information on the format may be found in the book
7
* "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8
* Tools".
9
*
10
* Copyright 1993, 1994: Eric Youngdale ([email protected]).
11
*/
12
13
#include <linux/module.h>
14
#include <linux/kernel.h>
15
#include <linux/fs.h>
16
#include <linux/log2.h>
17
#include <linux/mm.h>
18
#include <linux/mman.h>
19
#include <linux/errno.h>
20
#include <linux/signal.h>
21
#include <linux/binfmts.h>
22
#include <linux/string.h>
23
#include <linux/file.h>
24
#include <linux/slab.h>
25
#include <linux/personality.h>
26
#include <linux/elfcore.h>
27
#include <linux/init.h>
28
#include <linux/highuid.h>
29
#include <linux/compiler.h>
30
#include <linux/highmem.h>
31
#include <linux/hugetlb.h>
32
#include <linux/pagemap.h>
33
#include <linux/vmalloc.h>
34
#include <linux/security.h>
35
#include <linux/random.h>
36
#include <linux/elf.h>
37
#include <linux/elf-randomize.h>
38
#include <linux/utsname.h>
39
#include <linux/coredump.h>
40
#include <linux/sched.h>
41
#include <linux/sched/coredump.h>
42
#include <linux/sched/task_stack.h>
43
#include <linux/sched/cputime.h>
44
#include <linux/sizes.h>
45
#include <linux/types.h>
46
#include <linux/cred.h>
47
#include <linux/dax.h>
48
#include <linux/uaccess.h>
49
#include <linux/rseq.h>
50
#include <asm/param.h>
51
#include <asm/page.h>
52
53
#ifndef ELF_COMPAT
54
#define ELF_COMPAT 0
55
#endif
56
57
#ifndef user_long_t
58
#define user_long_t long
59
#endif
60
#ifndef user_siginfo_t
61
#define user_siginfo_t siginfo_t
62
#endif
63
64
/* That's for binfmt_elf_fdpic to deal with */
65
#ifndef elf_check_fdpic
66
#define elf_check_fdpic(ex) false
67
#endif
68
69
static int load_elf_binary(struct linux_binprm *bprm);
70
71
/*
72
* If we don't support core dumping, then supply a NULL so we
73
* don't even try.
74
*/
75
#ifdef CONFIG_ELF_CORE
76
static int elf_core_dump(struct coredump_params *cprm);
77
#else
78
#define elf_core_dump NULL
79
#endif
80
81
#if ELF_EXEC_PAGESIZE > PAGE_SIZE
82
#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
83
#else
84
#define ELF_MIN_ALIGN PAGE_SIZE
85
#endif
86
87
#ifndef ELF_CORE_EFLAGS
88
#define ELF_CORE_EFLAGS 0
89
#endif
90
91
#define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
92
#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
93
#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
94
95
static struct linux_binfmt elf_format = {
96
.module = THIS_MODULE,
97
.load_binary = load_elf_binary,
98
#ifdef CONFIG_COREDUMP
99
.core_dump = elf_core_dump,
100
.min_coredump = ELF_EXEC_PAGESIZE,
101
#endif
102
};
103
104
#define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
105
106
static inline void elf_coredump_set_mm_eflags(struct mm_struct *mm, u32 flags)
107
{
108
#ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS
109
mm->saved_e_flags = flags;
110
#endif
111
}
112
113
static inline u32 elf_coredump_get_mm_eflags(struct mm_struct *mm, u32 flags)
114
{
115
#ifdef CONFIG_ARCH_HAS_ELF_CORE_EFLAGS
116
flags = mm->saved_e_flags;
117
#endif
118
return flags;
119
}
120
121
/*
122
* We need to explicitly zero any trailing portion of the page that follows
123
* p_filesz when it ends before the page ends (e.g. bss), otherwise this
124
* memory will contain the junk from the file that should not be present.
125
*/
126
static int padzero(unsigned long address)
127
{
128
unsigned long nbyte;
129
130
nbyte = ELF_PAGEOFFSET(address);
131
if (nbyte) {
132
nbyte = ELF_MIN_ALIGN - nbyte;
133
if (clear_user((void __user *)address, nbyte))
134
return -EFAULT;
135
}
136
return 0;
137
}
138
139
/* Let's use some macros to make this stack manipulation a little clearer */
140
#ifdef CONFIG_STACK_GROWSUP
141
#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142
#define STACK_ROUND(sp, items) \
143
((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144
#define STACK_ALLOC(sp, len) ({ \
145
elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146
old_sp; })
147
#else
148
#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149
#define STACK_ROUND(sp, items) \
150
(((unsigned long) (sp - items)) &~ 15UL)
151
#define STACK_ALLOC(sp, len) (sp -= len)
152
#endif
153
154
#ifndef ELF_BASE_PLATFORM
155
/*
156
* AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157
* If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158
* will be copied to the user stack in the same manner as AT_PLATFORM.
159
*/
160
#define ELF_BASE_PLATFORM NULL
161
#endif
162
163
static int
164
create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
165
unsigned long interp_load_addr,
166
unsigned long e_entry, unsigned long phdr_addr)
167
{
168
struct mm_struct *mm = current->mm;
169
unsigned long p = bprm->p;
170
int argc = bprm->argc;
171
int envc = bprm->envc;
172
elf_addr_t __user *sp;
173
elf_addr_t __user *u_platform;
174
elf_addr_t __user *u_base_platform;
175
elf_addr_t __user *u_rand_bytes;
176
const char *k_platform = ELF_PLATFORM;
177
const char *k_base_platform = ELF_BASE_PLATFORM;
178
unsigned char k_rand_bytes[16];
179
int items;
180
elf_addr_t *elf_info;
181
elf_addr_t flags = 0;
182
int ei_index;
183
const struct cred *cred = current_cred();
184
struct vm_area_struct *vma;
185
186
/*
187
* In some cases (e.g. Hyper-Threading), we want to avoid L1
188
* evictions by the processes running on the same package. One
189
* thing we can do is to shuffle the initial stack for them.
190
*/
191
192
p = arch_align_stack(p);
193
194
/*
195
* If this architecture has a platform capability string, copy it
196
* to userspace. In some cases (Sparc), this info is impossible
197
* for userspace to get any other way, in others (i386) it is
198
* merely difficult.
199
*/
200
u_platform = NULL;
201
if (k_platform) {
202
size_t len = strlen(k_platform) + 1;
203
204
u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
205
if (copy_to_user(u_platform, k_platform, len))
206
return -EFAULT;
207
}
208
209
/*
210
* If this architecture has a "base" platform capability
211
* string, copy it to userspace.
212
*/
213
u_base_platform = NULL;
214
if (k_base_platform) {
215
size_t len = strlen(k_base_platform) + 1;
216
217
u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
218
if (copy_to_user(u_base_platform, k_base_platform, len))
219
return -EFAULT;
220
}
221
222
/*
223
* Generate 16 random bytes for userspace PRNG seeding.
224
*/
225
get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
226
u_rand_bytes = (elf_addr_t __user *)
227
STACK_ALLOC(p, sizeof(k_rand_bytes));
228
if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
229
return -EFAULT;
230
231
/* Create the ELF interpreter info */
232
elf_info = (elf_addr_t *)mm->saved_auxv;
233
/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
234
#define NEW_AUX_ENT(id, val) \
235
do { \
236
*elf_info++ = id; \
237
*elf_info++ = val; \
238
} while (0)
239
240
#ifdef ARCH_DLINFO
241
/*
242
* ARCH_DLINFO must come first so PPC can do its special alignment of
243
* AUXV.
244
* update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
245
* ARCH_DLINFO changes
246
*/
247
ARCH_DLINFO;
248
#endif
249
NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
250
NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
251
NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
252
NEW_AUX_ENT(AT_PHDR, phdr_addr);
253
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
254
NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
255
NEW_AUX_ENT(AT_BASE, interp_load_addr);
256
if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
257
flags |= AT_FLAGS_PRESERVE_ARGV0;
258
NEW_AUX_ENT(AT_FLAGS, flags);
259
NEW_AUX_ENT(AT_ENTRY, e_entry);
260
NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
261
NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
262
NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
263
NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
264
NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
265
NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
266
#ifdef ELF_HWCAP2
267
NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
268
#endif
269
#ifdef ELF_HWCAP3
270
NEW_AUX_ENT(AT_HWCAP3, ELF_HWCAP3);
271
#endif
272
#ifdef ELF_HWCAP4
273
NEW_AUX_ENT(AT_HWCAP4, ELF_HWCAP4);
274
#endif
275
NEW_AUX_ENT(AT_EXECFN, bprm->exec);
276
if (k_platform) {
277
NEW_AUX_ENT(AT_PLATFORM,
278
(elf_addr_t)(unsigned long)u_platform);
279
}
280
if (k_base_platform) {
281
NEW_AUX_ENT(AT_BASE_PLATFORM,
282
(elf_addr_t)(unsigned long)u_base_platform);
283
}
284
if (bprm->have_execfd) {
285
NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
286
}
287
#ifdef CONFIG_RSEQ
288
NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
289
NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
290
#endif
291
#undef NEW_AUX_ENT
292
/* AT_NULL is zero; clear the rest too */
293
memset(elf_info, 0, (char *)mm->saved_auxv +
294
sizeof(mm->saved_auxv) - (char *)elf_info);
295
296
/* And advance past the AT_NULL entry. */
297
elf_info += 2;
298
299
ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
300
sp = STACK_ADD(p, ei_index);
301
302
items = (argc + 1) + (envc + 1) + 1;
303
bprm->p = STACK_ROUND(sp, items);
304
305
/* Point sp at the lowest address on the stack */
306
#ifdef CONFIG_STACK_GROWSUP
307
sp = (elf_addr_t __user *)bprm->p - items - ei_index;
308
bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
309
#else
310
sp = (elf_addr_t __user *)bprm->p;
311
#endif
312
313
314
/*
315
* Grow the stack manually; some architectures have a limit on how
316
* far ahead a user-space access may be in order to grow the stack.
317
*/
318
if (mmap_write_lock_killable(mm))
319
return -EINTR;
320
vma = find_extend_vma_locked(mm, bprm->p);
321
mmap_write_unlock(mm);
322
if (!vma)
323
return -EFAULT;
324
325
/* Now, let's put argc (and argv, envp if appropriate) on the stack */
326
if (put_user(argc, sp++))
327
return -EFAULT;
328
329
/* Populate list of argv pointers back to argv strings. */
330
p = mm->arg_end = mm->arg_start;
331
while (argc-- > 0) {
332
size_t len;
333
if (put_user((elf_addr_t)p, sp++))
334
return -EFAULT;
335
len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
336
if (!len || len > MAX_ARG_STRLEN)
337
return -EINVAL;
338
p += len;
339
}
340
if (put_user(0, sp++))
341
return -EFAULT;
342
mm->arg_end = p;
343
344
/* Populate list of envp pointers back to envp strings. */
345
mm->env_end = mm->env_start = p;
346
while (envc-- > 0) {
347
size_t len;
348
if (put_user((elf_addr_t)p, sp++))
349
return -EFAULT;
350
len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
351
if (!len || len > MAX_ARG_STRLEN)
352
return -EINVAL;
353
p += len;
354
}
355
if (put_user(0, sp++))
356
return -EFAULT;
357
mm->env_end = p;
358
359
/* Put the elf_info on the stack in the right place. */
360
if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
361
return -EFAULT;
362
return 0;
363
}
364
365
/*
366
* Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
367
* into memory at "addr". (Note that p_filesz is rounded up to the
368
* next page, so any extra bytes from the file must be wiped.)
369
*/
370
static unsigned long elf_map(struct file *filep, unsigned long addr,
371
const struct elf_phdr *eppnt, int prot, int type,
372
unsigned long total_size)
373
{
374
unsigned long map_addr;
375
unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
376
unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
377
addr = ELF_PAGESTART(addr);
378
size = ELF_PAGEALIGN(size);
379
380
/* mmap() will return -EINVAL if given a zero size, but a
381
* segment with zero filesize is perfectly valid */
382
if (!size)
383
return addr;
384
385
/*
386
* total_size is the size of the ELF (interpreter) image.
387
* The _first_ mmap needs to know the full size, otherwise
388
* randomization might put this image into an overlapping
389
* position with the ELF binary image. (since size < total_size)
390
* So we first map the 'big' image - and unmap the remainder at
391
* the end. (which unmap is needed for ELF images with holes.)
392
*/
393
if (total_size) {
394
total_size = ELF_PAGEALIGN(total_size);
395
map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
396
if (!BAD_ADDR(map_addr))
397
vm_munmap(map_addr+size, total_size-size);
398
} else
399
map_addr = vm_mmap(filep, addr, size, prot, type, off);
400
401
if ((type & MAP_FIXED_NOREPLACE) &&
402
PTR_ERR((void *)map_addr) == -EEXIST)
403
pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
404
task_pid_nr(current), current->comm, (void *)addr);
405
406
return(map_addr);
407
}
408
409
/*
410
* Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
411
* into memory at "addr". Memory from "p_filesz" through "p_memsz"
412
* rounded up to the next page is zeroed.
413
*/
414
static unsigned long elf_load(struct file *filep, unsigned long addr,
415
const struct elf_phdr *eppnt, int prot, int type,
416
unsigned long total_size)
417
{
418
unsigned long zero_start, zero_end;
419
unsigned long map_addr;
420
421
if (eppnt->p_filesz) {
422
map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
423
if (BAD_ADDR(map_addr))
424
return map_addr;
425
if (eppnt->p_memsz > eppnt->p_filesz) {
426
zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
427
eppnt->p_filesz;
428
zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
429
eppnt->p_memsz;
430
431
/*
432
* Zero the end of the last mapped page but ignore
433
* any errors if the segment isn't writable.
434
*/
435
if (padzero(zero_start) && (prot & PROT_WRITE))
436
return -EFAULT;
437
}
438
} else {
439
map_addr = zero_start = ELF_PAGESTART(addr);
440
zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
441
eppnt->p_memsz;
442
}
443
if (eppnt->p_memsz > eppnt->p_filesz) {
444
/*
445
* Map the last of the segment.
446
* If the header is requesting these pages to be
447
* executable, honour that (ppc32 needs this).
448
*/
449
int error;
450
451
zero_start = ELF_PAGEALIGN(zero_start);
452
zero_end = ELF_PAGEALIGN(zero_end);
453
454
error = vm_brk_flags(zero_start, zero_end - zero_start,
455
prot & PROT_EXEC ? VM_EXEC : 0);
456
if (error)
457
map_addr = error;
458
}
459
return map_addr;
460
}
461
462
463
static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
464
{
465
elf_addr_t min_addr = -1;
466
elf_addr_t max_addr = 0;
467
bool pt_load = false;
468
int i;
469
470
for (i = 0; i < nr; i++) {
471
if (phdr[i].p_type == PT_LOAD) {
472
min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
473
max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
474
pt_load = true;
475
}
476
}
477
return pt_load ? (max_addr - min_addr) : 0;
478
}
479
480
static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
481
{
482
ssize_t rv;
483
484
rv = kernel_read(file, buf, len, &pos);
485
if (unlikely(rv != len)) {
486
return (rv < 0) ? rv : -EIO;
487
}
488
return 0;
489
}
490
491
static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
492
{
493
unsigned long alignment = 0;
494
int i;
495
496
for (i = 0; i < nr; i++) {
497
if (cmds[i].p_type == PT_LOAD) {
498
unsigned long p_align = cmds[i].p_align;
499
500
/* skip non-power of two alignments as invalid */
501
if (!is_power_of_2(p_align))
502
continue;
503
alignment = max(alignment, p_align);
504
}
505
}
506
507
/* ensure we align to at least one page */
508
return ELF_PAGEALIGN(alignment);
509
}
510
511
/**
512
* load_elf_phdrs() - load ELF program headers
513
* @elf_ex: ELF header of the binary whose program headers should be loaded
514
* @elf_file: the opened ELF binary file
515
*
516
* Loads ELF program headers from the binary file elf_file, which has the ELF
517
* header pointed to by elf_ex, into a newly allocated array. The caller is
518
* responsible for freeing the allocated data. Returns NULL upon failure.
519
*/
520
static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
521
struct file *elf_file)
522
{
523
struct elf_phdr *elf_phdata = NULL;
524
int retval = -1;
525
unsigned int size;
526
527
/*
528
* If the size of this structure has changed, then punt, since
529
* we will be doing the wrong thing.
530
*/
531
if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
532
goto out;
533
534
/* Sanity check the number of program headers... */
535
/* ...and their total size. */
536
size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
537
if (size == 0 || size > 65536)
538
goto out;
539
540
elf_phdata = kmalloc(size, GFP_KERNEL);
541
if (!elf_phdata)
542
goto out;
543
544
/* Read in the program headers */
545
retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
546
547
out:
548
if (retval) {
549
kfree(elf_phdata);
550
elf_phdata = NULL;
551
}
552
return elf_phdata;
553
}
554
555
#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
556
557
/**
558
* struct arch_elf_state - arch-specific ELF loading state
559
*
560
* This structure is used to preserve architecture specific data during
561
* the loading of an ELF file, throughout the checking of architecture
562
* specific ELF headers & through to the point where the ELF load is
563
* known to be proceeding (ie. SET_PERSONALITY).
564
*
565
* This implementation is a dummy for architectures which require no
566
* specific state.
567
*/
568
struct arch_elf_state {
569
};
570
571
#define INIT_ARCH_ELF_STATE {}
572
573
/**
574
* arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
575
* @ehdr: The main ELF header
576
* @phdr: The program header to check
577
* @elf: The open ELF file
578
* @is_interp: True if the phdr is from the interpreter of the ELF being
579
* loaded, else false.
580
* @state: Architecture-specific state preserved throughout the process
581
* of loading the ELF.
582
*
583
* Inspects the program header phdr to validate its correctness and/or
584
* suitability for the system. Called once per ELF program header in the
585
* range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
586
* interpreter.
587
*
588
* Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
589
* with that return code.
590
*/
591
static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
592
struct elf_phdr *phdr,
593
struct file *elf, bool is_interp,
594
struct arch_elf_state *state)
595
{
596
/* Dummy implementation, always proceed */
597
return 0;
598
}
599
600
/**
601
* arch_check_elf() - check an ELF executable
602
* @ehdr: The main ELF header
603
* @has_interp: True if the ELF has an interpreter, else false.
604
* @interp_ehdr: The interpreter's ELF header
605
* @state: Architecture-specific state preserved throughout the process
606
* of loading the ELF.
607
*
608
* Provides a final opportunity for architecture code to reject the loading
609
* of the ELF & cause an exec syscall to return an error. This is called after
610
* all program headers to be checked by arch_elf_pt_proc have been.
611
*
612
* Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
613
* with that return code.
614
*/
615
static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
616
struct elfhdr *interp_ehdr,
617
struct arch_elf_state *state)
618
{
619
/* Dummy implementation, always proceed */
620
return 0;
621
}
622
623
#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
624
625
static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
626
bool has_interp, bool is_interp)
627
{
628
int prot = 0;
629
630
if (p_flags & PF_R)
631
prot |= PROT_READ;
632
if (p_flags & PF_W)
633
prot |= PROT_WRITE;
634
if (p_flags & PF_X)
635
prot |= PROT_EXEC;
636
637
return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
638
}
639
640
/* This is much more generalized than the library routine read function,
641
so we keep this separate. Technically the library read function
642
is only provided so that we can read a.out libraries that have
643
an ELF header */
644
645
static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
646
struct file *interpreter,
647
unsigned long no_base, struct elf_phdr *interp_elf_phdata,
648
struct arch_elf_state *arch_state)
649
{
650
struct elf_phdr *eppnt;
651
unsigned long load_addr = 0;
652
int load_addr_set = 0;
653
unsigned long error = ~0UL;
654
unsigned long total_size;
655
int i;
656
657
/* First of all, some simple consistency checks */
658
if (interp_elf_ex->e_type != ET_EXEC &&
659
interp_elf_ex->e_type != ET_DYN)
660
goto out;
661
if (!elf_check_arch(interp_elf_ex) ||
662
elf_check_fdpic(interp_elf_ex))
663
goto out;
664
if (!can_mmap_file(interpreter))
665
goto out;
666
667
total_size = total_mapping_size(interp_elf_phdata,
668
interp_elf_ex->e_phnum);
669
if (!total_size) {
670
error = -EINVAL;
671
goto out;
672
}
673
674
eppnt = interp_elf_phdata;
675
for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
676
if (eppnt->p_type == PT_LOAD) {
677
int elf_type = MAP_PRIVATE;
678
int elf_prot = make_prot(eppnt->p_flags, arch_state,
679
true, true);
680
unsigned long vaddr = 0;
681
unsigned long k, map_addr;
682
683
vaddr = eppnt->p_vaddr;
684
if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
685
elf_type |= MAP_FIXED;
686
else if (no_base && interp_elf_ex->e_type == ET_DYN)
687
load_addr = -vaddr;
688
689
map_addr = elf_load(interpreter, load_addr + vaddr,
690
eppnt, elf_prot, elf_type, total_size);
691
total_size = 0;
692
error = map_addr;
693
if (BAD_ADDR(map_addr))
694
goto out;
695
696
if (!load_addr_set &&
697
interp_elf_ex->e_type == ET_DYN) {
698
load_addr = map_addr - ELF_PAGESTART(vaddr);
699
load_addr_set = 1;
700
}
701
702
/*
703
* Check to see if the section's size will overflow the
704
* allowed task size. Note that p_filesz must always be
705
* <= p_memsize so it's only necessary to check p_memsz.
706
*/
707
k = load_addr + eppnt->p_vaddr;
708
if (BAD_ADDR(k) ||
709
eppnt->p_filesz > eppnt->p_memsz ||
710
eppnt->p_memsz > TASK_SIZE ||
711
TASK_SIZE - eppnt->p_memsz < k) {
712
error = -ENOMEM;
713
goto out;
714
}
715
}
716
}
717
718
error = load_addr;
719
out:
720
return error;
721
}
722
723
/*
724
* These are the functions used to load ELF style executables and shared
725
* libraries. There is no binary dependent code anywhere else.
726
*/
727
728
static int parse_elf_property(const char *data, size_t *off, size_t datasz,
729
struct arch_elf_state *arch,
730
bool have_prev_type, u32 *prev_type)
731
{
732
size_t o, step;
733
const struct gnu_property *pr;
734
int ret;
735
736
if (*off == datasz)
737
return -ENOENT;
738
739
if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
740
return -EIO;
741
o = *off;
742
datasz -= *off;
743
744
if (datasz < sizeof(*pr))
745
return -ENOEXEC;
746
pr = (const struct gnu_property *)(data + o);
747
o += sizeof(*pr);
748
datasz -= sizeof(*pr);
749
750
if (pr->pr_datasz > datasz)
751
return -ENOEXEC;
752
753
WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
754
step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
755
if (step > datasz)
756
return -ENOEXEC;
757
758
/* Properties are supposed to be unique and sorted on pr_type: */
759
if (have_prev_type && pr->pr_type <= *prev_type)
760
return -ENOEXEC;
761
*prev_type = pr->pr_type;
762
763
ret = arch_parse_elf_property(pr->pr_type, data + o,
764
pr->pr_datasz, ELF_COMPAT, arch);
765
if (ret)
766
return ret;
767
768
*off = o + step;
769
return 0;
770
}
771
772
#define NOTE_DATA_SZ SZ_1K
773
#define NOTE_NAME_SZ (sizeof(NN_GNU_PROPERTY_TYPE_0))
774
775
static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
776
struct arch_elf_state *arch)
777
{
778
union {
779
struct elf_note nhdr;
780
char data[NOTE_DATA_SZ];
781
} note;
782
loff_t pos;
783
ssize_t n;
784
size_t off, datasz;
785
int ret;
786
bool have_prev_type;
787
u32 prev_type;
788
789
if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
790
return 0;
791
792
/* load_elf_binary() shouldn't call us unless this is true... */
793
if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
794
return -ENOEXEC;
795
796
/* If the properties are crazy large, that's too bad (for now): */
797
if (phdr->p_filesz > sizeof(note))
798
return -ENOEXEC;
799
800
pos = phdr->p_offset;
801
n = kernel_read(f, &note, phdr->p_filesz, &pos);
802
803
BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
804
if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
805
return -EIO;
806
807
if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
808
note.nhdr.n_namesz != NOTE_NAME_SZ ||
809
strncmp(note.data + sizeof(note.nhdr),
810
NN_GNU_PROPERTY_TYPE_0, n - sizeof(note.nhdr)))
811
return -ENOEXEC;
812
813
off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
814
ELF_GNU_PROPERTY_ALIGN);
815
if (off > n)
816
return -ENOEXEC;
817
818
if (note.nhdr.n_descsz > n - off)
819
return -ENOEXEC;
820
datasz = off + note.nhdr.n_descsz;
821
822
have_prev_type = false;
823
do {
824
ret = parse_elf_property(note.data, &off, datasz, arch,
825
have_prev_type, &prev_type);
826
have_prev_type = true;
827
} while (!ret);
828
829
return ret == -ENOENT ? 0 : ret;
830
}
831
832
static int load_elf_binary(struct linux_binprm *bprm)
833
{
834
struct file *interpreter = NULL; /* to shut gcc up */
835
unsigned long load_bias = 0, phdr_addr = 0;
836
int first_pt_load = 1;
837
unsigned long error;
838
struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
839
struct elf_phdr *elf_property_phdata = NULL;
840
unsigned long elf_brk;
841
bool brk_moved = false;
842
int retval, i;
843
unsigned long elf_entry;
844
unsigned long e_entry;
845
unsigned long interp_load_addr = 0;
846
unsigned long start_code, end_code, start_data, end_data;
847
unsigned long reloc_func_desc __maybe_unused = 0;
848
int executable_stack = EXSTACK_DEFAULT;
849
struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
850
struct elfhdr *interp_elf_ex = NULL;
851
struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
852
struct mm_struct *mm;
853
struct pt_regs *regs;
854
855
retval = -ENOEXEC;
856
/* First of all, some simple consistency checks */
857
if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
858
goto out;
859
860
if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
861
goto out;
862
if (!elf_check_arch(elf_ex))
863
goto out;
864
if (elf_check_fdpic(elf_ex))
865
goto out;
866
if (!can_mmap_file(bprm->file))
867
goto out;
868
869
elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
870
if (!elf_phdata)
871
goto out;
872
873
elf_ppnt = elf_phdata;
874
for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
875
char *elf_interpreter;
876
877
if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
878
elf_property_phdata = elf_ppnt;
879
continue;
880
}
881
882
if (elf_ppnt->p_type != PT_INTERP)
883
continue;
884
885
/*
886
* This is the program interpreter used for shared libraries -
887
* for now assume that this is an a.out format binary.
888
*/
889
retval = -ENOEXEC;
890
if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
891
goto out_free_ph;
892
893
retval = -ENOMEM;
894
elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
895
if (!elf_interpreter)
896
goto out_free_ph;
897
898
retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
899
elf_ppnt->p_offset);
900
if (retval < 0)
901
goto out_free_interp;
902
/* make sure path is NULL terminated */
903
retval = -ENOEXEC;
904
if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
905
goto out_free_interp;
906
907
interpreter = open_exec(elf_interpreter);
908
kfree(elf_interpreter);
909
retval = PTR_ERR(interpreter);
910
if (IS_ERR(interpreter))
911
goto out_free_ph;
912
913
/*
914
* If the binary is not readable then enforce mm->dumpable = 0
915
* regardless of the interpreter's permissions.
916
*/
917
would_dump(bprm, interpreter);
918
919
interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
920
if (!interp_elf_ex) {
921
retval = -ENOMEM;
922
goto out_free_file;
923
}
924
925
/* Get the exec headers */
926
retval = elf_read(interpreter, interp_elf_ex,
927
sizeof(*interp_elf_ex), 0);
928
if (retval < 0)
929
goto out_free_dentry;
930
931
break;
932
933
out_free_interp:
934
kfree(elf_interpreter);
935
goto out_free_ph;
936
}
937
938
elf_ppnt = elf_phdata;
939
for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
940
switch (elf_ppnt->p_type) {
941
case PT_GNU_STACK:
942
if (elf_ppnt->p_flags & PF_X)
943
executable_stack = EXSTACK_ENABLE_X;
944
else
945
executable_stack = EXSTACK_DISABLE_X;
946
break;
947
948
case PT_LOPROC ... PT_HIPROC:
949
retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
950
bprm->file, false,
951
&arch_state);
952
if (retval)
953
goto out_free_dentry;
954
break;
955
}
956
957
/* Some simple consistency checks for the interpreter */
958
if (interpreter) {
959
retval = -ELIBBAD;
960
/* Not an ELF interpreter */
961
if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
962
goto out_free_dentry;
963
/* Verify the interpreter has a valid arch */
964
if (!elf_check_arch(interp_elf_ex) ||
965
elf_check_fdpic(interp_elf_ex))
966
goto out_free_dentry;
967
968
/* Load the interpreter program headers */
969
interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
970
interpreter);
971
if (!interp_elf_phdata)
972
goto out_free_dentry;
973
974
/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
975
elf_property_phdata = NULL;
976
elf_ppnt = interp_elf_phdata;
977
for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
978
switch (elf_ppnt->p_type) {
979
case PT_GNU_PROPERTY:
980
elf_property_phdata = elf_ppnt;
981
break;
982
983
case PT_LOPROC ... PT_HIPROC:
984
retval = arch_elf_pt_proc(interp_elf_ex,
985
elf_ppnt, interpreter,
986
true, &arch_state);
987
if (retval)
988
goto out_free_dentry;
989
break;
990
}
991
}
992
993
retval = parse_elf_properties(interpreter ?: bprm->file,
994
elf_property_phdata, &arch_state);
995
if (retval)
996
goto out_free_dentry;
997
998
/*
999
* Allow arch code to reject the ELF at this point, whilst it's
1000
* still possible to return an error to the code that invoked
1001
* the exec syscall.
1002
*/
1003
retval = arch_check_elf(elf_ex,
1004
!!interpreter, interp_elf_ex,
1005
&arch_state);
1006
if (retval)
1007
goto out_free_dentry;
1008
1009
/* Flush all traces of the currently running executable */
1010
retval = begin_new_exec(bprm);
1011
if (retval)
1012
goto out_free_dentry;
1013
1014
/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1015
may depend on the personality. */
1016
SET_PERSONALITY2(*elf_ex, &arch_state);
1017
if (elf_read_implies_exec(*elf_ex, executable_stack))
1018
current->personality |= READ_IMPLIES_EXEC;
1019
1020
const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space);
1021
if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space)
1022
current->flags |= PF_RANDOMIZE;
1023
1024
setup_new_exec(bprm);
1025
1026
/* Do this so that we can load the interpreter, if need be. We will
1027
change some of these later */
1028
retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1029
executable_stack);
1030
if (retval < 0)
1031
goto out_free_dentry;
1032
1033
elf_brk = 0;
1034
1035
start_code = ~0UL;
1036
end_code = 0;
1037
start_data = 0;
1038
end_data = 0;
1039
1040
/* Now we do a little grungy work by mmapping the ELF image into
1041
the correct location in memory. */
1042
for(i = 0, elf_ppnt = elf_phdata;
1043
i < elf_ex->e_phnum; i++, elf_ppnt++) {
1044
int elf_prot, elf_flags;
1045
unsigned long k, vaddr;
1046
unsigned long total_size = 0;
1047
unsigned long alignment;
1048
1049
if (elf_ppnt->p_type != PT_LOAD)
1050
continue;
1051
1052
elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1053
!!interpreter, false);
1054
1055
elf_flags = MAP_PRIVATE;
1056
1057
vaddr = elf_ppnt->p_vaddr;
1058
/*
1059
* The first time through the loop, first_pt_load is true:
1060
* layout will be calculated. Once set, use MAP_FIXED since
1061
* we know we've already safely mapped the entire region with
1062
* MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1063
*/
1064
if (!first_pt_load) {
1065
elf_flags |= MAP_FIXED;
1066
} else if (elf_ex->e_type == ET_EXEC) {
1067
/*
1068
* This logic is run once for the first LOAD Program
1069
* Header for ET_EXEC binaries. No special handling
1070
* is needed.
1071
*/
1072
elf_flags |= MAP_FIXED_NOREPLACE;
1073
} else if (elf_ex->e_type == ET_DYN) {
1074
/*
1075
* This logic is run once for the first LOAD Program
1076
* Header for ET_DYN binaries to calculate the
1077
* randomization (load_bias) for all the LOAD
1078
* Program Headers.
1079
*/
1080
1081
/*
1082
* Calculate the entire size of the ELF mapping
1083
* (total_size), used for the initial mapping,
1084
* due to load_addr_set which is set to true later
1085
* once the initial mapping is performed.
1086
*
1087
* Note that this is only sensible when the LOAD
1088
* segments are contiguous (or overlapping). If
1089
* used for LOADs that are far apart, this would
1090
* cause the holes between LOADs to be mapped,
1091
* running the risk of having the mapping fail,
1092
* as it would be larger than the ELF file itself.
1093
*
1094
* As a result, only ET_DYN does this, since
1095
* some ET_EXEC (e.g. ia64) may have large virtual
1096
* memory holes between LOADs.
1097
*
1098
*/
1099
total_size = total_mapping_size(elf_phdata,
1100
elf_ex->e_phnum);
1101
if (!total_size) {
1102
retval = -EINVAL;
1103
goto out_free_dentry;
1104
}
1105
1106
/* Calculate any requested alignment. */
1107
alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1108
1109
/**
1110
* DOC: PIE handling
1111
*
1112
* There are effectively two types of ET_DYN ELF
1113
* binaries: programs (i.e. PIE: ET_DYN with
1114
* PT_INTERP) and loaders (i.e. static PIE: ET_DYN
1115
* without PT_INTERP, usually the ELF interpreter
1116
* itself). Loaders must be loaded away from programs
1117
* since the program may otherwise collide with the
1118
* loader (especially for ET_EXEC which does not have
1119
* a randomized position).
1120
*
1121
* For example, to handle invocations of
1122
* "./ld.so someprog" to test out a new version of
1123
* the loader, the subsequent program that the
1124
* loader loads must avoid the loader itself, so
1125
* they cannot share the same load range. Sufficient
1126
* room for the brk must be allocated with the
1127
* loader as well, since brk must be available with
1128
* the loader.
1129
*
1130
* Therefore, programs are loaded offset from
1131
* ELF_ET_DYN_BASE and loaders are loaded into the
1132
* independently randomized mmap region (0 load_bias
1133
* without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1134
*
1135
* See below for "brk" handling details, which is
1136
* also affected by program vs loader and ASLR.
1137
*/
1138
if (interpreter) {
1139
/* On ET_DYN with PT_INTERP, we do the ASLR. */
1140
load_bias = ELF_ET_DYN_BASE;
1141
if (current->flags & PF_RANDOMIZE)
1142
load_bias += arch_mmap_rnd();
1143
/* Adjust alignment as requested. */
1144
if (alignment)
1145
load_bias &= ~(alignment - 1);
1146
elf_flags |= MAP_FIXED_NOREPLACE;
1147
} else {
1148
/*
1149
* For ET_DYN without PT_INTERP, we rely on
1150
* the architectures's (potentially ASLR) mmap
1151
* base address (via a load_bias of 0).
1152
*
1153
* When a large alignment is requested, we
1154
* must do the allocation at address "0" right
1155
* now to discover where things will load so
1156
* that we can adjust the resulting alignment.
1157
* In this case (load_bias != 0), we can use
1158
* MAP_FIXED_NOREPLACE to make sure the mapping
1159
* doesn't collide with anything.
1160
*/
1161
if (alignment > ELF_MIN_ALIGN) {
1162
load_bias = elf_load(bprm->file, 0, elf_ppnt,
1163
elf_prot, elf_flags, total_size);
1164
if (BAD_ADDR(load_bias)) {
1165
retval = IS_ERR_VALUE(load_bias) ?
1166
PTR_ERR((void*)load_bias) : -EINVAL;
1167
goto out_free_dentry;
1168
}
1169
vm_munmap(load_bias, total_size);
1170
/* Adjust alignment as requested. */
1171
if (alignment)
1172
load_bias &= ~(alignment - 1);
1173
elf_flags |= MAP_FIXED_NOREPLACE;
1174
} else
1175
load_bias = 0;
1176
}
1177
1178
/*
1179
* Since load_bias is used for all subsequent loading
1180
* calculations, we must lower it by the first vaddr
1181
* so that the remaining calculations based on the
1182
* ELF vaddrs will be correctly offset. The result
1183
* is then page aligned.
1184
*/
1185
load_bias = ELF_PAGESTART(load_bias - vaddr);
1186
}
1187
1188
error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1189
elf_prot, elf_flags, total_size);
1190
if (BAD_ADDR(error)) {
1191
retval = IS_ERR_VALUE(error) ?
1192
PTR_ERR((void*)error) : -EINVAL;
1193
goto out_free_dentry;
1194
}
1195
1196
if (first_pt_load) {
1197
first_pt_load = 0;
1198
if (elf_ex->e_type == ET_DYN) {
1199
load_bias += error -
1200
ELF_PAGESTART(load_bias + vaddr);
1201
reloc_func_desc = load_bias;
1202
}
1203
}
1204
1205
/*
1206
* Figure out which segment in the file contains the Program
1207
* Header table, and map to the associated memory address.
1208
*/
1209
if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1210
elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1211
phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1212
elf_ppnt->p_vaddr;
1213
}
1214
1215
k = elf_ppnt->p_vaddr;
1216
if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1217
start_code = k;
1218
if (start_data < k)
1219
start_data = k;
1220
1221
/*
1222
* Check to see if the section's size will overflow the
1223
* allowed task size. Note that p_filesz must always be
1224
* <= p_memsz so it is only necessary to check p_memsz.
1225
*/
1226
if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1227
elf_ppnt->p_memsz > TASK_SIZE ||
1228
TASK_SIZE - elf_ppnt->p_memsz < k) {
1229
/* set_brk can never work. Avoid overflows. */
1230
retval = -EINVAL;
1231
goto out_free_dentry;
1232
}
1233
1234
k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1235
1236
if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1237
end_code = k;
1238
if (end_data < k)
1239
end_data = k;
1240
k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1241
if (k > elf_brk)
1242
elf_brk = k;
1243
}
1244
1245
e_entry = elf_ex->e_entry + load_bias;
1246
phdr_addr += load_bias;
1247
elf_brk += load_bias;
1248
start_code += load_bias;
1249
end_code += load_bias;
1250
start_data += load_bias;
1251
end_data += load_bias;
1252
1253
if (interpreter) {
1254
elf_entry = load_elf_interp(interp_elf_ex,
1255
interpreter,
1256
load_bias, interp_elf_phdata,
1257
&arch_state);
1258
if (!IS_ERR_VALUE(elf_entry)) {
1259
/*
1260
* load_elf_interp() returns relocation
1261
* adjustment
1262
*/
1263
interp_load_addr = elf_entry;
1264
elf_entry += interp_elf_ex->e_entry;
1265
}
1266
if (BAD_ADDR(elf_entry)) {
1267
retval = IS_ERR_VALUE(elf_entry) ?
1268
(int)elf_entry : -EINVAL;
1269
goto out_free_dentry;
1270
}
1271
reloc_func_desc = interp_load_addr;
1272
1273
exe_file_allow_write_access(interpreter);
1274
fput(interpreter);
1275
1276
kfree(interp_elf_ex);
1277
kfree(interp_elf_phdata);
1278
} else {
1279
elf_entry = e_entry;
1280
if (BAD_ADDR(elf_entry)) {
1281
retval = -EINVAL;
1282
goto out_free_dentry;
1283
}
1284
}
1285
1286
kfree(elf_phdata);
1287
1288
set_binfmt(&elf_format);
1289
1290
#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1291
retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1292
if (retval < 0)
1293
goto out;
1294
#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1295
1296
retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1297
e_entry, phdr_addr);
1298
if (retval < 0)
1299
goto out;
1300
1301
mm = current->mm;
1302
mm->end_code = end_code;
1303
mm->start_code = start_code;
1304
mm->start_data = start_data;
1305
mm->end_data = end_data;
1306
mm->start_stack = bprm->p;
1307
1308
elf_coredump_set_mm_eflags(mm, elf_ex->e_flags);
1309
1310
/**
1311
* DOC: "brk" handling
1312
*
1313
* For architectures with ELF randomization, when executing a
1314
* loader directly (i.e. static PIE: ET_DYN without PT_INTERP),
1315
* move the brk area out of the mmap region and into the unused
1316
* ELF_ET_DYN_BASE region. Since "brk" grows up it may collide
1317
* early with the stack growing down or other regions being put
1318
* into the mmap region by the kernel (e.g. vdso).
1319
*
1320
* In the CONFIG_COMPAT_BRK case, though, everything is turned
1321
* off because we're not allowed to move the brk at all.
1322
*/
1323
if (!IS_ENABLED(CONFIG_COMPAT_BRK) &&
1324
IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1325
elf_ex->e_type == ET_DYN && !interpreter) {
1326
elf_brk = ELF_ET_DYN_BASE;
1327
/* This counts as moving the brk, so let brk(2) know. */
1328
brk_moved = true;
1329
}
1330
mm->start_brk = mm->brk = ELF_PAGEALIGN(elf_brk);
1331
1332
if ((current->flags & PF_RANDOMIZE) && snapshot_randomize_va_space > 1) {
1333
/*
1334
* If we didn't move the brk to ELF_ET_DYN_BASE (above),
1335
* leave a gap between .bss and brk.
1336
*/
1337
if (!brk_moved)
1338
mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1339
1340
mm->brk = mm->start_brk = arch_randomize_brk(mm);
1341
brk_moved = true;
1342
}
1343
1344
#ifdef compat_brk_randomized
1345
if (brk_moved)
1346
current->brk_randomized = 1;
1347
#endif
1348
1349
if (current->personality & MMAP_PAGE_ZERO) {
1350
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1351
and some applications "depend" upon this behavior.
1352
Since we do not have the power to recompile these, we
1353
emulate the SVr4 behavior. Sigh. */
1354
error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1355
MAP_FIXED | MAP_PRIVATE, 0);
1356
1357
retval = do_mseal(0, PAGE_SIZE, 0);
1358
if (retval)
1359
pr_warn_ratelimited("pid=%d, couldn't seal address 0, ret=%d.\n",
1360
task_pid_nr(current), retval);
1361
}
1362
1363
regs = current_pt_regs();
1364
#ifdef ELF_PLAT_INIT
1365
/*
1366
* The ABI may specify that certain registers be set up in special
1367
* ways (on i386 %edx is the address of a DT_FINI function, for
1368
* example. In addition, it may also specify (eg, PowerPC64 ELF)
1369
* that the e_entry field is the address of the function descriptor
1370
* for the startup routine, rather than the address of the startup
1371
* routine itself. This macro performs whatever initialization to
1372
* the regs structure is required as well as any relocations to the
1373
* function descriptor entries when executing dynamically links apps.
1374
*/
1375
ELF_PLAT_INIT(regs, reloc_func_desc);
1376
#endif
1377
1378
finalize_exec(bprm);
1379
START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1380
retval = 0;
1381
out:
1382
return retval;
1383
1384
/* error cleanup */
1385
out_free_dentry:
1386
kfree(interp_elf_ex);
1387
kfree(interp_elf_phdata);
1388
out_free_file:
1389
exe_file_allow_write_access(interpreter);
1390
if (interpreter)
1391
fput(interpreter);
1392
out_free_ph:
1393
kfree(elf_phdata);
1394
goto out;
1395
}
1396
1397
#ifdef CONFIG_ELF_CORE
1398
/*
1399
* ELF core dumper
1400
*
1401
* Modelled on fs/exec.c:aout_core_dump()
1402
* Jeremy Fitzhardinge <[email protected]>
1403
*/
1404
1405
/* An ELF note in memory */
1406
struct memelfnote
1407
{
1408
const char *name;
1409
int type;
1410
unsigned int datasz;
1411
void *data;
1412
};
1413
1414
static int notesize(struct memelfnote *en)
1415
{
1416
int sz;
1417
1418
sz = sizeof(struct elf_note);
1419
sz += roundup(strlen(en->name) + 1, 4);
1420
sz += roundup(en->datasz, 4);
1421
1422
return sz;
1423
}
1424
1425
static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1426
{
1427
struct elf_note en;
1428
en.n_namesz = strlen(men->name) + 1;
1429
en.n_descsz = men->datasz;
1430
en.n_type = men->type;
1431
1432
return dump_emit(cprm, &en, sizeof(en)) &&
1433
dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1434
dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1435
}
1436
1437
static void fill_elf_header(struct elfhdr *elf, int segs,
1438
u16 machine, u32 flags)
1439
{
1440
memset(elf, 0, sizeof(*elf));
1441
1442
memcpy(elf->e_ident, ELFMAG, SELFMAG);
1443
elf->e_ident[EI_CLASS] = ELF_CLASS;
1444
elf->e_ident[EI_DATA] = ELF_DATA;
1445
elf->e_ident[EI_VERSION] = EV_CURRENT;
1446
elf->e_ident[EI_OSABI] = ELF_OSABI;
1447
1448
elf->e_type = ET_CORE;
1449
elf->e_machine = machine;
1450
elf->e_version = EV_CURRENT;
1451
elf->e_phoff = sizeof(struct elfhdr);
1452
elf->e_flags = flags;
1453
elf->e_ehsize = sizeof(struct elfhdr);
1454
elf->e_phentsize = sizeof(struct elf_phdr);
1455
elf->e_phnum = segs;
1456
}
1457
1458
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1459
{
1460
phdr->p_type = PT_NOTE;
1461
phdr->p_offset = offset;
1462
phdr->p_vaddr = 0;
1463
phdr->p_paddr = 0;
1464
phdr->p_filesz = sz;
1465
phdr->p_memsz = 0;
1466
phdr->p_flags = 0;
1467
phdr->p_align = 4;
1468
}
1469
1470
static void __fill_note(struct memelfnote *note, const char *name, int type,
1471
unsigned int sz, void *data)
1472
{
1473
note->name = name;
1474
note->type = type;
1475
note->datasz = sz;
1476
note->data = data;
1477
}
1478
1479
#define fill_note(note, type, sz, data) \
1480
__fill_note(note, NN_ ## type, NT_ ## type, sz, data)
1481
1482
/*
1483
* fill up all the fields in prstatus from the given task struct, except
1484
* registers which need to be filled up separately.
1485
*/
1486
static void fill_prstatus(struct elf_prstatus_common *prstatus,
1487
struct task_struct *p, long signr)
1488
{
1489
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1490
prstatus->pr_sigpend = p->pending.signal.sig[0];
1491
prstatus->pr_sighold = p->blocked.sig[0];
1492
rcu_read_lock();
1493
prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1494
rcu_read_unlock();
1495
prstatus->pr_pid = task_pid_vnr(p);
1496
prstatus->pr_pgrp = task_pgrp_vnr(p);
1497
prstatus->pr_sid = task_session_vnr(p);
1498
if (thread_group_leader(p)) {
1499
struct task_cputime cputime;
1500
1501
/*
1502
* This is the record for the group leader. It shows the
1503
* group-wide total, not its individual thread total.
1504
*/
1505
thread_group_cputime(p, &cputime);
1506
prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1507
prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1508
} else {
1509
u64 utime, stime;
1510
1511
task_cputime(p, &utime, &stime);
1512
prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1513
prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1514
}
1515
1516
prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1517
prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1518
}
1519
1520
static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1521
struct mm_struct *mm)
1522
{
1523
const struct cred *cred;
1524
unsigned int i, len;
1525
unsigned int state;
1526
1527
/* first copy the parameters from user space */
1528
memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1529
1530
len = mm->arg_end - mm->arg_start;
1531
if (len >= ELF_PRARGSZ)
1532
len = ELF_PRARGSZ-1;
1533
if (copy_from_user(&psinfo->pr_psargs,
1534
(const char __user *)mm->arg_start, len))
1535
return -EFAULT;
1536
for(i = 0; i < len; i++)
1537
if (psinfo->pr_psargs[i] == 0)
1538
psinfo->pr_psargs[i] = ' ';
1539
psinfo->pr_psargs[len] = 0;
1540
1541
rcu_read_lock();
1542
psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1543
rcu_read_unlock();
1544
psinfo->pr_pid = task_pid_vnr(p);
1545
psinfo->pr_pgrp = task_pgrp_vnr(p);
1546
psinfo->pr_sid = task_session_vnr(p);
1547
1548
state = READ_ONCE(p->__state);
1549
i = state ? ffz(~state) + 1 : 0;
1550
psinfo->pr_state = i;
1551
psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1552
psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1553
psinfo->pr_nice = task_nice(p);
1554
psinfo->pr_flag = p->flags;
1555
rcu_read_lock();
1556
cred = __task_cred(p);
1557
SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1558
SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1559
rcu_read_unlock();
1560
get_task_comm(psinfo->pr_fname, p);
1561
1562
return 0;
1563
}
1564
1565
static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1566
{
1567
elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1568
int i = 0;
1569
do
1570
i += 2;
1571
while (auxv[i - 2] != AT_NULL);
1572
fill_note(note, AUXV, i * sizeof(elf_addr_t), auxv);
1573
}
1574
1575
static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1576
const kernel_siginfo_t *siginfo)
1577
{
1578
copy_siginfo_to_external(csigdata, siginfo);
1579
fill_note(note, SIGINFO, sizeof(*csigdata), csigdata);
1580
}
1581
1582
/*
1583
* Format of NT_FILE note:
1584
*
1585
* long count -- how many files are mapped
1586
* long page_size -- units for file_ofs
1587
* array of [COUNT] elements of
1588
* long start
1589
* long end
1590
* long file_ofs
1591
* followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1592
*/
1593
static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1594
{
1595
unsigned count, size, names_ofs, remaining, n;
1596
user_long_t *data;
1597
user_long_t *start_end_ofs;
1598
char *name_base, *name_curpos;
1599
int i;
1600
1601
/* *Estimated* file count and total data size needed */
1602
count = cprm->vma_count;
1603
if (count > UINT_MAX / 64)
1604
return -EINVAL;
1605
size = count * 64;
1606
1607
names_ofs = (2 + 3 * count) * sizeof(data[0]);
1608
alloc:
1609
/* paranoia check */
1610
if (size >= core_file_note_size_limit) {
1611
pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1612
size);
1613
return -EINVAL;
1614
}
1615
size = round_up(size, PAGE_SIZE);
1616
/*
1617
* "size" can be 0 here legitimately.
1618
* Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1619
*/
1620
data = kvmalloc(size, GFP_KERNEL);
1621
if (ZERO_OR_NULL_PTR(data))
1622
return -ENOMEM;
1623
1624
start_end_ofs = data + 2;
1625
name_base = name_curpos = ((char *)data) + names_ofs;
1626
remaining = size - names_ofs;
1627
count = 0;
1628
for (i = 0; i < cprm->vma_count; i++) {
1629
struct core_vma_metadata *m = &cprm->vma_meta[i];
1630
struct file *file;
1631
const char *filename;
1632
1633
file = m->file;
1634
if (!file)
1635
continue;
1636
filename = file_path(file, name_curpos, remaining);
1637
if (IS_ERR(filename)) {
1638
if (PTR_ERR(filename) == -ENAMETOOLONG) {
1639
kvfree(data);
1640
size = size * 5 / 4;
1641
goto alloc;
1642
}
1643
continue;
1644
}
1645
1646
/* file_path() fills at the end, move name down */
1647
/* n = strlen(filename) + 1: */
1648
n = (name_curpos + remaining) - filename;
1649
remaining = filename - name_curpos;
1650
memmove(name_curpos, filename, n);
1651
name_curpos += n;
1652
1653
*start_end_ofs++ = m->start;
1654
*start_end_ofs++ = m->end;
1655
*start_end_ofs++ = m->pgoff;
1656
count++;
1657
}
1658
1659
/* Now we know exact count of files, can store it */
1660
data[0] = count;
1661
data[1] = PAGE_SIZE;
1662
/*
1663
* Count usually is less than mm->map_count,
1664
* we need to move filenames down.
1665
*/
1666
n = cprm->vma_count - count;
1667
if (n != 0) {
1668
unsigned shift_bytes = n * 3 * sizeof(data[0]);
1669
memmove(name_base - shift_bytes, name_base,
1670
name_curpos - name_base);
1671
name_curpos -= shift_bytes;
1672
}
1673
1674
size = name_curpos - (char *)data;
1675
fill_note(note, FILE, size, data);
1676
return 0;
1677
}
1678
1679
#include <linux/regset.h>
1680
1681
struct elf_thread_core_info {
1682
struct elf_thread_core_info *next;
1683
struct task_struct *task;
1684
struct elf_prstatus prstatus;
1685
struct memelfnote notes[];
1686
};
1687
1688
struct elf_note_info {
1689
struct elf_thread_core_info *thread;
1690
struct memelfnote psinfo;
1691
struct memelfnote signote;
1692
struct memelfnote auxv;
1693
struct memelfnote files;
1694
user_siginfo_t csigdata;
1695
size_t size;
1696
int thread_notes;
1697
};
1698
1699
#ifdef CORE_DUMP_USE_REGSET
1700
/*
1701
* When a regset has a writeback hook, we call it on each thread before
1702
* dumping user memory. On register window machines, this makes sure the
1703
* user memory backing the register data is up to date before we read it.
1704
*/
1705
static void do_thread_regset_writeback(struct task_struct *task,
1706
const struct user_regset *regset)
1707
{
1708
if (regset->writeback)
1709
regset->writeback(task, regset, 1);
1710
}
1711
1712
#ifndef PRSTATUS_SIZE
1713
#define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1714
#endif
1715
1716
#ifndef SET_PR_FPVALID
1717
#define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1718
#endif
1719
1720
static int fill_thread_core_info(struct elf_thread_core_info *t,
1721
const struct user_regset_view *view,
1722
long signr, struct elf_note_info *info)
1723
{
1724
unsigned int note_iter, view_iter;
1725
1726
/*
1727
* NT_PRSTATUS is the one special case, because the regset data
1728
* goes into the pr_reg field inside the note contents, rather
1729
* than being the whole note contents. We fill the regset in here.
1730
* We assume that regset 0 is NT_PRSTATUS.
1731
*/
1732
fill_prstatus(&t->prstatus.common, t->task, signr);
1733
regset_get(t->task, &view->regsets[0],
1734
sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1735
1736
fill_note(&t->notes[0], PRSTATUS, PRSTATUS_SIZE, &t->prstatus);
1737
info->size += notesize(&t->notes[0]);
1738
1739
do_thread_regset_writeback(t->task, &view->regsets[0]);
1740
1741
/*
1742
* Each other regset might generate a note too. For each regset
1743
* that has no core_note_type or is inactive, skip it.
1744
*/
1745
note_iter = 1;
1746
for (view_iter = 1; view_iter < view->n; ++view_iter) {
1747
const struct user_regset *regset = &view->regsets[view_iter];
1748
int note_type = regset->core_note_type;
1749
const char *note_name = regset->core_note_name;
1750
bool is_fpreg = note_type == NT_PRFPREG;
1751
void *data;
1752
int ret;
1753
1754
do_thread_regset_writeback(t->task, regset);
1755
if (!note_type) // not for coredumps
1756
continue;
1757
if (regset->active && regset->active(t->task, regset) <= 0)
1758
continue;
1759
1760
ret = regset_get_alloc(t->task, regset, ~0U, &data);
1761
if (ret < 0)
1762
continue;
1763
1764
if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1765
break;
1766
1767
if (is_fpreg)
1768
SET_PR_FPVALID(&t->prstatus);
1769
1770
/* There should be a note name, but if not, guess: */
1771
if (WARN_ON_ONCE(!note_name))
1772
note_name = "LINUX";
1773
else
1774
/* Warn on non-legacy-compatible names, for now. */
1775
WARN_ON_ONCE(strcmp(note_name,
1776
is_fpreg ? "CORE" : "LINUX"));
1777
1778
__fill_note(&t->notes[note_iter], note_name, note_type,
1779
ret, data);
1780
1781
info->size += notesize(&t->notes[note_iter]);
1782
note_iter++;
1783
}
1784
1785
return 1;
1786
}
1787
#else
1788
static int fill_thread_core_info(struct elf_thread_core_info *t,
1789
const struct user_regset_view *view,
1790
long signr, struct elf_note_info *info)
1791
{
1792
struct task_struct *p = t->task;
1793
elf_fpregset_t *fpu;
1794
1795
fill_prstatus(&t->prstatus.common, p, signr);
1796
elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1797
1798
fill_note(&t->notes[0], PRSTATUS, sizeof(t->prstatus), &t->prstatus);
1799
info->size += notesize(&t->notes[0]);
1800
1801
fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1802
if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1803
kfree(fpu);
1804
return 1;
1805
}
1806
1807
t->prstatus.pr_fpvalid = 1;
1808
fill_note(&t->notes[1], PRFPREG, sizeof(*fpu), fpu);
1809
info->size += notesize(&t->notes[1]);
1810
1811
return 1;
1812
}
1813
#endif
1814
1815
static int fill_note_info(struct elfhdr *elf, int phdrs,
1816
struct elf_note_info *info,
1817
struct coredump_params *cprm)
1818
{
1819
struct task_struct *dump_task = current;
1820
const struct user_regset_view *view;
1821
struct elf_thread_core_info *t;
1822
struct elf_prpsinfo *psinfo;
1823
struct core_thread *ct;
1824
u16 machine;
1825
u32 flags;
1826
1827
psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1828
if (!psinfo)
1829
return 0;
1830
fill_note(&info->psinfo, PRPSINFO, sizeof(*psinfo), psinfo);
1831
1832
#ifdef CORE_DUMP_USE_REGSET
1833
view = task_user_regset_view(dump_task);
1834
1835
/*
1836
* Figure out how many notes we're going to need for each thread.
1837
*/
1838
info->thread_notes = 0;
1839
for (int i = 0; i < view->n; ++i)
1840
if (view->regsets[i].core_note_type != 0)
1841
++info->thread_notes;
1842
1843
/*
1844
* Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1845
* since it is our one special case.
1846
*/
1847
if (unlikely(info->thread_notes == 0) ||
1848
unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1849
WARN_ON(1);
1850
return 0;
1851
}
1852
1853
machine = view->e_machine;
1854
flags = view->e_flags;
1855
#else
1856
view = NULL;
1857
info->thread_notes = 2;
1858
machine = ELF_ARCH;
1859
flags = ELF_CORE_EFLAGS;
1860
#endif
1861
1862
/*
1863
* Override ELF e_flags with value taken from process,
1864
* if arch needs that.
1865
*/
1866
flags = elf_coredump_get_mm_eflags(dump_task->mm, flags);
1867
1868
/*
1869
* Initialize the ELF file header.
1870
*/
1871
fill_elf_header(elf, phdrs, machine, flags);
1872
1873
/*
1874
* Allocate a structure for each thread.
1875
*/
1876
info->thread = kzalloc(struct_size(info->thread, notes, info->thread_notes),
1877
GFP_KERNEL);
1878
if (unlikely(!info->thread))
1879
return 0;
1880
1881
info->thread->task = dump_task;
1882
for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1883
t = kzalloc(struct_size(t, notes, info->thread_notes),
1884
GFP_KERNEL);
1885
if (unlikely(!t))
1886
return 0;
1887
1888
t->task = ct->task;
1889
t->next = info->thread->next;
1890
info->thread->next = t;
1891
}
1892
1893
/*
1894
* Now fill in each thread's information.
1895
*/
1896
for (t = info->thread; t != NULL; t = t->next)
1897
if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1898
return 0;
1899
1900
/*
1901
* Fill in the two process-wide notes.
1902
*/
1903
fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1904
info->size += notesize(&info->psinfo);
1905
1906
fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1907
info->size += notesize(&info->signote);
1908
1909
fill_auxv_note(&info->auxv, current->mm);
1910
info->size += notesize(&info->auxv);
1911
1912
if (fill_files_note(&info->files, cprm) == 0)
1913
info->size += notesize(&info->files);
1914
1915
return 1;
1916
}
1917
1918
/*
1919
* Write all the notes for each thread. When writing the first thread, the
1920
* process-wide notes are interleaved after the first thread-specific note.
1921
*/
1922
static int write_note_info(struct elf_note_info *info,
1923
struct coredump_params *cprm)
1924
{
1925
bool first = true;
1926
struct elf_thread_core_info *t = info->thread;
1927
1928
do {
1929
int i;
1930
1931
if (!writenote(&t->notes[0], cprm))
1932
return 0;
1933
1934
if (first && !writenote(&info->psinfo, cprm))
1935
return 0;
1936
if (first && !writenote(&info->signote, cprm))
1937
return 0;
1938
if (first && !writenote(&info->auxv, cprm))
1939
return 0;
1940
if (first && info->files.data &&
1941
!writenote(&info->files, cprm))
1942
return 0;
1943
1944
for (i = 1; i < info->thread_notes; ++i)
1945
if (t->notes[i].data &&
1946
!writenote(&t->notes[i], cprm))
1947
return 0;
1948
1949
first = false;
1950
t = t->next;
1951
} while (t);
1952
1953
return 1;
1954
}
1955
1956
static void free_note_info(struct elf_note_info *info)
1957
{
1958
struct elf_thread_core_info *threads = info->thread;
1959
while (threads) {
1960
unsigned int i;
1961
struct elf_thread_core_info *t = threads;
1962
threads = t->next;
1963
WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1964
for (i = 1; i < info->thread_notes; ++i)
1965
kvfree(t->notes[i].data);
1966
kfree(t);
1967
}
1968
kfree(info->psinfo.data);
1969
kvfree(info->files.data);
1970
}
1971
1972
static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1973
elf_addr_t e_shoff, int segs)
1974
{
1975
elf->e_shoff = e_shoff;
1976
elf->e_shentsize = sizeof(*shdr4extnum);
1977
elf->e_shnum = 1;
1978
elf->e_shstrndx = SHN_UNDEF;
1979
1980
memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1981
1982
shdr4extnum->sh_type = SHT_NULL;
1983
shdr4extnum->sh_size = elf->e_shnum;
1984
shdr4extnum->sh_link = elf->e_shstrndx;
1985
shdr4extnum->sh_info = segs;
1986
}
1987
1988
/*
1989
* Actual dumper
1990
*
1991
* This is a two-pass process; first we find the offsets of the bits,
1992
* and then they are actually written out. If we run out of core limit
1993
* we just truncate.
1994
*/
1995
static int elf_core_dump(struct coredump_params *cprm)
1996
{
1997
int has_dumped = 0;
1998
int segs, i;
1999
struct elfhdr elf;
2000
loff_t offset = 0, dataoff;
2001
struct elf_note_info info = { };
2002
struct elf_phdr *phdr4note = NULL;
2003
struct elf_shdr *shdr4extnum = NULL;
2004
Elf_Half e_phnum;
2005
elf_addr_t e_shoff;
2006
2007
/*
2008
* The number of segs are recored into ELF header as 16bit value.
2009
* Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2010
*/
2011
segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2012
2013
/* for notes section */
2014
segs++;
2015
2016
/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2017
* this, kernel supports extended numbering. Have a look at
2018
* include/linux/elf.h for further information. */
2019
e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2020
2021
/*
2022
* Collect all the non-memory information about the process for the
2023
* notes. This also sets up the file header.
2024
*/
2025
if (!fill_note_info(&elf, e_phnum, &info, cprm))
2026
goto end_coredump;
2027
2028
has_dumped = 1;
2029
2030
offset += sizeof(elf); /* ELF header */
2031
offset += segs * sizeof(struct elf_phdr); /* Program headers */
2032
2033
/* Write notes phdr entry */
2034
{
2035
size_t sz = info.size;
2036
2037
/* For cell spufs and x86 xstate */
2038
sz += elf_coredump_extra_notes_size();
2039
2040
phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2041
if (!phdr4note)
2042
goto end_coredump;
2043
2044
fill_elf_note_phdr(phdr4note, sz, offset);
2045
offset += sz;
2046
}
2047
2048
dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2049
2050
offset += cprm->vma_data_size;
2051
offset += elf_core_extra_data_size(cprm);
2052
e_shoff = offset;
2053
2054
if (e_phnum == PN_XNUM) {
2055
shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2056
if (!shdr4extnum)
2057
goto end_coredump;
2058
fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2059
}
2060
2061
offset = dataoff;
2062
2063
if (!dump_emit(cprm, &elf, sizeof(elf)))
2064
goto end_coredump;
2065
2066
if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2067
goto end_coredump;
2068
2069
/* Write program headers for segments dump */
2070
for (i = 0; i < cprm->vma_count; i++) {
2071
struct core_vma_metadata *meta = cprm->vma_meta + i;
2072
struct elf_phdr phdr;
2073
2074
phdr.p_type = PT_LOAD;
2075
phdr.p_offset = offset;
2076
phdr.p_vaddr = meta->start;
2077
phdr.p_paddr = 0;
2078
phdr.p_filesz = meta->dump_size;
2079
phdr.p_memsz = meta->end - meta->start;
2080
offset += phdr.p_filesz;
2081
phdr.p_flags = 0;
2082
if (meta->flags & VM_READ)
2083
phdr.p_flags |= PF_R;
2084
if (meta->flags & VM_WRITE)
2085
phdr.p_flags |= PF_W;
2086
if (meta->flags & VM_EXEC)
2087
phdr.p_flags |= PF_X;
2088
phdr.p_align = ELF_EXEC_PAGESIZE;
2089
2090
if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2091
goto end_coredump;
2092
}
2093
2094
if (!elf_core_write_extra_phdrs(cprm, offset))
2095
goto end_coredump;
2096
2097
/* write out the notes section */
2098
if (!write_note_info(&info, cprm))
2099
goto end_coredump;
2100
2101
/* For cell spufs and x86 xstate */
2102
if (elf_coredump_extra_notes_write(cprm))
2103
goto end_coredump;
2104
2105
/* Align to page */
2106
dump_skip_to(cprm, dataoff);
2107
2108
for (i = 0; i < cprm->vma_count; i++) {
2109
struct core_vma_metadata *meta = cprm->vma_meta + i;
2110
2111
if (!dump_user_range(cprm, meta->start, meta->dump_size))
2112
goto end_coredump;
2113
}
2114
2115
if (!elf_core_write_extra_data(cprm))
2116
goto end_coredump;
2117
2118
if (e_phnum == PN_XNUM) {
2119
if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2120
goto end_coredump;
2121
}
2122
2123
end_coredump:
2124
free_note_info(&info);
2125
kfree(shdr4extnum);
2126
kfree(phdr4note);
2127
return has_dumped;
2128
}
2129
2130
#endif /* CONFIG_ELF_CORE */
2131
2132
static int __init init_elf_binfmt(void)
2133
{
2134
register_binfmt(&elf_format);
2135
return 0;
2136
}
2137
2138
static void __exit exit_elf_binfmt(void)
2139
{
2140
/* Remove the COFF and ELF loaders. */
2141
unregister_binfmt(&elf_format);
2142
}
2143
2144
core_initcall(init_elf_binfmt);
2145
module_exit(exit_elf_binfmt);
2146
2147
#ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2148
#include "tests/binfmt_elf_kunit.c"
2149
#endif
2150
2151