Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/delayed-inode.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2011 Fujitsu. All rights reserved.
4
* Written by Miao Xie <[email protected]>
5
*/
6
7
#include <linux/slab.h>
8
#include <linux/iversion.h>
9
#include "ctree.h"
10
#include "fs.h"
11
#include "messages.h"
12
#include "misc.h"
13
#include "delayed-inode.h"
14
#include "disk-io.h"
15
#include "transaction.h"
16
#include "qgroup.h"
17
#include "locking.h"
18
#include "inode-item.h"
19
#include "space-info.h"
20
#include "accessors.h"
21
#include "file-item.h"
22
23
#define BTRFS_DELAYED_WRITEBACK 512
24
#define BTRFS_DELAYED_BACKGROUND 128
25
#define BTRFS_DELAYED_BATCH 16
26
27
static struct kmem_cache *delayed_node_cache;
28
29
int __init btrfs_delayed_inode_init(void)
30
{
31
delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32
if (!delayed_node_cache)
33
return -ENOMEM;
34
return 0;
35
}
36
37
void __cold btrfs_delayed_inode_exit(void)
38
{
39
kmem_cache_destroy(delayed_node_cache);
40
}
41
42
void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43
{
44
atomic_set(&delayed_root->items, 0);
45
atomic_set(&delayed_root->items_seq, 0);
46
delayed_root->nodes = 0;
47
spin_lock_init(&delayed_root->lock);
48
init_waitqueue_head(&delayed_root->wait);
49
INIT_LIST_HEAD(&delayed_root->node_list);
50
INIT_LIST_HEAD(&delayed_root->prepare_list);
51
}
52
53
static inline void btrfs_init_delayed_node(
54
struct btrfs_delayed_node *delayed_node,
55
struct btrfs_root *root, u64 inode_id)
56
{
57
delayed_node->root = root;
58
delayed_node->inode_id = inode_id;
59
refcount_set(&delayed_node->refs, 0);
60
btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61
delayed_node->ins_root = RB_ROOT_CACHED;
62
delayed_node->del_root = RB_ROOT_CACHED;
63
mutex_init(&delayed_node->mutex);
64
INIT_LIST_HEAD(&delayed_node->n_list);
65
INIT_LIST_HEAD(&delayed_node->p_list);
66
}
67
68
static struct btrfs_delayed_node *btrfs_get_delayed_node(
69
struct btrfs_inode *btrfs_inode,
70
struct btrfs_ref_tracker *tracker)
71
{
72
struct btrfs_root *root = btrfs_inode->root;
73
u64 ino = btrfs_ino(btrfs_inode);
74
struct btrfs_delayed_node *node;
75
76
node = READ_ONCE(btrfs_inode->delayed_node);
77
if (node) {
78
refcount_inc(&node->refs);
79
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80
return node;
81
}
82
83
xa_lock(&root->delayed_nodes);
84
node = xa_load(&root->delayed_nodes, ino);
85
86
if (node) {
87
if (btrfs_inode->delayed_node) {
88
refcount_inc(&node->refs); /* can be accessed */
89
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90
BUG_ON(btrfs_inode->delayed_node != node);
91
xa_unlock(&root->delayed_nodes);
92
return node;
93
}
94
95
/*
96
* It's possible that we're racing into the middle of removing
97
* this node from the xarray. In this case, the refcount
98
* was zero and it should never go back to one. Just return
99
* NULL like it was never in the xarray at all; our release
100
* function is in the process of removing it.
101
*
102
* Some implementations of refcount_inc refuse to bump the
103
* refcount once it has hit zero. If we don't do this dance
104
* here, refcount_inc() may decide to just WARN_ONCE() instead
105
* of actually bumping the refcount.
106
*
107
* If this node is properly in the xarray, we want to bump the
108
* refcount twice, once for the inode and once for this get
109
* operation.
110
*/
111
if (refcount_inc_not_zero(&node->refs)) {
112
refcount_inc(&node->refs);
113
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115
GFP_ATOMIC);
116
btrfs_inode->delayed_node = node;
117
} else {
118
node = NULL;
119
}
120
121
xa_unlock(&root->delayed_nodes);
122
return node;
123
}
124
xa_unlock(&root->delayed_nodes);
125
126
return NULL;
127
}
128
129
/*
130
* Look up an existing delayed node associated with @btrfs_inode or create a new
131
* one and insert it to the delayed nodes of the root.
132
*
133
* Return the delayed node, or error pointer on failure.
134
*/
135
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136
struct btrfs_inode *btrfs_inode,
137
struct btrfs_ref_tracker *tracker)
138
{
139
struct btrfs_delayed_node *node;
140
struct btrfs_root *root = btrfs_inode->root;
141
u64 ino = btrfs_ino(btrfs_inode);
142
int ret;
143
void *ptr;
144
145
again:
146
node = btrfs_get_delayed_node(btrfs_inode, tracker);
147
if (node)
148
return node;
149
150
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151
if (!node)
152
return ERR_PTR(-ENOMEM);
153
btrfs_init_delayed_node(node, root, ino);
154
155
/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
156
ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
157
if (ret == -ENOMEM) {
158
btrfs_delayed_node_ref_tracker_dir_exit(node);
159
kmem_cache_free(delayed_node_cache, node);
160
return ERR_PTR(-ENOMEM);
161
}
162
xa_lock(&root->delayed_nodes);
163
ptr = xa_load(&root->delayed_nodes, ino);
164
if (ptr) {
165
/* Somebody inserted it, go back and read it. */
166
xa_unlock(&root->delayed_nodes);
167
btrfs_delayed_node_ref_tracker_dir_exit(node);
168
kmem_cache_free(delayed_node_cache, node);
169
node = NULL;
170
goto again;
171
}
172
ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173
ASSERT(xa_err(ptr) != -EINVAL);
174
ASSERT(xa_err(ptr) != -ENOMEM);
175
ASSERT(ptr == NULL);
176
177
/* Cached in the inode and can be accessed. */
178
refcount_set(&node->refs, 2);
179
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
180
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_ATOMIC);
181
182
btrfs_inode->delayed_node = node;
183
xa_unlock(&root->delayed_nodes);
184
185
return node;
186
}
187
188
/*
189
* Call it when holding delayed_node->mutex
190
*
191
* If mod = 1, add this node into the prepared list.
192
*/
193
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
194
struct btrfs_delayed_node *node,
195
int mod)
196
{
197
spin_lock(&root->lock);
198
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
199
if (!list_empty(&node->p_list))
200
list_move_tail(&node->p_list, &root->prepare_list);
201
else if (mod)
202
list_add_tail(&node->p_list, &root->prepare_list);
203
} else {
204
list_add_tail(&node->n_list, &root->node_list);
205
list_add_tail(&node->p_list, &root->prepare_list);
206
refcount_inc(&node->refs); /* inserted into list */
207
btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
208
GFP_ATOMIC);
209
root->nodes++;
210
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211
}
212
spin_unlock(&root->lock);
213
}
214
215
/* Call it when holding delayed_node->mutex */
216
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
217
struct btrfs_delayed_node *node)
218
{
219
spin_lock(&root->lock);
220
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221
root->nodes--;
222
btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
223
refcount_dec(&node->refs); /* not in the list */
224
list_del_init(&node->n_list);
225
if (!list_empty(&node->p_list))
226
list_del_init(&node->p_list);
227
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
228
}
229
spin_unlock(&root->lock);
230
}
231
232
static struct btrfs_delayed_node *btrfs_first_delayed_node(
233
struct btrfs_delayed_root *delayed_root,
234
struct btrfs_ref_tracker *tracker)
235
{
236
struct btrfs_delayed_node *node;
237
238
spin_lock(&delayed_root->lock);
239
node = list_first_entry_or_null(&delayed_root->node_list,
240
struct btrfs_delayed_node, n_list);
241
if (node) {
242
refcount_inc(&node->refs);
243
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
244
}
245
spin_unlock(&delayed_root->lock);
246
247
return node;
248
}
249
250
static struct btrfs_delayed_node *btrfs_next_delayed_node(
251
struct btrfs_delayed_node *node,
252
struct btrfs_ref_tracker *tracker)
253
{
254
struct btrfs_delayed_root *delayed_root;
255
struct list_head *p;
256
struct btrfs_delayed_node *next = NULL;
257
258
delayed_root = node->root->fs_info->delayed_root;
259
spin_lock(&delayed_root->lock);
260
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
261
/* not in the list */
262
if (list_empty(&delayed_root->node_list))
263
goto out;
264
p = delayed_root->node_list.next;
265
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
266
goto out;
267
else
268
p = node->n_list.next;
269
270
next = list_entry(p, struct btrfs_delayed_node, n_list);
271
refcount_inc(&next->refs);
272
btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
273
out:
274
spin_unlock(&delayed_root->lock);
275
276
return next;
277
}
278
279
static void __btrfs_release_delayed_node(
280
struct btrfs_delayed_node *delayed_node,
281
int mod, struct btrfs_ref_tracker *tracker)
282
{
283
struct btrfs_delayed_root *delayed_root;
284
285
if (!delayed_node)
286
return;
287
288
delayed_root = delayed_node->root->fs_info->delayed_root;
289
290
mutex_lock(&delayed_node->mutex);
291
if (delayed_node->count)
292
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
293
else
294
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
295
mutex_unlock(&delayed_node->mutex);
296
297
btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
298
if (refcount_dec_and_test(&delayed_node->refs)) {
299
struct btrfs_root *root = delayed_node->root;
300
301
xa_erase(&root->delayed_nodes, delayed_node->inode_id);
302
/*
303
* Once our refcount goes to zero, nobody is allowed to bump it
304
* back up. We can delete it now.
305
*/
306
ASSERT(refcount_read(&delayed_node->refs) == 0);
307
btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
308
kmem_cache_free(delayed_node_cache, delayed_node);
309
}
310
}
311
312
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
313
struct btrfs_ref_tracker *tracker)
314
{
315
__btrfs_release_delayed_node(node, 0, tracker);
316
}
317
318
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
319
struct btrfs_delayed_root *delayed_root,
320
struct btrfs_ref_tracker *tracker)
321
{
322
struct btrfs_delayed_node *node;
323
324
spin_lock(&delayed_root->lock);
325
node = list_first_entry_or_null(&delayed_root->prepare_list,
326
struct btrfs_delayed_node, p_list);
327
if (node) {
328
list_del_init(&node->p_list);
329
refcount_inc(&node->refs);
330
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
331
}
332
spin_unlock(&delayed_root->lock);
333
334
return node;
335
}
336
337
static inline void btrfs_release_prepared_delayed_node(
338
struct btrfs_delayed_node *node,
339
struct btrfs_ref_tracker *tracker)
340
{
341
__btrfs_release_delayed_node(node, 1, tracker);
342
}
343
344
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
345
struct btrfs_delayed_node *node,
346
enum btrfs_delayed_item_type type)
347
{
348
struct btrfs_delayed_item *item;
349
350
item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
351
if (item) {
352
item->data_len = data_len;
353
item->type = type;
354
item->bytes_reserved = 0;
355
item->delayed_node = node;
356
RB_CLEAR_NODE(&item->rb_node);
357
INIT_LIST_HEAD(&item->log_list);
358
item->logged = false;
359
refcount_set(&item->refs, 1);
360
}
361
return item;
362
}
363
364
static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
365
{
366
const u64 *index = key;
367
const struct btrfs_delayed_item *delayed_item = rb_entry(node,
368
struct btrfs_delayed_item, rb_node);
369
370
if (delayed_item->index < *index)
371
return 1;
372
else if (delayed_item->index > *index)
373
return -1;
374
375
return 0;
376
}
377
378
/*
379
* Look up the delayed item by key.
380
*
381
* @delayed_node: pointer to the delayed node
382
* @index: the dir index value to lookup (offset of a dir index key)
383
*
384
* Note: if we don't find the right item, we will return the prev item and
385
* the next item.
386
*/
387
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
388
struct rb_root *root,
389
u64 index)
390
{
391
struct rb_node *node;
392
393
node = rb_find(&index, root, delayed_item_index_cmp);
394
return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
395
}
396
397
static int btrfs_delayed_item_cmp(const struct rb_node *new,
398
const struct rb_node *exist)
399
{
400
const struct btrfs_delayed_item *new_item =
401
rb_entry(new, struct btrfs_delayed_item, rb_node);
402
403
return delayed_item_index_cmp(&new_item->index, exist);
404
}
405
406
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
407
struct btrfs_delayed_item *ins)
408
{
409
struct rb_root_cached *root;
410
struct rb_node *exist;
411
412
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
413
root = &delayed_node->ins_root;
414
else
415
root = &delayed_node->del_root;
416
417
exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
418
if (exist)
419
return -EEXIST;
420
421
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
422
ins->index >= delayed_node->index_cnt)
423
delayed_node->index_cnt = ins->index + 1;
424
425
delayed_node->count++;
426
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
427
return 0;
428
}
429
430
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
431
{
432
int seq = atomic_inc_return(&delayed_root->items_seq);
433
434
/* atomic_dec_return implies a barrier */
435
if ((atomic_dec_return(&delayed_root->items) <
436
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
437
cond_wake_up_nomb(&delayed_root->wait);
438
}
439
440
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
441
{
442
struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
443
struct rb_root_cached *root;
444
struct btrfs_delayed_root *delayed_root;
445
446
/* Not inserted, ignore it. */
447
if (RB_EMPTY_NODE(&delayed_item->rb_node))
448
return;
449
450
/* If it's in a rbtree, then we need to have delayed node locked. */
451
lockdep_assert_held(&delayed_node->mutex);
452
453
delayed_root = delayed_node->root->fs_info->delayed_root;
454
455
if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
456
root = &delayed_node->ins_root;
457
else
458
root = &delayed_node->del_root;
459
460
rb_erase_cached(&delayed_item->rb_node, root);
461
RB_CLEAR_NODE(&delayed_item->rb_node);
462
delayed_node->count--;
463
464
finish_one_item(delayed_root);
465
}
466
467
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
468
{
469
if (item) {
470
__btrfs_remove_delayed_item(item);
471
if (refcount_dec_and_test(&item->refs))
472
kfree(item);
473
}
474
}
475
476
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
477
struct btrfs_delayed_node *delayed_node)
478
{
479
struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
480
481
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
482
}
483
484
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
485
struct btrfs_delayed_node *delayed_node)
486
{
487
struct rb_node *p = rb_first_cached(&delayed_node->del_root);
488
489
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
490
}
491
492
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
493
struct btrfs_delayed_item *item)
494
{
495
struct rb_node *p = rb_next(&item->rb_node);
496
497
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
498
}
499
500
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
501
struct btrfs_delayed_item *item)
502
{
503
struct btrfs_block_rsv *src_rsv;
504
struct btrfs_block_rsv *dst_rsv;
505
struct btrfs_fs_info *fs_info = trans->fs_info;
506
u64 num_bytes;
507
int ret;
508
509
if (!trans->bytes_reserved)
510
return 0;
511
512
src_rsv = trans->block_rsv;
513
dst_rsv = &fs_info->delayed_block_rsv;
514
515
num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
516
517
/*
518
* Here we migrate space rsv from transaction rsv, since have already
519
* reserved space when starting a transaction. So no need to reserve
520
* qgroup space here.
521
*/
522
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
523
if (!ret) {
524
trace_btrfs_space_reservation(fs_info, "delayed_item",
525
item->delayed_node->inode_id,
526
num_bytes, 1);
527
/*
528
* For insertions we track reserved metadata space by accounting
529
* for the number of leaves that will be used, based on the delayed
530
* node's curr_index_batch_size and index_item_leaves fields.
531
*/
532
if (item->type == BTRFS_DELAYED_DELETION_ITEM)
533
item->bytes_reserved = num_bytes;
534
}
535
536
return ret;
537
}
538
539
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
540
struct btrfs_delayed_item *item)
541
{
542
struct btrfs_block_rsv *rsv;
543
struct btrfs_fs_info *fs_info = root->fs_info;
544
545
if (!item->bytes_reserved)
546
return;
547
548
rsv = &fs_info->delayed_block_rsv;
549
/*
550
* Check btrfs_delayed_item_reserve_metadata() to see why we don't need
551
* to release/reserve qgroup space.
552
*/
553
trace_btrfs_space_reservation(fs_info, "delayed_item",
554
item->delayed_node->inode_id,
555
item->bytes_reserved, 0);
556
btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
557
}
558
559
static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
560
unsigned int num_leaves)
561
{
562
struct btrfs_fs_info *fs_info = node->root->fs_info;
563
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
564
565
/* There are no space reservations during log replay, bail out. */
566
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
567
return;
568
569
trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
570
bytes, 0);
571
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
572
}
573
574
static int btrfs_delayed_inode_reserve_metadata(
575
struct btrfs_trans_handle *trans,
576
struct btrfs_root *root,
577
struct btrfs_delayed_node *node)
578
{
579
struct btrfs_fs_info *fs_info = root->fs_info;
580
struct btrfs_block_rsv *src_rsv;
581
struct btrfs_block_rsv *dst_rsv;
582
u64 num_bytes;
583
int ret;
584
585
src_rsv = trans->block_rsv;
586
dst_rsv = &fs_info->delayed_block_rsv;
587
588
num_bytes = btrfs_calc_metadata_size(fs_info, 1);
589
590
/*
591
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
592
* which doesn't reserve space for speed. This is a problem since we
593
* still need to reserve space for this update, so try to reserve the
594
* space.
595
*
596
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597
* we always reserve enough to update the inode item.
598
*/
599
if (!src_rsv || (!trans->bytes_reserved &&
600
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601
ret = btrfs_qgroup_reserve_meta(root, num_bytes,
602
BTRFS_QGROUP_RSV_META_PREALLOC, true);
603
if (ret < 0)
604
return ret;
605
ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
606
BTRFS_RESERVE_NO_FLUSH);
607
/* NO_FLUSH could only fail with -ENOSPC */
608
ASSERT(ret == 0 || ret == -ENOSPC);
609
if (ret)
610
btrfs_qgroup_free_meta_prealloc(root, num_bytes);
611
} else {
612
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
613
}
614
615
if (!ret) {
616
trace_btrfs_space_reservation(fs_info, "delayed_inode",
617
node->inode_id, num_bytes, 1);
618
node->bytes_reserved = num_bytes;
619
}
620
621
return ret;
622
}
623
624
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
625
struct btrfs_delayed_node *node,
626
bool qgroup_free)
627
{
628
struct btrfs_block_rsv *rsv;
629
630
if (!node->bytes_reserved)
631
return;
632
633
rsv = &fs_info->delayed_block_rsv;
634
trace_btrfs_space_reservation(fs_info, "delayed_inode",
635
node->inode_id, node->bytes_reserved, 0);
636
btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
637
if (qgroup_free)
638
btrfs_qgroup_free_meta_prealloc(node->root,
639
node->bytes_reserved);
640
else
641
btrfs_qgroup_convert_reserved_meta(node->root,
642
node->bytes_reserved);
643
node->bytes_reserved = 0;
644
}
645
646
/*
647
* Insert a single delayed item or a batch of delayed items, as many as possible
648
* that fit in a leaf. The delayed items (dir index keys) are sorted by their key
649
* in the rbtree, and if there's a gap between two consecutive dir index items,
650
* then it means at some point we had delayed dir indexes to add but they got
651
* removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
652
* into the subvolume tree. Dir index keys also have their offsets coming from a
653
* monotonically increasing counter, so we can't get new keys with an offset that
654
* fits within a gap between delayed dir index items.
655
*/
656
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
657
struct btrfs_root *root,
658
struct btrfs_path *path,
659
struct btrfs_delayed_item *first_item)
660
{
661
struct btrfs_fs_info *fs_info = root->fs_info;
662
struct btrfs_delayed_node *node = first_item->delayed_node;
663
LIST_HEAD(item_list);
664
struct btrfs_delayed_item *curr;
665
struct btrfs_delayed_item *next;
666
const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
667
struct btrfs_item_batch batch;
668
struct btrfs_key first_key;
669
const u32 first_data_size = first_item->data_len;
670
int total_size;
671
char *ins_data = NULL;
672
int ret;
673
bool continuous_keys_only = false;
674
675
lockdep_assert_held(&node->mutex);
676
677
/*
678
* During normal operation the delayed index offset is continuously
679
* increasing, so we can batch insert all items as there will not be any
680
* overlapping keys in the tree.
681
*
682
* The exception to this is log replay, where we may have interleaved
683
* offsets in the tree, so our batch needs to be continuous keys only in
684
* order to ensure we do not end up with out of order items in our leaf.
685
*/
686
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
687
continuous_keys_only = true;
688
689
/*
690
* For delayed items to insert, we track reserved metadata bytes based
691
* on the number of leaves that we will use.
692
* See btrfs_insert_delayed_dir_index() and
693
* btrfs_delayed_item_reserve_metadata()).
694
*/
695
ASSERT(first_item->bytes_reserved == 0);
696
697
list_add_tail(&first_item->tree_list, &item_list);
698
batch.total_data_size = first_data_size;
699
batch.nr = 1;
700
total_size = first_data_size + sizeof(struct btrfs_item);
701
curr = first_item;
702
703
while (true) {
704
int next_size;
705
706
next = __btrfs_next_delayed_item(curr);
707
if (!next)
708
break;
709
710
/*
711
* We cannot allow gaps in the key space if we're doing log
712
* replay.
713
*/
714
if (continuous_keys_only && (next->index != curr->index + 1))
715
break;
716
717
ASSERT(next->bytes_reserved == 0);
718
719
next_size = next->data_len + sizeof(struct btrfs_item);
720
if (total_size + next_size > max_size)
721
break;
722
723
list_add_tail(&next->tree_list, &item_list);
724
batch.nr++;
725
total_size += next_size;
726
batch.total_data_size += next->data_len;
727
curr = next;
728
}
729
730
if (batch.nr == 1) {
731
first_key.objectid = node->inode_id;
732
first_key.type = BTRFS_DIR_INDEX_KEY;
733
first_key.offset = first_item->index;
734
batch.keys = &first_key;
735
batch.data_sizes = &first_data_size;
736
} else {
737
struct btrfs_key *ins_keys;
738
u32 *ins_sizes;
739
int i = 0;
740
741
ins_data = kmalloc_array(batch.nr,
742
sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
743
if (!ins_data) {
744
ret = -ENOMEM;
745
goto out;
746
}
747
ins_sizes = (u32 *)ins_data;
748
ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749
batch.keys = ins_keys;
750
batch.data_sizes = ins_sizes;
751
list_for_each_entry(curr, &item_list, tree_list) {
752
ins_keys[i].objectid = node->inode_id;
753
ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754
ins_keys[i].offset = curr->index;
755
ins_sizes[i] = curr->data_len;
756
i++;
757
}
758
}
759
760
ret = btrfs_insert_empty_items(trans, root, path, &batch);
761
if (ret)
762
goto out;
763
764
list_for_each_entry(curr, &item_list, tree_list) {
765
char *data_ptr;
766
767
data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768
write_extent_buffer(path->nodes[0], &curr->data,
769
(unsigned long)data_ptr, curr->data_len);
770
path->slots[0]++;
771
}
772
773
/*
774
* Now release our path before releasing the delayed items and their
775
* metadata reservations, so that we don't block other tasks for more
776
* time than needed.
777
*/
778
btrfs_release_path(path);
779
780
ASSERT(node->index_item_leaves > 0);
781
782
/*
783
* For normal operations we will batch an entire leaf's worth of delayed
784
* items, so if there are more items to process we can decrement
785
* index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786
*
787
* However for log replay we may not have inserted an entire leaf's
788
* worth of items, we may have not had continuous items, so decrementing
789
* here would mess up the index_item_leaves accounting. For this case
790
* only clean up the accounting when there are no items left.
791
*/
792
if (next && !continuous_keys_only) {
793
/*
794
* We inserted one batch of items into a leaf a there are more
795
* items to flush in a future batch, now release one unit of
796
* metadata space from the delayed block reserve, corresponding
797
* the leaf we just flushed to.
798
*/
799
btrfs_delayed_item_release_leaves(node, 1);
800
node->index_item_leaves--;
801
} else if (!next) {
802
/*
803
* There are no more items to insert. We can have a number of
804
* reserved leaves > 1 here - this happens when many dir index
805
* items are added and then removed before they are flushed (file
806
* names with a very short life, never span a transaction). So
807
* release all remaining leaves.
808
*/
809
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810
node->index_item_leaves = 0;
811
}
812
813
list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814
list_del(&curr->tree_list);
815
btrfs_release_delayed_item(curr);
816
}
817
out:
818
kfree(ins_data);
819
return ret;
820
}
821
822
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
823
struct btrfs_path *path,
824
struct btrfs_root *root,
825
struct btrfs_delayed_node *node)
826
{
827
int ret = 0;
828
829
while (ret == 0) {
830
struct btrfs_delayed_item *curr;
831
832
mutex_lock(&node->mutex);
833
curr = __btrfs_first_delayed_insertion_item(node);
834
if (!curr) {
835
mutex_unlock(&node->mutex);
836
break;
837
}
838
ret = btrfs_insert_delayed_item(trans, root, path, curr);
839
mutex_unlock(&node->mutex);
840
}
841
842
return ret;
843
}
844
845
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
846
struct btrfs_root *root,
847
struct btrfs_path *path,
848
struct btrfs_delayed_item *item)
849
{
850
const u64 ino = item->delayed_node->inode_id;
851
struct btrfs_fs_info *fs_info = root->fs_info;
852
struct btrfs_delayed_item *curr, *next;
853
struct extent_buffer *leaf = path->nodes[0];
854
LIST_HEAD(batch_list);
855
int nitems, slot, last_slot;
856
int ret;
857
u64 total_reserved_size = item->bytes_reserved;
858
859
ASSERT(leaf != NULL);
860
861
slot = path->slots[0];
862
last_slot = btrfs_header_nritems(leaf) - 1;
863
/*
864
* Our caller always gives us a path pointing to an existing item, so
865
* this can not happen.
866
*/
867
ASSERT(slot <= last_slot);
868
if (WARN_ON(slot > last_slot))
869
return -ENOENT;
870
871
nitems = 1;
872
curr = item;
873
list_add_tail(&curr->tree_list, &batch_list);
874
875
/*
876
* Keep checking if the next delayed item matches the next item in the
877
* leaf - if so, we can add it to the batch of items to delete from the
878
* leaf.
879
*/
880
while (slot < last_slot) {
881
struct btrfs_key key;
882
883
next = __btrfs_next_delayed_item(curr);
884
if (!next)
885
break;
886
887
slot++;
888
btrfs_item_key_to_cpu(leaf, &key, slot);
889
if (key.objectid != ino ||
890
key.type != BTRFS_DIR_INDEX_KEY ||
891
key.offset != next->index)
892
break;
893
nitems++;
894
curr = next;
895
list_add_tail(&curr->tree_list, &batch_list);
896
total_reserved_size += curr->bytes_reserved;
897
}
898
899
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
900
if (ret)
901
return ret;
902
903
/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
904
if (total_reserved_size > 0) {
905
/*
906
* Check btrfs_delayed_item_reserve_metadata() to see why we
907
* don't need to release/reserve qgroup space.
908
*/
909
trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
910
total_reserved_size, 0);
911
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
912
total_reserved_size, NULL);
913
}
914
915
list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
916
list_del(&curr->tree_list);
917
btrfs_release_delayed_item(curr);
918
}
919
920
return 0;
921
}
922
923
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
924
struct btrfs_path *path,
925
struct btrfs_root *root,
926
struct btrfs_delayed_node *node)
927
{
928
struct btrfs_key key;
929
int ret = 0;
930
931
key.objectid = node->inode_id;
932
key.type = BTRFS_DIR_INDEX_KEY;
933
934
while (ret == 0) {
935
struct btrfs_delayed_item *item;
936
937
mutex_lock(&node->mutex);
938
item = __btrfs_first_delayed_deletion_item(node);
939
if (!item) {
940
mutex_unlock(&node->mutex);
941
break;
942
}
943
944
key.offset = item->index;
945
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
946
if (ret > 0) {
947
/*
948
* There's no matching item in the leaf. This means we
949
* have already deleted this item in a past run of the
950
* delayed items. We ignore errors when running delayed
951
* items from an async context, through a work queue job
952
* running btrfs_async_run_delayed_root(), and don't
953
* release delayed items that failed to complete. This
954
* is because we will retry later, and at transaction
955
* commit time we always run delayed items and will
956
* then deal with errors if they fail to run again.
957
*
958
* So just release delayed items for which we can't find
959
* an item in the tree, and move to the next item.
960
*/
961
btrfs_release_path(path);
962
btrfs_release_delayed_item(item);
963
ret = 0;
964
} else if (ret == 0) {
965
ret = btrfs_batch_delete_items(trans, root, path, item);
966
btrfs_release_path(path);
967
}
968
969
/*
970
* We unlock and relock on each iteration, this is to prevent
971
* blocking other tasks for too long while we are being run from
972
* the async context (work queue job). Those tasks are typically
973
* running system calls like creat/mkdir/rename/unlink/etc which
974
* need to add delayed items to this delayed node.
975
*/
976
mutex_unlock(&node->mutex);
977
}
978
979
return ret;
980
}
981
982
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
983
{
984
struct btrfs_delayed_root *delayed_root;
985
986
if (delayed_node &&
987
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
988
ASSERT(delayed_node->root);
989
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
990
delayed_node->count--;
991
992
delayed_root = delayed_node->root->fs_info->delayed_root;
993
finish_one_item(delayed_root);
994
}
995
}
996
997
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
998
{
999
1000
if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1001
struct btrfs_delayed_root *delayed_root;
1002
1003
ASSERT(delayed_node->root);
1004
delayed_node->count--;
1005
1006
delayed_root = delayed_node->root->fs_info->delayed_root;
1007
finish_one_item(delayed_root);
1008
}
1009
}
1010
1011
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012
struct btrfs_root *root,
1013
struct btrfs_path *path,
1014
struct btrfs_delayed_node *node)
1015
{
1016
struct btrfs_fs_info *fs_info = root->fs_info;
1017
struct btrfs_key key;
1018
struct btrfs_inode_item *inode_item;
1019
struct extent_buffer *leaf;
1020
int mod;
1021
int ret;
1022
1023
key.objectid = node->inode_id;
1024
key.type = BTRFS_INODE_ITEM_KEY;
1025
key.offset = 0;
1026
1027
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028
mod = -1;
1029
else
1030
mod = 1;
1031
1032
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1033
if (ret > 0)
1034
ret = -ENOENT;
1035
if (ret < 0) {
1036
/*
1037
* If we fail to update the delayed inode we need to abort the
1038
* transaction, because we could leave the inode with the
1039
* improper counts behind.
1040
*/
1041
if (unlikely(ret != -ENOENT))
1042
btrfs_abort_transaction(trans, ret);
1043
goto out;
1044
}
1045
1046
leaf = path->nodes[0];
1047
inode_item = btrfs_item_ptr(leaf, path->slots[0],
1048
struct btrfs_inode_item);
1049
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1050
sizeof(struct btrfs_inode_item));
1051
1052
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1053
goto out;
1054
1055
/*
1056
* Now we're going to delete the INODE_REF/EXTREF, which should be the
1057
* only one ref left. Check if the next item is an INODE_REF/EXTREF.
1058
*
1059
* But if we're the last item already, release and search for the last
1060
* INODE_REF/EXTREF.
1061
*/
1062
if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1063
key.objectid = node->inode_id;
1064
key.type = BTRFS_INODE_EXTREF_KEY;
1065
key.offset = (u64)-1;
1066
1067
btrfs_release_path(path);
1068
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069
if (unlikely(ret < 0)) {
1070
btrfs_abort_transaction(trans, ret);
1071
goto err_out;
1072
}
1073
ASSERT(ret > 0);
1074
ASSERT(path->slots[0] > 0);
1075
ret = 0;
1076
path->slots[0]--;
1077
leaf = path->nodes[0];
1078
} else {
1079
path->slots[0]++;
1080
}
1081
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1082
if (key.objectid != node->inode_id)
1083
goto out;
1084
if (key.type != BTRFS_INODE_REF_KEY &&
1085
key.type != BTRFS_INODE_EXTREF_KEY)
1086
goto out;
1087
1088
/*
1089
* Delayed iref deletion is for the inode who has only one link,
1090
* so there is only one iref. The case that several irefs are
1091
* in the same item doesn't exist.
1092
*/
1093
ret = btrfs_del_item(trans, root, path);
1094
if (ret < 0)
1095
btrfs_abort_transaction(trans, ret);
1096
out:
1097
btrfs_release_delayed_iref(node);
1098
btrfs_release_path(path);
1099
err_out:
1100
btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1101
btrfs_release_delayed_inode(node);
1102
return ret;
1103
}
1104
1105
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106
struct btrfs_root *root,
1107
struct btrfs_path *path,
1108
struct btrfs_delayed_node *node)
1109
{
1110
int ret;
1111
1112
mutex_lock(&node->mutex);
1113
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114
mutex_unlock(&node->mutex);
1115
return 0;
1116
}
1117
1118
ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119
mutex_unlock(&node->mutex);
1120
return ret;
1121
}
1122
1123
static inline int
1124
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125
struct btrfs_path *path,
1126
struct btrfs_delayed_node *node)
1127
{
1128
int ret;
1129
1130
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1131
if (ret)
1132
return ret;
1133
1134
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1135
if (ret)
1136
return ret;
1137
1138
ret = btrfs_record_root_in_trans(trans, node->root);
1139
if (ret)
1140
return ret;
1141
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1142
return ret;
1143
}
1144
1145
/*
1146
* Called when committing the transaction.
1147
* Returns 0 on success.
1148
* Returns < 0 on error and returns with an aborted transaction with any
1149
* outstanding delayed items cleaned up.
1150
*/
1151
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1152
{
1153
struct btrfs_fs_info *fs_info = trans->fs_info;
1154
struct btrfs_delayed_root *delayed_root;
1155
struct btrfs_delayed_node *curr_node, *prev_node;
1156
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1157
struct btrfs_path *path;
1158
struct btrfs_block_rsv *block_rsv;
1159
int ret = 0;
1160
bool count = (nr > 0);
1161
1162
if (TRANS_ABORTED(trans))
1163
return -EIO;
1164
1165
path = btrfs_alloc_path();
1166
if (!path)
1167
return -ENOMEM;
1168
1169
block_rsv = trans->block_rsv;
1170
trans->block_rsv = &fs_info->delayed_block_rsv;
1171
1172
delayed_root = fs_info->delayed_root;
1173
1174
curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1175
while (curr_node && (!count || nr--)) {
1176
ret = __btrfs_commit_inode_delayed_items(trans, path,
1177
curr_node);
1178
if (unlikely(ret)) {
1179
btrfs_abort_transaction(trans, ret);
1180
break;
1181
}
1182
1183
prev_node = curr_node;
1184
prev_delayed_node_tracker = curr_delayed_node_tracker;
1185
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1186
/*
1187
* See the comment below about releasing path before releasing
1188
* node. If the commit of delayed items was successful the path
1189
* should always be released, but in case of an error, it may
1190
* point to locked extent buffers (a leaf at the very least).
1191
*/
1192
ASSERT(path->nodes[0] == NULL);
1193
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1194
}
1195
1196
/*
1197
* Release the path to avoid a potential deadlock and lockdep splat when
1198
* releasing the delayed node, as that requires taking the delayed node's
1199
* mutex. If another task starts running delayed items before we take
1200
* the mutex, it will first lock the mutex and then it may try to lock
1201
* the same btree path (leaf).
1202
*/
1203
btrfs_free_path(path);
1204
1205
if (curr_node)
1206
btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1207
trans->block_rsv = block_rsv;
1208
1209
return ret;
1210
}
1211
1212
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1213
{
1214
return __btrfs_run_delayed_items(trans, -1);
1215
}
1216
1217
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1218
{
1219
return __btrfs_run_delayed_items(trans, nr);
1220
}
1221
1222
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1223
struct btrfs_inode *inode)
1224
{
1225
struct btrfs_ref_tracker delayed_node_tracker;
1226
struct btrfs_delayed_node *delayed_node =
1227
btrfs_get_delayed_node(inode, &delayed_node_tracker);
1228
BTRFS_PATH_AUTO_FREE(path);
1229
struct btrfs_block_rsv *block_rsv;
1230
int ret;
1231
1232
if (!delayed_node)
1233
return 0;
1234
1235
mutex_lock(&delayed_node->mutex);
1236
if (!delayed_node->count) {
1237
mutex_unlock(&delayed_node->mutex);
1238
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1239
return 0;
1240
}
1241
mutex_unlock(&delayed_node->mutex);
1242
1243
path = btrfs_alloc_path();
1244
if (!path) {
1245
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1246
return -ENOMEM;
1247
}
1248
1249
block_rsv = trans->block_rsv;
1250
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1251
1252
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1253
1254
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1255
trans->block_rsv = block_rsv;
1256
1257
return ret;
1258
}
1259
1260
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1261
{
1262
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1263
struct btrfs_trans_handle *trans;
1264
struct btrfs_ref_tracker delayed_node_tracker;
1265
struct btrfs_delayed_node *delayed_node;
1266
struct btrfs_path *path;
1267
struct btrfs_block_rsv *block_rsv;
1268
int ret;
1269
1270
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1271
if (!delayed_node)
1272
return 0;
1273
1274
mutex_lock(&delayed_node->mutex);
1275
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1276
mutex_unlock(&delayed_node->mutex);
1277
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1278
return 0;
1279
}
1280
mutex_unlock(&delayed_node->mutex);
1281
1282
trans = btrfs_join_transaction(delayed_node->root);
1283
if (IS_ERR(trans)) {
1284
ret = PTR_ERR(trans);
1285
goto out;
1286
}
1287
1288
path = btrfs_alloc_path();
1289
if (!path) {
1290
ret = -ENOMEM;
1291
goto trans_out;
1292
}
1293
1294
block_rsv = trans->block_rsv;
1295
trans->block_rsv = &fs_info->delayed_block_rsv;
1296
1297
mutex_lock(&delayed_node->mutex);
1298
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1299
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1300
path, delayed_node);
1301
else
1302
ret = 0;
1303
mutex_unlock(&delayed_node->mutex);
1304
1305
btrfs_free_path(path);
1306
trans->block_rsv = block_rsv;
1307
trans_out:
1308
btrfs_end_transaction(trans);
1309
btrfs_btree_balance_dirty(fs_info);
1310
out:
1311
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1312
1313
return ret;
1314
}
1315
1316
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1317
{
1318
struct btrfs_delayed_node *delayed_node;
1319
1320
delayed_node = READ_ONCE(inode->delayed_node);
1321
if (!delayed_node)
1322
return;
1323
1324
inode->delayed_node = NULL;
1325
1326
btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1327
}
1328
1329
struct btrfs_async_delayed_work {
1330
struct btrfs_delayed_root *delayed_root;
1331
int nr;
1332
struct btrfs_work work;
1333
};
1334
1335
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1336
{
1337
struct btrfs_async_delayed_work *async_work;
1338
struct btrfs_delayed_root *delayed_root;
1339
struct btrfs_trans_handle *trans;
1340
struct btrfs_path *path;
1341
struct btrfs_delayed_node *delayed_node = NULL;
1342
struct btrfs_ref_tracker delayed_node_tracker;
1343
struct btrfs_root *root;
1344
struct btrfs_block_rsv *block_rsv;
1345
int total_done = 0;
1346
1347
async_work = container_of(work, struct btrfs_async_delayed_work, work);
1348
delayed_root = async_work->delayed_root;
1349
1350
path = btrfs_alloc_path();
1351
if (!path)
1352
goto out;
1353
1354
do {
1355
if (atomic_read(&delayed_root->items) <
1356
BTRFS_DELAYED_BACKGROUND / 2)
1357
break;
1358
1359
delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1360
&delayed_node_tracker);
1361
if (!delayed_node)
1362
break;
1363
1364
root = delayed_node->root;
1365
1366
trans = btrfs_join_transaction(root);
1367
if (IS_ERR(trans)) {
1368
btrfs_release_path(path);
1369
btrfs_release_prepared_delayed_node(delayed_node,
1370
&delayed_node_tracker);
1371
total_done++;
1372
continue;
1373
}
1374
1375
block_rsv = trans->block_rsv;
1376
trans->block_rsv = &root->fs_info->delayed_block_rsv;
1377
1378
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1379
1380
trans->block_rsv = block_rsv;
1381
btrfs_end_transaction(trans);
1382
btrfs_btree_balance_dirty_nodelay(root->fs_info);
1383
1384
btrfs_release_path(path);
1385
btrfs_release_prepared_delayed_node(delayed_node,
1386
&delayed_node_tracker);
1387
total_done++;
1388
1389
} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1390
|| total_done < async_work->nr);
1391
1392
btrfs_free_path(path);
1393
out:
1394
wake_up(&delayed_root->wait);
1395
kfree(async_work);
1396
}
1397
1398
1399
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1400
struct btrfs_fs_info *fs_info, int nr)
1401
{
1402
struct btrfs_async_delayed_work *async_work;
1403
1404
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1405
if (!async_work)
1406
return -ENOMEM;
1407
1408
async_work->delayed_root = delayed_root;
1409
btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1410
async_work->nr = nr;
1411
1412
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1413
return 0;
1414
}
1415
1416
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1417
{
1418
struct btrfs_ref_tracker delayed_node_tracker;
1419
struct btrfs_delayed_node *node;
1420
1421
node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1422
if (WARN_ON(node)) {
1423
btrfs_delayed_node_ref_tracker_free(node,
1424
&delayed_node_tracker);
1425
refcount_dec(&node->refs);
1426
}
1427
}
1428
1429
static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1430
{
1431
int val = atomic_read(&delayed_root->items_seq);
1432
1433
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1434
return true;
1435
1436
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1437
return true;
1438
1439
return false;
1440
}
1441
1442
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1443
{
1444
struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1445
1446
if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1447
btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1448
return;
1449
1450
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1451
int seq;
1452
int ret;
1453
1454
seq = atomic_read(&delayed_root->items_seq);
1455
1456
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1457
if (ret)
1458
return;
1459
1460
wait_event_interruptible(delayed_root->wait,
1461
could_end_wait(delayed_root, seq));
1462
return;
1463
}
1464
1465
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1466
}
1467
1468
static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1469
{
1470
struct btrfs_fs_info *fs_info = trans->fs_info;
1471
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1472
1473
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1474
return;
1475
1476
/*
1477
* Adding the new dir index item does not require touching another
1478
* leaf, so we can release 1 unit of metadata that was previously
1479
* reserved when starting the transaction. This applies only to
1480
* the case where we had a transaction start and excludes the
1481
* transaction join case (when replaying log trees).
1482
*/
1483
trace_btrfs_space_reservation(fs_info, "transaction",
1484
trans->transid, bytes, 0);
1485
btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1486
ASSERT(trans->bytes_reserved >= bytes);
1487
trans->bytes_reserved -= bytes;
1488
}
1489
1490
/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1491
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1492
const char *name, int name_len,
1493
struct btrfs_inode *dir,
1494
const struct btrfs_disk_key *disk_key, u8 flags,
1495
u64 index)
1496
{
1497
struct btrfs_fs_info *fs_info = trans->fs_info;
1498
const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1499
struct btrfs_delayed_node *delayed_node;
1500
struct btrfs_ref_tracker delayed_node_tracker;
1501
struct btrfs_delayed_item *delayed_item;
1502
struct btrfs_dir_item *dir_item;
1503
bool reserve_leaf_space;
1504
u32 data_len;
1505
int ret;
1506
1507
delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1508
if (IS_ERR(delayed_node))
1509
return PTR_ERR(delayed_node);
1510
1511
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1512
delayed_node,
1513
BTRFS_DELAYED_INSERTION_ITEM);
1514
if (!delayed_item) {
1515
ret = -ENOMEM;
1516
goto release_node;
1517
}
1518
1519
delayed_item->index = index;
1520
1521
dir_item = (struct btrfs_dir_item *)delayed_item->data;
1522
dir_item->location = *disk_key;
1523
btrfs_set_stack_dir_transid(dir_item, trans->transid);
1524
btrfs_set_stack_dir_data_len(dir_item, 0);
1525
btrfs_set_stack_dir_name_len(dir_item, name_len);
1526
btrfs_set_stack_dir_flags(dir_item, flags);
1527
memcpy((char *)(dir_item + 1), name, name_len);
1528
1529
data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1530
1531
mutex_lock(&delayed_node->mutex);
1532
1533
/*
1534
* First attempt to insert the delayed item. This is to make the error
1535
* handling path simpler in case we fail (-EEXIST). There's no risk of
1536
* any other task coming in and running the delayed item before we do
1537
* the metadata space reservation below, because we are holding the
1538
* delayed node's mutex and that mutex must also be locked before the
1539
* node's delayed items can be run.
1540
*/
1541
ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1542
if (unlikely(ret)) {
1543
btrfs_err(trans->fs_info,
1544
"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1545
name_len, name, index, btrfs_root_id(delayed_node->root),
1546
delayed_node->inode_id, dir->index_cnt,
1547
delayed_node->index_cnt, ret);
1548
btrfs_release_delayed_item(delayed_item);
1549
btrfs_release_dir_index_item_space(trans);
1550
mutex_unlock(&delayed_node->mutex);
1551
goto release_node;
1552
}
1553
1554
if (delayed_node->index_item_leaves == 0 ||
1555
delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1556
delayed_node->curr_index_batch_size = data_len;
1557
reserve_leaf_space = true;
1558
} else {
1559
delayed_node->curr_index_batch_size += data_len;
1560
reserve_leaf_space = false;
1561
}
1562
1563
if (reserve_leaf_space) {
1564
ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1565
/*
1566
* Space was reserved for a dir index item insertion when we
1567
* started the transaction, so getting a failure here should be
1568
* impossible.
1569
*/
1570
if (WARN_ON(ret)) {
1571
btrfs_release_delayed_item(delayed_item);
1572
mutex_unlock(&delayed_node->mutex);
1573
goto release_node;
1574
}
1575
1576
delayed_node->index_item_leaves++;
1577
} else {
1578
btrfs_release_dir_index_item_space(trans);
1579
}
1580
mutex_unlock(&delayed_node->mutex);
1581
1582
release_node:
1583
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1584
return ret;
1585
}
1586
1587
static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1588
u64 index)
1589
{
1590
struct btrfs_delayed_item *item;
1591
1592
mutex_lock(&node->mutex);
1593
item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1594
if (!item) {
1595
mutex_unlock(&node->mutex);
1596
return false;
1597
}
1598
1599
/*
1600
* For delayed items to insert, we track reserved metadata bytes based
1601
* on the number of leaves that we will use.
1602
* See btrfs_insert_delayed_dir_index() and
1603
* btrfs_delayed_item_reserve_metadata()).
1604
*/
1605
ASSERT(item->bytes_reserved == 0);
1606
ASSERT(node->index_item_leaves > 0);
1607
1608
/*
1609
* If there's only one leaf reserved, we can decrement this item from the
1610
* current batch, otherwise we can not because we don't know which leaf
1611
* it belongs to. With the current limit on delayed items, we rarely
1612
* accumulate enough dir index items to fill more than one leaf (even
1613
* when using a leaf size of 4K).
1614
*/
1615
if (node->index_item_leaves == 1) {
1616
const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1617
1618
ASSERT(node->curr_index_batch_size >= data_len);
1619
node->curr_index_batch_size -= data_len;
1620
}
1621
1622
btrfs_release_delayed_item(item);
1623
1624
/* If we now have no more dir index items, we can release all leaves. */
1625
if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1626
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1627
node->index_item_leaves = 0;
1628
}
1629
1630
mutex_unlock(&node->mutex);
1631
return true;
1632
}
1633
1634
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1635
struct btrfs_inode *dir, u64 index)
1636
{
1637
struct btrfs_delayed_node *node;
1638
struct btrfs_ref_tracker delayed_node_tracker;
1639
struct btrfs_delayed_item *item;
1640
int ret;
1641
1642
node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1643
if (IS_ERR(node))
1644
return PTR_ERR(node);
1645
1646
if (btrfs_delete_delayed_insertion_item(node, index)) {
1647
ret = 0;
1648
goto end;
1649
}
1650
1651
item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1652
if (!item) {
1653
ret = -ENOMEM;
1654
goto end;
1655
}
1656
1657
item->index = index;
1658
1659
ret = btrfs_delayed_item_reserve_metadata(trans, item);
1660
/*
1661
* we have reserved enough space when we start a new transaction,
1662
* so reserving metadata failure is impossible.
1663
*/
1664
if (ret < 0) {
1665
btrfs_err(trans->fs_info,
1666
"metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1667
index, btrfs_root_id(node->root), node->inode_id, ret);
1668
btrfs_release_delayed_item(item);
1669
goto end;
1670
}
1671
1672
mutex_lock(&node->mutex);
1673
ret = __btrfs_add_delayed_item(node, item);
1674
if (unlikely(ret)) {
1675
btrfs_err(trans->fs_info,
1676
"failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1677
index, btrfs_root_id(node->root), node->inode_id, ret);
1678
btrfs_delayed_item_release_metadata(dir->root, item);
1679
btrfs_release_delayed_item(item);
1680
}
1681
mutex_unlock(&node->mutex);
1682
end:
1683
btrfs_release_delayed_node(node, &delayed_node_tracker);
1684
return ret;
1685
}
1686
1687
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1688
{
1689
struct btrfs_ref_tracker delayed_node_tracker;
1690
struct btrfs_delayed_node *delayed_node;
1691
1692
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1693
if (!delayed_node)
1694
return -ENOENT;
1695
1696
/*
1697
* Since we have held i_mutex of this directory, it is impossible that
1698
* a new directory index is added into the delayed node and index_cnt
1699
* is updated now. So we needn't lock the delayed node.
1700
*/
1701
if (!delayed_node->index_cnt) {
1702
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1703
return -EINVAL;
1704
}
1705
1706
inode->index_cnt = delayed_node->index_cnt;
1707
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1708
return 0;
1709
}
1710
1711
bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1712
u64 last_index,
1713
struct list_head *ins_list,
1714
struct list_head *del_list)
1715
{
1716
struct btrfs_delayed_node *delayed_node;
1717
struct btrfs_delayed_item *item;
1718
struct btrfs_ref_tracker delayed_node_tracker;
1719
1720
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1721
if (!delayed_node)
1722
return false;
1723
1724
/*
1725
* We can only do one readdir with delayed items at a time because of
1726
* item->readdir_list.
1727
*/
1728
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1729
btrfs_inode_lock(inode, 0);
1730
1731
mutex_lock(&delayed_node->mutex);
1732
item = __btrfs_first_delayed_insertion_item(delayed_node);
1733
while (item && item->index <= last_index) {
1734
refcount_inc(&item->refs);
1735
list_add_tail(&item->readdir_list, ins_list);
1736
item = __btrfs_next_delayed_item(item);
1737
}
1738
1739
item = __btrfs_first_delayed_deletion_item(delayed_node);
1740
while (item && item->index <= last_index) {
1741
refcount_inc(&item->refs);
1742
list_add_tail(&item->readdir_list, del_list);
1743
item = __btrfs_next_delayed_item(item);
1744
}
1745
mutex_unlock(&delayed_node->mutex);
1746
/*
1747
* This delayed node is still cached in the btrfs inode, so refs
1748
* must be > 1 now, and we needn't check it is going to be freed
1749
* or not.
1750
*
1751
* Besides that, this function is used to read dir, we do not
1752
* insert/delete delayed items in this period. So we also needn't
1753
* requeue or dequeue this delayed node.
1754
*/
1755
btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1756
refcount_dec(&delayed_node->refs);
1757
1758
return true;
1759
}
1760
1761
void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1762
struct list_head *ins_list,
1763
struct list_head *del_list)
1764
{
1765
struct btrfs_delayed_item *curr, *next;
1766
1767
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1768
list_del(&curr->readdir_list);
1769
if (refcount_dec_and_test(&curr->refs))
1770
kfree(curr);
1771
}
1772
1773
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1774
list_del(&curr->readdir_list);
1775
if (refcount_dec_and_test(&curr->refs))
1776
kfree(curr);
1777
}
1778
1779
/*
1780
* The VFS is going to do up_read(), so we need to downgrade back to a
1781
* read lock.
1782
*/
1783
downgrade_write(&inode->vfs_inode.i_rwsem);
1784
}
1785
1786
bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1787
{
1788
struct btrfs_delayed_item *curr;
1789
bool ret = false;
1790
1791
list_for_each_entry(curr, del_list, readdir_list) {
1792
if (curr->index > index)
1793
break;
1794
if (curr->index == index) {
1795
ret = true;
1796
break;
1797
}
1798
}
1799
return ret;
1800
}
1801
1802
/*
1803
* Read dir info stored in the delayed tree.
1804
*/
1805
bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1806
const struct list_head *ins_list)
1807
{
1808
struct btrfs_dir_item *di;
1809
struct btrfs_delayed_item *curr, *next;
1810
struct btrfs_key location;
1811
char *name;
1812
int name_len;
1813
unsigned char d_type;
1814
1815
/*
1816
* Changing the data of the delayed item is impossible. So
1817
* we needn't lock them. And we have held i_mutex of the
1818
* directory, nobody can delete any directory indexes now.
1819
*/
1820
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1821
bool over;
1822
1823
list_del(&curr->readdir_list);
1824
1825
if (curr->index < ctx->pos) {
1826
if (refcount_dec_and_test(&curr->refs))
1827
kfree(curr);
1828
continue;
1829
}
1830
1831
ctx->pos = curr->index;
1832
1833
di = (struct btrfs_dir_item *)curr->data;
1834
name = (char *)(di + 1);
1835
name_len = btrfs_stack_dir_name_len(di);
1836
1837
d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1838
btrfs_disk_key_to_cpu(&location, &di->location);
1839
1840
over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1841
1842
if (refcount_dec_and_test(&curr->refs))
1843
kfree(curr);
1844
1845
if (over)
1846
return true;
1847
ctx->pos++;
1848
}
1849
return false;
1850
}
1851
1852
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1853
struct btrfs_inode_item *inode_item,
1854
struct btrfs_inode *inode)
1855
{
1856
struct inode *vfs_inode = &inode->vfs_inode;
1857
u64 flags;
1858
1859
btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1860
btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1861
btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1862
btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1863
btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1864
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1865
btrfs_set_stack_inode_generation(inode_item, inode->generation);
1866
btrfs_set_stack_inode_sequence(inode_item,
1867
inode_peek_iversion(vfs_inode));
1868
btrfs_set_stack_inode_transid(inode_item, trans->transid);
1869
btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1870
flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1871
btrfs_set_stack_inode_flags(inode_item, flags);
1872
btrfs_set_stack_inode_block_group(inode_item, 0);
1873
1874
btrfs_set_stack_timespec_sec(&inode_item->atime,
1875
inode_get_atime_sec(vfs_inode));
1876
btrfs_set_stack_timespec_nsec(&inode_item->atime,
1877
inode_get_atime_nsec(vfs_inode));
1878
1879
btrfs_set_stack_timespec_sec(&inode_item->mtime,
1880
inode_get_mtime_sec(vfs_inode));
1881
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1882
inode_get_mtime_nsec(vfs_inode));
1883
1884
btrfs_set_stack_timespec_sec(&inode_item->ctime,
1885
inode_get_ctime_sec(vfs_inode));
1886
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1887
inode_get_ctime_nsec(vfs_inode));
1888
1889
btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1890
btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1891
}
1892
1893
int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1894
{
1895
struct btrfs_delayed_node *delayed_node;
1896
struct btrfs_ref_tracker delayed_node_tracker;
1897
struct btrfs_inode_item *inode_item;
1898
struct inode *vfs_inode = &inode->vfs_inode;
1899
1900
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1901
if (!delayed_node)
1902
return -ENOENT;
1903
1904
mutex_lock(&delayed_node->mutex);
1905
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1906
mutex_unlock(&delayed_node->mutex);
1907
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1908
return -ENOENT;
1909
}
1910
1911
inode_item = &delayed_node->inode_item;
1912
1913
i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1914
i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1915
btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1916
vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1917
set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1918
inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1919
inode->generation = btrfs_stack_inode_generation(inode_item);
1920
inode->last_trans = btrfs_stack_inode_transid(inode_item);
1921
1922
inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1923
vfs_inode->i_rdev = 0;
1924
*rdev = btrfs_stack_inode_rdev(inode_item);
1925
btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1926
&inode->flags, &inode->ro_flags);
1927
1928
inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1929
btrfs_stack_timespec_nsec(&inode_item->atime));
1930
1931
inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1932
btrfs_stack_timespec_nsec(&inode_item->mtime));
1933
1934
inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1935
btrfs_stack_timespec_nsec(&inode_item->ctime));
1936
1937
inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1938
inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1939
1940
vfs_inode->i_generation = inode->generation;
1941
if (S_ISDIR(vfs_inode->i_mode))
1942
inode->index_cnt = (u64)-1;
1943
1944
mutex_unlock(&delayed_node->mutex);
1945
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1946
return 0;
1947
}
1948
1949
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1950
struct btrfs_inode *inode)
1951
{
1952
struct btrfs_root *root = inode->root;
1953
struct btrfs_delayed_node *delayed_node;
1954
struct btrfs_ref_tracker delayed_node_tracker;
1955
int ret = 0;
1956
1957
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1958
if (IS_ERR(delayed_node))
1959
return PTR_ERR(delayed_node);
1960
1961
mutex_lock(&delayed_node->mutex);
1962
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1963
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1964
goto release_node;
1965
}
1966
1967
ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1968
if (ret)
1969
goto release_node;
1970
1971
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1972
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1973
delayed_node->count++;
1974
atomic_inc(&root->fs_info->delayed_root->items);
1975
release_node:
1976
mutex_unlock(&delayed_node->mutex);
1977
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1978
return ret;
1979
}
1980
1981
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1982
{
1983
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1984
struct btrfs_delayed_node *delayed_node;
1985
struct btrfs_ref_tracker delayed_node_tracker;
1986
1987
/*
1988
* we don't do delayed inode updates during log recovery because it
1989
* leads to enospc problems. This means we also can't do
1990
* delayed inode refs
1991
*/
1992
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1993
return -EAGAIN;
1994
1995
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1996
if (IS_ERR(delayed_node))
1997
return PTR_ERR(delayed_node);
1998
1999
/*
2000
* We don't reserve space for inode ref deletion is because:
2001
* - We ONLY do async inode ref deletion for the inode who has only
2002
* one link(i_nlink == 1), it means there is only one inode ref.
2003
* And in most case, the inode ref and the inode item are in the
2004
* same leaf, and we will deal with them at the same time.
2005
* Since we are sure we will reserve the space for the inode item,
2006
* it is unnecessary to reserve space for inode ref deletion.
2007
* - If the inode ref and the inode item are not in the same leaf,
2008
* We also needn't worry about enospc problem, because we reserve
2009
* much more space for the inode update than it needs.
2010
* - At the worst, we can steal some space from the global reservation.
2011
* It is very rare.
2012
*/
2013
mutex_lock(&delayed_node->mutex);
2014
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
2015
goto release_node;
2016
2017
set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
2018
delayed_node->count++;
2019
atomic_inc(&fs_info->delayed_root->items);
2020
release_node:
2021
mutex_unlock(&delayed_node->mutex);
2022
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2023
return 0;
2024
}
2025
2026
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2027
{
2028
struct btrfs_root *root = delayed_node->root;
2029
struct btrfs_fs_info *fs_info = root->fs_info;
2030
struct btrfs_delayed_item *curr_item, *prev_item;
2031
2032
mutex_lock(&delayed_node->mutex);
2033
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2034
while (curr_item) {
2035
prev_item = curr_item;
2036
curr_item = __btrfs_next_delayed_item(prev_item);
2037
btrfs_release_delayed_item(prev_item);
2038
}
2039
2040
if (delayed_node->index_item_leaves > 0) {
2041
btrfs_delayed_item_release_leaves(delayed_node,
2042
delayed_node->index_item_leaves);
2043
delayed_node->index_item_leaves = 0;
2044
}
2045
2046
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2047
while (curr_item) {
2048
btrfs_delayed_item_release_metadata(root, curr_item);
2049
prev_item = curr_item;
2050
curr_item = __btrfs_next_delayed_item(prev_item);
2051
btrfs_release_delayed_item(prev_item);
2052
}
2053
2054
btrfs_release_delayed_iref(delayed_node);
2055
2056
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2057
btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2058
btrfs_release_delayed_inode(delayed_node);
2059
}
2060
mutex_unlock(&delayed_node->mutex);
2061
}
2062
2063
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2064
{
2065
struct btrfs_delayed_node *delayed_node;
2066
struct btrfs_ref_tracker delayed_node_tracker;
2067
2068
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2069
if (!delayed_node)
2070
return;
2071
2072
__btrfs_kill_delayed_node(delayed_node);
2073
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2074
}
2075
2076
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2077
{
2078
unsigned long index = 0;
2079
struct btrfs_delayed_node *delayed_nodes[8];
2080
struct btrfs_ref_tracker delayed_node_trackers[8];
2081
2082
while (1) {
2083
struct btrfs_delayed_node *node;
2084
int count;
2085
2086
xa_lock(&root->delayed_nodes);
2087
if (xa_empty(&root->delayed_nodes)) {
2088
xa_unlock(&root->delayed_nodes);
2089
return;
2090
}
2091
2092
count = 0;
2093
xa_for_each_start(&root->delayed_nodes, index, node, index) {
2094
/*
2095
* Don't increase refs in case the node is dead and
2096
* about to be removed from the tree in the loop below
2097
*/
2098
if (refcount_inc_not_zero(&node->refs)) {
2099
btrfs_delayed_node_ref_tracker_alloc(node,
2100
&delayed_node_trackers[count],
2101
GFP_ATOMIC);
2102
delayed_nodes[count] = node;
2103
count++;
2104
}
2105
if (count >= ARRAY_SIZE(delayed_nodes))
2106
break;
2107
}
2108
xa_unlock(&root->delayed_nodes);
2109
index++;
2110
2111
for (int i = 0; i < count; i++) {
2112
__btrfs_kill_delayed_node(delayed_nodes[i]);
2113
btrfs_release_delayed_node(delayed_nodes[i],
2114
&delayed_node_trackers[i]);
2115
btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2116
}
2117
}
2118
}
2119
2120
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2121
{
2122
struct btrfs_delayed_node *curr_node, *prev_node;
2123
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2124
2125
curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2126
&curr_delayed_node_tracker);
2127
while (curr_node) {
2128
__btrfs_kill_delayed_node(curr_node);
2129
2130
prev_node = curr_node;
2131
prev_delayed_node_tracker = curr_delayed_node_tracker;
2132
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2133
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2134
}
2135
}
2136
2137
void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2138
struct list_head *ins_list,
2139
struct list_head *del_list)
2140
{
2141
struct btrfs_delayed_node *node;
2142
struct btrfs_delayed_item *item;
2143
struct btrfs_ref_tracker delayed_node_tracker;
2144
2145
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2146
if (!node)
2147
return;
2148
2149
mutex_lock(&node->mutex);
2150
item = __btrfs_first_delayed_insertion_item(node);
2151
while (item) {
2152
/*
2153
* It's possible that the item is already in a log list. This
2154
* can happen in case two tasks are trying to log the same
2155
* directory. For example if we have tasks A and task B:
2156
*
2157
* Task A collected the delayed items into a log list while
2158
* under the inode's log_mutex (at btrfs_log_inode()), but it
2159
* only releases the items after logging the inodes they point
2160
* to (if they are new inodes), which happens after unlocking
2161
* the log mutex;
2162
*
2163
* Task B enters btrfs_log_inode() and acquires the log_mutex
2164
* of the same directory inode, before task B releases the
2165
* delayed items. This can happen for example when logging some
2166
* inode we need to trigger logging of its parent directory, so
2167
* logging two files that have the same parent directory can
2168
* lead to this.
2169
*
2170
* If this happens, just ignore delayed items already in a log
2171
* list. All the tasks logging the directory are under a log
2172
* transaction and whichever finishes first can not sync the log
2173
* before the other completes and leaves the log transaction.
2174
*/
2175
if (!item->logged && list_empty(&item->log_list)) {
2176
refcount_inc(&item->refs);
2177
list_add_tail(&item->log_list, ins_list);
2178
}
2179
item = __btrfs_next_delayed_item(item);
2180
}
2181
2182
item = __btrfs_first_delayed_deletion_item(node);
2183
while (item) {
2184
/* It may be non-empty, for the same reason mentioned above. */
2185
if (!item->logged && list_empty(&item->log_list)) {
2186
refcount_inc(&item->refs);
2187
list_add_tail(&item->log_list, del_list);
2188
}
2189
item = __btrfs_next_delayed_item(item);
2190
}
2191
mutex_unlock(&node->mutex);
2192
2193
/*
2194
* We are called during inode logging, which means the inode is in use
2195
* and can not be evicted before we finish logging the inode. So we never
2196
* have the last reference on the delayed inode.
2197
* Also, we don't use btrfs_release_delayed_node() because that would
2198
* requeue the delayed inode (change its order in the list of prepared
2199
* nodes) and we don't want to do such change because we don't create or
2200
* delete delayed items.
2201
*/
2202
ASSERT(refcount_read(&node->refs) > 1);
2203
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2204
refcount_dec(&node->refs);
2205
}
2206
2207
void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2208
struct list_head *ins_list,
2209
struct list_head *del_list)
2210
{
2211
struct btrfs_delayed_node *node;
2212
struct btrfs_delayed_item *item;
2213
struct btrfs_delayed_item *next;
2214
struct btrfs_ref_tracker delayed_node_tracker;
2215
2216
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2217
if (!node)
2218
return;
2219
2220
mutex_lock(&node->mutex);
2221
2222
list_for_each_entry_safe(item, next, ins_list, log_list) {
2223
item->logged = true;
2224
list_del_init(&item->log_list);
2225
if (refcount_dec_and_test(&item->refs))
2226
kfree(item);
2227
}
2228
2229
list_for_each_entry_safe(item, next, del_list, log_list) {
2230
item->logged = true;
2231
list_del_init(&item->log_list);
2232
if (refcount_dec_and_test(&item->refs))
2233
kfree(item);
2234
}
2235
2236
mutex_unlock(&node->mutex);
2237
2238
/*
2239
* We are called during inode logging, which means the inode is in use
2240
* and can not be evicted before we finish logging the inode. So we never
2241
* have the last reference on the delayed inode.
2242
* Also, we don't use btrfs_release_delayed_node() because that would
2243
* requeue the delayed inode (change its order in the list of prepared
2244
* nodes) and we don't want to do such change because we don't create or
2245
* delete delayed items.
2246
*/
2247
ASSERT(refcount_read(&node->refs) > 1);
2248
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2249
refcount_dec(&node->refs);
2250
}
2251
2252