Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/ctree.c
29281 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007,2008 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10
#include <linux/error-injection.h>
11
#include "messages.h"
12
#include "ctree.h"
13
#include "disk-io.h"
14
#include "transaction.h"
15
#include "print-tree.h"
16
#include "locking.h"
17
#include "volumes.h"
18
#include "qgroup.h"
19
#include "tree-mod-log.h"
20
#include "tree-checker.h"
21
#include "fs.h"
22
#include "accessors.h"
23
#include "extent-tree.h"
24
#include "relocation.h"
25
#include "file-item.h"
26
27
static struct kmem_cache *btrfs_path_cachep;
28
29
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30
*root, struct btrfs_path *path, int level);
31
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32
const struct btrfs_key *ins_key, struct btrfs_path *path,
33
int data_size, bool extend);
34
static int push_node_left(struct btrfs_trans_handle *trans,
35
struct extent_buffer *dst,
36
struct extent_buffer *src, bool empty);
37
static int balance_node_right(struct btrfs_trans_handle *trans,
38
struct extent_buffer *dst_buf,
39
struct extent_buffer *src_buf);
40
/*
41
* The leaf data grows from end-to-front in the node. this returns the address
42
* of the start of the last item, which is the stop of the leaf data stack.
43
*/
44
static unsigned int leaf_data_end(const struct extent_buffer *leaf)
45
{
46
u32 nr = btrfs_header_nritems(leaf);
47
48
if (nr == 0)
49
return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
50
return btrfs_item_offset(leaf, nr - 1);
51
}
52
53
/*
54
* Move data in a @leaf (using memmove, safe for overlapping ranges).
55
*
56
* @leaf: leaf that we're doing a memmove on
57
* @dst_offset: item data offset we're moving to
58
* @src_offset: item data offset were' moving from
59
* @len: length of the data we're moving
60
*
61
* Wrapper around memmove_extent_buffer() that takes into account the header on
62
* the leaf. The btrfs_item offset's start directly after the header, so we
63
* have to adjust any offsets to account for the header in the leaf. This
64
* handles that math to simplify the callers.
65
*/
66
static inline void memmove_leaf_data(const struct extent_buffer *leaf,
67
unsigned long dst_offset,
68
unsigned long src_offset,
69
unsigned long len)
70
{
71
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
72
btrfs_item_nr_offset(leaf, 0) + src_offset, len);
73
}
74
75
/*
76
* Copy item data from @src into @dst at the given @offset.
77
*
78
* @dst: destination leaf that we're copying into
79
* @src: source leaf that we're copying from
80
* @dst_offset: item data offset we're copying to
81
* @src_offset: item data offset were' copying from
82
* @len: length of the data we're copying
83
*
84
* Wrapper around copy_extent_buffer() that takes into account the header on
85
* the leaf. The btrfs_item offset's start directly after the header, so we
86
* have to adjust any offsets to account for the header in the leaf. This
87
* handles that math to simplify the callers.
88
*/
89
static inline void copy_leaf_data(const struct extent_buffer *dst,
90
const struct extent_buffer *src,
91
unsigned long dst_offset,
92
unsigned long src_offset, unsigned long len)
93
{
94
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
95
btrfs_item_nr_offset(src, 0) + src_offset, len);
96
}
97
98
/*
99
* Move items in a @leaf (using memmove).
100
*
101
* @dst: destination leaf for the items
102
* @dst_item: the item nr we're copying into
103
* @src_item: the item nr we're copying from
104
* @nr_items: the number of items to copy
105
*
106
* Wrapper around memmove_extent_buffer() that does the math to get the
107
* appropriate offsets into the leaf from the item numbers.
108
*/
109
static inline void memmove_leaf_items(const struct extent_buffer *leaf,
110
int dst_item, int src_item, int nr_items)
111
{
112
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
113
btrfs_item_nr_offset(leaf, src_item),
114
nr_items * sizeof(struct btrfs_item));
115
}
116
117
/*
118
* Copy items from @src into @dst at the given @offset.
119
*
120
* @dst: destination leaf for the items
121
* @src: source leaf for the items
122
* @dst_item: the item nr we're copying into
123
* @src_item: the item nr we're copying from
124
* @nr_items: the number of items to copy
125
*
126
* Wrapper around copy_extent_buffer() that does the math to get the
127
* appropriate offsets into the leaf from the item numbers.
128
*/
129
static inline void copy_leaf_items(const struct extent_buffer *dst,
130
const struct extent_buffer *src,
131
int dst_item, int src_item, int nr_items)
132
{
133
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
134
btrfs_item_nr_offset(src, src_item),
135
nr_items * sizeof(struct btrfs_item));
136
}
137
138
struct btrfs_path *btrfs_alloc_path(void)
139
{
140
might_sleep();
141
142
return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
143
}
144
145
/* this also releases the path */
146
void btrfs_free_path(struct btrfs_path *p)
147
{
148
if (!p)
149
return;
150
btrfs_release_path(p);
151
kmem_cache_free(btrfs_path_cachep, p);
152
}
153
154
/*
155
* path release drops references on the extent buffers in the path
156
* and it drops any locks held by this path
157
*
158
* It is safe to call this on paths that no locks or extent buffers held.
159
*/
160
noinline void btrfs_release_path(struct btrfs_path *p)
161
{
162
int i;
163
164
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
165
p->slots[i] = 0;
166
if (!p->nodes[i])
167
continue;
168
if (p->locks[i]) {
169
btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
170
p->locks[i] = 0;
171
}
172
free_extent_buffer(p->nodes[i]);
173
p->nodes[i] = NULL;
174
}
175
}
176
177
/*
178
* safely gets a reference on the root node of a tree. A lock
179
* is not taken, so a concurrent writer may put a different node
180
* at the root of the tree. See btrfs_lock_root_node for the
181
* looping required.
182
*
183
* The extent buffer returned by this has a reference taken, so
184
* it won't disappear. It may stop being the root of the tree
185
* at any time because there are no locks held.
186
*/
187
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
188
{
189
struct extent_buffer *eb;
190
191
while (1) {
192
rcu_read_lock();
193
eb = rcu_dereference(root->node);
194
195
/*
196
* RCU really hurts here, we could free up the root node because
197
* it was COWed but we may not get the new root node yet so do
198
* the inc_not_zero dance and if it doesn't work then
199
* synchronize_rcu and try again.
200
*/
201
if (refcount_inc_not_zero(&eb->refs)) {
202
rcu_read_unlock();
203
break;
204
}
205
rcu_read_unlock();
206
synchronize_rcu();
207
}
208
return eb;
209
}
210
211
/*
212
* Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
213
* just get put onto a simple dirty list. Transaction walks this list to make
214
* sure they get properly updated on disk.
215
*/
216
static void add_root_to_dirty_list(struct btrfs_root *root)
217
{
218
struct btrfs_fs_info *fs_info = root->fs_info;
219
220
if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
221
!test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
222
return;
223
224
spin_lock(&fs_info->trans_lock);
225
if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
226
/* Want the extent tree to be the last on the list */
227
if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
228
list_move_tail(&root->dirty_list,
229
&fs_info->dirty_cowonly_roots);
230
else
231
list_move(&root->dirty_list,
232
&fs_info->dirty_cowonly_roots);
233
}
234
spin_unlock(&fs_info->trans_lock);
235
}
236
237
/*
238
* used by snapshot creation to make a copy of a root for a tree with
239
* a given objectid. The buffer with the new root node is returned in
240
* cow_ret, and this func returns zero on success or a negative error code.
241
*/
242
int btrfs_copy_root(struct btrfs_trans_handle *trans,
243
struct btrfs_root *root,
244
struct extent_buffer *buf,
245
struct extent_buffer **cow_ret, u64 new_root_objectid)
246
{
247
struct btrfs_fs_info *fs_info = root->fs_info;
248
struct extent_buffer *cow;
249
int ret = 0;
250
int level;
251
struct btrfs_disk_key disk_key;
252
u64 reloc_src_root = 0;
253
254
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
255
trans->transid != fs_info->running_transaction->transid);
256
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
257
trans->transid != btrfs_get_root_last_trans(root));
258
259
level = btrfs_header_level(buf);
260
if (level == 0)
261
btrfs_item_key(buf, &disk_key, 0);
262
else
263
btrfs_node_key(buf, &disk_key, 0);
264
265
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
266
reloc_src_root = btrfs_header_owner(buf);
267
cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
268
&disk_key, level, buf->start, 0,
269
reloc_src_root, BTRFS_NESTING_NEW_ROOT);
270
if (IS_ERR(cow))
271
return PTR_ERR(cow);
272
273
copy_extent_buffer_full(cow, buf);
274
btrfs_set_header_bytenr(cow, cow->start);
275
btrfs_set_header_generation(cow, trans->transid);
276
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
277
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
278
BTRFS_HEADER_FLAG_RELOC);
279
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281
else
282
btrfs_set_header_owner(cow, new_root_objectid);
283
284
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
285
286
if (unlikely(btrfs_header_generation(buf) > trans->transid)) {
287
btrfs_tree_unlock(cow);
288
free_extent_buffer(cow);
289
ret = -EUCLEAN;
290
btrfs_abort_transaction(trans, ret);
291
return ret;
292
}
293
294
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
295
ret = btrfs_inc_ref(trans, root, cow, 1);
296
if (unlikely(ret))
297
btrfs_abort_transaction(trans, ret);
298
} else {
299
ret = btrfs_inc_ref(trans, root, cow, 0);
300
if (unlikely(ret))
301
btrfs_abort_transaction(trans, ret);
302
}
303
if (ret) {
304
btrfs_tree_unlock(cow);
305
free_extent_buffer(cow);
306
return ret;
307
}
308
309
btrfs_mark_buffer_dirty(trans, cow);
310
*cow_ret = cow;
311
return 0;
312
}
313
314
/*
315
* check if the tree block can be shared by multiple trees
316
*/
317
bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
318
const struct btrfs_root *root,
319
const struct extent_buffer *buf)
320
{
321
const u64 buf_gen = btrfs_header_generation(buf);
322
323
/*
324
* Tree blocks not in shareable trees and tree roots are never shared.
325
* If a block was allocated after the last snapshot and the block was
326
* not allocated by tree relocation, we know the block is not shared.
327
*/
328
329
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
330
return false;
331
332
if (buf == root->node)
333
return false;
334
335
if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
336
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
337
return false;
338
339
if (buf != root->commit_root)
340
return true;
341
342
/*
343
* An extent buffer that used to be the commit root may still be shared
344
* because the tree height may have increased and it became a child of a
345
* higher level root. This can happen when snapshotting a subvolume
346
* created in the current transaction.
347
*/
348
if (buf_gen == trans->transid)
349
return true;
350
351
return false;
352
}
353
354
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
355
struct btrfs_root *root,
356
struct extent_buffer *buf,
357
struct extent_buffer *cow,
358
int *last_ref)
359
{
360
struct btrfs_fs_info *fs_info = root->fs_info;
361
u64 refs;
362
u64 owner;
363
u64 flags;
364
int ret;
365
366
/*
367
* Backrefs update rules:
368
*
369
* Always use full backrefs for extent pointers in tree block
370
* allocated by tree relocation.
371
*
372
* If a shared tree block is no longer referenced by its owner
373
* tree (btrfs_header_owner(buf) == root->root_key.objectid),
374
* use full backrefs for extent pointers in tree block.
375
*
376
* If a tree block is been relocating
377
* (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
378
* use full backrefs for extent pointers in tree block.
379
* The reason for this is some operations (such as drop tree)
380
* are only allowed for blocks use full backrefs.
381
*/
382
383
if (btrfs_block_can_be_shared(trans, root, buf)) {
384
ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
385
btrfs_header_level(buf), 1,
386
&refs, &flags, NULL);
387
if (ret)
388
return ret;
389
if (unlikely(refs == 0)) {
390
btrfs_crit(fs_info,
391
"found 0 references for tree block at bytenr %llu level %d root %llu",
392
buf->start, btrfs_header_level(buf),
393
btrfs_root_id(root));
394
ret = -EUCLEAN;
395
btrfs_abort_transaction(trans, ret);
396
return ret;
397
}
398
} else {
399
refs = 1;
400
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
401
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
402
flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
403
else
404
flags = 0;
405
}
406
407
owner = btrfs_header_owner(buf);
408
if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
409
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
410
btrfs_crit(fs_info,
411
"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
412
buf->start, btrfs_header_level(buf),
413
btrfs_root_id(root), refs, flags);
414
ret = -EUCLEAN;
415
btrfs_abort_transaction(trans, ret);
416
return ret;
417
}
418
419
if (refs > 1) {
420
if ((owner == btrfs_root_id(root) ||
421
btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
422
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
423
ret = btrfs_inc_ref(trans, root, buf, 1);
424
if (ret)
425
return ret;
426
427
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
428
ret = btrfs_dec_ref(trans, root, buf, 0);
429
if (ret)
430
return ret;
431
ret = btrfs_inc_ref(trans, root, cow, 1);
432
if (ret)
433
return ret;
434
}
435
ret = btrfs_set_disk_extent_flags(trans, buf,
436
BTRFS_BLOCK_FLAG_FULL_BACKREF);
437
if (ret)
438
return ret;
439
} else {
440
441
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
442
ret = btrfs_inc_ref(trans, root, cow, 1);
443
else
444
ret = btrfs_inc_ref(trans, root, cow, 0);
445
if (ret)
446
return ret;
447
}
448
} else {
449
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
450
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
451
ret = btrfs_inc_ref(trans, root, cow, 1);
452
else
453
ret = btrfs_inc_ref(trans, root, cow, 0);
454
if (ret)
455
return ret;
456
ret = btrfs_dec_ref(trans, root, buf, 1);
457
if (ret)
458
return ret;
459
}
460
btrfs_clear_buffer_dirty(trans, buf);
461
*last_ref = 1;
462
}
463
return 0;
464
}
465
466
/*
467
* does the dirty work in cow of a single block. The parent block (if
468
* supplied) is updated to point to the new cow copy. The new buffer is marked
469
* dirty and returned locked. If you modify the block it needs to be marked
470
* dirty again.
471
*
472
* search_start -- an allocation hint for the new block
473
*
474
* empty_size -- a hint that you plan on doing more cow. This is the size in
475
* bytes the allocator should try to find free next to the block it returns.
476
* This is just a hint and may be ignored by the allocator.
477
*/
478
int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
479
struct btrfs_root *root,
480
struct extent_buffer *buf,
481
struct extent_buffer *parent, int parent_slot,
482
struct extent_buffer **cow_ret,
483
u64 search_start, u64 empty_size,
484
enum btrfs_lock_nesting nest)
485
{
486
struct btrfs_fs_info *fs_info = root->fs_info;
487
struct btrfs_disk_key disk_key;
488
struct extent_buffer *cow;
489
int level, ret;
490
int last_ref = 0;
491
int unlock_orig = 0;
492
u64 parent_start = 0;
493
u64 reloc_src_root = 0;
494
495
if (*cow_ret == buf)
496
unlock_orig = 1;
497
498
btrfs_assert_tree_write_locked(buf);
499
500
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
501
trans->transid != fs_info->running_transaction->transid);
502
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
503
trans->transid != btrfs_get_root_last_trans(root));
504
505
level = btrfs_header_level(buf);
506
507
if (level == 0)
508
btrfs_item_key(buf, &disk_key, 0);
509
else
510
btrfs_node_key(buf, &disk_key, 0);
511
512
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
513
if (parent)
514
parent_start = parent->start;
515
reloc_src_root = btrfs_header_owner(buf);
516
}
517
cow = btrfs_alloc_tree_block(trans, root, parent_start,
518
btrfs_root_id(root), &disk_key, level,
519
search_start, empty_size, reloc_src_root, nest);
520
if (IS_ERR(cow))
521
return PTR_ERR(cow);
522
523
/* cow is set to blocking by btrfs_init_new_buffer */
524
525
copy_extent_buffer_full(cow, buf);
526
btrfs_set_header_bytenr(cow, cow->start);
527
btrfs_set_header_generation(cow, trans->transid);
528
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
529
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
530
BTRFS_HEADER_FLAG_RELOC);
531
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
532
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
533
else
534
btrfs_set_header_owner(cow, btrfs_root_id(root));
535
536
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
537
538
ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
539
if (unlikely(ret)) {
540
btrfs_abort_transaction(trans, ret);
541
goto error_unlock_cow;
542
}
543
544
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
545
ret = btrfs_reloc_cow_block(trans, root, buf, cow);
546
if (unlikely(ret)) {
547
btrfs_abort_transaction(trans, ret);
548
goto error_unlock_cow;
549
}
550
}
551
552
if (buf == root->node) {
553
WARN_ON(parent && parent != buf);
554
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
555
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
556
parent_start = buf->start;
557
558
ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
559
if (unlikely(ret < 0)) {
560
btrfs_abort_transaction(trans, ret);
561
goto error_unlock_cow;
562
}
563
refcount_inc(&cow->refs);
564
rcu_assign_pointer(root->node, cow);
565
566
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
567
parent_start, last_ref);
568
free_extent_buffer(buf);
569
add_root_to_dirty_list(root);
570
if (unlikely(ret < 0)) {
571
btrfs_abort_transaction(trans, ret);
572
goto error_unlock_cow;
573
}
574
} else {
575
WARN_ON(trans->transid != btrfs_header_generation(parent));
576
ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
577
BTRFS_MOD_LOG_KEY_REPLACE);
578
if (unlikely(ret)) {
579
btrfs_abort_transaction(trans, ret);
580
goto error_unlock_cow;
581
}
582
btrfs_set_node_blockptr(parent, parent_slot,
583
cow->start);
584
btrfs_set_node_ptr_generation(parent, parent_slot,
585
trans->transid);
586
btrfs_mark_buffer_dirty(trans, parent);
587
if (last_ref) {
588
ret = btrfs_tree_mod_log_free_eb(buf);
589
if (unlikely(ret)) {
590
btrfs_abort_transaction(trans, ret);
591
goto error_unlock_cow;
592
}
593
}
594
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
595
parent_start, last_ref);
596
if (unlikely(ret < 0)) {
597
btrfs_abort_transaction(trans, ret);
598
goto error_unlock_cow;
599
}
600
}
601
602
trace_btrfs_cow_block(root, buf, cow);
603
if (unlock_orig)
604
btrfs_tree_unlock(buf);
605
free_extent_buffer_stale(buf);
606
btrfs_mark_buffer_dirty(trans, cow);
607
*cow_ret = cow;
608
return 0;
609
610
error_unlock_cow:
611
btrfs_tree_unlock(cow);
612
free_extent_buffer(cow);
613
return ret;
614
}
615
616
static inline bool should_cow_block(const struct btrfs_trans_handle *trans,
617
const struct btrfs_root *root,
618
const struct extent_buffer *buf)
619
{
620
if (btrfs_is_testing(root->fs_info))
621
return false;
622
623
/*
624
* We do not need to cow a block if
625
* 1) this block is not created or changed in this transaction;
626
* 2) this block does not belong to TREE_RELOC tree;
627
* 3) the root is not forced COW.
628
*
629
* What is forced COW:
630
* when we create snapshot during committing the transaction,
631
* after we've finished copying src root, we must COW the shared
632
* block to ensure the metadata consistency.
633
*/
634
635
if (btrfs_header_generation(buf) != trans->transid)
636
return true;
637
638
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN))
639
return true;
640
641
/* Ensure we can see the FORCE_COW bit. */
642
smp_mb__before_atomic();
643
if (test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
644
return true;
645
646
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
647
return false;
648
649
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
650
return true;
651
652
return false;
653
}
654
655
/*
656
* COWs a single block, see btrfs_force_cow_block() for the real work.
657
* This version of it has extra checks so that a block isn't COWed more than
658
* once per transaction, as long as it hasn't been written yet
659
*/
660
int btrfs_cow_block(struct btrfs_trans_handle *trans,
661
struct btrfs_root *root, struct extent_buffer *buf,
662
struct extent_buffer *parent, int parent_slot,
663
struct extent_buffer **cow_ret,
664
enum btrfs_lock_nesting nest)
665
{
666
struct btrfs_fs_info *fs_info = root->fs_info;
667
u64 search_start;
668
669
if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
670
btrfs_abort_transaction(trans, -EUCLEAN);
671
btrfs_crit(fs_info,
672
"attempt to COW block %llu on root %llu that is being deleted",
673
buf->start, btrfs_root_id(root));
674
return -EUCLEAN;
675
}
676
677
/*
678
* COWing must happen through a running transaction, which always
679
* matches the current fs generation (it's a transaction with a state
680
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
681
* into error state to prevent the commit of any transaction.
682
*/
683
if (unlikely(trans->transaction != fs_info->running_transaction ||
684
trans->transid != fs_info->generation)) {
685
btrfs_abort_transaction(trans, -EUCLEAN);
686
btrfs_crit(fs_info,
687
"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
688
buf->start, btrfs_root_id(root), trans->transid,
689
fs_info->running_transaction->transid,
690
fs_info->generation);
691
return -EUCLEAN;
692
}
693
694
if (!should_cow_block(trans, root, buf)) {
695
*cow_ret = buf;
696
return 0;
697
}
698
699
search_start = round_down(buf->start, SZ_1G);
700
701
/*
702
* Before CoWing this block for later modification, check if it's
703
* the subtree root and do the delayed subtree trace if needed.
704
*
705
* Also We don't care about the error, as it's handled internally.
706
*/
707
btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
708
return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
709
cow_ret, search_start, 0, nest);
710
}
711
ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
712
713
/*
714
* same as comp_keys only with two btrfs_key's
715
*/
716
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
717
{
718
if (k1->objectid > k2->objectid)
719
return 1;
720
if (k1->objectid < k2->objectid)
721
return -1;
722
if (k1->type > k2->type)
723
return 1;
724
if (k1->type < k2->type)
725
return -1;
726
if (k1->offset > k2->offset)
727
return 1;
728
if (k1->offset < k2->offset)
729
return -1;
730
return 0;
731
}
732
733
/*
734
* Search for a key in the given extent_buffer.
735
*
736
* The lower boundary for the search is specified by the slot number @first_slot.
737
* Use a value of 0 to search over the whole extent buffer. Works for both
738
* leaves and nodes.
739
*
740
* The slot in the extent buffer is returned via @slot. If the key exists in the
741
* extent buffer, then @slot will point to the slot where the key is, otherwise
742
* it points to the slot where you would insert the key.
743
*
744
* Slot may point to the total number of items (i.e. one position beyond the last
745
* key) if the key is bigger than the last key in the extent buffer.
746
*/
747
int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
748
const struct btrfs_key *key, int *slot)
749
{
750
unsigned long p;
751
int item_size;
752
/*
753
* Use unsigned types for the low and high slots, so that we get a more
754
* efficient division in the search loop below.
755
*/
756
u32 low = first_slot;
757
u32 high = btrfs_header_nritems(eb);
758
int ret;
759
const int key_size = sizeof(struct btrfs_disk_key);
760
761
if (unlikely(low > high)) {
762
btrfs_err(eb->fs_info,
763
"%s: low (%u) > high (%u) eb %llu owner %llu level %d",
764
__func__, low, high, eb->start,
765
btrfs_header_owner(eb), btrfs_header_level(eb));
766
return -EINVAL;
767
}
768
769
if (btrfs_header_level(eb) == 0) {
770
p = offsetof(struct btrfs_leaf, items);
771
item_size = sizeof(struct btrfs_item);
772
} else {
773
p = offsetof(struct btrfs_node, ptrs);
774
item_size = sizeof(struct btrfs_key_ptr);
775
}
776
777
while (low < high) {
778
const int unit_size = eb->folio_size;
779
unsigned long oil;
780
unsigned long offset;
781
struct btrfs_disk_key *tmp;
782
struct btrfs_disk_key unaligned;
783
int mid;
784
785
mid = (low + high) / 2;
786
offset = p + mid * item_size;
787
oil = get_eb_offset_in_folio(eb, offset);
788
789
if (oil + key_size <= unit_size) {
790
const unsigned long idx = get_eb_folio_index(eb, offset);
791
char *kaddr = folio_address(eb->folios[idx]);
792
793
oil = get_eb_offset_in_folio(eb, offset);
794
tmp = (struct btrfs_disk_key *)(kaddr + oil);
795
} else {
796
read_extent_buffer(eb, &unaligned, offset, key_size);
797
tmp = &unaligned;
798
}
799
800
ret = btrfs_comp_keys(tmp, key);
801
802
if (ret < 0)
803
low = mid + 1;
804
else if (ret > 0)
805
high = mid;
806
else {
807
*slot = mid;
808
return 0;
809
}
810
}
811
*slot = low;
812
return 1;
813
}
814
815
static void root_add_used_bytes(struct btrfs_root *root)
816
{
817
spin_lock(&root->accounting_lock);
818
btrfs_set_root_used(&root->root_item,
819
btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
820
spin_unlock(&root->accounting_lock);
821
}
822
823
static void root_sub_used_bytes(struct btrfs_root *root)
824
{
825
spin_lock(&root->accounting_lock);
826
btrfs_set_root_used(&root->root_item,
827
btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
828
spin_unlock(&root->accounting_lock);
829
}
830
831
/* given a node and slot number, this reads the blocks it points to. The
832
* extent buffer is returned with a reference taken (but unlocked).
833
*/
834
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
835
int slot)
836
{
837
int level = btrfs_header_level(parent);
838
struct btrfs_tree_parent_check check = { 0 };
839
struct extent_buffer *eb;
840
841
if (slot < 0 || slot >= btrfs_header_nritems(parent))
842
return ERR_PTR(-ENOENT);
843
844
ASSERT(level);
845
846
check.level = level - 1;
847
check.transid = btrfs_node_ptr_generation(parent, slot);
848
check.owner_root = btrfs_header_owner(parent);
849
check.has_first_key = true;
850
btrfs_node_key_to_cpu(parent, &check.first_key, slot);
851
852
eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
853
&check);
854
if (IS_ERR(eb))
855
return eb;
856
if (unlikely(!extent_buffer_uptodate(eb))) {
857
free_extent_buffer(eb);
858
return ERR_PTR(-EIO);
859
}
860
861
return eb;
862
}
863
864
/*
865
* node level balancing, used to make sure nodes are in proper order for
866
* item deletion. We balance from the top down, so we have to make sure
867
* that a deletion won't leave an node completely empty later on.
868
*/
869
static noinline int balance_level(struct btrfs_trans_handle *trans,
870
struct btrfs_root *root,
871
struct btrfs_path *path, int level)
872
{
873
struct btrfs_fs_info *fs_info = root->fs_info;
874
struct extent_buffer *right = NULL;
875
struct extent_buffer *mid;
876
struct extent_buffer *left = NULL;
877
struct extent_buffer *parent = NULL;
878
int ret = 0;
879
int wret;
880
int pslot;
881
int orig_slot = path->slots[level];
882
u64 orig_ptr;
883
884
ASSERT(level > 0);
885
886
mid = path->nodes[level];
887
888
WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
889
WARN_ON(btrfs_header_generation(mid) != trans->transid);
890
891
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
892
893
if (level < BTRFS_MAX_LEVEL - 1) {
894
parent = path->nodes[level + 1];
895
pslot = path->slots[level + 1];
896
}
897
898
/*
899
* deal with the case where there is only one pointer in the root
900
* by promoting the node below to a root
901
*/
902
if (!parent) {
903
struct extent_buffer *child;
904
905
if (btrfs_header_nritems(mid) != 1)
906
return 0;
907
908
/* promote the child to a root */
909
child = btrfs_read_node_slot(mid, 0);
910
if (IS_ERR(child)) {
911
ret = PTR_ERR(child);
912
goto out;
913
}
914
915
btrfs_tree_lock(child);
916
ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
917
BTRFS_NESTING_COW);
918
if (ret) {
919
btrfs_tree_unlock(child);
920
free_extent_buffer(child);
921
goto out;
922
}
923
924
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
925
if (unlikely(ret < 0)) {
926
btrfs_tree_unlock(child);
927
free_extent_buffer(child);
928
btrfs_abort_transaction(trans, ret);
929
goto out;
930
}
931
rcu_assign_pointer(root->node, child);
932
933
add_root_to_dirty_list(root);
934
btrfs_tree_unlock(child);
935
936
path->locks[level] = 0;
937
path->nodes[level] = NULL;
938
btrfs_clear_buffer_dirty(trans, mid);
939
btrfs_tree_unlock(mid);
940
/* once for the path */
941
free_extent_buffer(mid);
942
943
root_sub_used_bytes(root);
944
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
945
/* once for the root ptr */
946
free_extent_buffer_stale(mid);
947
if (unlikely(ret < 0)) {
948
btrfs_abort_transaction(trans, ret);
949
goto out;
950
}
951
return 0;
952
}
953
if (btrfs_header_nritems(mid) >
954
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
955
return 0;
956
957
if (pslot) {
958
left = btrfs_read_node_slot(parent, pslot - 1);
959
if (IS_ERR(left)) {
960
ret = PTR_ERR(left);
961
left = NULL;
962
goto out;
963
}
964
965
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
966
wret = btrfs_cow_block(trans, root, left,
967
parent, pslot - 1, &left,
968
BTRFS_NESTING_LEFT_COW);
969
if (wret) {
970
ret = wret;
971
goto out;
972
}
973
}
974
975
if (pslot + 1 < btrfs_header_nritems(parent)) {
976
right = btrfs_read_node_slot(parent, pslot + 1);
977
if (IS_ERR(right)) {
978
ret = PTR_ERR(right);
979
right = NULL;
980
goto out;
981
}
982
983
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
984
wret = btrfs_cow_block(trans, root, right,
985
parent, pslot + 1, &right,
986
BTRFS_NESTING_RIGHT_COW);
987
if (wret) {
988
ret = wret;
989
goto out;
990
}
991
}
992
993
/* first, try to make some room in the middle buffer */
994
if (left) {
995
orig_slot += btrfs_header_nritems(left);
996
wret = push_node_left(trans, left, mid, 1);
997
if (wret < 0)
998
ret = wret;
999
}
1000
1001
/*
1002
* then try to empty the right most buffer into the middle
1003
*/
1004
if (right) {
1005
wret = push_node_left(trans, mid, right, 1);
1006
if (wret < 0 && wret != -ENOSPC)
1007
ret = wret;
1008
if (btrfs_header_nritems(right) == 0) {
1009
btrfs_clear_buffer_dirty(trans, right);
1010
btrfs_tree_unlock(right);
1011
ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1012
if (ret < 0) {
1013
free_extent_buffer_stale(right);
1014
right = NULL;
1015
goto out;
1016
}
1017
root_sub_used_bytes(root);
1018
ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1019
right, 0, 1);
1020
free_extent_buffer_stale(right);
1021
right = NULL;
1022
if (unlikely(ret < 0)) {
1023
btrfs_abort_transaction(trans, ret);
1024
goto out;
1025
}
1026
} else {
1027
struct btrfs_disk_key right_key;
1028
btrfs_node_key(right, &right_key, 0);
1029
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1030
BTRFS_MOD_LOG_KEY_REPLACE);
1031
if (unlikely(ret < 0)) {
1032
btrfs_abort_transaction(trans, ret);
1033
goto out;
1034
}
1035
btrfs_set_node_key(parent, &right_key, pslot + 1);
1036
btrfs_mark_buffer_dirty(trans, parent);
1037
}
1038
}
1039
if (btrfs_header_nritems(mid) == 1) {
1040
/*
1041
* we're not allowed to leave a node with one item in the
1042
* tree during a delete. A deletion from lower in the tree
1043
* could try to delete the only pointer in this node.
1044
* So, pull some keys from the left.
1045
* There has to be a left pointer at this point because
1046
* otherwise we would have pulled some pointers from the
1047
* right
1048
*/
1049
if (unlikely(!left)) {
1050
btrfs_crit(fs_info,
1051
"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1052
parent->start, btrfs_header_level(parent),
1053
mid->start, btrfs_root_id(root));
1054
ret = -EUCLEAN;
1055
btrfs_abort_transaction(trans, ret);
1056
goto out;
1057
}
1058
wret = balance_node_right(trans, mid, left);
1059
if (wret < 0) {
1060
ret = wret;
1061
goto out;
1062
}
1063
if (wret == 1) {
1064
wret = push_node_left(trans, left, mid, 1);
1065
if (wret < 0)
1066
ret = wret;
1067
}
1068
BUG_ON(wret == 1);
1069
}
1070
if (btrfs_header_nritems(mid) == 0) {
1071
btrfs_clear_buffer_dirty(trans, mid);
1072
btrfs_tree_unlock(mid);
1073
ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1074
if (ret < 0) {
1075
free_extent_buffer_stale(mid);
1076
mid = NULL;
1077
goto out;
1078
}
1079
root_sub_used_bytes(root);
1080
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1081
free_extent_buffer_stale(mid);
1082
mid = NULL;
1083
if (unlikely(ret < 0)) {
1084
btrfs_abort_transaction(trans, ret);
1085
goto out;
1086
}
1087
} else {
1088
/* update the parent key to reflect our changes */
1089
struct btrfs_disk_key mid_key;
1090
btrfs_node_key(mid, &mid_key, 0);
1091
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1092
BTRFS_MOD_LOG_KEY_REPLACE);
1093
if (unlikely(ret < 0)) {
1094
btrfs_abort_transaction(trans, ret);
1095
goto out;
1096
}
1097
btrfs_set_node_key(parent, &mid_key, pslot);
1098
btrfs_mark_buffer_dirty(trans, parent);
1099
}
1100
1101
/* update the path */
1102
if (left) {
1103
if (btrfs_header_nritems(left) > orig_slot) {
1104
refcount_inc(&left->refs);
1105
/* left was locked after cow */
1106
path->nodes[level] = left;
1107
path->slots[level + 1] -= 1;
1108
path->slots[level] = orig_slot;
1109
if (mid) {
1110
btrfs_tree_unlock(mid);
1111
free_extent_buffer(mid);
1112
}
1113
} else {
1114
orig_slot -= btrfs_header_nritems(left);
1115
path->slots[level] = orig_slot;
1116
}
1117
}
1118
/* double check we haven't messed things up */
1119
if (orig_ptr !=
1120
btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1121
BUG();
1122
out:
1123
if (right) {
1124
btrfs_tree_unlock(right);
1125
free_extent_buffer(right);
1126
}
1127
if (left) {
1128
if (path->nodes[level] != left)
1129
btrfs_tree_unlock(left);
1130
free_extent_buffer(left);
1131
}
1132
return ret;
1133
}
1134
1135
/* Node balancing for insertion. Here we only split or push nodes around
1136
* when they are completely full. This is also done top down, so we
1137
* have to be pessimistic.
1138
*/
1139
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1140
struct btrfs_root *root,
1141
struct btrfs_path *path, int level)
1142
{
1143
struct btrfs_fs_info *fs_info = root->fs_info;
1144
struct extent_buffer *right = NULL;
1145
struct extent_buffer *mid;
1146
struct extent_buffer *left = NULL;
1147
struct extent_buffer *parent = NULL;
1148
int ret = 0;
1149
int wret;
1150
int pslot;
1151
int orig_slot = path->slots[level];
1152
1153
if (level == 0)
1154
return 1;
1155
1156
mid = path->nodes[level];
1157
WARN_ON(btrfs_header_generation(mid) != trans->transid);
1158
1159
if (level < BTRFS_MAX_LEVEL - 1) {
1160
parent = path->nodes[level + 1];
1161
pslot = path->slots[level + 1];
1162
}
1163
1164
if (!parent)
1165
return 1;
1166
1167
/* first, try to make some room in the middle buffer */
1168
if (pslot) {
1169
u32 left_nr;
1170
1171
left = btrfs_read_node_slot(parent, pslot - 1);
1172
if (IS_ERR(left))
1173
return PTR_ERR(left);
1174
1175
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1176
1177
left_nr = btrfs_header_nritems(left);
1178
if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1179
wret = 1;
1180
} else {
1181
ret = btrfs_cow_block(trans, root, left, parent,
1182
pslot - 1, &left,
1183
BTRFS_NESTING_LEFT_COW);
1184
if (ret)
1185
wret = 1;
1186
else {
1187
wret = push_node_left(trans, left, mid, 0);
1188
}
1189
}
1190
if (wret < 0)
1191
ret = wret;
1192
if (wret == 0) {
1193
struct btrfs_disk_key disk_key;
1194
orig_slot += left_nr;
1195
btrfs_node_key(mid, &disk_key, 0);
1196
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1197
BTRFS_MOD_LOG_KEY_REPLACE);
1198
if (unlikely(ret < 0)) {
1199
btrfs_tree_unlock(left);
1200
free_extent_buffer(left);
1201
btrfs_abort_transaction(trans, ret);
1202
return ret;
1203
}
1204
btrfs_set_node_key(parent, &disk_key, pslot);
1205
btrfs_mark_buffer_dirty(trans, parent);
1206
if (btrfs_header_nritems(left) > orig_slot) {
1207
path->nodes[level] = left;
1208
path->slots[level + 1] -= 1;
1209
path->slots[level] = orig_slot;
1210
btrfs_tree_unlock(mid);
1211
free_extent_buffer(mid);
1212
} else {
1213
orig_slot -=
1214
btrfs_header_nritems(left);
1215
path->slots[level] = orig_slot;
1216
btrfs_tree_unlock(left);
1217
free_extent_buffer(left);
1218
}
1219
return 0;
1220
}
1221
btrfs_tree_unlock(left);
1222
free_extent_buffer(left);
1223
}
1224
1225
/*
1226
* then try to empty the right most buffer into the middle
1227
*/
1228
if (pslot + 1 < btrfs_header_nritems(parent)) {
1229
u32 right_nr;
1230
1231
right = btrfs_read_node_slot(parent, pslot + 1);
1232
if (IS_ERR(right))
1233
return PTR_ERR(right);
1234
1235
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1236
1237
right_nr = btrfs_header_nritems(right);
1238
if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1239
wret = 1;
1240
} else {
1241
ret = btrfs_cow_block(trans, root, right,
1242
parent, pslot + 1,
1243
&right, BTRFS_NESTING_RIGHT_COW);
1244
if (ret)
1245
wret = 1;
1246
else {
1247
wret = balance_node_right(trans, right, mid);
1248
}
1249
}
1250
if (wret < 0)
1251
ret = wret;
1252
if (wret == 0) {
1253
struct btrfs_disk_key disk_key;
1254
1255
btrfs_node_key(right, &disk_key, 0);
1256
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1257
BTRFS_MOD_LOG_KEY_REPLACE);
1258
if (unlikely(ret < 0)) {
1259
btrfs_tree_unlock(right);
1260
free_extent_buffer(right);
1261
btrfs_abort_transaction(trans, ret);
1262
return ret;
1263
}
1264
btrfs_set_node_key(parent, &disk_key, pslot + 1);
1265
btrfs_mark_buffer_dirty(trans, parent);
1266
1267
if (btrfs_header_nritems(mid) <= orig_slot) {
1268
path->nodes[level] = right;
1269
path->slots[level + 1] += 1;
1270
path->slots[level] = orig_slot -
1271
btrfs_header_nritems(mid);
1272
btrfs_tree_unlock(mid);
1273
free_extent_buffer(mid);
1274
} else {
1275
btrfs_tree_unlock(right);
1276
free_extent_buffer(right);
1277
}
1278
return 0;
1279
}
1280
btrfs_tree_unlock(right);
1281
free_extent_buffer(right);
1282
}
1283
return 1;
1284
}
1285
1286
/*
1287
* readahead one full node of leaves, finding things that are close
1288
* to the block in 'slot', and triggering ra on them.
1289
*/
1290
static void reada_for_search(struct btrfs_fs_info *fs_info,
1291
const struct btrfs_path *path,
1292
int level, int slot, u64 objectid)
1293
{
1294
struct extent_buffer *node;
1295
struct btrfs_disk_key disk_key;
1296
u32 nritems;
1297
u64 search;
1298
u64 target;
1299
u64 nread = 0;
1300
u64 nread_max;
1301
u32 nr;
1302
u32 blocksize;
1303
u32 nscan = 0;
1304
1305
if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1306
return;
1307
1308
if (!path->nodes[level])
1309
return;
1310
1311
node = path->nodes[level];
1312
1313
/*
1314
* Since the time between visiting leaves is much shorter than the time
1315
* between visiting nodes, limit read ahead of nodes to 1, to avoid too
1316
* much IO at once (possibly random).
1317
*/
1318
if (path->reada == READA_FORWARD_ALWAYS) {
1319
if (level > 1)
1320
nread_max = node->fs_info->nodesize;
1321
else
1322
nread_max = SZ_128K;
1323
} else {
1324
nread_max = SZ_64K;
1325
}
1326
1327
search = btrfs_node_blockptr(node, slot);
1328
blocksize = fs_info->nodesize;
1329
if (path->reada != READA_FORWARD_ALWAYS) {
1330
struct extent_buffer *eb;
1331
1332
eb = find_extent_buffer(fs_info, search);
1333
if (eb) {
1334
free_extent_buffer(eb);
1335
return;
1336
}
1337
}
1338
1339
target = search;
1340
1341
nritems = btrfs_header_nritems(node);
1342
nr = slot;
1343
1344
while (1) {
1345
if (path->reada == READA_BACK) {
1346
if (nr == 0)
1347
break;
1348
nr--;
1349
} else if (path->reada == READA_FORWARD ||
1350
path->reada == READA_FORWARD_ALWAYS) {
1351
nr++;
1352
if (nr >= nritems)
1353
break;
1354
}
1355
if (path->reada == READA_BACK && objectid) {
1356
btrfs_node_key(node, &disk_key, nr);
1357
if (btrfs_disk_key_objectid(&disk_key) != objectid)
1358
break;
1359
}
1360
search = btrfs_node_blockptr(node, nr);
1361
if (path->reada == READA_FORWARD_ALWAYS ||
1362
(search <= target && target - search <= 65536) ||
1363
(search > target && search - target <= 65536)) {
1364
btrfs_readahead_node_child(node, nr);
1365
nread += blocksize;
1366
}
1367
nscan++;
1368
if (nread > nread_max || nscan > 32)
1369
break;
1370
}
1371
}
1372
1373
static noinline void reada_for_balance(const struct btrfs_path *path, int level)
1374
{
1375
struct extent_buffer *parent;
1376
int slot;
1377
int nritems;
1378
1379
parent = path->nodes[level + 1];
1380
if (!parent)
1381
return;
1382
1383
nritems = btrfs_header_nritems(parent);
1384
slot = path->slots[level + 1];
1385
1386
if (slot > 0)
1387
btrfs_readahead_node_child(parent, slot - 1);
1388
if (slot + 1 < nritems)
1389
btrfs_readahead_node_child(parent, slot + 1);
1390
}
1391
1392
1393
/*
1394
* when we walk down the tree, it is usually safe to unlock the higher layers
1395
* in the tree. The exceptions are when our path goes through slot 0, because
1396
* operations on the tree might require changing key pointers higher up in the
1397
* tree.
1398
*
1399
* callers might also have set path->keep_locks, which tells this code to keep
1400
* the lock if the path points to the last slot in the block. This is part of
1401
* walking through the tree, and selecting the next slot in the higher block.
1402
*
1403
* lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1404
* if lowest_unlock is 1, level 0 won't be unlocked
1405
*/
1406
static noinline void unlock_up(struct btrfs_path *path, int level,
1407
int lowest_unlock, int min_write_lock_level,
1408
int *write_lock_level)
1409
{
1410
int i;
1411
int skip_level = level;
1412
bool check_skip = true;
1413
1414
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1415
if (!path->nodes[i])
1416
break;
1417
if (!path->locks[i])
1418
break;
1419
1420
if (check_skip) {
1421
if (path->slots[i] == 0) {
1422
skip_level = i + 1;
1423
continue;
1424
}
1425
1426
if (path->keep_locks) {
1427
u32 nritems;
1428
1429
nritems = btrfs_header_nritems(path->nodes[i]);
1430
if (nritems < 1 || path->slots[i] >= nritems - 1) {
1431
skip_level = i + 1;
1432
continue;
1433
}
1434
}
1435
}
1436
1437
if (i >= lowest_unlock && i > skip_level) {
1438
check_skip = false;
1439
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1440
path->locks[i] = 0;
1441
if (write_lock_level &&
1442
i > min_write_lock_level &&
1443
i <= *write_lock_level) {
1444
*write_lock_level = i - 1;
1445
}
1446
}
1447
}
1448
}
1449
1450
/*
1451
* Helper function for btrfs_search_slot() and other functions that do a search
1452
* on a btree. The goal is to find a tree block in the cache (the radix tree at
1453
* fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1454
* its pages from disk.
1455
*
1456
* Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1457
* whole btree search, starting again from the current root node.
1458
*/
1459
static int
1460
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1461
struct extent_buffer **eb_ret, int slot,
1462
const struct btrfs_key *key)
1463
{
1464
struct btrfs_fs_info *fs_info = root->fs_info;
1465
struct btrfs_tree_parent_check check = { 0 };
1466
u64 blocknr;
1467
struct extent_buffer *tmp = NULL;
1468
int ret = 0;
1469
int ret2;
1470
int parent_level;
1471
bool read_tmp = false;
1472
bool tmp_locked = false;
1473
bool path_released = false;
1474
1475
blocknr = btrfs_node_blockptr(*eb_ret, slot);
1476
parent_level = btrfs_header_level(*eb_ret);
1477
btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1478
check.has_first_key = true;
1479
check.level = parent_level - 1;
1480
check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1481
check.owner_root = btrfs_root_id(root);
1482
1483
/*
1484
* If we need to read an extent buffer from disk and we are holding locks
1485
* on upper level nodes, we unlock all the upper nodes before reading the
1486
* extent buffer, and then return -EAGAIN to the caller as it needs to
1487
* restart the search. We don't release the lock on the current level
1488
* because we need to walk this node to figure out which blocks to read.
1489
*/
1490
tmp = find_extent_buffer(fs_info, blocknr);
1491
if (tmp) {
1492
if (p->reada == READA_FORWARD_ALWAYS)
1493
reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1494
1495
/* first we do an atomic uptodate check */
1496
if (btrfs_buffer_uptodate(tmp, check.transid, true) > 0) {
1497
/*
1498
* Do extra check for first_key, eb can be stale due to
1499
* being cached, read from scrub, or have multiple
1500
* parents (shared tree blocks).
1501
*/
1502
if (unlikely(btrfs_verify_level_key(tmp, &check))) {
1503
ret = -EUCLEAN;
1504
goto out;
1505
}
1506
*eb_ret = tmp;
1507
tmp = NULL;
1508
ret = 0;
1509
goto out;
1510
}
1511
1512
if (p->nowait) {
1513
ret = -EAGAIN;
1514
goto out;
1515
}
1516
1517
if (!p->skip_locking) {
1518
btrfs_unlock_up_safe(p, parent_level + 1);
1519
btrfs_maybe_reset_lockdep_class(root, tmp);
1520
tmp_locked = true;
1521
btrfs_tree_read_lock(tmp);
1522
btrfs_release_path(p);
1523
ret = -EAGAIN;
1524
path_released = true;
1525
}
1526
1527
/* Now we're allowed to do a blocking uptodate check. */
1528
ret2 = btrfs_read_extent_buffer(tmp, &check);
1529
if (ret2) {
1530
ret = ret2;
1531
goto out;
1532
}
1533
1534
if (ret == 0) {
1535
ASSERT(!tmp_locked);
1536
*eb_ret = tmp;
1537
tmp = NULL;
1538
}
1539
goto out;
1540
} else if (p->nowait) {
1541
ret = -EAGAIN;
1542
goto out;
1543
}
1544
1545
if (!p->skip_locking) {
1546
btrfs_unlock_up_safe(p, parent_level + 1);
1547
ret = -EAGAIN;
1548
}
1549
1550
if (p->reada != READA_NONE)
1551
reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1552
1553
tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1554
if (IS_ERR(tmp)) {
1555
ret = PTR_ERR(tmp);
1556
tmp = NULL;
1557
goto out;
1558
}
1559
read_tmp = true;
1560
1561
if (!p->skip_locking) {
1562
ASSERT(ret == -EAGAIN);
1563
btrfs_maybe_reset_lockdep_class(root, tmp);
1564
tmp_locked = true;
1565
btrfs_tree_read_lock(tmp);
1566
btrfs_release_path(p);
1567
path_released = true;
1568
}
1569
1570
/* Now we're allowed to do a blocking uptodate check. */
1571
ret2 = btrfs_read_extent_buffer(tmp, &check);
1572
if (ret2) {
1573
ret = ret2;
1574
goto out;
1575
}
1576
1577
/*
1578
* If the read above didn't mark this buffer up to date,
1579
* it will never end up being up to date. Set ret to EIO now
1580
* and give up so that our caller doesn't loop forever
1581
* on our EAGAINs.
1582
*/
1583
if (unlikely(!extent_buffer_uptodate(tmp))) {
1584
ret = -EIO;
1585
goto out;
1586
}
1587
1588
if (ret == 0) {
1589
ASSERT(!tmp_locked);
1590
*eb_ret = tmp;
1591
tmp = NULL;
1592
}
1593
out:
1594
if (tmp) {
1595
if (tmp_locked)
1596
btrfs_tree_read_unlock(tmp);
1597
if (read_tmp && ret && ret != -EAGAIN)
1598
free_extent_buffer_stale(tmp);
1599
else
1600
free_extent_buffer(tmp);
1601
}
1602
if (ret && !path_released)
1603
btrfs_release_path(p);
1604
1605
return ret;
1606
}
1607
1608
/*
1609
* helper function for btrfs_search_slot. This does all of the checks
1610
* for node-level blocks and does any balancing required based on
1611
* the ins_len.
1612
*
1613
* If no extra work was required, zero is returned. If we had to
1614
* drop the path, -EAGAIN is returned and btrfs_search_slot must
1615
* start over
1616
*/
1617
static int
1618
setup_nodes_for_search(struct btrfs_trans_handle *trans,
1619
struct btrfs_root *root, struct btrfs_path *p,
1620
struct extent_buffer *b, int level, int ins_len,
1621
int *write_lock_level)
1622
{
1623
struct btrfs_fs_info *fs_info = root->fs_info;
1624
int ret = 0;
1625
1626
if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1627
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1628
1629
if (*write_lock_level < level + 1) {
1630
*write_lock_level = level + 1;
1631
btrfs_release_path(p);
1632
return -EAGAIN;
1633
}
1634
1635
reada_for_balance(p, level);
1636
ret = split_node(trans, root, p, level);
1637
1638
b = p->nodes[level];
1639
} else if (ins_len < 0 && btrfs_header_nritems(b) <
1640
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1641
1642
if (*write_lock_level < level + 1) {
1643
*write_lock_level = level + 1;
1644
btrfs_release_path(p);
1645
return -EAGAIN;
1646
}
1647
1648
reada_for_balance(p, level);
1649
ret = balance_level(trans, root, p, level);
1650
if (ret)
1651
return ret;
1652
1653
b = p->nodes[level];
1654
if (!b) {
1655
btrfs_release_path(p);
1656
return -EAGAIN;
1657
}
1658
BUG_ON(btrfs_header_nritems(b) == 1);
1659
}
1660
return ret;
1661
}
1662
1663
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1664
u64 iobjectid, u64 ioff, u8 key_type,
1665
struct btrfs_key *found_key)
1666
{
1667
int ret;
1668
struct btrfs_key key;
1669
struct extent_buffer *eb;
1670
1671
ASSERT(path);
1672
ASSERT(found_key);
1673
1674
key.type = key_type;
1675
key.objectid = iobjectid;
1676
key.offset = ioff;
1677
1678
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1679
if (ret < 0)
1680
return ret;
1681
1682
eb = path->nodes[0];
1683
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1684
ret = btrfs_next_leaf(fs_root, path);
1685
if (ret)
1686
return ret;
1687
eb = path->nodes[0];
1688
}
1689
1690
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1691
if (found_key->type != key.type ||
1692
found_key->objectid != key.objectid)
1693
return 1;
1694
1695
return 0;
1696
}
1697
1698
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1699
struct btrfs_path *p,
1700
int write_lock_level)
1701
{
1702
struct extent_buffer *b;
1703
int root_lock = 0;
1704
int level = 0;
1705
1706
if (p->search_commit_root) {
1707
b = root->commit_root;
1708
refcount_inc(&b->refs);
1709
level = btrfs_header_level(b);
1710
/*
1711
* Ensure that all callers have set skip_locking when
1712
* p->search_commit_root = 1.
1713
*/
1714
ASSERT(p->skip_locking == 1);
1715
1716
goto out;
1717
}
1718
1719
if (p->skip_locking) {
1720
b = btrfs_root_node(root);
1721
level = btrfs_header_level(b);
1722
goto out;
1723
}
1724
1725
/* We try very hard to do read locks on the root */
1726
root_lock = BTRFS_READ_LOCK;
1727
1728
/*
1729
* If the level is set to maximum, we can skip trying to get the read
1730
* lock.
1731
*/
1732
if (write_lock_level < BTRFS_MAX_LEVEL) {
1733
/*
1734
* We don't know the level of the root node until we actually
1735
* have it read locked
1736
*/
1737
if (p->nowait) {
1738
b = btrfs_try_read_lock_root_node(root);
1739
if (IS_ERR(b))
1740
return b;
1741
} else {
1742
b = btrfs_read_lock_root_node(root);
1743
}
1744
level = btrfs_header_level(b);
1745
if (level > write_lock_level)
1746
goto out;
1747
1748
/* Whoops, must trade for write lock */
1749
btrfs_tree_read_unlock(b);
1750
free_extent_buffer(b);
1751
}
1752
1753
b = btrfs_lock_root_node(root);
1754
root_lock = BTRFS_WRITE_LOCK;
1755
1756
/* The level might have changed, check again */
1757
level = btrfs_header_level(b);
1758
1759
out:
1760
/*
1761
* The root may have failed to write out at some point, and thus is no
1762
* longer valid, return an error in this case.
1763
*/
1764
if (unlikely(!extent_buffer_uptodate(b))) {
1765
if (root_lock)
1766
btrfs_tree_unlock_rw(b, root_lock);
1767
free_extent_buffer(b);
1768
return ERR_PTR(-EIO);
1769
}
1770
1771
p->nodes[level] = b;
1772
if (!p->skip_locking)
1773
p->locks[level] = root_lock;
1774
/*
1775
* Callers are responsible for dropping b's references.
1776
*/
1777
return b;
1778
}
1779
1780
/*
1781
* Replace the extent buffer at the lowest level of the path with a cloned
1782
* version. The purpose is to be able to use it safely, after releasing the
1783
* commit root semaphore, even if relocation is happening in parallel, the
1784
* transaction used for relocation is committed and the extent buffer is
1785
* reallocated in the next transaction.
1786
*
1787
* This is used in a context where the caller does not prevent transaction
1788
* commits from happening, either by holding a transaction handle or holding
1789
* some lock, while it's doing searches through a commit root.
1790
* At the moment it's only used for send operations.
1791
*/
1792
static int finish_need_commit_sem_search(struct btrfs_path *path)
1793
{
1794
const int i = path->lowest_level;
1795
const int slot = path->slots[i];
1796
struct extent_buffer *lowest = path->nodes[i];
1797
struct extent_buffer *clone;
1798
1799
ASSERT(path->need_commit_sem);
1800
1801
if (!lowest)
1802
return 0;
1803
1804
lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1805
1806
clone = btrfs_clone_extent_buffer(lowest);
1807
if (!clone)
1808
return -ENOMEM;
1809
1810
btrfs_release_path(path);
1811
path->nodes[i] = clone;
1812
path->slots[i] = slot;
1813
1814
return 0;
1815
}
1816
1817
static inline int search_for_key_slot(const struct extent_buffer *eb,
1818
int search_low_slot,
1819
const struct btrfs_key *key,
1820
int prev_cmp,
1821
int *slot)
1822
{
1823
/*
1824
* If a previous call to btrfs_bin_search() on a parent node returned an
1825
* exact match (prev_cmp == 0), we can safely assume the target key will
1826
* always be at slot 0 on lower levels, since each key pointer
1827
* (struct btrfs_key_ptr) refers to the lowest key accessible from the
1828
* subtree it points to. Thus we can skip searching lower levels.
1829
*/
1830
if (prev_cmp == 0) {
1831
*slot = 0;
1832
return 0;
1833
}
1834
1835
return btrfs_bin_search(eb, search_low_slot, key, slot);
1836
}
1837
1838
static int search_leaf(struct btrfs_trans_handle *trans,
1839
struct btrfs_root *root,
1840
const struct btrfs_key *key,
1841
struct btrfs_path *path,
1842
int ins_len,
1843
int prev_cmp)
1844
{
1845
struct extent_buffer *leaf = path->nodes[0];
1846
int leaf_free_space = -1;
1847
int search_low_slot = 0;
1848
int ret;
1849
bool do_bin_search = true;
1850
1851
/*
1852
* If we are doing an insertion, the leaf has enough free space and the
1853
* destination slot for the key is not slot 0, then we can unlock our
1854
* write lock on the parent, and any other upper nodes, before doing the
1855
* binary search on the leaf (with search_for_key_slot()), allowing other
1856
* tasks to lock the parent and any other upper nodes.
1857
*/
1858
if (ins_len > 0) {
1859
/*
1860
* Cache the leaf free space, since we will need it later and it
1861
* will not change until then.
1862
*/
1863
leaf_free_space = btrfs_leaf_free_space(leaf);
1864
1865
/*
1866
* !path->locks[1] means we have a single node tree, the leaf is
1867
* the root of the tree.
1868
*/
1869
if (path->locks[1] && leaf_free_space >= ins_len) {
1870
struct btrfs_disk_key first_key;
1871
1872
ASSERT(btrfs_header_nritems(leaf) > 0);
1873
btrfs_item_key(leaf, &first_key, 0);
1874
1875
/*
1876
* Doing the extra comparison with the first key is cheap,
1877
* taking into account that the first key is very likely
1878
* already in a cache line because it immediately follows
1879
* the extent buffer's header and we have recently accessed
1880
* the header's level field.
1881
*/
1882
ret = btrfs_comp_keys(&first_key, key);
1883
if (ret < 0) {
1884
/*
1885
* The first key is smaller than the key we want
1886
* to insert, so we are safe to unlock all upper
1887
* nodes and we have to do the binary search.
1888
*
1889
* We do use btrfs_unlock_up_safe() and not
1890
* unlock_up() because the later does not unlock
1891
* nodes with a slot of 0 - we can safely unlock
1892
* any node even if its slot is 0 since in this
1893
* case the key does not end up at slot 0 of the
1894
* leaf and there's no need to split the leaf.
1895
*/
1896
btrfs_unlock_up_safe(path, 1);
1897
search_low_slot = 1;
1898
} else {
1899
/*
1900
* The first key is >= then the key we want to
1901
* insert, so we can skip the binary search as
1902
* the target key will be at slot 0.
1903
*
1904
* We can not unlock upper nodes when the key is
1905
* less than the first key, because we will need
1906
* to update the key at slot 0 of the parent node
1907
* and possibly of other upper nodes too.
1908
* If the key matches the first key, then we can
1909
* unlock all the upper nodes, using
1910
* btrfs_unlock_up_safe() instead of unlock_up()
1911
* as stated above.
1912
*/
1913
if (ret == 0)
1914
btrfs_unlock_up_safe(path, 1);
1915
/*
1916
* ret is already 0 or 1, matching the result of
1917
* a btrfs_bin_search() call, so there is no need
1918
* to adjust it.
1919
*/
1920
do_bin_search = false;
1921
path->slots[0] = 0;
1922
}
1923
}
1924
}
1925
1926
if (do_bin_search) {
1927
ret = search_for_key_slot(leaf, search_low_slot, key,
1928
prev_cmp, &path->slots[0]);
1929
if (ret < 0)
1930
return ret;
1931
}
1932
1933
if (ins_len > 0) {
1934
/*
1935
* Item key already exists. In this case, if we are allowed to
1936
* insert the item (for example, in dir_item case, item key
1937
* collision is allowed), it will be merged with the original
1938
* item. Only the item size grows, no new btrfs item will be
1939
* added. If search_for_extension is not set, ins_len already
1940
* accounts the size btrfs_item, deduct it here so leaf space
1941
* check will be correct.
1942
*/
1943
if (ret == 0 && !path->search_for_extension) {
1944
ASSERT(ins_len >= sizeof(struct btrfs_item));
1945
ins_len -= sizeof(struct btrfs_item);
1946
}
1947
1948
ASSERT(leaf_free_space >= 0);
1949
1950
if (leaf_free_space < ins_len) {
1951
int ret2;
1952
1953
ret2 = split_leaf(trans, root, key, path, ins_len, (ret == 0));
1954
ASSERT(ret2 <= 0);
1955
if (WARN_ON(ret2 > 0))
1956
ret2 = -EUCLEAN;
1957
if (ret2)
1958
ret = ret2;
1959
}
1960
}
1961
1962
return ret;
1963
}
1964
1965
/*
1966
* Look for a key in a tree and perform necessary modifications to preserve
1967
* tree invariants.
1968
*
1969
* @trans: Handle of transaction, used when modifying the tree
1970
* @p: Holds all btree nodes along the search path
1971
* @root: The root node of the tree
1972
* @key: The key we are looking for
1973
* @ins_len: Indicates purpose of search:
1974
* >0 for inserts it's size of item inserted (*)
1975
* <0 for deletions
1976
* 0 for plain searches, not modifying the tree
1977
*
1978
* (*) If size of item inserted doesn't include
1979
* sizeof(struct btrfs_item), then p->search_for_extension must
1980
* be set.
1981
* @cow: boolean should CoW operations be performed. Must always be 1
1982
* when modifying the tree.
1983
*
1984
* If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1985
* If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1986
*
1987
* If @key is found, 0 is returned and you can find the item in the leaf level
1988
* of the path (level 0)
1989
*
1990
* If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1991
* points to the slot where it should be inserted
1992
*
1993
* If an error is encountered while searching the tree a negative error number
1994
* is returned
1995
*/
1996
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1997
const struct btrfs_key *key, struct btrfs_path *p,
1998
int ins_len, int cow)
1999
{
2000
struct btrfs_fs_info *fs_info;
2001
struct extent_buffer *b;
2002
int slot;
2003
int ret;
2004
int level;
2005
int lowest_unlock = 1;
2006
/* everything at write_lock_level or lower must be write locked */
2007
int write_lock_level = 0;
2008
u8 lowest_level = 0;
2009
int min_write_lock_level;
2010
int prev_cmp;
2011
2012
if (!root)
2013
return -EINVAL;
2014
2015
fs_info = root->fs_info;
2016
might_sleep();
2017
2018
lowest_level = p->lowest_level;
2019
WARN_ON(lowest_level && ins_len > 0);
2020
WARN_ON(p->nodes[0] != NULL);
2021
BUG_ON(!cow && ins_len);
2022
2023
/*
2024
* For now only allow nowait for read only operations. There's no
2025
* strict reason why we can't, we just only need it for reads so it's
2026
* only implemented for reads.
2027
*/
2028
ASSERT(!p->nowait || !cow);
2029
2030
if (ins_len < 0) {
2031
lowest_unlock = 2;
2032
2033
/* when we are removing items, we might have to go up to level
2034
* two as we update tree pointers Make sure we keep write
2035
* for those levels as well
2036
*/
2037
write_lock_level = 2;
2038
} else if (ins_len > 0) {
2039
/*
2040
* for inserting items, make sure we have a write lock on
2041
* level 1 so we can update keys
2042
*/
2043
write_lock_level = 1;
2044
}
2045
2046
if (!cow)
2047
write_lock_level = -1;
2048
2049
if (cow && (p->keep_locks || p->lowest_level))
2050
write_lock_level = BTRFS_MAX_LEVEL;
2051
2052
min_write_lock_level = write_lock_level;
2053
2054
if (p->need_commit_sem) {
2055
ASSERT(p->search_commit_root);
2056
if (p->nowait) {
2057
if (!down_read_trylock(&fs_info->commit_root_sem))
2058
return -EAGAIN;
2059
} else {
2060
down_read(&fs_info->commit_root_sem);
2061
}
2062
}
2063
2064
again:
2065
prev_cmp = -1;
2066
b = btrfs_search_slot_get_root(root, p, write_lock_level);
2067
if (IS_ERR(b)) {
2068
ret = PTR_ERR(b);
2069
goto done;
2070
}
2071
2072
while (b) {
2073
int dec = 0;
2074
int ret2;
2075
2076
level = btrfs_header_level(b);
2077
2078
if (cow) {
2079
bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2080
2081
/*
2082
* if we don't really need to cow this block
2083
* then we don't want to set the path blocking,
2084
* so we test it here
2085
*/
2086
if (!should_cow_block(trans, root, b))
2087
goto cow_done;
2088
2089
/*
2090
* must have write locks on this node and the
2091
* parent
2092
*/
2093
if (level > write_lock_level ||
2094
(level + 1 > write_lock_level &&
2095
level + 1 < BTRFS_MAX_LEVEL &&
2096
p->nodes[level + 1])) {
2097
write_lock_level = level + 1;
2098
btrfs_release_path(p);
2099
goto again;
2100
}
2101
2102
if (last_level)
2103
ret2 = btrfs_cow_block(trans, root, b, NULL, 0,
2104
&b, BTRFS_NESTING_COW);
2105
else
2106
ret2 = btrfs_cow_block(trans, root, b,
2107
p->nodes[level + 1],
2108
p->slots[level + 1], &b,
2109
BTRFS_NESTING_COW);
2110
if (ret2) {
2111
ret = ret2;
2112
goto done;
2113
}
2114
}
2115
cow_done:
2116
p->nodes[level] = b;
2117
2118
/*
2119
* we have a lock on b and as long as we aren't changing
2120
* the tree, there is no way to for the items in b to change.
2121
* It is safe to drop the lock on our parent before we
2122
* go through the expensive btree search on b.
2123
*
2124
* If we're inserting or deleting (ins_len != 0), then we might
2125
* be changing slot zero, which may require changing the parent.
2126
* So, we can't drop the lock until after we know which slot
2127
* we're operating on.
2128
*/
2129
if (!ins_len && !p->keep_locks) {
2130
int u = level + 1;
2131
2132
if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2133
btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2134
p->locks[u] = 0;
2135
}
2136
}
2137
2138
if (level == 0) {
2139
if (ins_len > 0)
2140
ASSERT(write_lock_level >= 1);
2141
2142
ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2143
if (!p->search_for_split)
2144
unlock_up(p, level, lowest_unlock,
2145
min_write_lock_level, NULL);
2146
goto done;
2147
}
2148
2149
ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2150
if (ret < 0)
2151
goto done;
2152
prev_cmp = ret;
2153
2154
if (ret && slot > 0) {
2155
dec = 1;
2156
slot--;
2157
}
2158
p->slots[level] = slot;
2159
ret2 = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2160
&write_lock_level);
2161
if (ret2 == -EAGAIN)
2162
goto again;
2163
if (ret2) {
2164
ret = ret2;
2165
goto done;
2166
}
2167
b = p->nodes[level];
2168
slot = p->slots[level];
2169
2170
/*
2171
* Slot 0 is special, if we change the key we have to update
2172
* the parent pointer which means we must have a write lock on
2173
* the parent
2174
*/
2175
if (slot == 0 && ins_len && write_lock_level < level + 1) {
2176
write_lock_level = level + 1;
2177
btrfs_release_path(p);
2178
goto again;
2179
}
2180
2181
unlock_up(p, level, lowest_unlock, min_write_lock_level,
2182
&write_lock_level);
2183
2184
if (level == lowest_level) {
2185
if (dec)
2186
p->slots[level]++;
2187
goto done;
2188
}
2189
2190
ret2 = read_block_for_search(root, p, &b, slot, key);
2191
if (ret2 == -EAGAIN && !p->nowait)
2192
goto again;
2193
if (ret2) {
2194
ret = ret2;
2195
goto done;
2196
}
2197
2198
if (!p->skip_locking) {
2199
level = btrfs_header_level(b);
2200
2201
btrfs_maybe_reset_lockdep_class(root, b);
2202
2203
if (level <= write_lock_level) {
2204
btrfs_tree_lock(b);
2205
p->locks[level] = BTRFS_WRITE_LOCK;
2206
} else {
2207
if (p->nowait) {
2208
if (!btrfs_try_tree_read_lock(b)) {
2209
free_extent_buffer(b);
2210
ret = -EAGAIN;
2211
goto done;
2212
}
2213
} else {
2214
btrfs_tree_read_lock(b);
2215
}
2216
p->locks[level] = BTRFS_READ_LOCK;
2217
}
2218
p->nodes[level] = b;
2219
}
2220
}
2221
ret = 1;
2222
done:
2223
if (ret < 0 && !p->skip_release_on_error)
2224
btrfs_release_path(p);
2225
2226
if (p->need_commit_sem) {
2227
int ret2;
2228
2229
ret2 = finish_need_commit_sem_search(p);
2230
up_read(&fs_info->commit_root_sem);
2231
if (ret2)
2232
ret = ret2;
2233
}
2234
2235
return ret;
2236
}
2237
ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2238
2239
/*
2240
* Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2241
* current state of the tree together with the operations recorded in the tree
2242
* modification log to search for the key in a previous version of this tree, as
2243
* denoted by the time_seq parameter.
2244
*
2245
* Naturally, there is no support for insert, delete or cow operations.
2246
*
2247
* The resulting path and return value will be set up as if we called
2248
* btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2249
*/
2250
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2251
struct btrfs_path *p, u64 time_seq)
2252
{
2253
struct btrfs_fs_info *fs_info = root->fs_info;
2254
struct extent_buffer *b;
2255
int slot;
2256
int ret;
2257
int level;
2258
int lowest_unlock = 1;
2259
u8 lowest_level = 0;
2260
2261
lowest_level = p->lowest_level;
2262
WARN_ON(p->nodes[0] != NULL);
2263
ASSERT(!p->nowait);
2264
2265
if (p->search_commit_root) {
2266
BUG_ON(time_seq);
2267
return btrfs_search_slot(NULL, root, key, p, 0, 0);
2268
}
2269
2270
again:
2271
b = btrfs_get_old_root(root, time_seq);
2272
if (unlikely(!b)) {
2273
ret = -EIO;
2274
goto done;
2275
}
2276
level = btrfs_header_level(b);
2277
p->locks[level] = BTRFS_READ_LOCK;
2278
2279
while (b) {
2280
int dec = 0;
2281
int ret2;
2282
2283
level = btrfs_header_level(b);
2284
p->nodes[level] = b;
2285
2286
/*
2287
* we have a lock on b and as long as we aren't changing
2288
* the tree, there is no way to for the items in b to change.
2289
* It is safe to drop the lock on our parent before we
2290
* go through the expensive btree search on b.
2291
*/
2292
btrfs_unlock_up_safe(p, level + 1);
2293
2294
ret = btrfs_bin_search(b, 0, key, &slot);
2295
if (ret < 0)
2296
goto done;
2297
2298
if (level == 0) {
2299
p->slots[level] = slot;
2300
unlock_up(p, level, lowest_unlock, 0, NULL);
2301
goto done;
2302
}
2303
2304
if (ret && slot > 0) {
2305
dec = 1;
2306
slot--;
2307
}
2308
p->slots[level] = slot;
2309
unlock_up(p, level, lowest_unlock, 0, NULL);
2310
2311
if (level == lowest_level) {
2312
if (dec)
2313
p->slots[level]++;
2314
goto done;
2315
}
2316
2317
ret2 = read_block_for_search(root, p, &b, slot, key);
2318
if (ret2 == -EAGAIN && !p->nowait)
2319
goto again;
2320
if (ret2) {
2321
ret = ret2;
2322
goto done;
2323
}
2324
2325
level = btrfs_header_level(b);
2326
btrfs_tree_read_lock(b);
2327
b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2328
if (!b) {
2329
ret = -ENOMEM;
2330
goto done;
2331
}
2332
p->locks[level] = BTRFS_READ_LOCK;
2333
p->nodes[level] = b;
2334
}
2335
ret = 1;
2336
done:
2337
if (ret < 0)
2338
btrfs_release_path(p);
2339
2340
return ret;
2341
}
2342
2343
/*
2344
* Search the tree again to find a leaf with smaller keys.
2345
* Returns 0 if it found something.
2346
* Returns 1 if there are no smaller keys.
2347
* Returns < 0 on error.
2348
*
2349
* This may release the path, and so you may lose any locks held at the
2350
* time you call it.
2351
*/
2352
static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2353
{
2354
struct btrfs_key key;
2355
struct btrfs_key orig_key;
2356
struct btrfs_disk_key found_key;
2357
int ret;
2358
2359
btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2360
orig_key = key;
2361
2362
if (key.offset > 0) {
2363
key.offset--;
2364
} else if (key.type > 0) {
2365
key.type--;
2366
key.offset = (u64)-1;
2367
} else if (key.objectid > 0) {
2368
key.objectid--;
2369
key.type = (u8)-1;
2370
key.offset = (u64)-1;
2371
} else {
2372
return 1;
2373
}
2374
2375
btrfs_release_path(path);
2376
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2377
if (ret <= 0)
2378
return ret;
2379
2380
/*
2381
* Previous key not found. Even if we were at slot 0 of the leaf we had
2382
* before releasing the path and calling btrfs_search_slot(), we now may
2383
* be in a slot pointing to the same original key - this can happen if
2384
* after we released the path, one of more items were moved from a
2385
* sibling leaf into the front of the leaf we had due to an insertion
2386
* (see push_leaf_right()).
2387
* If we hit this case and our slot is > 0 and just decrement the slot
2388
* so that the caller does not process the same key again, which may or
2389
* may not break the caller, depending on its logic.
2390
*/
2391
if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2392
btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2393
ret = btrfs_comp_keys(&found_key, &orig_key);
2394
if (ret == 0) {
2395
if (path->slots[0] > 0) {
2396
path->slots[0]--;
2397
return 0;
2398
}
2399
/*
2400
* At slot 0, same key as before, it means orig_key is
2401
* the lowest, leftmost, key in the tree. We're done.
2402
*/
2403
return 1;
2404
}
2405
}
2406
2407
btrfs_item_key(path->nodes[0], &found_key, 0);
2408
ret = btrfs_comp_keys(&found_key, &key);
2409
/*
2410
* We might have had an item with the previous key in the tree right
2411
* before we released our path. And after we released our path, that
2412
* item might have been pushed to the first slot (0) of the leaf we
2413
* were holding due to a tree balance. Alternatively, an item with the
2414
* previous key can exist as the only element of a leaf (big fat item).
2415
* Therefore account for these 2 cases, so that our callers (like
2416
* btrfs_previous_item) don't miss an existing item with a key matching
2417
* the previous key we computed above.
2418
*/
2419
if (ret <= 0)
2420
return 0;
2421
return 1;
2422
}
2423
2424
/*
2425
* helper to use instead of search slot if no exact match is needed but
2426
* instead the next or previous item should be returned.
2427
* When find_higher is true, the next higher item is returned, the next lower
2428
* otherwise.
2429
* When return_any and find_higher are both true, and no higher item is found,
2430
* return the next lower instead.
2431
* When return_any is true and find_higher is false, and no lower item is found,
2432
* return the next higher instead.
2433
* It returns 0 if any item is found, 1 if none is found (tree empty), and
2434
* < 0 on error
2435
*/
2436
int btrfs_search_slot_for_read(struct btrfs_root *root,
2437
const struct btrfs_key *key,
2438
struct btrfs_path *p, int find_higher,
2439
int return_any)
2440
{
2441
int ret;
2442
struct extent_buffer *leaf;
2443
2444
again:
2445
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2446
if (ret <= 0)
2447
return ret;
2448
/*
2449
* a return value of 1 means the path is at the position where the
2450
* item should be inserted. Normally this is the next bigger item,
2451
* but in case the previous item is the last in a leaf, path points
2452
* to the first free slot in the previous leaf, i.e. at an invalid
2453
* item.
2454
*/
2455
leaf = p->nodes[0];
2456
2457
if (find_higher) {
2458
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2459
ret = btrfs_next_leaf(root, p);
2460
if (ret <= 0)
2461
return ret;
2462
if (!return_any)
2463
return 1;
2464
/*
2465
* no higher item found, return the next
2466
* lower instead
2467
*/
2468
return_any = 0;
2469
find_higher = 0;
2470
btrfs_release_path(p);
2471
goto again;
2472
}
2473
} else {
2474
if (p->slots[0] == 0) {
2475
ret = btrfs_prev_leaf(root, p);
2476
if (ret < 0)
2477
return ret;
2478
if (!ret) {
2479
leaf = p->nodes[0];
2480
if (p->slots[0] == btrfs_header_nritems(leaf))
2481
p->slots[0]--;
2482
return 0;
2483
}
2484
if (!return_any)
2485
return 1;
2486
/*
2487
* no lower item found, return the next
2488
* higher instead
2489
*/
2490
return_any = 0;
2491
find_higher = 1;
2492
btrfs_release_path(p);
2493
goto again;
2494
} else {
2495
--p->slots[0];
2496
}
2497
}
2498
return 0;
2499
}
2500
2501
/*
2502
* Execute search and call btrfs_previous_item to traverse backwards if the item
2503
* was not found.
2504
*
2505
* Return 0 if found, 1 if not found and < 0 if error.
2506
*/
2507
int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2508
struct btrfs_path *path)
2509
{
2510
int ret;
2511
2512
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2513
if (ret > 0)
2514
ret = btrfs_previous_item(root, path, key->objectid, key->type);
2515
2516
if (ret == 0)
2517
btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2518
2519
return ret;
2520
}
2521
2522
/*
2523
* Search for a valid slot for the given path.
2524
*
2525
* @root: The root node of the tree.
2526
* @key: Will contain a valid item if found.
2527
* @path: The starting point to validate the slot.
2528
*
2529
* Return: 0 if the item is valid
2530
* 1 if not found
2531
* <0 if error.
2532
*/
2533
int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2534
struct btrfs_path *path)
2535
{
2536
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2537
int ret;
2538
2539
ret = btrfs_next_leaf(root, path);
2540
if (ret)
2541
return ret;
2542
}
2543
2544
btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2545
return 0;
2546
}
2547
2548
/*
2549
* adjust the pointers going up the tree, starting at level
2550
* making sure the right key of each node is points to 'key'.
2551
* This is used after shifting pointers to the left, so it stops
2552
* fixing up pointers when a given leaf/node is not in slot 0 of the
2553
* higher levels
2554
*
2555
*/
2556
static void fixup_low_keys(struct btrfs_trans_handle *trans,
2557
const struct btrfs_path *path,
2558
const struct btrfs_disk_key *key, int level)
2559
{
2560
int i;
2561
struct extent_buffer *t;
2562
int ret;
2563
2564
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2565
int tslot = path->slots[i];
2566
2567
if (!path->nodes[i])
2568
break;
2569
t = path->nodes[i];
2570
ret = btrfs_tree_mod_log_insert_key(t, tslot,
2571
BTRFS_MOD_LOG_KEY_REPLACE);
2572
BUG_ON(ret < 0);
2573
btrfs_set_node_key(t, key, tslot);
2574
btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2575
if (tslot != 0)
2576
break;
2577
}
2578
}
2579
2580
/*
2581
* update item key.
2582
*
2583
* This function isn't completely safe. It's the caller's responsibility
2584
* that the new key won't break the order
2585
*/
2586
void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2587
const struct btrfs_path *path,
2588
const struct btrfs_key *new_key)
2589
{
2590
struct btrfs_fs_info *fs_info = trans->fs_info;
2591
struct btrfs_disk_key disk_key;
2592
struct extent_buffer *eb;
2593
int slot;
2594
2595
eb = path->nodes[0];
2596
slot = path->slots[0];
2597
if (slot > 0) {
2598
btrfs_item_key(eb, &disk_key, slot - 1);
2599
if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2600
btrfs_print_leaf(eb);
2601
btrfs_crit(fs_info,
2602
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2603
slot, btrfs_disk_key_objectid(&disk_key),
2604
btrfs_disk_key_type(&disk_key),
2605
btrfs_disk_key_offset(&disk_key),
2606
new_key->objectid, new_key->type,
2607
new_key->offset);
2608
BUG();
2609
}
2610
}
2611
if (slot < btrfs_header_nritems(eb) - 1) {
2612
btrfs_item_key(eb, &disk_key, slot + 1);
2613
if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2614
btrfs_print_leaf(eb);
2615
btrfs_crit(fs_info,
2616
"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2617
slot, btrfs_disk_key_objectid(&disk_key),
2618
btrfs_disk_key_type(&disk_key),
2619
btrfs_disk_key_offset(&disk_key),
2620
new_key->objectid, new_key->type,
2621
new_key->offset);
2622
BUG();
2623
}
2624
}
2625
2626
btrfs_cpu_key_to_disk(&disk_key, new_key);
2627
btrfs_set_item_key(eb, &disk_key, slot);
2628
btrfs_mark_buffer_dirty(trans, eb);
2629
if (slot == 0)
2630
fixup_low_keys(trans, path, &disk_key, 1);
2631
}
2632
2633
/*
2634
* Check key order of two sibling extent buffers.
2635
*
2636
* Return true if something is wrong.
2637
* Return false if everything is fine.
2638
*
2639
* Tree-checker only works inside one tree block, thus the following
2640
* corruption can not be detected by tree-checker:
2641
*
2642
* Leaf @left | Leaf @right
2643
* --------------------------------------------------------------
2644
* | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2645
*
2646
* Key f6 in leaf @left itself is valid, but not valid when the next
2647
* key in leaf @right is 7.
2648
* This can only be checked at tree block merge time.
2649
* And since tree checker has ensured all key order in each tree block
2650
* is correct, we only need to bother the last key of @left and the first
2651
* key of @right.
2652
*/
2653
static bool check_sibling_keys(const struct extent_buffer *left,
2654
const struct extent_buffer *right)
2655
{
2656
struct btrfs_key left_last;
2657
struct btrfs_key right_first;
2658
int level = btrfs_header_level(left);
2659
int nr_left = btrfs_header_nritems(left);
2660
int nr_right = btrfs_header_nritems(right);
2661
2662
/* No key to check in one of the tree blocks */
2663
if (!nr_left || !nr_right)
2664
return false;
2665
2666
if (level) {
2667
btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2668
btrfs_node_key_to_cpu(right, &right_first, 0);
2669
} else {
2670
btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2671
btrfs_item_key_to_cpu(right, &right_first, 0);
2672
}
2673
2674
if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2675
btrfs_crit(left->fs_info, "left extent buffer:");
2676
btrfs_print_tree(left, false);
2677
btrfs_crit(left->fs_info, "right extent buffer:");
2678
btrfs_print_tree(right, false);
2679
btrfs_crit(left->fs_info,
2680
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2681
left_last.objectid, left_last.type,
2682
left_last.offset, right_first.objectid,
2683
right_first.type, right_first.offset);
2684
return true;
2685
}
2686
return false;
2687
}
2688
2689
/*
2690
* try to push data from one node into the next node left in the
2691
* tree.
2692
*
2693
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2694
* error, and > 0 if there was no room in the left hand block.
2695
*/
2696
static int push_node_left(struct btrfs_trans_handle *trans,
2697
struct extent_buffer *dst,
2698
struct extent_buffer *src, bool empty)
2699
{
2700
struct btrfs_fs_info *fs_info = trans->fs_info;
2701
int push_items = 0;
2702
int src_nritems;
2703
int dst_nritems;
2704
int ret = 0;
2705
2706
src_nritems = btrfs_header_nritems(src);
2707
dst_nritems = btrfs_header_nritems(dst);
2708
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2709
WARN_ON(btrfs_header_generation(src) != trans->transid);
2710
WARN_ON(btrfs_header_generation(dst) != trans->transid);
2711
2712
if (!empty && src_nritems <= 8)
2713
return 1;
2714
2715
if (push_items <= 0)
2716
return 1;
2717
2718
if (empty) {
2719
push_items = min(src_nritems, push_items);
2720
if (push_items < src_nritems) {
2721
/* leave at least 8 pointers in the node if
2722
* we aren't going to empty it
2723
*/
2724
if (src_nritems - push_items < 8) {
2725
if (push_items <= 8)
2726
return 1;
2727
push_items -= 8;
2728
}
2729
}
2730
} else
2731
push_items = min(src_nritems - 8, push_items);
2732
2733
/* dst is the left eb, src is the middle eb */
2734
if (unlikely(check_sibling_keys(dst, src))) {
2735
ret = -EUCLEAN;
2736
btrfs_abort_transaction(trans, ret);
2737
return ret;
2738
}
2739
ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2740
if (unlikely(ret)) {
2741
btrfs_abort_transaction(trans, ret);
2742
return ret;
2743
}
2744
copy_extent_buffer(dst, src,
2745
btrfs_node_key_ptr_offset(dst, dst_nritems),
2746
btrfs_node_key_ptr_offset(src, 0),
2747
push_items * sizeof(struct btrfs_key_ptr));
2748
2749
if (push_items < src_nritems) {
2750
/*
2751
* btrfs_tree_mod_log_eb_copy handles logging the move, so we
2752
* don't need to do an explicit tree mod log operation for it.
2753
*/
2754
memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2755
btrfs_node_key_ptr_offset(src, push_items),
2756
(src_nritems - push_items) *
2757
sizeof(struct btrfs_key_ptr));
2758
}
2759
btrfs_set_header_nritems(src, src_nritems - push_items);
2760
btrfs_set_header_nritems(dst, dst_nritems + push_items);
2761
btrfs_mark_buffer_dirty(trans, src);
2762
btrfs_mark_buffer_dirty(trans, dst);
2763
2764
return ret;
2765
}
2766
2767
/*
2768
* try to push data from one node into the next node right in the
2769
* tree.
2770
*
2771
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
2772
* error, and > 0 if there was no room in the right hand block.
2773
*
2774
* this will only push up to 1/2 the contents of the left node over
2775
*/
2776
static int balance_node_right(struct btrfs_trans_handle *trans,
2777
struct extent_buffer *dst,
2778
struct extent_buffer *src)
2779
{
2780
struct btrfs_fs_info *fs_info = trans->fs_info;
2781
int push_items = 0;
2782
int max_push;
2783
int src_nritems;
2784
int dst_nritems;
2785
int ret = 0;
2786
2787
WARN_ON(btrfs_header_generation(src) != trans->transid);
2788
WARN_ON(btrfs_header_generation(dst) != trans->transid);
2789
2790
src_nritems = btrfs_header_nritems(src);
2791
dst_nritems = btrfs_header_nritems(dst);
2792
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2793
if (push_items <= 0)
2794
return 1;
2795
2796
if (src_nritems < 4)
2797
return 1;
2798
2799
max_push = src_nritems / 2 + 1;
2800
/* don't try to empty the node */
2801
if (max_push >= src_nritems)
2802
return 1;
2803
2804
if (max_push < push_items)
2805
push_items = max_push;
2806
2807
/* dst is the right eb, src is the middle eb */
2808
if (unlikely(check_sibling_keys(src, dst))) {
2809
ret = -EUCLEAN;
2810
btrfs_abort_transaction(trans, ret);
2811
return ret;
2812
}
2813
2814
/*
2815
* btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2816
* need to do an explicit tree mod log operation for it.
2817
*/
2818
memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2819
btrfs_node_key_ptr_offset(dst, 0),
2820
(dst_nritems) *
2821
sizeof(struct btrfs_key_ptr));
2822
2823
ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2824
push_items);
2825
if (unlikely(ret)) {
2826
btrfs_abort_transaction(trans, ret);
2827
return ret;
2828
}
2829
copy_extent_buffer(dst, src,
2830
btrfs_node_key_ptr_offset(dst, 0),
2831
btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2832
push_items * sizeof(struct btrfs_key_ptr));
2833
2834
btrfs_set_header_nritems(src, src_nritems - push_items);
2835
btrfs_set_header_nritems(dst, dst_nritems + push_items);
2836
2837
btrfs_mark_buffer_dirty(trans, src);
2838
btrfs_mark_buffer_dirty(trans, dst);
2839
2840
return ret;
2841
}
2842
2843
/*
2844
* helper function to insert a new root level in the tree.
2845
* A new node is allocated, and a single item is inserted to
2846
* point to the existing root
2847
*
2848
* returns zero on success or < 0 on failure.
2849
*/
2850
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2851
struct btrfs_root *root,
2852
struct btrfs_path *path, int level)
2853
{
2854
u64 lower_gen;
2855
struct extent_buffer *lower;
2856
struct extent_buffer *c;
2857
struct extent_buffer *old;
2858
struct btrfs_disk_key lower_key;
2859
int ret;
2860
2861
BUG_ON(path->nodes[level]);
2862
BUG_ON(path->nodes[level-1] != root->node);
2863
2864
lower = path->nodes[level-1];
2865
if (level == 1)
2866
btrfs_item_key(lower, &lower_key, 0);
2867
else
2868
btrfs_node_key(lower, &lower_key, 0);
2869
2870
c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2871
&lower_key, level, root->node->start, 0,
2872
0, BTRFS_NESTING_NEW_ROOT);
2873
if (IS_ERR(c))
2874
return PTR_ERR(c);
2875
2876
root_add_used_bytes(root);
2877
2878
btrfs_set_header_nritems(c, 1);
2879
btrfs_set_node_key(c, &lower_key, 0);
2880
btrfs_set_node_blockptr(c, 0, lower->start);
2881
lower_gen = btrfs_header_generation(lower);
2882
WARN_ON(lower_gen != trans->transid);
2883
2884
btrfs_set_node_ptr_generation(c, 0, lower_gen);
2885
2886
btrfs_mark_buffer_dirty(trans, c);
2887
2888
old = root->node;
2889
ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2890
if (ret < 0) {
2891
int ret2;
2892
2893
btrfs_clear_buffer_dirty(trans, c);
2894
ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2895
if (unlikely(ret2 < 0))
2896
btrfs_abort_transaction(trans, ret2);
2897
btrfs_tree_unlock(c);
2898
free_extent_buffer(c);
2899
return ret;
2900
}
2901
rcu_assign_pointer(root->node, c);
2902
2903
/* the super has an extra ref to root->node */
2904
free_extent_buffer(old);
2905
2906
add_root_to_dirty_list(root);
2907
refcount_inc(&c->refs);
2908
path->nodes[level] = c;
2909
path->locks[level] = BTRFS_WRITE_LOCK;
2910
path->slots[level] = 0;
2911
return 0;
2912
}
2913
2914
/*
2915
* worker function to insert a single pointer in a node.
2916
* the node should have enough room for the pointer already
2917
*
2918
* slot and level indicate where you want the key to go, and
2919
* blocknr is the block the key points to.
2920
*/
2921
static int insert_ptr(struct btrfs_trans_handle *trans,
2922
const struct btrfs_path *path,
2923
const struct btrfs_disk_key *key, u64 bytenr,
2924
int slot, int level)
2925
{
2926
struct extent_buffer *lower;
2927
int nritems;
2928
int ret;
2929
2930
BUG_ON(!path->nodes[level]);
2931
btrfs_assert_tree_write_locked(path->nodes[level]);
2932
lower = path->nodes[level];
2933
nritems = btrfs_header_nritems(lower);
2934
BUG_ON(slot > nritems);
2935
BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2936
if (slot != nritems) {
2937
if (level) {
2938
ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2939
slot, nritems - slot);
2940
if (unlikely(ret < 0)) {
2941
btrfs_abort_transaction(trans, ret);
2942
return ret;
2943
}
2944
}
2945
memmove_extent_buffer(lower,
2946
btrfs_node_key_ptr_offset(lower, slot + 1),
2947
btrfs_node_key_ptr_offset(lower, slot),
2948
(nritems - slot) * sizeof(struct btrfs_key_ptr));
2949
}
2950
if (level) {
2951
ret = btrfs_tree_mod_log_insert_key(lower, slot,
2952
BTRFS_MOD_LOG_KEY_ADD);
2953
if (unlikely(ret < 0)) {
2954
btrfs_abort_transaction(trans, ret);
2955
return ret;
2956
}
2957
}
2958
btrfs_set_node_key(lower, key, slot);
2959
btrfs_set_node_blockptr(lower, slot, bytenr);
2960
WARN_ON(trans->transid == 0);
2961
btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2962
btrfs_set_header_nritems(lower, nritems + 1);
2963
btrfs_mark_buffer_dirty(trans, lower);
2964
2965
return 0;
2966
}
2967
2968
/*
2969
* split the node at the specified level in path in two.
2970
* The path is corrected to point to the appropriate node after the split
2971
*
2972
* Before splitting this tries to make some room in the node by pushing
2973
* left and right, if either one works, it returns right away.
2974
*
2975
* returns 0 on success and < 0 on failure
2976
*/
2977
static noinline int split_node(struct btrfs_trans_handle *trans,
2978
struct btrfs_root *root,
2979
struct btrfs_path *path, int level)
2980
{
2981
struct btrfs_fs_info *fs_info = root->fs_info;
2982
struct extent_buffer *c;
2983
struct extent_buffer *split;
2984
struct btrfs_disk_key disk_key;
2985
int mid;
2986
int ret;
2987
u32 c_nritems;
2988
2989
c = path->nodes[level];
2990
WARN_ON(btrfs_header_generation(c) != trans->transid);
2991
if (c == root->node) {
2992
/*
2993
* trying to split the root, lets make a new one
2994
*
2995
* tree mod log: We don't log_removal old root in
2996
* insert_new_root, because that root buffer will be kept as a
2997
* normal node. We are going to log removal of half of the
2998
* elements below with btrfs_tree_mod_log_eb_copy(). We're
2999
* holding a tree lock on the buffer, which is why we cannot
3000
* race with other tree_mod_log users.
3001
*/
3002
ret = insert_new_root(trans, root, path, level + 1);
3003
if (ret)
3004
return ret;
3005
} else {
3006
ret = push_nodes_for_insert(trans, root, path, level);
3007
c = path->nodes[level];
3008
if (!ret && btrfs_header_nritems(c) <
3009
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3010
return 0;
3011
if (ret < 0)
3012
return ret;
3013
}
3014
3015
c_nritems = btrfs_header_nritems(c);
3016
mid = (c_nritems + 1) / 2;
3017
btrfs_node_key(c, &disk_key, mid);
3018
3019
split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3020
&disk_key, level, c->start, 0,
3021
0, BTRFS_NESTING_SPLIT);
3022
if (IS_ERR(split))
3023
return PTR_ERR(split);
3024
3025
root_add_used_bytes(root);
3026
ASSERT(btrfs_header_level(c) == level);
3027
3028
ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3029
if (unlikely(ret)) {
3030
btrfs_tree_unlock(split);
3031
free_extent_buffer(split);
3032
btrfs_abort_transaction(trans, ret);
3033
return ret;
3034
}
3035
copy_extent_buffer(split, c,
3036
btrfs_node_key_ptr_offset(split, 0),
3037
btrfs_node_key_ptr_offset(c, mid),
3038
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3039
btrfs_set_header_nritems(split, c_nritems - mid);
3040
btrfs_set_header_nritems(c, mid);
3041
3042
btrfs_mark_buffer_dirty(trans, c);
3043
btrfs_mark_buffer_dirty(trans, split);
3044
3045
ret = insert_ptr(trans, path, &disk_key, split->start,
3046
path->slots[level + 1] + 1, level + 1);
3047
if (ret < 0) {
3048
btrfs_tree_unlock(split);
3049
free_extent_buffer(split);
3050
return ret;
3051
}
3052
3053
if (path->slots[level] >= mid) {
3054
path->slots[level] -= mid;
3055
btrfs_tree_unlock(c);
3056
free_extent_buffer(c);
3057
path->nodes[level] = split;
3058
path->slots[level + 1] += 1;
3059
} else {
3060
btrfs_tree_unlock(split);
3061
free_extent_buffer(split);
3062
}
3063
return 0;
3064
}
3065
3066
/*
3067
* how many bytes are required to store the items in a leaf. start
3068
* and nr indicate which items in the leaf to check. This totals up the
3069
* space used both by the item structs and the item data
3070
*/
3071
static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3072
{
3073
int data_len;
3074
int nritems = btrfs_header_nritems(l);
3075
int end = min(nritems, start + nr) - 1;
3076
3077
if (!nr)
3078
return 0;
3079
data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3080
data_len = data_len - btrfs_item_offset(l, end);
3081
data_len += sizeof(struct btrfs_item) * nr;
3082
WARN_ON(data_len < 0);
3083
return data_len;
3084
}
3085
3086
/*
3087
* The space between the end of the leaf items and
3088
* the start of the leaf data. IOW, how much room
3089
* the leaf has left for both items and data
3090
*/
3091
int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3092
{
3093
struct btrfs_fs_info *fs_info = leaf->fs_info;
3094
int nritems = btrfs_header_nritems(leaf);
3095
int ret;
3096
3097
ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3098
if (unlikely(ret < 0)) {
3099
btrfs_crit(fs_info,
3100
"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3101
ret,
3102
(unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3103
leaf_space_used(leaf, 0, nritems), nritems);
3104
}
3105
return ret;
3106
}
3107
3108
/*
3109
* min slot controls the lowest index we're willing to push to the
3110
* right. We'll push up to and including min_slot, but no lower
3111
*/
3112
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3113
struct btrfs_path *path,
3114
int data_size, bool empty,
3115
struct extent_buffer *right,
3116
int free_space, u32 left_nritems,
3117
u32 min_slot)
3118
{
3119
struct btrfs_fs_info *fs_info = right->fs_info;
3120
struct extent_buffer *left = path->nodes[0];
3121
struct extent_buffer *upper = path->nodes[1];
3122
struct btrfs_disk_key disk_key;
3123
int slot;
3124
u32 i;
3125
int push_space = 0;
3126
int push_items = 0;
3127
u32 nr;
3128
u32 right_nritems;
3129
u32 data_end;
3130
u32 this_item_size;
3131
3132
if (empty)
3133
nr = 0;
3134
else
3135
nr = max_t(u32, 1, min_slot);
3136
3137
if (path->slots[0] >= left_nritems)
3138
push_space += data_size;
3139
3140
slot = path->slots[1];
3141
i = left_nritems - 1;
3142
while (i >= nr) {
3143
if (!empty && push_items > 0) {
3144
if (path->slots[0] > i)
3145
break;
3146
if (path->slots[0] == i) {
3147
int space = btrfs_leaf_free_space(left);
3148
3149
if (space + push_space * 2 > free_space)
3150
break;
3151
}
3152
}
3153
3154
if (path->slots[0] == i)
3155
push_space += data_size;
3156
3157
this_item_size = btrfs_item_size(left, i);
3158
if (this_item_size + sizeof(struct btrfs_item) +
3159
push_space > free_space)
3160
break;
3161
3162
push_items++;
3163
push_space += this_item_size + sizeof(struct btrfs_item);
3164
if (i == 0)
3165
break;
3166
i--;
3167
}
3168
3169
if (push_items == 0)
3170
goto out_unlock;
3171
3172
WARN_ON(!empty && push_items == left_nritems);
3173
3174
/* push left to right */
3175
right_nritems = btrfs_header_nritems(right);
3176
3177
push_space = btrfs_item_data_end(left, left_nritems - push_items);
3178
push_space -= leaf_data_end(left);
3179
3180
/* make room in the right data area */
3181
data_end = leaf_data_end(right);
3182
memmove_leaf_data(right, data_end - push_space, data_end,
3183
BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3184
3185
/* copy from the left data area */
3186
copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3187
leaf_data_end(left), push_space);
3188
3189
memmove_leaf_items(right, push_items, 0, right_nritems);
3190
3191
/* copy the items from left to right */
3192
copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3193
3194
/* update the item pointers */
3195
right_nritems += push_items;
3196
btrfs_set_header_nritems(right, right_nritems);
3197
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3198
for (i = 0; i < right_nritems; i++) {
3199
push_space -= btrfs_item_size(right, i);
3200
btrfs_set_item_offset(right, i, push_space);
3201
}
3202
3203
left_nritems -= push_items;
3204
btrfs_set_header_nritems(left, left_nritems);
3205
3206
if (left_nritems)
3207
btrfs_mark_buffer_dirty(trans, left);
3208
else
3209
btrfs_clear_buffer_dirty(trans, left);
3210
3211
btrfs_mark_buffer_dirty(trans, right);
3212
3213
btrfs_item_key(right, &disk_key, 0);
3214
btrfs_set_node_key(upper, &disk_key, slot + 1);
3215
btrfs_mark_buffer_dirty(trans, upper);
3216
3217
/* then fixup the leaf pointer in the path */
3218
if (path->slots[0] >= left_nritems) {
3219
path->slots[0] -= left_nritems;
3220
if (btrfs_header_nritems(path->nodes[0]) == 0)
3221
btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3222
btrfs_tree_unlock(path->nodes[0]);
3223
free_extent_buffer(path->nodes[0]);
3224
path->nodes[0] = right;
3225
path->slots[1] += 1;
3226
} else {
3227
btrfs_tree_unlock(right);
3228
free_extent_buffer(right);
3229
}
3230
return 0;
3231
3232
out_unlock:
3233
btrfs_tree_unlock(right);
3234
free_extent_buffer(right);
3235
return 1;
3236
}
3237
3238
/*
3239
* push some data in the path leaf to the right, trying to free up at
3240
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3241
*
3242
* returns 1 if the push failed because the other node didn't have enough
3243
* room, 0 if everything worked out and < 0 if there were major errors.
3244
*
3245
* this will push starting from min_slot to the end of the leaf. It won't
3246
* push any slot lower than min_slot
3247
*/
3248
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3249
*root, struct btrfs_path *path,
3250
int min_data_size, int data_size,
3251
bool empty, u32 min_slot)
3252
{
3253
struct extent_buffer *left = path->nodes[0];
3254
struct extent_buffer *right;
3255
struct extent_buffer *upper;
3256
int slot;
3257
int free_space;
3258
u32 left_nritems;
3259
int ret;
3260
3261
if (!path->nodes[1])
3262
return 1;
3263
3264
slot = path->slots[1];
3265
upper = path->nodes[1];
3266
if (slot >= btrfs_header_nritems(upper) - 1)
3267
return 1;
3268
3269
btrfs_assert_tree_write_locked(path->nodes[1]);
3270
3271
right = btrfs_read_node_slot(upper, slot + 1);
3272
if (IS_ERR(right))
3273
return PTR_ERR(right);
3274
3275
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3276
3277
free_space = btrfs_leaf_free_space(right);
3278
if (free_space < data_size)
3279
goto out_unlock;
3280
3281
ret = btrfs_cow_block(trans, root, right, upper,
3282
slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3283
if (ret)
3284
goto out_unlock;
3285
3286
left_nritems = btrfs_header_nritems(left);
3287
if (left_nritems == 0)
3288
goto out_unlock;
3289
3290
if (unlikely(check_sibling_keys(left, right))) {
3291
ret = -EUCLEAN;
3292
btrfs_abort_transaction(trans, ret);
3293
btrfs_tree_unlock(right);
3294
free_extent_buffer(right);
3295
return ret;
3296
}
3297
if (path->slots[0] == left_nritems && !empty) {
3298
/* Key greater than all keys in the leaf, right neighbor has
3299
* enough room for it and we're not emptying our leaf to delete
3300
* it, therefore use right neighbor to insert the new item and
3301
* no need to touch/dirty our left leaf. */
3302
btrfs_tree_unlock(left);
3303
free_extent_buffer(left);
3304
path->nodes[0] = right;
3305
path->slots[0] = 0;
3306
path->slots[1]++;
3307
return 0;
3308
}
3309
3310
return __push_leaf_right(trans, path, min_data_size, empty, right,
3311
free_space, left_nritems, min_slot);
3312
out_unlock:
3313
btrfs_tree_unlock(right);
3314
free_extent_buffer(right);
3315
return 1;
3316
}
3317
3318
/*
3319
* push some data in the path leaf to the left, trying to free up at
3320
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3321
*
3322
* max_slot can put a limit on how far into the leaf we'll push items. The
3323
* item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3324
* items
3325
*/
3326
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3327
struct btrfs_path *path, int data_size,
3328
bool empty, struct extent_buffer *left,
3329
int free_space, u32 right_nritems,
3330
u32 max_slot)
3331
{
3332
struct btrfs_fs_info *fs_info = left->fs_info;
3333
struct btrfs_disk_key disk_key;
3334
struct extent_buffer *right = path->nodes[0];
3335
int i;
3336
int push_space = 0;
3337
int push_items = 0;
3338
u32 old_left_nritems;
3339
u32 nr;
3340
int ret = 0;
3341
u32 this_item_size;
3342
u32 old_left_item_size;
3343
3344
if (empty)
3345
nr = min(right_nritems, max_slot);
3346
else
3347
nr = min(right_nritems - 1, max_slot);
3348
3349
for (i = 0; i < nr; i++) {
3350
if (!empty && push_items > 0) {
3351
if (path->slots[0] < i)
3352
break;
3353
if (path->slots[0] == i) {
3354
int space = btrfs_leaf_free_space(right);
3355
3356
if (space + push_space * 2 > free_space)
3357
break;
3358
}
3359
}
3360
3361
if (path->slots[0] == i)
3362
push_space += data_size;
3363
3364
this_item_size = btrfs_item_size(right, i);
3365
if (this_item_size + sizeof(struct btrfs_item) + push_space >
3366
free_space)
3367
break;
3368
3369
push_items++;
3370
push_space += this_item_size + sizeof(struct btrfs_item);
3371
}
3372
3373
if (push_items == 0) {
3374
ret = 1;
3375
goto out;
3376
}
3377
WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3378
3379
/* push data from right to left */
3380
copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3381
3382
push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3383
btrfs_item_offset(right, push_items - 1);
3384
3385
copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3386
btrfs_item_offset(right, push_items - 1), push_space);
3387
old_left_nritems = btrfs_header_nritems(left);
3388
BUG_ON(old_left_nritems <= 0);
3389
3390
old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3391
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3392
u32 ioff;
3393
3394
ioff = btrfs_item_offset(left, i);
3395
btrfs_set_item_offset(left, i,
3396
ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3397
}
3398
btrfs_set_header_nritems(left, old_left_nritems + push_items);
3399
3400
/* fixup right node */
3401
if (push_items > right_nritems)
3402
WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3403
right_nritems);
3404
3405
if (push_items < right_nritems) {
3406
push_space = btrfs_item_offset(right, push_items - 1) -
3407
leaf_data_end(right);
3408
memmove_leaf_data(right,
3409
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3410
leaf_data_end(right), push_space);
3411
3412
memmove_leaf_items(right, 0, push_items,
3413
btrfs_header_nritems(right) - push_items);
3414
}
3415
3416
right_nritems -= push_items;
3417
btrfs_set_header_nritems(right, right_nritems);
3418
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3419
for (i = 0; i < right_nritems; i++) {
3420
push_space = push_space - btrfs_item_size(right, i);
3421
btrfs_set_item_offset(right, i, push_space);
3422
}
3423
3424
btrfs_mark_buffer_dirty(trans, left);
3425
if (right_nritems)
3426
btrfs_mark_buffer_dirty(trans, right);
3427
else
3428
btrfs_clear_buffer_dirty(trans, right);
3429
3430
btrfs_item_key(right, &disk_key, 0);
3431
fixup_low_keys(trans, path, &disk_key, 1);
3432
3433
/* then fixup the leaf pointer in the path */
3434
if (path->slots[0] < push_items) {
3435
path->slots[0] += old_left_nritems;
3436
btrfs_tree_unlock(path->nodes[0]);
3437
free_extent_buffer(path->nodes[0]);
3438
path->nodes[0] = left;
3439
path->slots[1] -= 1;
3440
} else {
3441
btrfs_tree_unlock(left);
3442
free_extent_buffer(left);
3443
path->slots[0] -= push_items;
3444
}
3445
BUG_ON(path->slots[0] < 0);
3446
return ret;
3447
out:
3448
btrfs_tree_unlock(left);
3449
free_extent_buffer(left);
3450
return ret;
3451
}
3452
3453
/*
3454
* push some data in the path leaf to the left, trying to free up at
3455
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3456
*
3457
* max_slot can put a limit on how far into the leaf we'll push items. The
3458
* item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3459
* items
3460
*/
3461
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3462
*root, struct btrfs_path *path, int min_data_size,
3463
int data_size, int empty, u32 max_slot)
3464
{
3465
struct extent_buffer *right = path->nodes[0];
3466
struct extent_buffer *left;
3467
int slot;
3468
int free_space;
3469
u32 right_nritems;
3470
int ret = 0;
3471
3472
slot = path->slots[1];
3473
if (slot == 0)
3474
return 1;
3475
if (!path->nodes[1])
3476
return 1;
3477
3478
right_nritems = btrfs_header_nritems(right);
3479
if (right_nritems == 0)
3480
return 1;
3481
3482
btrfs_assert_tree_write_locked(path->nodes[1]);
3483
3484
left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3485
if (IS_ERR(left))
3486
return PTR_ERR(left);
3487
3488
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3489
3490
free_space = btrfs_leaf_free_space(left);
3491
if (free_space < data_size) {
3492
ret = 1;
3493
goto out;
3494
}
3495
3496
ret = btrfs_cow_block(trans, root, left,
3497
path->nodes[1], slot - 1, &left,
3498
BTRFS_NESTING_LEFT_COW);
3499
if (ret) {
3500
/* we hit -ENOSPC, but it isn't fatal here */
3501
if (ret == -ENOSPC)
3502
ret = 1;
3503
goto out;
3504
}
3505
3506
if (unlikely(check_sibling_keys(left, right))) {
3507
ret = -EUCLEAN;
3508
btrfs_abort_transaction(trans, ret);
3509
goto out;
3510
}
3511
return __push_leaf_left(trans, path, min_data_size, empty, left,
3512
free_space, right_nritems, max_slot);
3513
out:
3514
btrfs_tree_unlock(left);
3515
free_extent_buffer(left);
3516
return ret;
3517
}
3518
3519
/*
3520
* split the path's leaf in two, making sure there is at least data_size
3521
* available for the resulting leaf level of the path.
3522
*/
3523
static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3524
struct btrfs_path *path,
3525
struct extent_buffer *l,
3526
struct extent_buffer *right,
3527
int slot, int mid, int nritems)
3528
{
3529
struct btrfs_fs_info *fs_info = trans->fs_info;
3530
int data_copy_size;
3531
int rt_data_off;
3532
int i;
3533
int ret;
3534
struct btrfs_disk_key disk_key;
3535
3536
nritems = nritems - mid;
3537
btrfs_set_header_nritems(right, nritems);
3538
data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3539
3540
copy_leaf_items(right, l, 0, mid, nritems);
3541
3542
copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3543
leaf_data_end(l), data_copy_size);
3544
3545
rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3546
3547
for (i = 0; i < nritems; i++) {
3548
u32 ioff;
3549
3550
ioff = btrfs_item_offset(right, i);
3551
btrfs_set_item_offset(right, i, ioff + rt_data_off);
3552
}
3553
3554
btrfs_set_header_nritems(l, mid);
3555
btrfs_item_key(right, &disk_key, 0);
3556
ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3557
if (ret < 0)
3558
return ret;
3559
3560
btrfs_mark_buffer_dirty(trans, right);
3561
btrfs_mark_buffer_dirty(trans, l);
3562
BUG_ON(path->slots[0] != slot);
3563
3564
if (mid <= slot) {
3565
btrfs_tree_unlock(path->nodes[0]);
3566
free_extent_buffer(path->nodes[0]);
3567
path->nodes[0] = right;
3568
path->slots[0] -= mid;
3569
path->slots[1] += 1;
3570
} else {
3571
btrfs_tree_unlock(right);
3572
free_extent_buffer(right);
3573
}
3574
3575
BUG_ON(path->slots[0] < 0);
3576
3577
return 0;
3578
}
3579
3580
/*
3581
* double splits happen when we need to insert a big item in the middle
3582
* of a leaf. A double split can leave us with 3 mostly empty leaves:
3583
* leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3584
* A B C
3585
*
3586
* We avoid this by trying to push the items on either side of our target
3587
* into the adjacent leaves. If all goes well we can avoid the double split
3588
* completely.
3589
*/
3590
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3591
struct btrfs_root *root,
3592
struct btrfs_path *path,
3593
int data_size)
3594
{
3595
int ret;
3596
int progress = 0;
3597
int slot;
3598
u32 nritems;
3599
int space_needed = data_size;
3600
3601
slot = path->slots[0];
3602
if (slot < btrfs_header_nritems(path->nodes[0]))
3603
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3604
3605
/*
3606
* try to push all the items after our slot into the
3607
* right leaf
3608
*/
3609
ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3610
if (ret < 0)
3611
return ret;
3612
3613
if (ret == 0)
3614
progress++;
3615
3616
nritems = btrfs_header_nritems(path->nodes[0]);
3617
/*
3618
* our goal is to get our slot at the start or end of a leaf. If
3619
* we've done so we're done
3620
*/
3621
if (path->slots[0] == 0 || path->slots[0] == nritems)
3622
return 0;
3623
3624
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3625
return 0;
3626
3627
/* try to push all the items before our slot into the next leaf */
3628
slot = path->slots[0];
3629
space_needed = data_size;
3630
if (slot > 0)
3631
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3632
ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3633
if (ret < 0)
3634
return ret;
3635
3636
if (ret == 0)
3637
progress++;
3638
3639
if (progress)
3640
return 0;
3641
return 1;
3642
}
3643
3644
/*
3645
* split the path's leaf in two, making sure there is at least data_size
3646
* available for the resulting leaf level of the path.
3647
*
3648
* returns 0 if all went well and < 0 on failure.
3649
*/
3650
static noinline int split_leaf(struct btrfs_trans_handle *trans,
3651
struct btrfs_root *root,
3652
const struct btrfs_key *ins_key,
3653
struct btrfs_path *path, int data_size,
3654
bool extend)
3655
{
3656
struct btrfs_disk_key disk_key;
3657
struct extent_buffer *l;
3658
u32 nritems;
3659
int mid;
3660
int slot;
3661
struct extent_buffer *right;
3662
struct btrfs_fs_info *fs_info = root->fs_info;
3663
int ret = 0;
3664
int wret;
3665
int split;
3666
int num_doubles = 0;
3667
int tried_avoid_double = 0;
3668
3669
l = path->nodes[0];
3670
slot = path->slots[0];
3671
if (extend && data_size + btrfs_item_size(l, slot) +
3672
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3673
return -EOVERFLOW;
3674
3675
/* first try to make some room by pushing left and right */
3676
if (data_size && path->nodes[1]) {
3677
int space_needed = data_size;
3678
3679
if (slot < btrfs_header_nritems(l))
3680
space_needed -= btrfs_leaf_free_space(l);
3681
3682
wret = push_leaf_right(trans, root, path, space_needed,
3683
space_needed, 0, 0);
3684
if (wret < 0)
3685
return wret;
3686
if (wret) {
3687
space_needed = data_size;
3688
if (slot > 0)
3689
space_needed -= btrfs_leaf_free_space(l);
3690
wret = push_leaf_left(trans, root, path, space_needed,
3691
space_needed, 0, (u32)-1);
3692
if (wret < 0)
3693
return wret;
3694
}
3695
l = path->nodes[0];
3696
3697
/* did the pushes work? */
3698
if (btrfs_leaf_free_space(l) >= data_size)
3699
return 0;
3700
}
3701
3702
if (!path->nodes[1]) {
3703
ret = insert_new_root(trans, root, path, 1);
3704
if (ret)
3705
return ret;
3706
}
3707
again:
3708
split = 1;
3709
l = path->nodes[0];
3710
slot = path->slots[0];
3711
nritems = btrfs_header_nritems(l);
3712
mid = (nritems + 1) / 2;
3713
3714
if (mid <= slot) {
3715
if (nritems == 1 ||
3716
leaf_space_used(l, mid, nritems - mid) + data_size >
3717
BTRFS_LEAF_DATA_SIZE(fs_info)) {
3718
if (slot >= nritems) {
3719
split = 0;
3720
} else {
3721
mid = slot;
3722
if (mid != nritems &&
3723
leaf_space_used(l, mid, nritems - mid) +
3724
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3725
if (data_size && !tried_avoid_double)
3726
goto push_for_double;
3727
split = 2;
3728
}
3729
}
3730
}
3731
} else {
3732
if (leaf_space_used(l, 0, mid) + data_size >
3733
BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734
if (!extend && data_size && slot == 0) {
3735
split = 0;
3736
} else if ((extend || !data_size) && slot == 0) {
3737
mid = 1;
3738
} else {
3739
mid = slot;
3740
if (mid != nritems &&
3741
leaf_space_used(l, mid, nritems - mid) +
3742
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3743
if (data_size && !tried_avoid_double)
3744
goto push_for_double;
3745
split = 2;
3746
}
3747
}
3748
}
3749
}
3750
3751
if (split == 0)
3752
btrfs_cpu_key_to_disk(&disk_key, ins_key);
3753
else
3754
btrfs_item_key(l, &disk_key, mid);
3755
3756
/*
3757
* We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3758
* split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3759
* subclasses, which is 8 at the time of this patch, and we've maxed it
3760
* out. In the future we could add a
3761
* BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3762
* use BTRFS_NESTING_NEW_ROOT.
3763
*/
3764
right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3765
&disk_key, 0, l->start, 0, 0,
3766
num_doubles ? BTRFS_NESTING_NEW_ROOT :
3767
BTRFS_NESTING_SPLIT);
3768
if (IS_ERR(right))
3769
return PTR_ERR(right);
3770
3771
root_add_used_bytes(root);
3772
3773
if (split == 0) {
3774
if (mid <= slot) {
3775
btrfs_set_header_nritems(right, 0);
3776
ret = insert_ptr(trans, path, &disk_key,
3777
right->start, path->slots[1] + 1, 1);
3778
if (ret < 0) {
3779
btrfs_tree_unlock(right);
3780
free_extent_buffer(right);
3781
return ret;
3782
}
3783
btrfs_tree_unlock(path->nodes[0]);
3784
free_extent_buffer(path->nodes[0]);
3785
path->nodes[0] = right;
3786
path->slots[0] = 0;
3787
path->slots[1] += 1;
3788
} else {
3789
btrfs_set_header_nritems(right, 0);
3790
ret = insert_ptr(trans, path, &disk_key,
3791
right->start, path->slots[1], 1);
3792
if (ret < 0) {
3793
btrfs_tree_unlock(right);
3794
free_extent_buffer(right);
3795
return ret;
3796
}
3797
btrfs_tree_unlock(path->nodes[0]);
3798
free_extent_buffer(path->nodes[0]);
3799
path->nodes[0] = right;
3800
path->slots[0] = 0;
3801
if (path->slots[1] == 0)
3802
fixup_low_keys(trans, path, &disk_key, 1);
3803
}
3804
/*
3805
* We create a new leaf 'right' for the required ins_len and
3806
* we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3807
* the content of ins_len to 'right'.
3808
*/
3809
return ret;
3810
}
3811
3812
ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3813
if (ret < 0) {
3814
btrfs_tree_unlock(right);
3815
free_extent_buffer(right);
3816
return ret;
3817
}
3818
3819
if (split == 2) {
3820
BUG_ON(num_doubles != 0);
3821
num_doubles++;
3822
goto again;
3823
}
3824
3825
return 0;
3826
3827
push_for_double:
3828
push_for_double_split(trans, root, path, data_size);
3829
tried_avoid_double = 1;
3830
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3831
return 0;
3832
goto again;
3833
}
3834
3835
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3836
struct btrfs_root *root,
3837
struct btrfs_path *path, int ins_len)
3838
{
3839
struct btrfs_key key;
3840
struct extent_buffer *leaf;
3841
struct btrfs_file_extent_item *fi;
3842
u64 extent_len = 0;
3843
u32 item_size;
3844
int ret;
3845
3846
leaf = path->nodes[0];
3847
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3848
3849
BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3850
key.type != BTRFS_RAID_STRIPE_KEY &&
3851
key.type != BTRFS_EXTENT_CSUM_KEY);
3852
3853
if (btrfs_leaf_free_space(leaf) >= ins_len)
3854
return 0;
3855
3856
item_size = btrfs_item_size(leaf, path->slots[0]);
3857
if (key.type == BTRFS_EXTENT_DATA_KEY) {
3858
fi = btrfs_item_ptr(leaf, path->slots[0],
3859
struct btrfs_file_extent_item);
3860
extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3861
}
3862
btrfs_release_path(path);
3863
3864
path->keep_locks = 1;
3865
path->search_for_split = 1;
3866
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3867
path->search_for_split = 0;
3868
if (ret > 0)
3869
ret = -EAGAIN;
3870
if (ret < 0)
3871
goto err;
3872
3873
ret = -EAGAIN;
3874
leaf = path->nodes[0];
3875
/* if our item isn't there, return now */
3876
if (item_size != btrfs_item_size(leaf, path->slots[0]))
3877
goto err;
3878
3879
/* the leaf has changed, it now has room. return now */
3880
if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3881
goto err;
3882
3883
if (key.type == BTRFS_EXTENT_DATA_KEY) {
3884
fi = btrfs_item_ptr(leaf, path->slots[0],
3885
struct btrfs_file_extent_item);
3886
if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3887
goto err;
3888
}
3889
3890
ret = split_leaf(trans, root, &key, path, ins_len, 1);
3891
if (ret)
3892
goto err;
3893
3894
path->keep_locks = 0;
3895
btrfs_unlock_up_safe(path, 1);
3896
return 0;
3897
err:
3898
path->keep_locks = 0;
3899
return ret;
3900
}
3901
3902
static noinline int split_item(struct btrfs_trans_handle *trans,
3903
struct btrfs_path *path,
3904
const struct btrfs_key *new_key,
3905
unsigned long split_offset)
3906
{
3907
struct extent_buffer *leaf;
3908
int orig_slot, slot;
3909
char *buf;
3910
u32 nritems;
3911
u32 item_size;
3912
u32 orig_offset;
3913
struct btrfs_disk_key disk_key;
3914
3915
leaf = path->nodes[0];
3916
/*
3917
* Shouldn't happen because the caller must have previously called
3918
* setup_leaf_for_split() to make room for the new item in the leaf.
3919
*/
3920
if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3921
return -ENOSPC;
3922
3923
orig_slot = path->slots[0];
3924
orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3925
item_size = btrfs_item_size(leaf, path->slots[0]);
3926
3927
buf = kmalloc(item_size, GFP_NOFS);
3928
if (!buf)
3929
return -ENOMEM;
3930
3931
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3932
path->slots[0]), item_size);
3933
3934
slot = path->slots[0] + 1;
3935
nritems = btrfs_header_nritems(leaf);
3936
if (slot != nritems) {
3937
/* shift the items */
3938
memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3939
}
3940
3941
btrfs_cpu_key_to_disk(&disk_key, new_key);
3942
btrfs_set_item_key(leaf, &disk_key, slot);
3943
3944
btrfs_set_item_offset(leaf, slot, orig_offset);
3945
btrfs_set_item_size(leaf, slot, item_size - split_offset);
3946
3947
btrfs_set_item_offset(leaf, orig_slot,
3948
orig_offset + item_size - split_offset);
3949
btrfs_set_item_size(leaf, orig_slot, split_offset);
3950
3951
btrfs_set_header_nritems(leaf, nritems + 1);
3952
3953
/* write the data for the start of the original item */
3954
write_extent_buffer(leaf, buf,
3955
btrfs_item_ptr_offset(leaf, path->slots[0]),
3956
split_offset);
3957
3958
/* write the data for the new item */
3959
write_extent_buffer(leaf, buf + split_offset,
3960
btrfs_item_ptr_offset(leaf, slot),
3961
item_size - split_offset);
3962
btrfs_mark_buffer_dirty(trans, leaf);
3963
3964
BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3965
kfree(buf);
3966
return 0;
3967
}
3968
3969
/*
3970
* This function splits a single item into two items,
3971
* giving 'new_key' to the new item and splitting the
3972
* old one at split_offset (from the start of the item).
3973
*
3974
* The path may be released by this operation. After
3975
* the split, the path is pointing to the old item. The
3976
* new item is going to be in the same node as the old one.
3977
*
3978
* Note, the item being split must be smaller enough to live alone on
3979
* a tree block with room for one extra struct btrfs_item
3980
*
3981
* This allows us to split the item in place, keeping a lock on the
3982
* leaf the entire time.
3983
*/
3984
int btrfs_split_item(struct btrfs_trans_handle *trans,
3985
struct btrfs_root *root,
3986
struct btrfs_path *path,
3987
const struct btrfs_key *new_key,
3988
unsigned long split_offset)
3989
{
3990
int ret;
3991
ret = setup_leaf_for_split(trans, root, path,
3992
sizeof(struct btrfs_item));
3993
if (ret)
3994
return ret;
3995
3996
ret = split_item(trans, path, new_key, split_offset);
3997
return ret;
3998
}
3999
4000
/*
4001
* make the item pointed to by the path smaller. new_size indicates
4002
* how small to make it, and from_end tells us if we just chop bytes
4003
* off the end of the item or if we shift the item to chop bytes off
4004
* the front.
4005
*/
4006
void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4007
const struct btrfs_path *path, u32 new_size, int from_end)
4008
{
4009
int slot;
4010
struct extent_buffer *leaf;
4011
u32 nritems;
4012
unsigned int data_end;
4013
unsigned int old_data_start;
4014
unsigned int old_size;
4015
unsigned int size_diff;
4016
int i;
4017
4018
leaf = path->nodes[0];
4019
slot = path->slots[0];
4020
4021
old_size = btrfs_item_size(leaf, slot);
4022
if (old_size == new_size)
4023
return;
4024
4025
nritems = btrfs_header_nritems(leaf);
4026
data_end = leaf_data_end(leaf);
4027
4028
old_data_start = btrfs_item_offset(leaf, slot);
4029
4030
size_diff = old_size - new_size;
4031
4032
BUG_ON(slot < 0);
4033
BUG_ON(slot >= nritems);
4034
4035
/*
4036
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4037
*/
4038
/* first correct the data pointers */
4039
for (i = slot; i < nritems; i++) {
4040
u32 ioff;
4041
4042
ioff = btrfs_item_offset(leaf, i);
4043
btrfs_set_item_offset(leaf, i, ioff + size_diff);
4044
}
4045
4046
/* shift the data */
4047
if (from_end) {
4048
memmove_leaf_data(leaf, data_end + size_diff, data_end,
4049
old_data_start + new_size - data_end);
4050
} else {
4051
struct btrfs_disk_key disk_key;
4052
u64 offset;
4053
4054
btrfs_item_key(leaf, &disk_key, slot);
4055
4056
if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4057
unsigned long ptr;
4058
struct btrfs_file_extent_item *fi;
4059
4060
fi = btrfs_item_ptr(leaf, slot,
4061
struct btrfs_file_extent_item);
4062
fi = (struct btrfs_file_extent_item *)(
4063
(unsigned long)fi - size_diff);
4064
4065
if (btrfs_file_extent_type(leaf, fi) ==
4066
BTRFS_FILE_EXTENT_INLINE) {
4067
ptr = btrfs_item_ptr_offset(leaf, slot);
4068
memmove_extent_buffer(leaf, ptr,
4069
(unsigned long)fi,
4070
BTRFS_FILE_EXTENT_INLINE_DATA_START);
4071
}
4072
}
4073
4074
memmove_leaf_data(leaf, data_end + size_diff, data_end,
4075
old_data_start - data_end);
4076
4077
offset = btrfs_disk_key_offset(&disk_key);
4078
btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4079
btrfs_set_item_key(leaf, &disk_key, slot);
4080
if (slot == 0)
4081
fixup_low_keys(trans, path, &disk_key, 1);
4082
}
4083
4084
btrfs_set_item_size(leaf, slot, new_size);
4085
btrfs_mark_buffer_dirty(trans, leaf);
4086
4087
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4088
btrfs_print_leaf(leaf);
4089
BUG();
4090
}
4091
}
4092
4093
/*
4094
* make the item pointed to by the path bigger, data_size is the added size.
4095
*/
4096
void btrfs_extend_item(struct btrfs_trans_handle *trans,
4097
const struct btrfs_path *path, u32 data_size)
4098
{
4099
int slot;
4100
struct extent_buffer *leaf;
4101
u32 nritems;
4102
unsigned int data_end;
4103
unsigned int old_data;
4104
unsigned int old_size;
4105
int i;
4106
4107
leaf = path->nodes[0];
4108
4109
nritems = btrfs_header_nritems(leaf);
4110
data_end = leaf_data_end(leaf);
4111
4112
if (btrfs_leaf_free_space(leaf) < data_size) {
4113
btrfs_print_leaf(leaf);
4114
BUG();
4115
}
4116
slot = path->slots[0];
4117
old_data = btrfs_item_data_end(leaf, slot);
4118
4119
BUG_ON(slot < 0);
4120
if (unlikely(slot >= nritems)) {
4121
btrfs_print_leaf(leaf);
4122
btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4123
slot, nritems);
4124
BUG();
4125
}
4126
4127
/*
4128
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4129
*/
4130
/* first correct the data pointers */
4131
for (i = slot; i < nritems; i++) {
4132
u32 ioff;
4133
4134
ioff = btrfs_item_offset(leaf, i);
4135
btrfs_set_item_offset(leaf, i, ioff - data_size);
4136
}
4137
4138
/* shift the data */
4139
memmove_leaf_data(leaf, data_end - data_size, data_end,
4140
old_data - data_end);
4141
4142
data_end = old_data;
4143
old_size = btrfs_item_size(leaf, slot);
4144
btrfs_set_item_size(leaf, slot, old_size + data_size);
4145
btrfs_mark_buffer_dirty(trans, leaf);
4146
4147
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4148
btrfs_print_leaf(leaf);
4149
BUG();
4150
}
4151
}
4152
4153
/*
4154
* Make space in the node before inserting one or more items.
4155
*
4156
* @trans: transaction handle
4157
* @root: root we are inserting items to
4158
* @path: points to the leaf/slot where we are going to insert new items
4159
* @batch: information about the batch of items to insert
4160
*
4161
* Main purpose is to save stack depth by doing the bulk of the work in a
4162
* function that doesn't call btrfs_search_slot
4163
*/
4164
static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4165
struct btrfs_root *root, struct btrfs_path *path,
4166
const struct btrfs_item_batch *batch)
4167
{
4168
struct btrfs_fs_info *fs_info = root->fs_info;
4169
int i;
4170
u32 nritems;
4171
unsigned int data_end;
4172
struct btrfs_disk_key disk_key;
4173
struct extent_buffer *leaf;
4174
int slot;
4175
u32 total_size;
4176
4177
/*
4178
* Before anything else, update keys in the parent and other ancestors
4179
* if needed, then release the write locks on them, so that other tasks
4180
* can use them while we modify the leaf.
4181
*/
4182
if (path->slots[0] == 0) {
4183
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4184
fixup_low_keys(trans, path, &disk_key, 1);
4185
}
4186
btrfs_unlock_up_safe(path, 1);
4187
4188
leaf = path->nodes[0];
4189
slot = path->slots[0];
4190
4191
nritems = btrfs_header_nritems(leaf);
4192
data_end = leaf_data_end(leaf);
4193
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4194
4195
if (unlikely(btrfs_leaf_free_space(leaf) < total_size)) {
4196
btrfs_print_leaf(leaf);
4197
btrfs_crit(fs_info, "not enough freespace need %u have %d",
4198
total_size, btrfs_leaf_free_space(leaf));
4199
BUG();
4200
}
4201
4202
if (slot != nritems) {
4203
unsigned int old_data = btrfs_item_data_end(leaf, slot);
4204
4205
if (unlikely(old_data < data_end)) {
4206
btrfs_print_leaf(leaf);
4207
btrfs_crit(fs_info,
4208
"item at slot %d with data offset %u beyond data end of leaf %u",
4209
slot, old_data, data_end);
4210
BUG();
4211
}
4212
/*
4213
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4214
*/
4215
/* first correct the data pointers */
4216
for (i = slot; i < nritems; i++) {
4217
u32 ioff;
4218
4219
ioff = btrfs_item_offset(leaf, i);
4220
btrfs_set_item_offset(leaf, i,
4221
ioff - batch->total_data_size);
4222
}
4223
/* shift the items */
4224
memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4225
4226
/* shift the data */
4227
memmove_leaf_data(leaf, data_end - batch->total_data_size,
4228
data_end, old_data - data_end);
4229
data_end = old_data;
4230
}
4231
4232
/* setup the item for the new data */
4233
for (i = 0; i < batch->nr; i++) {
4234
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4235
btrfs_set_item_key(leaf, &disk_key, slot + i);
4236
data_end -= batch->data_sizes[i];
4237
btrfs_set_item_offset(leaf, slot + i, data_end);
4238
btrfs_set_item_size(leaf, slot + i, batch->data_sizes[i]);
4239
}
4240
4241
btrfs_set_header_nritems(leaf, nritems + batch->nr);
4242
btrfs_mark_buffer_dirty(trans, leaf);
4243
4244
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4245
btrfs_print_leaf(leaf);
4246
BUG();
4247
}
4248
}
4249
4250
/*
4251
* Insert a new item into a leaf.
4252
*
4253
* @trans: Transaction handle.
4254
* @root: The root of the btree.
4255
* @path: A path pointing to the target leaf and slot.
4256
* @key: The key of the new item.
4257
* @data_size: The size of the data associated with the new key.
4258
*/
4259
void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4260
struct btrfs_root *root,
4261
struct btrfs_path *path,
4262
const struct btrfs_key *key,
4263
u32 data_size)
4264
{
4265
struct btrfs_item_batch batch;
4266
4267
batch.keys = key;
4268
batch.data_sizes = &data_size;
4269
batch.total_data_size = data_size;
4270
batch.nr = 1;
4271
4272
setup_items_for_insert(trans, root, path, &batch);
4273
}
4274
4275
/*
4276
* Given a key and some data, insert items into the tree.
4277
* This does all the path init required, making room in the tree if needed.
4278
*
4279
* Returns: 0 on success
4280
* -EEXIST if the first key already exists
4281
* < 0 on other errors
4282
*/
4283
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4284
struct btrfs_root *root,
4285
struct btrfs_path *path,
4286
const struct btrfs_item_batch *batch)
4287
{
4288
int ret = 0;
4289
int slot;
4290
u32 total_size;
4291
4292
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4293
ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4294
if (ret == 0)
4295
return -EEXIST;
4296
if (ret < 0)
4297
return ret;
4298
4299
slot = path->slots[0];
4300
BUG_ON(slot < 0);
4301
4302
setup_items_for_insert(trans, root, path, batch);
4303
return 0;
4304
}
4305
4306
/*
4307
* Given a key and some data, insert an item into the tree.
4308
* This does all the path init required, making room in the tree if needed.
4309
*/
4310
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4311
const struct btrfs_key *cpu_key, void *data,
4312
u32 data_size)
4313
{
4314
int ret = 0;
4315
BTRFS_PATH_AUTO_FREE(path);
4316
struct extent_buffer *leaf;
4317
unsigned long ptr;
4318
4319
path = btrfs_alloc_path();
4320
if (!path)
4321
return -ENOMEM;
4322
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4323
if (!ret) {
4324
leaf = path->nodes[0];
4325
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4326
write_extent_buffer(leaf, data, ptr, data_size);
4327
btrfs_mark_buffer_dirty(trans, leaf);
4328
}
4329
return ret;
4330
}
4331
4332
/*
4333
* This function duplicates an item, giving 'new_key' to the new item.
4334
* It guarantees both items live in the same tree leaf and the new item is
4335
* contiguous with the original item.
4336
*
4337
* This allows us to split a file extent in place, keeping a lock on the leaf
4338
* the entire time.
4339
*/
4340
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4341
struct btrfs_root *root,
4342
struct btrfs_path *path,
4343
const struct btrfs_key *new_key)
4344
{
4345
struct extent_buffer *leaf;
4346
int ret;
4347
u32 item_size;
4348
4349
leaf = path->nodes[0];
4350
item_size = btrfs_item_size(leaf, path->slots[0]);
4351
ret = setup_leaf_for_split(trans, root, path,
4352
item_size + sizeof(struct btrfs_item));
4353
if (ret)
4354
return ret;
4355
4356
path->slots[0]++;
4357
btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4358
leaf = path->nodes[0];
4359
memcpy_extent_buffer(leaf,
4360
btrfs_item_ptr_offset(leaf, path->slots[0]),
4361
btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4362
item_size);
4363
return 0;
4364
}
4365
4366
/*
4367
* delete the pointer from a given node.
4368
*
4369
* the tree should have been previously balanced so the deletion does not
4370
* empty a node.
4371
*
4372
* This is exported for use inside btrfs-progs, don't un-export it.
4373
*/
4374
int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4375
struct btrfs_path *path, int level, int slot)
4376
{
4377
struct extent_buffer *parent = path->nodes[level];
4378
u32 nritems;
4379
int ret;
4380
4381
nritems = btrfs_header_nritems(parent);
4382
if (slot != nritems - 1) {
4383
if (level) {
4384
ret = btrfs_tree_mod_log_insert_move(parent, slot,
4385
slot + 1, nritems - slot - 1);
4386
if (unlikely(ret < 0)) {
4387
btrfs_abort_transaction(trans, ret);
4388
return ret;
4389
}
4390
}
4391
memmove_extent_buffer(parent,
4392
btrfs_node_key_ptr_offset(parent, slot),
4393
btrfs_node_key_ptr_offset(parent, slot + 1),
4394
sizeof(struct btrfs_key_ptr) *
4395
(nritems - slot - 1));
4396
} else if (level) {
4397
ret = btrfs_tree_mod_log_insert_key(parent, slot,
4398
BTRFS_MOD_LOG_KEY_REMOVE);
4399
if (unlikely(ret < 0)) {
4400
btrfs_abort_transaction(trans, ret);
4401
return ret;
4402
}
4403
}
4404
4405
nritems--;
4406
btrfs_set_header_nritems(parent, nritems);
4407
if (nritems == 0 && parent == root->node) {
4408
BUG_ON(btrfs_header_level(root->node) != 1);
4409
/* just turn the root into a leaf and break */
4410
btrfs_set_header_level(root->node, 0);
4411
} else if (slot == 0) {
4412
struct btrfs_disk_key disk_key;
4413
4414
btrfs_node_key(parent, &disk_key, 0);
4415
fixup_low_keys(trans, path, &disk_key, level + 1);
4416
}
4417
btrfs_mark_buffer_dirty(trans, parent);
4418
return 0;
4419
}
4420
4421
/*
4422
* a helper function to delete the leaf pointed to by path->slots[1] and
4423
* path->nodes[1].
4424
*
4425
* This deletes the pointer in path->nodes[1] and frees the leaf
4426
* block extent. zero is returned if it all worked out, < 0 otherwise.
4427
*
4428
* The path must have already been setup for deleting the leaf, including
4429
* all the proper balancing. path->nodes[1] must be locked.
4430
*/
4431
static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4432
struct btrfs_root *root,
4433
struct btrfs_path *path,
4434
struct extent_buffer *leaf)
4435
{
4436
int ret;
4437
4438
WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4439
ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4440
if (ret < 0)
4441
return ret;
4442
4443
/*
4444
* btrfs_free_extent is expensive, we want to make sure we
4445
* aren't holding any locks when we call it
4446
*/
4447
btrfs_unlock_up_safe(path, 0);
4448
4449
root_sub_used_bytes(root);
4450
4451
refcount_inc(&leaf->refs);
4452
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4453
free_extent_buffer_stale(leaf);
4454
if (ret < 0)
4455
btrfs_abort_transaction(trans, ret);
4456
4457
return ret;
4458
}
4459
/*
4460
* delete the item at the leaf level in path. If that empties
4461
* the leaf, remove it from the tree
4462
*/
4463
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4464
struct btrfs_path *path, int slot, int nr)
4465
{
4466
struct btrfs_fs_info *fs_info = root->fs_info;
4467
struct extent_buffer *leaf;
4468
int ret = 0;
4469
int wret;
4470
u32 nritems;
4471
4472
leaf = path->nodes[0];
4473
nritems = btrfs_header_nritems(leaf);
4474
4475
if (slot + nr != nritems) {
4476
const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4477
const int data_end = leaf_data_end(leaf);
4478
u32 dsize = 0;
4479
int i;
4480
4481
for (i = 0; i < nr; i++)
4482
dsize += btrfs_item_size(leaf, slot + i);
4483
4484
memmove_leaf_data(leaf, data_end + dsize, data_end,
4485
last_off - data_end);
4486
4487
for (i = slot + nr; i < nritems; i++) {
4488
u32 ioff;
4489
4490
ioff = btrfs_item_offset(leaf, i);
4491
btrfs_set_item_offset(leaf, i, ioff + dsize);
4492
}
4493
4494
memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4495
}
4496
btrfs_set_header_nritems(leaf, nritems - nr);
4497
nritems -= nr;
4498
4499
/* delete the leaf if we've emptied it */
4500
if (nritems == 0) {
4501
if (leaf == root->node) {
4502
btrfs_set_header_level(leaf, 0);
4503
} else {
4504
btrfs_clear_buffer_dirty(trans, leaf);
4505
ret = btrfs_del_leaf(trans, root, path, leaf);
4506
if (ret < 0)
4507
return ret;
4508
}
4509
} else {
4510
int used = leaf_space_used(leaf, 0, nritems);
4511
if (slot == 0) {
4512
struct btrfs_disk_key disk_key;
4513
4514
btrfs_item_key(leaf, &disk_key, 0);
4515
fixup_low_keys(trans, path, &disk_key, 1);
4516
}
4517
4518
/*
4519
* Try to delete the leaf if it is mostly empty. We do this by
4520
* trying to move all its items into its left and right neighbours.
4521
* If we can't move all the items, then we don't delete it - it's
4522
* not ideal, but future insertions might fill the leaf with more
4523
* items, or items from other leaves might be moved later into our
4524
* leaf due to deletions on those leaves.
4525
*/
4526
if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4527
u32 min_push_space;
4528
4529
/* push_leaf_left fixes the path.
4530
* make sure the path still points to our leaf
4531
* for possible call to btrfs_del_ptr below
4532
*/
4533
slot = path->slots[1];
4534
refcount_inc(&leaf->refs);
4535
/*
4536
* We want to be able to at least push one item to the
4537
* left neighbour leaf, and that's the first item.
4538
*/
4539
min_push_space = sizeof(struct btrfs_item) +
4540
btrfs_item_size(leaf, 0);
4541
wret = push_leaf_left(trans, root, path, 0,
4542
min_push_space, 1, (u32)-1);
4543
if (wret < 0 && wret != -ENOSPC)
4544
ret = wret;
4545
4546
if (path->nodes[0] == leaf &&
4547
btrfs_header_nritems(leaf)) {
4548
/*
4549
* If we were not able to push all items from our
4550
* leaf to its left neighbour, then attempt to
4551
* either push all the remaining items to the
4552
* right neighbour or none. There's no advantage
4553
* in pushing only some items, instead of all, as
4554
* it's pointless to end up with a leaf having
4555
* too few items while the neighbours can be full
4556
* or nearly full.
4557
*/
4558
nritems = btrfs_header_nritems(leaf);
4559
min_push_space = leaf_space_used(leaf, 0, nritems);
4560
wret = push_leaf_right(trans, root, path, 0,
4561
min_push_space, 1, 0);
4562
if (wret < 0 && wret != -ENOSPC)
4563
ret = wret;
4564
}
4565
4566
if (btrfs_header_nritems(leaf) == 0) {
4567
path->slots[1] = slot;
4568
ret = btrfs_del_leaf(trans, root, path, leaf);
4569
if (ret < 0)
4570
return ret;
4571
free_extent_buffer(leaf);
4572
ret = 0;
4573
} else {
4574
/* if we're still in the path, make sure
4575
* we're dirty. Otherwise, one of the
4576
* push_leaf functions must have already
4577
* dirtied this buffer
4578
*/
4579
if (path->nodes[0] == leaf)
4580
btrfs_mark_buffer_dirty(trans, leaf);
4581
free_extent_buffer(leaf);
4582
}
4583
} else {
4584
btrfs_mark_buffer_dirty(trans, leaf);
4585
}
4586
}
4587
return ret;
4588
}
4589
4590
/*
4591
* A helper function to walk down the tree starting at min_key, and looking
4592
* for leaves that have a minimum transaction id.
4593
* This is used by the btree defrag code, and tree logging
4594
*
4595
* This does not cow, but it does stuff the starting key it finds back
4596
* into min_key, so you can call btrfs_search_slot with cow=1 on the
4597
* key and get a writable path.
4598
*
4599
* min_trans indicates the oldest transaction that you are interested
4600
* in walking through. Any nodes or leaves older than min_trans are
4601
* skipped over (without reading them).
4602
*
4603
* returns zero if something useful was found, < 0 on error and 1 if there
4604
* was nothing in the tree that matched the search criteria.
4605
*/
4606
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4607
struct btrfs_path *path,
4608
u64 min_trans)
4609
{
4610
struct extent_buffer *cur;
4611
int slot;
4612
int sret;
4613
u32 nritems;
4614
int level;
4615
int ret = 1;
4616
int keep_locks = path->keep_locks;
4617
4618
ASSERT(!path->nowait);
4619
ASSERT(path->lowest_level == 0);
4620
path->keep_locks = 1;
4621
again:
4622
cur = btrfs_read_lock_root_node(root);
4623
level = btrfs_header_level(cur);
4624
WARN_ON(path->nodes[level]);
4625
path->nodes[level] = cur;
4626
path->locks[level] = BTRFS_READ_LOCK;
4627
4628
if (btrfs_header_generation(cur) < min_trans) {
4629
ret = 1;
4630
goto out;
4631
}
4632
while (1) {
4633
nritems = btrfs_header_nritems(cur);
4634
level = btrfs_header_level(cur);
4635
sret = btrfs_bin_search(cur, 0, min_key, &slot);
4636
if (sret < 0) {
4637
ret = sret;
4638
goto out;
4639
}
4640
4641
/* At level 0 we're done, setup the path and exit. */
4642
if (level == 0) {
4643
if (slot >= nritems)
4644
goto find_next_key;
4645
ret = 0;
4646
path->slots[level] = slot;
4647
/* Save our key for returning back. */
4648
btrfs_item_key_to_cpu(cur, min_key, slot);
4649
goto out;
4650
}
4651
if (sret && slot > 0)
4652
slot--;
4653
/*
4654
* check this node pointer against the min_trans parameters.
4655
* If it is too old, skip to the next one.
4656
*/
4657
while (slot < nritems) {
4658
u64 gen;
4659
4660
gen = btrfs_node_ptr_generation(cur, slot);
4661
if (gen < min_trans) {
4662
slot++;
4663
continue;
4664
}
4665
break;
4666
}
4667
find_next_key:
4668
/*
4669
* we didn't find a candidate key in this node, walk forward
4670
* and find another one
4671
*/
4672
path->slots[level] = slot;
4673
if (slot >= nritems) {
4674
sret = btrfs_find_next_key(root, path, min_key, level,
4675
min_trans);
4676
if (sret == 0) {
4677
btrfs_release_path(path);
4678
goto again;
4679
} else {
4680
goto out;
4681
}
4682
}
4683
cur = btrfs_read_node_slot(cur, slot);
4684
if (IS_ERR(cur)) {
4685
ret = PTR_ERR(cur);
4686
goto out;
4687
}
4688
4689
btrfs_tree_read_lock(cur);
4690
4691
path->locks[level - 1] = BTRFS_READ_LOCK;
4692
path->nodes[level - 1] = cur;
4693
unlock_up(path, level, 1, 0, NULL);
4694
}
4695
out:
4696
path->keep_locks = keep_locks;
4697
if (ret == 0)
4698
btrfs_unlock_up_safe(path, 1);
4699
return ret;
4700
}
4701
4702
/*
4703
* this is similar to btrfs_next_leaf, but does not try to preserve
4704
* and fixup the path. It looks for and returns the next key in the
4705
* tree based on the current path and the min_trans parameters.
4706
*
4707
* 0 is returned if another key is found, < 0 if there are any errors
4708
* and 1 is returned if there are no higher keys in the tree
4709
*
4710
* path->keep_locks should be set to 1 on the search made before
4711
* calling this function.
4712
*/
4713
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4714
struct btrfs_key *key, int level, u64 min_trans)
4715
{
4716
int slot;
4717
struct extent_buffer *c;
4718
4719
WARN_ON(!path->keep_locks && !path->skip_locking);
4720
while (level < BTRFS_MAX_LEVEL) {
4721
if (!path->nodes[level])
4722
return 1;
4723
4724
slot = path->slots[level] + 1;
4725
c = path->nodes[level];
4726
next:
4727
if (slot >= btrfs_header_nritems(c)) {
4728
int ret;
4729
int orig_lowest;
4730
struct btrfs_key cur_key;
4731
if (level + 1 >= BTRFS_MAX_LEVEL ||
4732
!path->nodes[level + 1])
4733
return 1;
4734
4735
if (path->locks[level + 1] || path->skip_locking) {
4736
level++;
4737
continue;
4738
}
4739
4740
slot = btrfs_header_nritems(c) - 1;
4741
if (level == 0)
4742
btrfs_item_key_to_cpu(c, &cur_key, slot);
4743
else
4744
btrfs_node_key_to_cpu(c, &cur_key, slot);
4745
4746
orig_lowest = path->lowest_level;
4747
btrfs_release_path(path);
4748
path->lowest_level = level;
4749
ret = btrfs_search_slot(NULL, root, &cur_key, path,
4750
0, 0);
4751
path->lowest_level = orig_lowest;
4752
if (ret < 0)
4753
return ret;
4754
4755
c = path->nodes[level];
4756
slot = path->slots[level];
4757
if (ret == 0)
4758
slot++;
4759
goto next;
4760
}
4761
4762
if (level == 0)
4763
btrfs_item_key_to_cpu(c, key, slot);
4764
else {
4765
u64 gen = btrfs_node_ptr_generation(c, slot);
4766
4767
if (gen < min_trans) {
4768
slot++;
4769
goto next;
4770
}
4771
btrfs_node_key_to_cpu(c, key, slot);
4772
}
4773
return 0;
4774
}
4775
return 1;
4776
}
4777
4778
int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4779
u64 time_seq)
4780
{
4781
int slot;
4782
int level;
4783
struct extent_buffer *c;
4784
struct extent_buffer *next;
4785
struct btrfs_fs_info *fs_info = root->fs_info;
4786
struct btrfs_key key;
4787
bool need_commit_sem = false;
4788
u32 nritems;
4789
int ret;
4790
int i;
4791
4792
/*
4793
* The nowait semantics are used only for write paths, where we don't
4794
* use the tree mod log and sequence numbers.
4795
*/
4796
if (time_seq)
4797
ASSERT(!path->nowait);
4798
4799
nritems = btrfs_header_nritems(path->nodes[0]);
4800
if (nritems == 0)
4801
return 1;
4802
4803
btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4804
again:
4805
level = 1;
4806
next = NULL;
4807
btrfs_release_path(path);
4808
4809
path->keep_locks = 1;
4810
4811
if (time_seq) {
4812
ret = btrfs_search_old_slot(root, &key, path, time_seq);
4813
} else {
4814
if (path->need_commit_sem) {
4815
path->need_commit_sem = 0;
4816
need_commit_sem = true;
4817
if (path->nowait) {
4818
if (!down_read_trylock(&fs_info->commit_root_sem)) {
4819
ret = -EAGAIN;
4820
goto done;
4821
}
4822
} else {
4823
down_read(&fs_info->commit_root_sem);
4824
}
4825
}
4826
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4827
}
4828
path->keep_locks = 0;
4829
4830
if (ret < 0)
4831
goto done;
4832
4833
nritems = btrfs_header_nritems(path->nodes[0]);
4834
/*
4835
* by releasing the path above we dropped all our locks. A balance
4836
* could have added more items next to the key that used to be
4837
* at the very end of the block. So, check again here and
4838
* advance the path if there are now more items available.
4839
*/
4840
if (nritems > 0 && path->slots[0] < nritems - 1) {
4841
if (ret == 0)
4842
path->slots[0]++;
4843
ret = 0;
4844
goto done;
4845
}
4846
/*
4847
* So the above check misses one case:
4848
* - after releasing the path above, someone has removed the item that
4849
* used to be at the very end of the block, and balance between leafs
4850
* gets another one with bigger key.offset to replace it.
4851
*
4852
* This one should be returned as well, or we can get leaf corruption
4853
* later(esp. in __btrfs_drop_extents()).
4854
*
4855
* And a bit more explanation about this check,
4856
* with ret > 0, the key isn't found, the path points to the slot
4857
* where it should be inserted, so the path->slots[0] item must be the
4858
* bigger one.
4859
*/
4860
if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4861
ret = 0;
4862
goto done;
4863
}
4864
4865
while (level < BTRFS_MAX_LEVEL) {
4866
if (!path->nodes[level]) {
4867
ret = 1;
4868
goto done;
4869
}
4870
4871
slot = path->slots[level] + 1;
4872
c = path->nodes[level];
4873
if (slot >= btrfs_header_nritems(c)) {
4874
level++;
4875
if (level == BTRFS_MAX_LEVEL) {
4876
ret = 1;
4877
goto done;
4878
}
4879
continue;
4880
}
4881
4882
4883
/*
4884
* Our current level is where we're going to start from, and to
4885
* make sure lockdep doesn't complain we need to drop our locks
4886
* and nodes from 0 to our current level.
4887
*/
4888
for (i = 0; i < level; i++) {
4889
if (path->locks[level]) {
4890
btrfs_tree_read_unlock(path->nodes[i]);
4891
path->locks[i] = 0;
4892
}
4893
free_extent_buffer(path->nodes[i]);
4894
path->nodes[i] = NULL;
4895
}
4896
4897
next = c;
4898
ret = read_block_for_search(root, path, &next, slot, &key);
4899
if (ret == -EAGAIN && !path->nowait)
4900
goto again;
4901
4902
if (ret < 0) {
4903
btrfs_release_path(path);
4904
goto done;
4905
}
4906
4907
if (!path->skip_locking) {
4908
ret = btrfs_try_tree_read_lock(next);
4909
if (!ret && path->nowait) {
4910
ret = -EAGAIN;
4911
goto done;
4912
}
4913
if (!ret && time_seq) {
4914
/*
4915
* If we don't get the lock, we may be racing
4916
* with push_leaf_left, holding that lock while
4917
* itself waiting for the leaf we've currently
4918
* locked. To solve this situation, we give up
4919
* on our lock and cycle.
4920
*/
4921
free_extent_buffer(next);
4922
btrfs_release_path(path);
4923
cond_resched();
4924
goto again;
4925
}
4926
if (!ret)
4927
btrfs_tree_read_lock(next);
4928
}
4929
break;
4930
}
4931
path->slots[level] = slot;
4932
while (1) {
4933
level--;
4934
path->nodes[level] = next;
4935
path->slots[level] = 0;
4936
if (!path->skip_locking)
4937
path->locks[level] = BTRFS_READ_LOCK;
4938
if (!level)
4939
break;
4940
4941
ret = read_block_for_search(root, path, &next, 0, &key);
4942
if (ret == -EAGAIN && !path->nowait)
4943
goto again;
4944
4945
if (ret < 0) {
4946
btrfs_release_path(path);
4947
goto done;
4948
}
4949
4950
if (!path->skip_locking) {
4951
if (path->nowait) {
4952
if (!btrfs_try_tree_read_lock(next)) {
4953
ret = -EAGAIN;
4954
goto done;
4955
}
4956
} else {
4957
btrfs_tree_read_lock(next);
4958
}
4959
}
4960
}
4961
ret = 0;
4962
done:
4963
unlock_up(path, 0, 1, 0, NULL);
4964
if (need_commit_sem) {
4965
int ret2;
4966
4967
path->need_commit_sem = 1;
4968
ret2 = finish_need_commit_sem_search(path);
4969
up_read(&fs_info->commit_root_sem);
4970
if (ret2)
4971
ret = ret2;
4972
}
4973
4974
return ret;
4975
}
4976
4977
int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4978
{
4979
path->slots[0]++;
4980
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4981
return btrfs_next_old_leaf(root, path, time_seq);
4982
return 0;
4983
}
4984
4985
/*
4986
* this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4987
* searching until it gets past min_objectid or finds an item of 'type'
4988
*
4989
* returns 0 if something is found, 1 if nothing was found and < 0 on error
4990
*/
4991
int btrfs_previous_item(struct btrfs_root *root,
4992
struct btrfs_path *path, u64 min_objectid,
4993
int type)
4994
{
4995
struct btrfs_key found_key;
4996
struct extent_buffer *leaf;
4997
u32 nritems;
4998
int ret;
4999
5000
while (1) {
5001
if (path->slots[0] == 0) {
5002
ret = btrfs_prev_leaf(root, path);
5003
if (ret != 0)
5004
return ret;
5005
} else {
5006
path->slots[0]--;
5007
}
5008
leaf = path->nodes[0];
5009
nritems = btrfs_header_nritems(leaf);
5010
if (nritems == 0)
5011
return 1;
5012
if (path->slots[0] == nritems)
5013
path->slots[0]--;
5014
5015
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5016
if (found_key.objectid < min_objectid)
5017
break;
5018
if (found_key.type == type)
5019
return 0;
5020
if (found_key.objectid == min_objectid &&
5021
found_key.type < type)
5022
break;
5023
}
5024
return 1;
5025
}
5026
5027
/*
5028
* search in extent tree to find a previous Metadata/Data extent item with
5029
* min objecitd.
5030
*
5031
* returns 0 if something is found, 1 if nothing was found and < 0 on error
5032
*/
5033
int btrfs_previous_extent_item(struct btrfs_root *root,
5034
struct btrfs_path *path, u64 min_objectid)
5035
{
5036
struct btrfs_key found_key;
5037
struct extent_buffer *leaf;
5038
u32 nritems;
5039
int ret;
5040
5041
while (1) {
5042
if (path->slots[0] == 0) {
5043
ret = btrfs_prev_leaf(root, path);
5044
if (ret != 0)
5045
return ret;
5046
} else {
5047
path->slots[0]--;
5048
}
5049
leaf = path->nodes[0];
5050
nritems = btrfs_header_nritems(leaf);
5051
if (nritems == 0)
5052
return 1;
5053
if (path->slots[0] == nritems)
5054
path->slots[0]--;
5055
5056
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5057
if (found_key.objectid < min_objectid)
5058
break;
5059
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5060
found_key.type == BTRFS_METADATA_ITEM_KEY)
5061
return 0;
5062
if (found_key.objectid == min_objectid &&
5063
found_key.type < BTRFS_EXTENT_ITEM_KEY)
5064
break;
5065
}
5066
return 1;
5067
}
5068
5069
int __init btrfs_ctree_init(void)
5070
{
5071
btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5072
if (!btrfs_path_cachep)
5073
return -ENOMEM;
5074
return 0;
5075
}
5076
5077
void __cold btrfs_ctree_exit(void)
5078
{
5079
kmem_cache_destroy(btrfs_path_cachep);
5080
}
5081
5082