Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/disk-io.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007 Oracle. All rights reserved.
4
*/
5
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <linux/unaligned.h>
21
#include <crypto/hash.h>
22
#include "ctree.h"
23
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "bio.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "dev-replace.h"
33
#include "raid56.h"
34
#include "sysfs.h"
35
#include "qgroup.h"
36
#include "compression.h"
37
#include "tree-checker.h"
38
#include "ref-verify.h"
39
#include "block-group.h"
40
#include "discard.h"
41
#include "space-info.h"
42
#include "zoned.h"
43
#include "subpage.h"
44
#include "fs.h"
45
#include "accessors.h"
46
#include "extent-tree.h"
47
#include "root-tree.h"
48
#include "defrag.h"
49
#include "uuid-tree.h"
50
#include "relocation.h"
51
#include "scrub.h"
52
#include "super.h"
53
54
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55
BTRFS_HEADER_FLAG_RELOC |\
56
BTRFS_SUPER_FLAG_ERROR |\
57
BTRFS_SUPER_FLAG_SEEDING |\
58
BTRFS_SUPER_FLAG_METADUMP |\
59
BTRFS_SUPER_FLAG_METADUMP_V2)
60
61
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
64
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65
{
66
if (fs_info->csum_shash)
67
crypto_free_shash(fs_info->csum_shash);
68
}
69
70
/*
71
* Compute the csum of a btree block and store the result to provided buffer.
72
*/
73
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74
{
75
struct btrfs_fs_info *fs_info = buf->fs_info;
76
int num_pages;
77
u32 first_page_part;
78
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79
char *kaddr;
80
int i;
81
82
shash->tfm = fs_info->csum_shash;
83
crypto_shash_init(shash);
84
85
if (buf->addr) {
86
/* Pages are contiguous, handle them as a big one. */
87
kaddr = buf->addr;
88
first_page_part = fs_info->nodesize;
89
num_pages = 1;
90
} else {
91
kaddr = folio_address(buf->folios[0]);
92
first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93
num_pages = num_extent_pages(buf);
94
}
95
96
crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97
first_page_part - BTRFS_CSUM_SIZE);
98
99
/*
100
* Multiple single-page folios case would reach here.
101
*
102
* nodesize <= PAGE_SIZE and large folio all handled by above
103
* crypto_shash_update() already.
104
*/
105
for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106
kaddr = folio_address(buf->folios[i]);
107
crypto_shash_update(shash, kaddr, PAGE_SIZE);
108
}
109
memset(result, 0, BTRFS_CSUM_SIZE);
110
crypto_shash_final(shash, result);
111
}
112
113
/*
114
* we can't consider a given block up to date unless the transid of the
115
* block matches the transid in the parent node's pointer. This is how we
116
* detect blocks that either didn't get written at all or got written
117
* in the wrong place.
118
*/
119
int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic)
120
{
121
if (!extent_buffer_uptodate(eb))
122
return 0;
123
124
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125
return 1;
126
127
if (atomic)
128
return -EAGAIN;
129
130
if (!extent_buffer_uptodate(eb) ||
131
btrfs_header_generation(eb) != parent_transid) {
132
btrfs_err_rl(eb->fs_info,
133
"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134
eb->start, eb->read_mirror,
135
parent_transid, btrfs_header_generation(eb));
136
clear_extent_buffer_uptodate(eb);
137
return 0;
138
}
139
return 1;
140
}
141
142
static bool btrfs_supported_super_csum(u16 csum_type)
143
{
144
switch (csum_type) {
145
case BTRFS_CSUM_TYPE_CRC32:
146
case BTRFS_CSUM_TYPE_XXHASH:
147
case BTRFS_CSUM_TYPE_SHA256:
148
case BTRFS_CSUM_TYPE_BLAKE2:
149
return true;
150
default:
151
return false;
152
}
153
}
154
155
/*
156
* Return 0 if the superblock checksum type matches the checksum value of that
157
* algorithm. Pass the raw disk superblock data.
158
*/
159
int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160
const struct btrfs_super_block *disk_sb)
161
{
162
char result[BTRFS_CSUM_SIZE];
163
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165
shash->tfm = fs_info->csum_shash;
166
167
/*
168
* The super_block structure does not span the whole
169
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170
* filled with zeros and is included in the checksum.
171
*/
172
crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175
if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176
return 1;
177
178
return 0;
179
}
180
181
static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182
int mirror_num)
183
{
184
struct btrfs_fs_info *fs_info = eb->fs_info;
185
int ret = 0;
186
187
if (sb_rdonly(fs_info->sb))
188
return -EROFS;
189
190
for (int i = 0; i < num_extent_folios(eb); i++) {
191
struct folio *folio = eb->folios[i];
192
u64 start = max_t(u64, eb->start, folio_pos(folio));
193
u64 end = min_t(u64, eb->start + eb->len,
194
folio_pos(folio) + eb->folio_size);
195
u32 len = end - start;
196
phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) +
197
offset_in_folio(folio, start);
198
199
ret = btrfs_repair_io_failure(fs_info, 0, start, len, start,
200
paddr, mirror_num);
201
if (ret)
202
break;
203
}
204
205
return ret;
206
}
207
208
/*
209
* helper to read a given tree block, doing retries as required when
210
* the checksums don't match and we have alternate mirrors to try.
211
*
212
* @check: expected tree parentness check, see the comments of the
213
* structure for details.
214
*/
215
int btrfs_read_extent_buffer(struct extent_buffer *eb,
216
const struct btrfs_tree_parent_check *check)
217
{
218
struct btrfs_fs_info *fs_info = eb->fs_info;
219
int failed = 0;
220
int ret;
221
int num_copies = 0;
222
int mirror_num = 0;
223
int failed_mirror = 0;
224
225
ASSERT(check);
226
227
while (1) {
228
ret = read_extent_buffer_pages(eb, mirror_num, check);
229
if (!ret)
230
break;
231
232
num_copies = btrfs_num_copies(fs_info,
233
eb->start, eb->len);
234
if (num_copies == 1)
235
break;
236
237
if (!failed_mirror) {
238
failed = 1;
239
failed_mirror = eb->read_mirror;
240
}
241
242
mirror_num++;
243
if (mirror_num == failed_mirror)
244
mirror_num++;
245
246
if (mirror_num > num_copies)
247
break;
248
}
249
250
if (failed && !ret && failed_mirror)
251
btrfs_repair_eb_io_failure(eb, failed_mirror);
252
253
return ret;
254
}
255
256
/*
257
* Checksum a dirty tree block before IO.
258
*/
259
int btree_csum_one_bio(struct btrfs_bio *bbio)
260
{
261
struct extent_buffer *eb = bbio->private;
262
struct btrfs_fs_info *fs_info = eb->fs_info;
263
u64 found_start = btrfs_header_bytenr(eb);
264
u64 last_trans;
265
u8 result[BTRFS_CSUM_SIZE];
266
int ret;
267
268
/* Btree blocks are always contiguous on disk. */
269
if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270
return -EIO;
271
if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272
return -EIO;
273
274
/*
275
* If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276
* checksum it but zero-out its content. This is done to preserve
277
* ordering of I/O without unnecessarily writing out data.
278
*/
279
if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280
memzero_extent_buffer(eb, 0, eb->len);
281
return 0;
282
}
283
284
if (WARN_ON_ONCE(found_start != eb->start))
285
return -EIO;
286
if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287
return -EIO;
288
289
ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290
offsetof(struct btrfs_header, fsid),
291
BTRFS_FSID_SIZE) == 0);
292
csum_tree_block(eb, result);
293
294
if (btrfs_header_level(eb))
295
ret = btrfs_check_node(eb);
296
else
297
ret = btrfs_check_leaf(eb);
298
299
if (ret < 0)
300
goto error;
301
302
/*
303
* Also check the generation, the eb reached here must be newer than
304
* last committed. Or something seriously wrong happened.
305
*/
306
last_trans = btrfs_get_last_trans_committed(fs_info);
307
if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308
ret = -EUCLEAN;
309
btrfs_err(fs_info,
310
"block=%llu bad generation, have %llu expect > %llu",
311
eb->start, btrfs_header_generation(eb), last_trans);
312
goto error;
313
}
314
write_extent_buffer(eb, result, 0, fs_info->csum_size);
315
return 0;
316
317
error:
318
btrfs_print_tree(eb, 0);
319
btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320
eb->start);
321
/*
322
* Be noisy if this is an extent buffer from a log tree. We don't abort
323
* a transaction in case there's a bad log tree extent buffer, we just
324
* fallback to a transaction commit. Still we want to know when there is
325
* a bad log tree extent buffer, as that may signal a bug somewhere.
326
*/
327
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328
btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329
return ret;
330
}
331
332
static bool check_tree_block_fsid(struct extent_buffer *eb)
333
{
334
struct btrfs_fs_info *fs_info = eb->fs_info;
335
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336
u8 fsid[BTRFS_FSID_SIZE];
337
338
read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339
BTRFS_FSID_SIZE);
340
341
/*
342
* alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343
* This is then overwritten by metadata_uuid if it is present in the
344
* device_list_add(). The same true for a seed device as well. So use of
345
* fs_devices::metadata_uuid is appropriate here.
346
*/
347
if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348
return false;
349
350
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351
if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352
return false;
353
354
return true;
355
}
356
357
/* Do basic extent buffer checks at read time */
358
int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359
const struct btrfs_tree_parent_check *check)
360
{
361
struct btrfs_fs_info *fs_info = eb->fs_info;
362
u64 found_start;
363
const u32 csum_size = fs_info->csum_size;
364
u8 found_level;
365
u8 result[BTRFS_CSUM_SIZE];
366
const u8 *header_csum;
367
int ret = 0;
368
const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369
370
ASSERT(check);
371
372
found_start = btrfs_header_bytenr(eb);
373
if (unlikely(found_start != eb->start)) {
374
btrfs_err_rl(fs_info,
375
"bad tree block start, mirror %u want %llu have %llu",
376
eb->read_mirror, eb->start, found_start);
377
ret = -EIO;
378
goto out;
379
}
380
if (unlikely(check_tree_block_fsid(eb))) {
381
btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382
eb->start, eb->read_mirror);
383
ret = -EIO;
384
goto out;
385
}
386
found_level = btrfs_header_level(eb);
387
if (unlikely(found_level >= BTRFS_MAX_LEVEL)) {
388
btrfs_err(fs_info,
389
"bad tree block level, mirror %u level %d on logical %llu",
390
eb->read_mirror, btrfs_header_level(eb), eb->start);
391
ret = -EIO;
392
goto out;
393
}
394
395
csum_tree_block(eb, result);
396
header_csum = folio_address(eb->folios[0]) +
397
get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398
399
if (memcmp(result, header_csum, csum_size) != 0) {
400
btrfs_warn_rl(fs_info,
401
"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402
eb->start, eb->read_mirror,
403
CSUM_FMT_VALUE(csum_size, header_csum),
404
CSUM_FMT_VALUE(csum_size, result),
405
btrfs_header_level(eb),
406
ignore_csum ? ", ignored" : "");
407
if (unlikely(!ignore_csum)) {
408
ret = -EUCLEAN;
409
goto out;
410
}
411
}
412
413
if (unlikely(found_level != check->level)) {
414
btrfs_err(fs_info,
415
"level verify failed on logical %llu mirror %u wanted %u found %u",
416
eb->start, eb->read_mirror, check->level, found_level);
417
ret = -EIO;
418
goto out;
419
}
420
if (unlikely(check->transid &&
421
btrfs_header_generation(eb) != check->transid)) {
422
btrfs_err_rl(eb->fs_info,
423
"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424
eb->start, eb->read_mirror, check->transid,
425
btrfs_header_generation(eb));
426
ret = -EIO;
427
goto out;
428
}
429
if (check->has_first_key) {
430
const struct btrfs_key *expect_key = &check->first_key;
431
struct btrfs_key found_key;
432
433
if (found_level)
434
btrfs_node_key_to_cpu(eb, &found_key, 0);
435
else
436
btrfs_item_key_to_cpu(eb, &found_key, 0);
437
if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438
btrfs_err(fs_info,
439
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440
eb->start, check->transid,
441
expect_key->objectid,
442
expect_key->type, expect_key->offset,
443
found_key.objectid, found_key.type,
444
found_key.offset);
445
ret = -EUCLEAN;
446
goto out;
447
}
448
}
449
if (check->owner_root) {
450
ret = btrfs_check_eb_owner(eb, check->owner_root);
451
if (ret < 0)
452
goto out;
453
}
454
455
/* If this is a leaf block and it is corrupt, just return -EIO. */
456
if (found_level == 0 && btrfs_check_leaf(eb))
457
ret = -EIO;
458
459
if (found_level > 0 && btrfs_check_node(eb))
460
ret = -EIO;
461
462
if (ret)
463
btrfs_err(fs_info,
464
"read time tree block corruption detected on logical %llu mirror %u",
465
eb->start, eb->read_mirror);
466
out:
467
return ret;
468
}
469
470
#ifdef CONFIG_MIGRATION
471
static int btree_migrate_folio(struct address_space *mapping,
472
struct folio *dst, struct folio *src, enum migrate_mode mode)
473
{
474
/*
475
* we can't safely write a btree page from here,
476
* we haven't done the locking hook
477
*/
478
if (folio_test_dirty(src))
479
return -EAGAIN;
480
/*
481
* Buffers may be managed in a filesystem specific way.
482
* We must have no buffers or drop them.
483
*/
484
if (folio_get_private(src) &&
485
!filemap_release_folio(src, GFP_KERNEL))
486
return -EAGAIN;
487
return migrate_folio(mapping, dst, src, mode);
488
}
489
#else
490
#define btree_migrate_folio NULL
491
#endif
492
493
static int btree_writepages(struct address_space *mapping,
494
struct writeback_control *wbc)
495
{
496
int ret;
497
498
if (wbc->sync_mode == WB_SYNC_NONE) {
499
struct btrfs_fs_info *fs_info;
500
501
if (wbc->for_kupdate)
502
return 0;
503
504
fs_info = inode_to_fs_info(mapping->host);
505
/* this is a bit racy, but that's ok */
506
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
507
BTRFS_DIRTY_METADATA_THRESH,
508
fs_info->dirty_metadata_batch);
509
if (ret < 0)
510
return 0;
511
}
512
return btree_write_cache_pages(mapping, wbc);
513
}
514
515
static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
516
{
517
if (folio_test_writeback(folio) || folio_test_dirty(folio))
518
return false;
519
520
return try_release_extent_buffer(folio);
521
}
522
523
static void btree_invalidate_folio(struct folio *folio, size_t offset,
524
size_t length)
525
{
526
struct extent_io_tree *tree;
527
528
tree = &folio_to_inode(folio)->io_tree;
529
extent_invalidate_folio(tree, folio, offset);
530
btree_release_folio(folio, GFP_NOFS);
531
if (folio_get_private(folio)) {
532
btrfs_warn(folio_to_fs_info(folio),
533
"folio private not zero on folio %llu",
534
(unsigned long long)folio_pos(folio));
535
folio_detach_private(folio);
536
}
537
}
538
539
#ifdef DEBUG
540
static bool btree_dirty_folio(struct address_space *mapping,
541
struct folio *folio)
542
{
543
struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
544
struct btrfs_subpage_info *spi = fs_info->subpage_info;
545
struct btrfs_subpage *subpage;
546
struct extent_buffer *eb;
547
int cur_bit = 0;
548
u64 page_start = folio_pos(folio);
549
550
if (fs_info->sectorsize == PAGE_SIZE) {
551
eb = folio_get_private(folio);
552
BUG_ON(!eb);
553
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
554
BUG_ON(!atomic_read(&eb->refs));
555
btrfs_assert_tree_write_locked(eb);
556
return filemap_dirty_folio(mapping, folio);
557
}
558
559
ASSERT(spi);
560
subpage = folio_get_private(folio);
561
562
for (cur_bit = spi->dirty_offset;
563
cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
564
cur_bit++) {
565
unsigned long flags;
566
u64 cur;
567
568
spin_lock_irqsave(&subpage->lock, flags);
569
if (!test_bit(cur_bit, subpage->bitmaps)) {
570
spin_unlock_irqrestore(&subpage->lock, flags);
571
continue;
572
}
573
spin_unlock_irqrestore(&subpage->lock, flags);
574
cur = page_start + cur_bit * fs_info->sectorsize;
575
576
eb = find_extent_buffer(fs_info, cur);
577
ASSERT(eb);
578
ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
579
ASSERT(atomic_read(&eb->refs));
580
btrfs_assert_tree_write_locked(eb);
581
free_extent_buffer(eb);
582
583
cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
584
}
585
return filemap_dirty_folio(mapping, folio);
586
}
587
#else
588
#define btree_dirty_folio filemap_dirty_folio
589
#endif
590
591
static const struct address_space_operations btree_aops = {
592
.writepages = btree_writepages,
593
.release_folio = btree_release_folio,
594
.invalidate_folio = btree_invalidate_folio,
595
.migrate_folio = btree_migrate_folio,
596
.dirty_folio = btree_dirty_folio,
597
};
598
599
struct extent_buffer *btrfs_find_create_tree_block(
600
struct btrfs_fs_info *fs_info,
601
u64 bytenr, u64 owner_root,
602
int level)
603
{
604
if (btrfs_is_testing(fs_info))
605
return alloc_test_extent_buffer(fs_info, bytenr);
606
return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
607
}
608
609
/*
610
* Read tree block at logical address @bytenr and do variant basic but critical
611
* verification.
612
*
613
* @check: expected tree parentness check, see comments of the
614
* structure for details.
615
*/
616
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
617
struct btrfs_tree_parent_check *check)
618
{
619
struct extent_buffer *buf = NULL;
620
int ret;
621
622
ASSERT(check);
623
624
buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
625
check->level);
626
if (IS_ERR(buf))
627
return buf;
628
629
ret = btrfs_read_extent_buffer(buf, check);
630
if (ret) {
631
free_extent_buffer_stale(buf);
632
return ERR_PTR(ret);
633
}
634
return buf;
635
636
}
637
638
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
639
u64 objectid, gfp_t flags)
640
{
641
struct btrfs_root *root;
642
643
root = kzalloc(sizeof(*root), flags);
644
if (!root)
645
return NULL;
646
647
memset(&root->root_key, 0, sizeof(root->root_key));
648
memset(&root->root_item, 0, sizeof(root->root_item));
649
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
650
root->fs_info = fs_info;
651
root->root_key.objectid = objectid;
652
root->node = NULL;
653
root->commit_root = NULL;
654
root->state = 0;
655
RB_CLEAR_NODE(&root->rb_node);
656
657
btrfs_set_root_last_trans(root, 0);
658
root->free_objectid = 0;
659
root->nr_delalloc_inodes = 0;
660
root->nr_ordered_extents = 0;
661
xa_init(&root->inodes);
662
xa_init(&root->delayed_nodes);
663
664
btrfs_init_root_block_rsv(root);
665
666
INIT_LIST_HEAD(&root->dirty_list);
667
INIT_LIST_HEAD(&root->root_list);
668
INIT_LIST_HEAD(&root->delalloc_inodes);
669
INIT_LIST_HEAD(&root->delalloc_root);
670
INIT_LIST_HEAD(&root->ordered_extents);
671
INIT_LIST_HEAD(&root->ordered_root);
672
INIT_LIST_HEAD(&root->reloc_dirty_list);
673
spin_lock_init(&root->delalloc_lock);
674
spin_lock_init(&root->ordered_extent_lock);
675
spin_lock_init(&root->accounting_lock);
676
spin_lock_init(&root->qgroup_meta_rsv_lock);
677
mutex_init(&root->objectid_mutex);
678
mutex_init(&root->log_mutex);
679
mutex_init(&root->ordered_extent_mutex);
680
mutex_init(&root->delalloc_mutex);
681
init_waitqueue_head(&root->qgroup_flush_wait);
682
init_waitqueue_head(&root->log_writer_wait);
683
init_waitqueue_head(&root->log_commit_wait[0]);
684
init_waitqueue_head(&root->log_commit_wait[1]);
685
INIT_LIST_HEAD(&root->log_ctxs[0]);
686
INIT_LIST_HEAD(&root->log_ctxs[1]);
687
atomic_set(&root->log_commit[0], 0);
688
atomic_set(&root->log_commit[1], 0);
689
atomic_set(&root->log_writers, 0);
690
atomic_set(&root->log_batch, 0);
691
refcount_set(&root->refs, 1);
692
atomic_set(&root->snapshot_force_cow, 0);
693
atomic_set(&root->nr_swapfiles, 0);
694
btrfs_set_root_log_transid(root, 0);
695
root->log_transid_committed = -1;
696
btrfs_set_root_last_log_commit(root, 0);
697
root->anon_dev = 0;
698
if (!btrfs_is_testing(fs_info)) {
699
btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
700
IO_TREE_ROOT_DIRTY_LOG_PAGES);
701
btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
702
IO_TREE_LOG_CSUM_RANGE);
703
}
704
705
spin_lock_init(&root->root_item_lock);
706
btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
707
#ifdef CONFIG_BTRFS_DEBUG
708
INIT_LIST_HEAD(&root->leak_list);
709
spin_lock(&fs_info->fs_roots_radix_lock);
710
list_add_tail(&root->leak_list, &fs_info->allocated_roots);
711
spin_unlock(&fs_info->fs_roots_radix_lock);
712
#endif
713
714
return root;
715
}
716
717
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
718
/* Should only be used by the testing infrastructure */
719
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
720
{
721
struct btrfs_root *root;
722
723
if (!fs_info)
724
return ERR_PTR(-EINVAL);
725
726
root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
727
if (!root)
728
return ERR_PTR(-ENOMEM);
729
730
/* We don't use the stripesize in selftest, set it as sectorsize */
731
root->alloc_bytenr = 0;
732
733
return root;
734
}
735
#endif
736
737
static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
738
{
739
const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
740
const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
741
742
return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
743
}
744
745
static int global_root_key_cmp(const void *k, const struct rb_node *node)
746
{
747
const struct btrfs_key *key = k;
748
const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
749
750
return btrfs_comp_cpu_keys(key, &root->root_key);
751
}
752
753
int btrfs_global_root_insert(struct btrfs_root *root)
754
{
755
struct btrfs_fs_info *fs_info = root->fs_info;
756
struct rb_node *tmp;
757
int ret = 0;
758
759
write_lock(&fs_info->global_root_lock);
760
tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
761
write_unlock(&fs_info->global_root_lock);
762
763
if (tmp) {
764
ret = -EEXIST;
765
btrfs_warn(fs_info, "global root %llu %llu already exists",
766
btrfs_root_id(root), root->root_key.offset);
767
}
768
return ret;
769
}
770
771
void btrfs_global_root_delete(struct btrfs_root *root)
772
{
773
struct btrfs_fs_info *fs_info = root->fs_info;
774
775
write_lock(&fs_info->global_root_lock);
776
rb_erase(&root->rb_node, &fs_info->global_root_tree);
777
write_unlock(&fs_info->global_root_lock);
778
}
779
780
struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
781
struct btrfs_key *key)
782
{
783
struct rb_node *node;
784
struct btrfs_root *root = NULL;
785
786
read_lock(&fs_info->global_root_lock);
787
node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
788
if (node)
789
root = container_of(node, struct btrfs_root, rb_node);
790
read_unlock(&fs_info->global_root_lock);
791
792
return root;
793
}
794
795
static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
796
{
797
struct btrfs_block_group *block_group;
798
u64 ret;
799
800
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
801
return 0;
802
803
if (bytenr)
804
block_group = btrfs_lookup_block_group(fs_info, bytenr);
805
else
806
block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
807
ASSERT(block_group);
808
if (!block_group)
809
return 0;
810
ret = block_group->global_root_id;
811
btrfs_put_block_group(block_group);
812
813
return ret;
814
}
815
816
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
817
{
818
struct btrfs_key key = {
819
.objectid = BTRFS_CSUM_TREE_OBJECTID,
820
.type = BTRFS_ROOT_ITEM_KEY,
821
.offset = btrfs_global_root_id(fs_info, bytenr),
822
};
823
824
return btrfs_global_root(fs_info, &key);
825
}
826
827
struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828
{
829
struct btrfs_key key = {
830
.objectid = BTRFS_EXTENT_TREE_OBJECTID,
831
.type = BTRFS_ROOT_ITEM_KEY,
832
.offset = btrfs_global_root_id(fs_info, bytenr),
833
};
834
835
return btrfs_global_root(fs_info, &key);
836
}
837
838
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
839
u64 objectid)
840
{
841
struct btrfs_fs_info *fs_info = trans->fs_info;
842
struct extent_buffer *leaf;
843
struct btrfs_root *tree_root = fs_info->tree_root;
844
struct btrfs_root *root;
845
struct btrfs_key key;
846
unsigned int nofs_flag;
847
int ret = 0;
848
849
/*
850
* We're holding a transaction handle, so use a NOFS memory allocation
851
* context to avoid deadlock if reclaim happens.
852
*/
853
nofs_flag = memalloc_nofs_save();
854
root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
855
memalloc_nofs_restore(nofs_flag);
856
if (!root)
857
return ERR_PTR(-ENOMEM);
858
859
root->root_key.objectid = objectid;
860
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
861
root->root_key.offset = 0;
862
863
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
864
0, BTRFS_NESTING_NORMAL);
865
if (IS_ERR(leaf)) {
866
ret = PTR_ERR(leaf);
867
leaf = NULL;
868
goto fail;
869
}
870
871
root->node = leaf;
872
btrfs_mark_buffer_dirty(trans, leaf);
873
874
root->commit_root = btrfs_root_node(root);
875
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
876
877
btrfs_set_root_flags(&root->root_item, 0);
878
btrfs_set_root_limit(&root->root_item, 0);
879
btrfs_set_root_bytenr(&root->root_item, leaf->start);
880
btrfs_set_root_generation(&root->root_item, trans->transid);
881
btrfs_set_root_level(&root->root_item, 0);
882
btrfs_set_root_refs(&root->root_item, 1);
883
btrfs_set_root_used(&root->root_item, leaf->len);
884
btrfs_set_root_last_snapshot(&root->root_item, 0);
885
btrfs_set_root_dirid(&root->root_item, 0);
886
if (btrfs_is_fstree(objectid))
887
generate_random_guid(root->root_item.uuid);
888
else
889
export_guid(root->root_item.uuid, &guid_null);
890
btrfs_set_root_drop_level(&root->root_item, 0);
891
892
btrfs_tree_unlock(leaf);
893
894
key.objectid = objectid;
895
key.type = BTRFS_ROOT_ITEM_KEY;
896
key.offset = 0;
897
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
898
if (ret)
899
goto fail;
900
901
return root;
902
903
fail:
904
btrfs_put_root(root);
905
906
return ERR_PTR(ret);
907
}
908
909
static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
910
{
911
struct btrfs_root *root;
912
913
root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
914
if (!root)
915
return ERR_PTR(-ENOMEM);
916
917
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
918
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
919
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
920
921
return root;
922
}
923
924
int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
925
struct btrfs_root *root)
926
{
927
struct extent_buffer *leaf;
928
929
/*
930
* DON'T set SHAREABLE bit for log trees.
931
*
932
* Log trees are not exposed to user space thus can't be snapshotted,
933
* and they go away before a real commit is actually done.
934
*
935
* They do store pointers to file data extents, and those reference
936
* counts still get updated (along with back refs to the log tree).
937
*/
938
939
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
940
NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
941
if (IS_ERR(leaf))
942
return PTR_ERR(leaf);
943
944
root->node = leaf;
945
946
btrfs_mark_buffer_dirty(trans, root->node);
947
btrfs_tree_unlock(root->node);
948
949
return 0;
950
}
951
952
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
953
struct btrfs_fs_info *fs_info)
954
{
955
struct btrfs_root *log_root;
956
957
log_root = alloc_log_tree(fs_info);
958
if (IS_ERR(log_root))
959
return PTR_ERR(log_root);
960
961
if (!btrfs_is_zoned(fs_info)) {
962
int ret = btrfs_alloc_log_tree_node(trans, log_root);
963
964
if (ret) {
965
btrfs_put_root(log_root);
966
return ret;
967
}
968
}
969
970
WARN_ON(fs_info->log_root_tree);
971
fs_info->log_root_tree = log_root;
972
return 0;
973
}
974
975
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
976
struct btrfs_root *root)
977
{
978
struct btrfs_fs_info *fs_info = root->fs_info;
979
struct btrfs_root *log_root;
980
struct btrfs_inode_item *inode_item;
981
int ret;
982
983
log_root = alloc_log_tree(fs_info);
984
if (IS_ERR(log_root))
985
return PTR_ERR(log_root);
986
987
ret = btrfs_alloc_log_tree_node(trans, log_root);
988
if (ret) {
989
btrfs_put_root(log_root);
990
return ret;
991
}
992
993
btrfs_set_root_last_trans(log_root, trans->transid);
994
log_root->root_key.offset = btrfs_root_id(root);
995
996
inode_item = &log_root->root_item.inode;
997
btrfs_set_stack_inode_generation(inode_item, 1);
998
btrfs_set_stack_inode_size(inode_item, 3);
999
btrfs_set_stack_inode_nlink(inode_item, 1);
1000
btrfs_set_stack_inode_nbytes(inode_item,
1001
fs_info->nodesize);
1002
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1003
1004
btrfs_set_root_node(&log_root->root_item, log_root->node);
1005
1006
WARN_ON(root->log_root);
1007
root->log_root = log_root;
1008
btrfs_set_root_log_transid(root, 0);
1009
root->log_transid_committed = -1;
1010
btrfs_set_root_last_log_commit(root, 0);
1011
return 0;
1012
}
1013
1014
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1015
struct btrfs_path *path,
1016
const struct btrfs_key *key)
1017
{
1018
struct btrfs_root *root;
1019
struct btrfs_tree_parent_check check = { 0 };
1020
struct btrfs_fs_info *fs_info = tree_root->fs_info;
1021
u64 generation;
1022
int ret;
1023
int level;
1024
1025
root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1026
if (!root)
1027
return ERR_PTR(-ENOMEM);
1028
1029
ret = btrfs_find_root(tree_root, key, path,
1030
&root->root_item, &root->root_key);
1031
if (ret) {
1032
if (ret > 0)
1033
ret = -ENOENT;
1034
goto fail;
1035
}
1036
1037
generation = btrfs_root_generation(&root->root_item);
1038
level = btrfs_root_level(&root->root_item);
1039
check.level = level;
1040
check.transid = generation;
1041
check.owner_root = key->objectid;
1042
root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1043
&check);
1044
if (IS_ERR(root->node)) {
1045
ret = PTR_ERR(root->node);
1046
root->node = NULL;
1047
goto fail;
1048
}
1049
if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) {
1050
ret = -EIO;
1051
goto fail;
1052
}
1053
1054
/*
1055
* For real fs, and not log/reloc trees, root owner must
1056
* match its root node owner
1057
*/
1058
if (unlikely(!btrfs_is_testing(fs_info) &&
1059
btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1060
btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1061
btrfs_root_id(root) != btrfs_header_owner(root->node))) {
1062
btrfs_crit(fs_info,
1063
"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1064
btrfs_root_id(root), root->node->start,
1065
btrfs_header_owner(root->node),
1066
btrfs_root_id(root));
1067
ret = -EUCLEAN;
1068
goto fail;
1069
}
1070
root->commit_root = btrfs_root_node(root);
1071
return root;
1072
fail:
1073
btrfs_put_root(root);
1074
return ERR_PTR(ret);
1075
}
1076
1077
struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1078
const struct btrfs_key *key)
1079
{
1080
struct btrfs_root *root;
1081
BTRFS_PATH_AUTO_FREE(path);
1082
1083
path = btrfs_alloc_path();
1084
if (!path)
1085
return ERR_PTR(-ENOMEM);
1086
root = read_tree_root_path(tree_root, path, key);
1087
1088
return root;
1089
}
1090
1091
/*
1092
* Initialize subvolume root in-memory structure.
1093
*
1094
* @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095
*
1096
* In case of failure the caller is responsible to call btrfs_free_fs_root()
1097
*/
1098
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1099
{
1100
int ret;
1101
1102
btrfs_drew_lock_init(&root->snapshot_lock);
1103
1104
if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1105
!btrfs_is_data_reloc_root(root) &&
1106
btrfs_is_fstree(btrfs_root_id(root))) {
1107
set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1108
btrfs_check_and_init_root_item(&root->root_item);
1109
}
1110
1111
/*
1112
* Don't assign anonymous block device to roots that are not exposed to
1113
* userspace, the id pool is limited to 1M
1114
*/
1115
if (btrfs_is_fstree(btrfs_root_id(root)) &&
1116
btrfs_root_refs(&root->root_item) > 0) {
1117
if (!anon_dev) {
1118
ret = get_anon_bdev(&root->anon_dev);
1119
if (ret)
1120
return ret;
1121
} else {
1122
root->anon_dev = anon_dev;
1123
}
1124
}
1125
1126
mutex_lock(&root->objectid_mutex);
1127
ret = btrfs_init_root_free_objectid(root);
1128
if (ret) {
1129
mutex_unlock(&root->objectid_mutex);
1130
return ret;
1131
}
1132
1133
ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1134
1135
mutex_unlock(&root->objectid_mutex);
1136
1137
return 0;
1138
}
1139
1140
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1141
u64 root_id)
1142
{
1143
struct btrfs_root *root;
1144
1145
spin_lock(&fs_info->fs_roots_radix_lock);
1146
root = radix_tree_lookup(&fs_info->fs_roots_radix,
1147
(unsigned long)root_id);
1148
root = btrfs_grab_root(root);
1149
spin_unlock(&fs_info->fs_roots_radix_lock);
1150
return root;
1151
}
1152
1153
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1154
u64 objectid)
1155
{
1156
struct btrfs_key key = {
1157
.objectid = objectid,
1158
.type = BTRFS_ROOT_ITEM_KEY,
1159
.offset = 0,
1160
};
1161
1162
switch (objectid) {
1163
case BTRFS_ROOT_TREE_OBJECTID:
1164
return btrfs_grab_root(fs_info->tree_root);
1165
case BTRFS_EXTENT_TREE_OBJECTID:
1166
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1167
case BTRFS_CHUNK_TREE_OBJECTID:
1168
return btrfs_grab_root(fs_info->chunk_root);
1169
case BTRFS_DEV_TREE_OBJECTID:
1170
return btrfs_grab_root(fs_info->dev_root);
1171
case BTRFS_CSUM_TREE_OBJECTID:
1172
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1173
case BTRFS_QUOTA_TREE_OBJECTID:
1174
return btrfs_grab_root(fs_info->quota_root);
1175
case BTRFS_UUID_TREE_OBJECTID:
1176
return btrfs_grab_root(fs_info->uuid_root);
1177
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1178
return btrfs_grab_root(fs_info->block_group_root);
1179
case BTRFS_FREE_SPACE_TREE_OBJECTID:
1180
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181
case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1182
return btrfs_grab_root(fs_info->stripe_root);
1183
default:
1184
return NULL;
1185
}
1186
}
1187
1188
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1189
struct btrfs_root *root)
1190
{
1191
int ret;
1192
1193
ret = radix_tree_preload(GFP_NOFS);
1194
if (ret)
1195
return ret;
1196
1197
spin_lock(&fs_info->fs_roots_radix_lock);
1198
ret = radix_tree_insert(&fs_info->fs_roots_radix,
1199
(unsigned long)btrfs_root_id(root),
1200
root);
1201
if (ret == 0) {
1202
btrfs_grab_root(root);
1203
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1204
}
1205
spin_unlock(&fs_info->fs_roots_radix_lock);
1206
radix_tree_preload_end();
1207
1208
return ret;
1209
}
1210
1211
void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1212
{
1213
#ifdef CONFIG_BTRFS_DEBUG
1214
struct btrfs_root *root;
1215
1216
while (!list_empty(&fs_info->allocated_roots)) {
1217
char buf[BTRFS_ROOT_NAME_BUF_LEN];
1218
1219
root = list_first_entry(&fs_info->allocated_roots,
1220
struct btrfs_root, leak_list);
1221
btrfs_err(fs_info, "leaked root %s refcount %d",
1222
btrfs_root_name(&root->root_key, buf),
1223
refcount_read(&root->refs));
1224
WARN_ON_ONCE(1);
1225
while (refcount_read(&root->refs) > 1)
1226
btrfs_put_root(root);
1227
btrfs_put_root(root);
1228
}
1229
#endif
1230
}
1231
1232
static void free_global_roots(struct btrfs_fs_info *fs_info)
1233
{
1234
struct btrfs_root *root;
1235
struct rb_node *node;
1236
1237
while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1238
root = rb_entry(node, struct btrfs_root, rb_node);
1239
rb_erase(&root->rb_node, &fs_info->global_root_tree);
1240
btrfs_put_root(root);
1241
}
1242
}
1243
1244
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1245
{
1246
struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1247
1248
if (fs_info->fs_devices)
1249
btrfs_close_devices(fs_info->fs_devices);
1250
btrfs_free_compress_wsm(fs_info);
1251
percpu_counter_destroy(&fs_info->stats_read_blocks);
1252
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1253
percpu_counter_destroy(&fs_info->delalloc_bytes);
1254
percpu_counter_destroy(&fs_info->ordered_bytes);
1255
if (percpu_counter_initialized(em_counter))
1256
ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1257
percpu_counter_destroy(em_counter);
1258
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1259
btrfs_free_csum_hash(fs_info);
1260
btrfs_free_stripe_hash_table(fs_info);
1261
btrfs_free_ref_cache(fs_info);
1262
kfree(fs_info->balance_ctl);
1263
kfree(fs_info->delayed_root);
1264
free_global_roots(fs_info);
1265
btrfs_put_root(fs_info->tree_root);
1266
btrfs_put_root(fs_info->chunk_root);
1267
btrfs_put_root(fs_info->dev_root);
1268
btrfs_put_root(fs_info->quota_root);
1269
btrfs_put_root(fs_info->uuid_root);
1270
btrfs_put_root(fs_info->fs_root);
1271
btrfs_put_root(fs_info->data_reloc_root);
1272
btrfs_put_root(fs_info->block_group_root);
1273
btrfs_put_root(fs_info->stripe_root);
1274
btrfs_check_leaked_roots(fs_info);
1275
btrfs_extent_buffer_leak_debug_check(fs_info);
1276
kfree(fs_info->super_copy);
1277
kfree(fs_info->super_for_commit);
1278
kvfree(fs_info);
1279
}
1280
1281
1282
/*
1283
* Get an in-memory reference of a root structure.
1284
*
1285
* For essential trees like root/extent tree, we grab it from fs_info directly.
1286
* For subvolume trees, we check the cached filesystem roots first. If not
1287
* found, then read it from disk and add it to cached fs roots.
1288
*
1289
* Caller should release the root by calling btrfs_put_root() after the usage.
1290
*
1291
* NOTE: Reloc and log trees can't be read by this function as they share the
1292
* same root objectid.
1293
*
1294
* @objectid: root id
1295
* @anon_dev: preallocated anonymous block device number for new roots,
1296
* pass NULL for a new allocation.
1297
* @check_ref: whether to check root item references, If true, return -ENOENT
1298
* for orphan roots
1299
*/
1300
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1301
u64 objectid, dev_t *anon_dev,
1302
bool check_ref)
1303
{
1304
struct btrfs_root *root;
1305
struct btrfs_path *path;
1306
struct btrfs_key key;
1307
int ret;
1308
1309
root = btrfs_get_global_root(fs_info, objectid);
1310
if (root)
1311
return root;
1312
1313
/*
1314
* If we're called for non-subvolume trees, and above function didn't
1315
* find one, do not try to read it from disk.
1316
*
1317
* This is namely for free-space-tree and quota tree, which can change
1318
* at runtime and should only be grabbed from fs_info.
1319
*/
1320
if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1321
return ERR_PTR(-ENOENT);
1322
again:
1323
root = btrfs_lookup_fs_root(fs_info, objectid);
1324
if (root) {
1325
/*
1326
* Some other caller may have read out the newly inserted
1327
* subvolume already (for things like backref walk etc). Not
1328
* that common but still possible. In that case, we just need
1329
* to free the anon_dev.
1330
*/
1331
if (unlikely(anon_dev && *anon_dev)) {
1332
free_anon_bdev(*anon_dev);
1333
*anon_dev = 0;
1334
}
1335
1336
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1337
btrfs_put_root(root);
1338
return ERR_PTR(-ENOENT);
1339
}
1340
return root;
1341
}
1342
1343
key.objectid = objectid;
1344
key.type = BTRFS_ROOT_ITEM_KEY;
1345
key.offset = (u64)-1;
1346
root = btrfs_read_tree_root(fs_info->tree_root, &key);
1347
if (IS_ERR(root))
1348
return root;
1349
1350
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351
ret = -ENOENT;
1352
goto fail;
1353
}
1354
1355
ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1356
if (ret)
1357
goto fail;
1358
1359
path = btrfs_alloc_path();
1360
if (!path) {
1361
ret = -ENOMEM;
1362
goto fail;
1363
}
1364
key.objectid = BTRFS_ORPHAN_OBJECTID;
1365
key.type = BTRFS_ORPHAN_ITEM_KEY;
1366
key.offset = objectid;
1367
1368
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1369
btrfs_free_path(path);
1370
if (ret < 0)
1371
goto fail;
1372
if (ret == 0)
1373
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1374
1375
ret = btrfs_insert_fs_root(fs_info, root);
1376
if (ret) {
1377
if (ret == -EEXIST) {
1378
btrfs_put_root(root);
1379
goto again;
1380
}
1381
goto fail;
1382
}
1383
return root;
1384
fail:
1385
/*
1386
* If our caller provided us an anonymous device, then it's his
1387
* responsibility to free it in case we fail. So we have to set our
1388
* root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1389
* and once again by our caller.
1390
*/
1391
if (anon_dev && *anon_dev)
1392
root->anon_dev = 0;
1393
btrfs_put_root(root);
1394
return ERR_PTR(ret);
1395
}
1396
1397
/*
1398
* Get in-memory reference of a root structure
1399
*
1400
* @objectid: tree objectid
1401
* @check_ref: if set, verify that the tree exists and the item has at least
1402
* one reference
1403
*/
1404
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1405
u64 objectid, bool check_ref)
1406
{
1407
return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1408
}
1409
1410
/*
1411
* Get in-memory reference of a root structure, created as new, optionally pass
1412
* the anonymous block device id
1413
*
1414
* @objectid: tree objectid
1415
* @anon_dev: if NULL, allocate a new anonymous block device or use the
1416
* parameter value if not NULL
1417
*/
1418
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1419
u64 objectid, dev_t *anon_dev)
1420
{
1421
return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1422
}
1423
1424
/*
1425
* Return a root for the given objectid.
1426
*
1427
* @fs_info: the fs_info
1428
* @objectid: the objectid we need to lookup
1429
*
1430
* This is exclusively used for backref walking, and exists specifically because
1431
* of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1432
* creation time, which means we may have to read the tree_root in order to look
1433
* up a fs root that is not in memory. If the root is not in memory we will
1434
* read the tree root commit root and look up the fs root from there. This is a
1435
* temporary root, it will not be inserted into the radix tree as it doesn't
1436
* have the most uptodate information, it'll simply be discarded once the
1437
* backref code is finished using the root.
1438
*/
1439
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1440
struct btrfs_path *path,
1441
u64 objectid)
1442
{
1443
struct btrfs_root *root;
1444
struct btrfs_key key;
1445
1446
ASSERT(path->search_commit_root && path->skip_locking);
1447
1448
/*
1449
* This can return -ENOENT if we ask for a root that doesn't exist, but
1450
* since this is called via the backref walking code we won't be looking
1451
* up a root that doesn't exist, unless there's corruption. So if root
1452
* != NULL just return it.
1453
*/
1454
root = btrfs_get_global_root(fs_info, objectid);
1455
if (root)
1456
return root;
1457
1458
root = btrfs_lookup_fs_root(fs_info, objectid);
1459
if (root)
1460
return root;
1461
1462
key.objectid = objectid;
1463
key.type = BTRFS_ROOT_ITEM_KEY;
1464
key.offset = (u64)-1;
1465
root = read_tree_root_path(fs_info->tree_root, path, &key);
1466
btrfs_release_path(path);
1467
1468
return root;
1469
}
1470
1471
static int cleaner_kthread(void *arg)
1472
{
1473
struct btrfs_fs_info *fs_info = arg;
1474
int again;
1475
1476
while (1) {
1477
again = 0;
1478
1479
set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1480
1481
/* Make the cleaner go to sleep early. */
1482
if (btrfs_need_cleaner_sleep(fs_info))
1483
goto sleep;
1484
1485
/*
1486
* Do not do anything if we might cause open_ctree() to block
1487
* before we have finished mounting the filesystem.
1488
*/
1489
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1490
goto sleep;
1491
1492
if (!mutex_trylock(&fs_info->cleaner_mutex))
1493
goto sleep;
1494
1495
/*
1496
* Avoid the problem that we change the status of the fs
1497
* during the above check and trylock.
1498
*/
1499
if (btrfs_need_cleaner_sleep(fs_info)) {
1500
mutex_unlock(&fs_info->cleaner_mutex);
1501
goto sleep;
1502
}
1503
1504
if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1505
btrfs_sysfs_feature_update(fs_info);
1506
1507
btrfs_run_delayed_iputs(fs_info);
1508
1509
again = btrfs_clean_one_deleted_snapshot(fs_info);
1510
mutex_unlock(&fs_info->cleaner_mutex);
1511
1512
/*
1513
* The defragger has dealt with the R/O remount and umount,
1514
* needn't do anything special here.
1515
*/
1516
btrfs_run_defrag_inodes(fs_info);
1517
1518
/*
1519
* Acquires fs_info->reclaim_bgs_lock to avoid racing
1520
* with relocation (btrfs_relocate_chunk) and relocation
1521
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1522
* after acquiring fs_info->reclaim_bgs_lock. So we
1523
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
1524
* unused block groups.
1525
*/
1526
btrfs_delete_unused_bgs(fs_info);
1527
1528
/*
1529
* Reclaim block groups in the reclaim_bgs list after we deleted
1530
* all unused block_groups. This possibly gives us some more free
1531
* space.
1532
*/
1533
btrfs_reclaim_bgs(fs_info);
1534
sleep:
1535
clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1536
if (kthread_should_park())
1537
kthread_parkme();
1538
if (kthread_should_stop())
1539
return 0;
1540
if (!again) {
1541
set_current_state(TASK_INTERRUPTIBLE);
1542
schedule();
1543
__set_current_state(TASK_RUNNING);
1544
}
1545
}
1546
}
1547
1548
static int transaction_kthread(void *arg)
1549
{
1550
struct btrfs_root *root = arg;
1551
struct btrfs_fs_info *fs_info = root->fs_info;
1552
struct btrfs_trans_handle *trans;
1553
struct btrfs_transaction *cur;
1554
u64 transid;
1555
time64_t delta;
1556
unsigned long delay;
1557
bool cannot_commit;
1558
1559
do {
1560
cannot_commit = false;
1561
delay = secs_to_jiffies(fs_info->commit_interval);
1562
mutex_lock(&fs_info->transaction_kthread_mutex);
1563
1564
spin_lock(&fs_info->trans_lock);
1565
cur = fs_info->running_transaction;
1566
if (!cur) {
1567
spin_unlock(&fs_info->trans_lock);
1568
goto sleep;
1569
}
1570
1571
delta = ktime_get_seconds() - cur->start_time;
1572
if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1573
cur->state < TRANS_STATE_COMMIT_PREP &&
1574
delta < fs_info->commit_interval) {
1575
spin_unlock(&fs_info->trans_lock);
1576
delay -= secs_to_jiffies(delta - 1);
1577
delay = min(delay,
1578
secs_to_jiffies(fs_info->commit_interval));
1579
goto sleep;
1580
}
1581
transid = cur->transid;
1582
spin_unlock(&fs_info->trans_lock);
1583
1584
/* If the file system is aborted, this will always fail. */
1585
trans = btrfs_attach_transaction(root);
1586
if (IS_ERR(trans)) {
1587
if (PTR_ERR(trans) != -ENOENT)
1588
cannot_commit = true;
1589
goto sleep;
1590
}
1591
if (transid == trans->transid) {
1592
btrfs_commit_transaction(trans);
1593
} else {
1594
btrfs_end_transaction(trans);
1595
}
1596
sleep:
1597
wake_up_process(fs_info->cleaner_kthread);
1598
mutex_unlock(&fs_info->transaction_kthread_mutex);
1599
1600
if (BTRFS_FS_ERROR(fs_info))
1601
btrfs_cleanup_transaction(fs_info);
1602
if (!kthread_should_stop() &&
1603
(!btrfs_transaction_blocked(fs_info) ||
1604
cannot_commit))
1605
schedule_timeout_interruptible(delay);
1606
} while (!kthread_should_stop());
1607
return 0;
1608
}
1609
1610
/*
1611
* This will find the highest generation in the array of root backups. The
1612
* index of the highest array is returned, or -EINVAL if we can't find
1613
* anything.
1614
*
1615
* We check to make sure the array is valid by comparing the
1616
* generation of the latest root in the array with the generation
1617
* in the super block. If they don't match we pitch it.
1618
*/
1619
static int find_newest_super_backup(struct btrfs_fs_info *info)
1620
{
1621
const u64 newest_gen = btrfs_super_generation(info->super_copy);
1622
u64 cur;
1623
struct btrfs_root_backup *root_backup;
1624
int i;
1625
1626
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627
root_backup = info->super_copy->super_roots + i;
1628
cur = btrfs_backup_tree_root_gen(root_backup);
1629
if (cur == newest_gen)
1630
return i;
1631
}
1632
1633
return -EINVAL;
1634
}
1635
1636
/*
1637
* copy all the root pointers into the super backup array.
1638
* this will bump the backup pointer by one when it is
1639
* done
1640
*/
1641
static void backup_super_roots(struct btrfs_fs_info *info)
1642
{
1643
const int next_backup = info->backup_root_index;
1644
struct btrfs_root_backup *root_backup;
1645
1646
root_backup = info->super_for_commit->super_roots + next_backup;
1647
1648
/*
1649
* make sure all of our padding and empty slots get zero filled
1650
* regardless of which ones we use today
1651
*/
1652
memset(root_backup, 0, sizeof(*root_backup));
1653
1654
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1655
1656
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1657
btrfs_set_backup_tree_root_gen(root_backup,
1658
btrfs_header_generation(info->tree_root->node));
1659
1660
btrfs_set_backup_tree_root_level(root_backup,
1661
btrfs_header_level(info->tree_root->node));
1662
1663
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1664
btrfs_set_backup_chunk_root_gen(root_backup,
1665
btrfs_header_generation(info->chunk_root->node));
1666
btrfs_set_backup_chunk_root_level(root_backup,
1667
btrfs_header_level(info->chunk_root->node));
1668
1669
if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1670
struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1671
struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1672
1673
btrfs_set_backup_extent_root(root_backup,
1674
extent_root->node->start);
1675
btrfs_set_backup_extent_root_gen(root_backup,
1676
btrfs_header_generation(extent_root->node));
1677
btrfs_set_backup_extent_root_level(root_backup,
1678
btrfs_header_level(extent_root->node));
1679
1680
btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1681
btrfs_set_backup_csum_root_gen(root_backup,
1682
btrfs_header_generation(csum_root->node));
1683
btrfs_set_backup_csum_root_level(root_backup,
1684
btrfs_header_level(csum_root->node));
1685
}
1686
1687
/*
1688
* we might commit during log recovery, which happens before we set
1689
* the fs_root. Make sure it is valid before we fill it in.
1690
*/
1691
if (info->fs_root && info->fs_root->node) {
1692
btrfs_set_backup_fs_root(root_backup,
1693
info->fs_root->node->start);
1694
btrfs_set_backup_fs_root_gen(root_backup,
1695
btrfs_header_generation(info->fs_root->node));
1696
btrfs_set_backup_fs_root_level(root_backup,
1697
btrfs_header_level(info->fs_root->node));
1698
}
1699
1700
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1701
btrfs_set_backup_dev_root_gen(root_backup,
1702
btrfs_header_generation(info->dev_root->node));
1703
btrfs_set_backup_dev_root_level(root_backup,
1704
btrfs_header_level(info->dev_root->node));
1705
1706
btrfs_set_backup_total_bytes(root_backup,
1707
btrfs_super_total_bytes(info->super_copy));
1708
btrfs_set_backup_bytes_used(root_backup,
1709
btrfs_super_bytes_used(info->super_copy));
1710
btrfs_set_backup_num_devices(root_backup,
1711
btrfs_super_num_devices(info->super_copy));
1712
1713
/*
1714
* if we don't copy this out to the super_copy, it won't get remembered
1715
* for the next commit
1716
*/
1717
memcpy(&info->super_copy->super_roots,
1718
&info->super_for_commit->super_roots,
1719
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1720
}
1721
1722
/*
1723
* Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1724
* 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1725
*
1726
* @fs_info: filesystem whose backup roots need to be read
1727
* @priority: priority of backup root required
1728
*
1729
* Returns backup root index on success and -EINVAL otherwise.
1730
*/
1731
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1732
{
1733
int backup_index = find_newest_super_backup(fs_info);
1734
struct btrfs_super_block *super = fs_info->super_copy;
1735
struct btrfs_root_backup *root_backup;
1736
1737
if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1738
if (priority == 0)
1739
return backup_index;
1740
1741
backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1742
backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1743
} else {
1744
return -EINVAL;
1745
}
1746
1747
root_backup = super->super_roots + backup_index;
1748
1749
btrfs_set_super_generation(super,
1750
btrfs_backup_tree_root_gen(root_backup));
1751
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1752
btrfs_set_super_root_level(super,
1753
btrfs_backup_tree_root_level(root_backup));
1754
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1755
1756
/*
1757
* Fixme: the total bytes and num_devices need to match or we should
1758
* need a fsck
1759
*/
1760
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1761
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1762
1763
return backup_index;
1764
}
1765
1766
/* helper to cleanup workers */
1767
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1768
{
1769
btrfs_destroy_workqueue(fs_info->fixup_workers);
1770
btrfs_destroy_workqueue(fs_info->delalloc_workers);
1771
btrfs_destroy_workqueue(fs_info->workers);
1772
if (fs_info->endio_workers)
1773
destroy_workqueue(fs_info->endio_workers);
1774
if (fs_info->rmw_workers)
1775
destroy_workqueue(fs_info->rmw_workers);
1776
if (fs_info->compressed_write_workers)
1777
destroy_workqueue(fs_info->compressed_write_workers);
1778
btrfs_destroy_workqueue(fs_info->endio_write_workers);
1779
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1780
btrfs_destroy_workqueue(fs_info->delayed_workers);
1781
btrfs_destroy_workqueue(fs_info->caching_workers);
1782
btrfs_destroy_workqueue(fs_info->flush_workers);
1783
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1784
if (fs_info->discard_ctl.discard_workers)
1785
destroy_workqueue(fs_info->discard_ctl.discard_workers);
1786
/*
1787
* Now that all other work queues are destroyed, we can safely destroy
1788
* the queues used for metadata I/O, since tasks from those other work
1789
* queues can do metadata I/O operations.
1790
*/
1791
if (fs_info->endio_meta_workers)
1792
destroy_workqueue(fs_info->endio_meta_workers);
1793
}
1794
1795
static void free_root_extent_buffers(struct btrfs_root *root)
1796
{
1797
if (root) {
1798
free_extent_buffer(root->node);
1799
free_extent_buffer(root->commit_root);
1800
root->node = NULL;
1801
root->commit_root = NULL;
1802
}
1803
}
1804
1805
static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1806
{
1807
struct btrfs_root *root, *tmp;
1808
1809
rbtree_postorder_for_each_entry_safe(root, tmp,
1810
&fs_info->global_root_tree,
1811
rb_node)
1812
free_root_extent_buffers(root);
1813
}
1814
1815
/* helper to cleanup tree roots */
1816
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1817
{
1818
free_root_extent_buffers(info->tree_root);
1819
1820
free_global_root_pointers(info);
1821
free_root_extent_buffers(info->dev_root);
1822
free_root_extent_buffers(info->quota_root);
1823
free_root_extent_buffers(info->uuid_root);
1824
free_root_extent_buffers(info->fs_root);
1825
free_root_extent_buffers(info->data_reloc_root);
1826
free_root_extent_buffers(info->block_group_root);
1827
free_root_extent_buffers(info->stripe_root);
1828
if (free_chunk_root)
1829
free_root_extent_buffers(info->chunk_root);
1830
}
1831
1832
void btrfs_put_root(struct btrfs_root *root)
1833
{
1834
if (!root)
1835
return;
1836
1837
if (refcount_dec_and_test(&root->refs)) {
1838
if (WARN_ON(!xa_empty(&root->inodes)))
1839
xa_destroy(&root->inodes);
1840
if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1841
xa_destroy(&root->delayed_nodes);
1842
WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1843
if (root->anon_dev)
1844
free_anon_bdev(root->anon_dev);
1845
free_root_extent_buffers(root);
1846
#ifdef CONFIG_BTRFS_DEBUG
1847
spin_lock(&root->fs_info->fs_roots_radix_lock);
1848
list_del_init(&root->leak_list);
1849
spin_unlock(&root->fs_info->fs_roots_radix_lock);
1850
#endif
1851
kfree(root);
1852
}
1853
}
1854
1855
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1856
{
1857
int ret;
1858
struct btrfs_root *gang[8];
1859
int i;
1860
1861
while (!list_empty(&fs_info->dead_roots)) {
1862
gang[0] = list_first_entry(&fs_info->dead_roots,
1863
struct btrfs_root, root_list);
1864
list_del(&gang[0]->root_list);
1865
1866
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1867
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1868
btrfs_put_root(gang[0]);
1869
}
1870
1871
while (1) {
1872
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1873
(void **)gang, 0,
1874
ARRAY_SIZE(gang));
1875
if (!ret)
1876
break;
1877
for (i = 0; i < ret; i++)
1878
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1879
}
1880
}
1881
1882
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1883
{
1884
mutex_init(&fs_info->scrub_lock);
1885
atomic_set(&fs_info->scrubs_running, 0);
1886
atomic_set(&fs_info->scrub_pause_req, 0);
1887
atomic_set(&fs_info->scrubs_paused, 0);
1888
atomic_set(&fs_info->scrub_cancel_req, 0);
1889
init_waitqueue_head(&fs_info->scrub_pause_wait);
1890
refcount_set(&fs_info->scrub_workers_refcnt, 0);
1891
}
1892
1893
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1894
{
1895
spin_lock_init(&fs_info->balance_lock);
1896
mutex_init(&fs_info->balance_mutex);
1897
atomic_set(&fs_info->balance_pause_req, 0);
1898
atomic_set(&fs_info->balance_cancel_req, 0);
1899
fs_info->balance_ctl = NULL;
1900
init_waitqueue_head(&fs_info->balance_wait_q);
1901
atomic_set(&fs_info->reloc_cancel_req, 0);
1902
}
1903
1904
static int btrfs_init_btree_inode(struct super_block *sb)
1905
{
1906
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1907
unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1908
fs_info->tree_root);
1909
struct inode *inode;
1910
1911
inode = new_inode(sb);
1912
if (!inode)
1913
return -ENOMEM;
1914
1915
btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1916
set_nlink(inode, 1);
1917
/*
1918
* we set the i_size on the btree inode to the max possible int.
1919
* the real end of the address space is determined by all of
1920
* the devices in the system
1921
*/
1922
inode->i_size = OFFSET_MAX;
1923
inode->i_mapping->a_ops = &btree_aops;
1924
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1925
1926
btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1927
IO_TREE_BTREE_INODE_IO);
1928
btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1929
1930
BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1931
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1932
__insert_inode_hash(inode, hash);
1933
set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags);
1934
fs_info->btree_inode = inode;
1935
1936
return 0;
1937
}
1938
1939
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1940
{
1941
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1942
init_rwsem(&fs_info->dev_replace.rwsem);
1943
init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1944
}
1945
1946
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1947
{
1948
spin_lock_init(&fs_info->qgroup_lock);
1949
mutex_init(&fs_info->qgroup_ioctl_lock);
1950
fs_info->qgroup_tree = RB_ROOT;
1951
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1952
fs_info->qgroup_seq = 1;
1953
fs_info->qgroup_rescan_running = false;
1954
fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1955
mutex_init(&fs_info->qgroup_rescan_lock);
1956
}
1957
1958
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1959
{
1960
u32 max_active = fs_info->thread_pool_size;
1961
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1962
unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU;
1963
1964
fs_info->workers =
1965
btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1966
1967
fs_info->delalloc_workers =
1968
btrfs_alloc_workqueue(fs_info, "delalloc",
1969
flags, max_active, 2);
1970
1971
fs_info->flush_workers =
1972
btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1973
flags, max_active, 0);
1974
1975
fs_info->caching_workers =
1976
btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1977
1978
fs_info->fixup_workers =
1979
btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1980
1981
fs_info->endio_workers =
1982
alloc_workqueue("btrfs-endio", flags, max_active);
1983
fs_info->endio_meta_workers =
1984
alloc_workqueue("btrfs-endio-meta", flags, max_active);
1985
fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1986
fs_info->endio_write_workers =
1987
btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1988
max_active, 2);
1989
fs_info->compressed_write_workers =
1990
alloc_workqueue("btrfs-compressed-write", flags, max_active);
1991
fs_info->endio_freespace_worker =
1992
btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1993
max_active, 0);
1994
fs_info->delayed_workers =
1995
btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1996
max_active, 0);
1997
fs_info->qgroup_rescan_workers =
1998
btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1999
ordered_flags);
2000
fs_info->discard_ctl.discard_workers =
2001
alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
2002
2003
if (!(fs_info->workers &&
2004
fs_info->delalloc_workers && fs_info->flush_workers &&
2005
fs_info->endio_workers && fs_info->endio_meta_workers &&
2006
fs_info->compressed_write_workers &&
2007
fs_info->endio_write_workers &&
2008
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2009
fs_info->caching_workers && fs_info->fixup_workers &&
2010
fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2011
fs_info->discard_ctl.discard_workers)) {
2012
return -ENOMEM;
2013
}
2014
2015
return 0;
2016
}
2017
2018
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2019
{
2020
struct crypto_shash *csum_shash;
2021
const char *csum_driver = btrfs_super_csum_driver(csum_type);
2022
2023
csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2024
2025
if (IS_ERR(csum_shash)) {
2026
btrfs_err(fs_info, "error allocating %s hash for checksum",
2027
csum_driver);
2028
return PTR_ERR(csum_shash);
2029
}
2030
2031
fs_info->csum_shash = csum_shash;
2032
2033
/* Check if the checksum implementation is a fast accelerated one. */
2034
switch (csum_type) {
2035
case BTRFS_CSUM_TYPE_CRC32:
2036
if (crc32_optimizations() & CRC32C_OPTIMIZATION)
2037
set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2038
break;
2039
case BTRFS_CSUM_TYPE_XXHASH:
2040
set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2041
break;
2042
default:
2043
break;
2044
}
2045
2046
btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2047
btrfs_super_csum_name(csum_type),
2048
crypto_shash_driver_name(csum_shash));
2049
return 0;
2050
}
2051
2052
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2053
struct btrfs_fs_devices *fs_devices)
2054
{
2055
int ret;
2056
struct btrfs_tree_parent_check check = { 0 };
2057
struct btrfs_root *log_tree_root;
2058
struct btrfs_super_block *disk_super = fs_info->super_copy;
2059
u64 bytenr = btrfs_super_log_root(disk_super);
2060
int level = btrfs_super_log_root_level(disk_super);
2061
2062
if (unlikely(fs_devices->rw_devices == 0)) {
2063
btrfs_warn(fs_info, "log replay required on RO media");
2064
return -EIO;
2065
}
2066
2067
log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2068
GFP_KERNEL);
2069
if (!log_tree_root)
2070
return -ENOMEM;
2071
2072
check.level = level;
2073
check.transid = fs_info->generation + 1;
2074
check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2075
log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2076
if (IS_ERR(log_tree_root->node)) {
2077
btrfs_warn(fs_info, "failed to read log tree");
2078
ret = PTR_ERR(log_tree_root->node);
2079
log_tree_root->node = NULL;
2080
btrfs_put_root(log_tree_root);
2081
return ret;
2082
}
2083
if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) {
2084
btrfs_err(fs_info, "failed to read log tree");
2085
btrfs_put_root(log_tree_root);
2086
return -EIO;
2087
}
2088
2089
/* returns with log_tree_root freed on success */
2090
ret = btrfs_recover_log_trees(log_tree_root);
2091
btrfs_put_root(log_tree_root);
2092
if (ret) {
2093
btrfs_handle_fs_error(fs_info, ret,
2094
"Failed to recover log tree");
2095
return ret;
2096
}
2097
2098
if (sb_rdonly(fs_info->sb)) {
2099
ret = btrfs_commit_super(fs_info);
2100
if (ret)
2101
return ret;
2102
}
2103
2104
return 0;
2105
}
2106
2107
static int load_global_roots_objectid(struct btrfs_root *tree_root,
2108
struct btrfs_path *path, u64 objectid,
2109
const char *name)
2110
{
2111
struct btrfs_fs_info *fs_info = tree_root->fs_info;
2112
struct btrfs_root *root;
2113
u64 max_global_id = 0;
2114
int ret;
2115
struct btrfs_key key = {
2116
.objectid = objectid,
2117
.type = BTRFS_ROOT_ITEM_KEY,
2118
.offset = 0,
2119
};
2120
bool found = false;
2121
2122
/* If we have IGNOREDATACSUMS skip loading these roots. */
2123
if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2124
btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2125
set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2126
return 0;
2127
}
2128
2129
while (1) {
2130
ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2131
if (ret < 0)
2132
break;
2133
2134
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2135
ret = btrfs_next_leaf(tree_root, path);
2136
if (ret) {
2137
if (ret > 0)
2138
ret = 0;
2139
break;
2140
}
2141
}
2142
ret = 0;
2143
2144
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2145
if (key.objectid != objectid)
2146
break;
2147
btrfs_release_path(path);
2148
2149
/*
2150
* Just worry about this for extent tree, it'll be the same for
2151
* everybody.
2152
*/
2153
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2154
max_global_id = max(max_global_id, key.offset);
2155
2156
found = true;
2157
root = read_tree_root_path(tree_root, path, &key);
2158
if (IS_ERR(root)) {
2159
ret = PTR_ERR(root);
2160
break;
2161
}
2162
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2163
ret = btrfs_global_root_insert(root);
2164
if (ret) {
2165
btrfs_put_root(root);
2166
break;
2167
}
2168
key.offset++;
2169
}
2170
btrfs_release_path(path);
2171
2172
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173
fs_info->nr_global_roots = max_global_id + 1;
2174
2175
if (!found || ret) {
2176
if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2177
set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2178
2179
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180
ret = ret ? ret : -ENOENT;
2181
else
2182
ret = 0;
2183
btrfs_err(fs_info, "failed to load root %s", name);
2184
}
2185
return ret;
2186
}
2187
2188
static int load_global_roots(struct btrfs_root *tree_root)
2189
{
2190
BTRFS_PATH_AUTO_FREE(path);
2191
int ret;
2192
2193
path = btrfs_alloc_path();
2194
if (!path)
2195
return -ENOMEM;
2196
2197
ret = load_global_roots_objectid(tree_root, path,
2198
BTRFS_EXTENT_TREE_OBJECTID, "extent");
2199
if (ret)
2200
return ret;
2201
ret = load_global_roots_objectid(tree_root, path,
2202
BTRFS_CSUM_TREE_OBJECTID, "csum");
2203
if (ret)
2204
return ret;
2205
if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2206
return ret;
2207
ret = load_global_roots_objectid(tree_root, path,
2208
BTRFS_FREE_SPACE_TREE_OBJECTID,
2209
"free space");
2210
2211
return ret;
2212
}
2213
2214
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2215
{
2216
struct btrfs_root *tree_root = fs_info->tree_root;
2217
struct btrfs_root *root;
2218
struct btrfs_key location;
2219
int ret;
2220
2221
ASSERT(fs_info->tree_root);
2222
2223
ret = load_global_roots(tree_root);
2224
if (ret)
2225
return ret;
2226
2227
location.type = BTRFS_ROOT_ITEM_KEY;
2228
location.offset = 0;
2229
2230
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2231
location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2232
root = btrfs_read_tree_root(tree_root, &location);
2233
if (IS_ERR(root)) {
2234
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2235
ret = PTR_ERR(root);
2236
goto out;
2237
}
2238
} else {
2239
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2240
fs_info->block_group_root = root;
2241
}
2242
}
2243
2244
location.objectid = BTRFS_DEV_TREE_OBJECTID;
2245
root = btrfs_read_tree_root(tree_root, &location);
2246
if (IS_ERR(root)) {
2247
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248
ret = PTR_ERR(root);
2249
goto out;
2250
}
2251
} else {
2252
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253
fs_info->dev_root = root;
2254
}
2255
/* Initialize fs_info for all devices in any case */
2256
ret = btrfs_init_devices_late(fs_info);
2257
if (ret)
2258
goto out;
2259
2260
/*
2261
* This tree can share blocks with some other fs tree during relocation
2262
* and we need a proper setup by btrfs_get_fs_root
2263
*/
2264
root = btrfs_get_fs_root(tree_root->fs_info,
2265
BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2266
if (IS_ERR(root)) {
2267
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2268
ret = PTR_ERR(root);
2269
goto out;
2270
}
2271
} else {
2272
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2273
fs_info->data_reloc_root = root;
2274
}
2275
2276
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2277
root = btrfs_read_tree_root(tree_root, &location);
2278
if (!IS_ERR(root)) {
2279
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2280
fs_info->quota_root = root;
2281
}
2282
2283
location.objectid = BTRFS_UUID_TREE_OBJECTID;
2284
root = btrfs_read_tree_root(tree_root, &location);
2285
if (IS_ERR(root)) {
2286
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2287
ret = PTR_ERR(root);
2288
if (ret != -ENOENT)
2289
goto out;
2290
}
2291
} else {
2292
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293
fs_info->uuid_root = root;
2294
}
2295
2296
if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2297
location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2298
root = btrfs_read_tree_root(tree_root, &location);
2299
if (IS_ERR(root)) {
2300
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2301
ret = PTR_ERR(root);
2302
goto out;
2303
}
2304
} else {
2305
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306
fs_info->stripe_root = root;
2307
}
2308
}
2309
2310
return 0;
2311
out:
2312
btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2313
location.objectid, ret);
2314
return ret;
2315
}
2316
2317
static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2318
const struct btrfs_super_block *sb)
2319
{
2320
unsigned int cur = 0; /* Offset inside the sys chunk array */
2321
/*
2322
* At sb read time, fs_info is not fully initialized. Thus we have
2323
* to use super block sectorsize, which should have been validated.
2324
*/
2325
const u32 sectorsize = btrfs_super_sectorsize(sb);
2326
u32 sys_array_size = btrfs_super_sys_array_size(sb);
2327
2328
if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) {
2329
btrfs_err(fs_info, "system chunk array too big %u > %u",
2330
sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2331
return -EUCLEAN;
2332
}
2333
2334
while (cur < sys_array_size) {
2335
struct btrfs_disk_key *disk_key;
2336
struct btrfs_chunk *chunk;
2337
struct btrfs_key key;
2338
u64 type;
2339
u16 num_stripes;
2340
u32 len;
2341
int ret;
2342
2343
disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2344
len = sizeof(*disk_key);
2345
2346
if (unlikely(cur + len > sys_array_size))
2347
goto short_read;
2348
cur += len;
2349
2350
btrfs_disk_key_to_cpu(&key, disk_key);
2351
if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) {
2352
btrfs_err(fs_info,
2353
"unexpected item type %u in sys_array at offset %u",
2354
key.type, cur);
2355
return -EUCLEAN;
2356
}
2357
chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2358
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2359
if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size))
2360
goto short_read;
2361
type = btrfs_stack_chunk_type(chunk);
2362
if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) {
2363
btrfs_err(fs_info,
2364
"invalid chunk type %llu in sys_array at offset %u",
2365
type, cur);
2366
return -EUCLEAN;
2367
}
2368
ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2369
sectorsize);
2370
if (ret < 0)
2371
return ret;
2372
cur += btrfs_chunk_item_size(num_stripes);
2373
}
2374
return 0;
2375
short_read:
2376
btrfs_err(fs_info,
2377
"super block sys chunk array short read, cur=%u sys_array_size=%u",
2378
cur, sys_array_size);
2379
return -EUCLEAN;
2380
}
2381
2382
/*
2383
* Real super block validation
2384
* NOTE: super csum type and incompat features will not be checked here.
2385
*
2386
* @sb: super block to check
2387
* @mirror_num: the super block number to check its bytenr:
2388
* 0 the primary (1st) sb
2389
* 1, 2 2nd and 3rd backup copy
2390
* -1 skip bytenr check
2391
*/
2392
int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2393
const struct btrfs_super_block *sb, int mirror_num)
2394
{
2395
u64 nodesize = btrfs_super_nodesize(sb);
2396
u64 sectorsize = btrfs_super_sectorsize(sb);
2397
int ret = 0;
2398
const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2399
2400
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2401
btrfs_err(fs_info, "no valid FS found");
2402
ret = -EINVAL;
2403
}
2404
if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2405
if (!ignore_flags) {
2406
btrfs_err(fs_info,
2407
"unrecognized or unsupported super flag 0x%llx",
2408
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2409
ret = -EINVAL;
2410
} else {
2411
btrfs_info(fs_info,
2412
"unrecognized or unsupported super flags: 0x%llx, ignored",
2413
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2414
}
2415
}
2416
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2417
btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2418
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2419
ret = -EINVAL;
2420
}
2421
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422
btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2423
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2424
ret = -EINVAL;
2425
}
2426
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427
btrfs_err(fs_info, "log_root level too big: %d >= %d",
2428
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2429
ret = -EINVAL;
2430
}
2431
2432
/*
2433
* Check sectorsize and nodesize first, other check will need it.
2434
* Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2435
*/
2436
if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2437
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2438
btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2439
ret = -EINVAL;
2440
}
2441
2442
if (!btrfs_supported_blocksize(sectorsize)) {
2443
btrfs_err(fs_info,
2444
"sectorsize %llu not yet supported for page size %lu",
2445
sectorsize, PAGE_SIZE);
2446
ret = -EINVAL;
2447
}
2448
2449
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451
btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452
ret = -EINVAL;
2453
}
2454
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455
btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456
le32_to_cpu(sb->__unused_leafsize), nodesize);
2457
ret = -EINVAL;
2458
}
2459
2460
/* Root alignment check */
2461
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462
btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463
btrfs_super_root(sb));
2464
ret = -EINVAL;
2465
}
2466
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467
btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468
btrfs_super_chunk_root(sb));
2469
ret = -EINVAL;
2470
}
2471
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472
btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473
btrfs_super_log_root(sb));
2474
ret = -EINVAL;
2475
}
2476
2477
if (!fs_info->fs_devices->temp_fsid &&
2478
memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2479
btrfs_err(fs_info,
2480
"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2481
sb->fsid, fs_info->fs_devices->fsid);
2482
ret = -EINVAL;
2483
}
2484
2485
if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2486
BTRFS_FSID_SIZE) != 0) {
2487
btrfs_err(fs_info,
2488
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2489
btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2490
ret = -EINVAL;
2491
}
2492
2493
if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2494
BTRFS_FSID_SIZE) != 0) {
2495
btrfs_err(fs_info,
2496
"dev_item UUID does not match metadata fsid: %pU != %pU",
2497
fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2498
ret = -EINVAL;
2499
}
2500
2501
/*
2502
* Artificial requirement for block-group-tree to force newer features
2503
* (free-space-tree, no-holes) so the test matrix is smaller.
2504
*/
2505
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2506
(!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2507
!btrfs_fs_incompat(fs_info, NO_HOLES))) {
2508
btrfs_err(fs_info,
2509
"block-group-tree feature requires free-space-tree and no-holes");
2510
ret = -EINVAL;
2511
}
2512
2513
/*
2514
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
2515
* done later
2516
*/
2517
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2518
btrfs_err(fs_info, "bytes_used is too small %llu",
2519
btrfs_super_bytes_used(sb));
2520
ret = -EINVAL;
2521
}
2522
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2523
btrfs_err(fs_info, "invalid stripesize %u",
2524
btrfs_super_stripesize(sb));
2525
ret = -EINVAL;
2526
}
2527
if (btrfs_super_num_devices(sb) > (1UL << 31))
2528
btrfs_warn(fs_info, "suspicious number of devices: %llu",
2529
btrfs_super_num_devices(sb));
2530
if (btrfs_super_num_devices(sb) == 0) {
2531
btrfs_err(fs_info, "number of devices is 0");
2532
ret = -EINVAL;
2533
}
2534
2535
if (mirror_num >= 0 &&
2536
btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2537
btrfs_err(fs_info, "super offset mismatch %llu != %u",
2538
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2539
ret = -EINVAL;
2540
}
2541
2542
if (ret)
2543
return ret;
2544
2545
ret = validate_sys_chunk_array(fs_info, sb);
2546
2547
/*
2548
* Obvious sys_chunk_array corruptions, it must hold at least one key
2549
* and one chunk
2550
*/
2551
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2552
btrfs_err(fs_info, "system chunk array too big %u > %u",
2553
btrfs_super_sys_array_size(sb),
2554
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2555
ret = -EINVAL;
2556
}
2557
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2558
+ sizeof(struct btrfs_chunk)) {
2559
btrfs_err(fs_info, "system chunk array too small %u < %zu",
2560
btrfs_super_sys_array_size(sb),
2561
sizeof(struct btrfs_disk_key)
2562
+ sizeof(struct btrfs_chunk));
2563
ret = -EINVAL;
2564
}
2565
2566
/*
2567
* The generation is a global counter, we'll trust it more than the others
2568
* but it's still possible that it's the one that's wrong.
2569
*/
2570
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2571
btrfs_warn(fs_info,
2572
"suspicious: generation < chunk_root_generation: %llu < %llu",
2573
btrfs_super_generation(sb),
2574
btrfs_super_chunk_root_generation(sb));
2575
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2576
&& btrfs_super_cache_generation(sb) != (u64)-1)
2577
btrfs_warn(fs_info,
2578
"suspicious: generation < cache_generation: %llu < %llu",
2579
btrfs_super_generation(sb),
2580
btrfs_super_cache_generation(sb));
2581
2582
return ret;
2583
}
2584
2585
/*
2586
* Validation of super block at mount time.
2587
* Some checks already done early at mount time, like csum type and incompat
2588
* flags will be skipped.
2589
*/
2590
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2591
{
2592
return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2593
}
2594
2595
/*
2596
* Validation of super block at write time.
2597
* Some checks like bytenr check will be skipped as their values will be
2598
* overwritten soon.
2599
* Extra checks like csum type and incompat flags will be done here.
2600
*/
2601
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2602
struct btrfs_super_block *sb)
2603
{
2604
int ret;
2605
2606
ret = btrfs_validate_super(fs_info, sb, -1);
2607
if (ret < 0)
2608
goto out;
2609
if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) {
2610
ret = -EUCLEAN;
2611
btrfs_err(fs_info, "invalid csum type, has %u want %u",
2612
btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2613
goto out;
2614
}
2615
if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) {
2616
ret = -EUCLEAN;
2617
btrfs_err(fs_info,
2618
"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2619
btrfs_super_incompat_flags(sb),
2620
(unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2621
goto out;
2622
}
2623
out:
2624
if (ret < 0)
2625
btrfs_err(fs_info,
2626
"super block corruption detected before writing it to disk");
2627
return ret;
2628
}
2629
2630
static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2631
{
2632
struct btrfs_tree_parent_check check = {
2633
.level = level,
2634
.transid = gen,
2635
.owner_root = btrfs_root_id(root)
2636
};
2637
int ret = 0;
2638
2639
root->node = read_tree_block(root->fs_info, bytenr, &check);
2640
if (IS_ERR(root->node)) {
2641
ret = PTR_ERR(root->node);
2642
root->node = NULL;
2643
return ret;
2644
}
2645
if (unlikely(!extent_buffer_uptodate(root->node))) {
2646
free_extent_buffer(root->node);
2647
root->node = NULL;
2648
return -EIO;
2649
}
2650
2651
btrfs_set_root_node(&root->root_item, root->node);
2652
root->commit_root = btrfs_root_node(root);
2653
btrfs_set_root_refs(&root->root_item, 1);
2654
return ret;
2655
}
2656
2657
static int load_important_roots(struct btrfs_fs_info *fs_info)
2658
{
2659
struct btrfs_super_block *sb = fs_info->super_copy;
2660
u64 gen, bytenr;
2661
int level, ret;
2662
2663
bytenr = btrfs_super_root(sb);
2664
gen = btrfs_super_generation(sb);
2665
level = btrfs_super_root_level(sb);
2666
ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2667
if (ret) {
2668
btrfs_warn(fs_info, "couldn't read tree root");
2669
return ret;
2670
}
2671
return 0;
2672
}
2673
2674
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2675
{
2676
int backup_index = find_newest_super_backup(fs_info);
2677
struct btrfs_super_block *sb = fs_info->super_copy;
2678
struct btrfs_root *tree_root = fs_info->tree_root;
2679
bool handle_error = false;
2680
int ret = 0;
2681
int i;
2682
2683
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2684
if (handle_error) {
2685
if (!IS_ERR(tree_root->node))
2686
free_extent_buffer(tree_root->node);
2687
tree_root->node = NULL;
2688
2689
if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2690
break;
2691
2692
free_root_pointers(fs_info, 0);
2693
2694
/*
2695
* Don't use the log in recovery mode, it won't be
2696
* valid
2697
*/
2698
btrfs_set_super_log_root(sb, 0);
2699
2700
btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2701
ret = read_backup_root(fs_info, i);
2702
backup_index = ret;
2703
if (ret < 0)
2704
return ret;
2705
}
2706
2707
ret = load_important_roots(fs_info);
2708
if (ret) {
2709
handle_error = true;
2710
continue;
2711
}
2712
2713
/*
2714
* No need to hold btrfs_root::objectid_mutex since the fs
2715
* hasn't been fully initialised and we are the only user
2716
*/
2717
ret = btrfs_init_root_free_objectid(tree_root);
2718
if (ret < 0) {
2719
handle_error = true;
2720
continue;
2721
}
2722
2723
ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2724
2725
ret = btrfs_read_roots(fs_info);
2726
if (ret < 0) {
2727
handle_error = true;
2728
continue;
2729
}
2730
2731
/* All successful */
2732
fs_info->generation = btrfs_header_generation(tree_root->node);
2733
btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2734
fs_info->last_reloc_trans = 0;
2735
2736
/* Always begin writing backup roots after the one being used */
2737
if (backup_index < 0) {
2738
fs_info->backup_root_index = 0;
2739
} else {
2740
fs_info->backup_root_index = backup_index + 1;
2741
fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2742
}
2743
break;
2744
}
2745
2746
return ret;
2747
}
2748
2749
/*
2750
* Lockdep gets confused between our buffer_tree which requires IRQ locking because
2751
* we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2752
* have these requirements. Use a class key so lockdep doesn't get them mixed up.
2753
*/
2754
static struct lock_class_key buffer_xa_class;
2755
2756
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2757
{
2758
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2759
2760
/* Use the same flags as mapping->i_pages. */
2761
xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2762
lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2763
2764
INIT_LIST_HEAD(&fs_info->trans_list);
2765
INIT_LIST_HEAD(&fs_info->dead_roots);
2766
INIT_LIST_HEAD(&fs_info->delayed_iputs);
2767
INIT_LIST_HEAD(&fs_info->delalloc_roots);
2768
INIT_LIST_HEAD(&fs_info->caching_block_groups);
2769
spin_lock_init(&fs_info->delalloc_root_lock);
2770
spin_lock_init(&fs_info->trans_lock);
2771
spin_lock_init(&fs_info->fs_roots_radix_lock);
2772
spin_lock_init(&fs_info->delayed_iput_lock);
2773
spin_lock_init(&fs_info->defrag_inodes_lock);
2774
spin_lock_init(&fs_info->super_lock);
2775
spin_lock_init(&fs_info->unused_bgs_lock);
2776
spin_lock_init(&fs_info->treelog_bg_lock);
2777
spin_lock_init(&fs_info->zone_active_bgs_lock);
2778
spin_lock_init(&fs_info->relocation_bg_lock);
2779
rwlock_init(&fs_info->tree_mod_log_lock);
2780
rwlock_init(&fs_info->global_root_lock);
2781
mutex_init(&fs_info->unused_bg_unpin_mutex);
2782
mutex_init(&fs_info->reclaim_bgs_lock);
2783
mutex_init(&fs_info->reloc_mutex);
2784
mutex_init(&fs_info->delalloc_root_mutex);
2785
mutex_init(&fs_info->zoned_meta_io_lock);
2786
mutex_init(&fs_info->zoned_data_reloc_io_lock);
2787
seqlock_init(&fs_info->profiles_lock);
2788
2789
btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2790
btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2791
btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2792
btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2793
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2794
BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2795
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2796
BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2797
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2798
BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2799
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2800
BTRFS_LOCKDEP_TRANS_COMPLETED);
2801
2802
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2803
INIT_LIST_HEAD(&fs_info->space_info);
2804
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2805
INIT_LIST_HEAD(&fs_info->unused_bgs);
2806
INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2807
INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2808
#ifdef CONFIG_BTRFS_DEBUG
2809
INIT_LIST_HEAD(&fs_info->allocated_roots);
2810
INIT_LIST_HEAD(&fs_info->allocated_ebs);
2811
spin_lock_init(&fs_info->eb_leak_lock);
2812
#endif
2813
fs_info->mapping_tree = RB_ROOT_CACHED;
2814
rwlock_init(&fs_info->mapping_tree_lock);
2815
btrfs_init_block_rsv(&fs_info->global_block_rsv,
2816
BTRFS_BLOCK_RSV_GLOBAL);
2817
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2818
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2819
btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2820
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2821
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2822
BTRFS_BLOCK_RSV_DELOPS);
2823
btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2824
BTRFS_BLOCK_RSV_DELREFS);
2825
2826
atomic_set(&fs_info->async_delalloc_pages, 0);
2827
atomic_set(&fs_info->defrag_running, 0);
2828
atomic_set(&fs_info->nr_delayed_iputs, 0);
2829
atomic64_set(&fs_info->tree_mod_seq, 0);
2830
fs_info->global_root_tree = RB_ROOT;
2831
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2832
fs_info->metadata_ratio = 0;
2833
fs_info->defrag_inodes = RB_ROOT;
2834
atomic64_set(&fs_info->free_chunk_space, 0);
2835
fs_info->tree_mod_log = RB_ROOT;
2836
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2837
btrfs_init_ref_verify(fs_info);
2838
2839
fs_info->thread_pool_size = min_t(unsigned long,
2840
num_online_cpus() + 2, 8);
2841
2842
INIT_LIST_HEAD(&fs_info->ordered_roots);
2843
spin_lock_init(&fs_info->ordered_root_lock);
2844
2845
btrfs_init_scrub(fs_info);
2846
btrfs_init_balance(fs_info);
2847
btrfs_init_async_reclaim_work(fs_info);
2848
btrfs_init_extent_map_shrinker_work(fs_info);
2849
2850
rwlock_init(&fs_info->block_group_cache_lock);
2851
fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2852
2853
btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2854
IO_TREE_FS_EXCLUDED_EXTENTS);
2855
2856
mutex_init(&fs_info->ordered_operations_mutex);
2857
mutex_init(&fs_info->tree_log_mutex);
2858
mutex_init(&fs_info->chunk_mutex);
2859
mutex_init(&fs_info->transaction_kthread_mutex);
2860
mutex_init(&fs_info->cleaner_mutex);
2861
mutex_init(&fs_info->ro_block_group_mutex);
2862
init_rwsem(&fs_info->commit_root_sem);
2863
init_rwsem(&fs_info->cleanup_work_sem);
2864
init_rwsem(&fs_info->subvol_sem);
2865
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2866
2867
btrfs_init_dev_replace_locks(fs_info);
2868
btrfs_init_qgroup(fs_info);
2869
btrfs_discard_init(fs_info);
2870
2871
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2872
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2873
2874
init_waitqueue_head(&fs_info->transaction_throttle);
2875
init_waitqueue_head(&fs_info->transaction_wait);
2876
init_waitqueue_head(&fs_info->transaction_blocked_wait);
2877
init_waitqueue_head(&fs_info->async_submit_wait);
2878
init_waitqueue_head(&fs_info->delayed_iputs_wait);
2879
2880
/* Usable values until the real ones are cached from the superblock */
2881
fs_info->nodesize = 4096;
2882
fs_info->sectorsize = 4096;
2883
fs_info->sectorsize_bits = ilog2(4096);
2884
fs_info->stripesize = 4096;
2885
2886
/* Default compress algorithm when user does -o compress */
2887
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2888
2889
fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2890
2891
spin_lock_init(&fs_info->swapfile_pins_lock);
2892
fs_info->swapfile_pins = RB_ROOT;
2893
2894
fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2895
INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2896
}
2897
2898
static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2899
{
2900
int ret;
2901
2902
fs_info->sb = sb;
2903
/* Temporary fixed values for block size until we read the superblock. */
2904
sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2905
sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2906
2907
ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2908
if (ret)
2909
return ret;
2910
2911
ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2912
if (ret)
2913
return ret;
2914
2915
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2916
if (ret)
2917
return ret;
2918
2919
ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2920
if (ret)
2921
return ret;
2922
2923
fs_info->dirty_metadata_batch = PAGE_SIZE *
2924
(1 + ilog2(nr_cpu_ids));
2925
2926
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2927
if (ret)
2928
return ret;
2929
2930
ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2931
GFP_KERNEL);
2932
if (ret)
2933
return ret;
2934
2935
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2936
GFP_KERNEL);
2937
if (!fs_info->delayed_root)
2938
return -ENOMEM;
2939
btrfs_init_delayed_root(fs_info->delayed_root);
2940
2941
if (sb_rdonly(sb))
2942
set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2943
if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2944
set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2945
2946
return btrfs_alloc_stripe_hash_table(fs_info);
2947
}
2948
2949
static int btrfs_uuid_rescan_kthread(void *data)
2950
{
2951
struct btrfs_fs_info *fs_info = data;
2952
int ret;
2953
2954
/*
2955
* 1st step is to iterate through the existing UUID tree and
2956
* to delete all entries that contain outdated data.
2957
* 2nd step is to add all missing entries to the UUID tree.
2958
*/
2959
ret = btrfs_uuid_tree_iterate(fs_info);
2960
if (ret < 0) {
2961
if (ret != -EINTR)
2962
btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2963
ret);
2964
up(&fs_info->uuid_tree_rescan_sem);
2965
return ret;
2966
}
2967
return btrfs_uuid_scan_kthread(data);
2968
}
2969
2970
static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2971
{
2972
struct task_struct *task;
2973
2974
down(&fs_info->uuid_tree_rescan_sem);
2975
task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2976
if (IS_ERR(task)) {
2977
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2978
btrfs_warn(fs_info, "failed to start uuid_rescan task");
2979
up(&fs_info->uuid_tree_rescan_sem);
2980
return PTR_ERR(task);
2981
}
2982
2983
return 0;
2984
}
2985
2986
static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2987
{
2988
u64 root_objectid = 0;
2989
struct btrfs_root *gang[8];
2990
int ret = 0;
2991
2992
while (1) {
2993
unsigned int found;
2994
2995
spin_lock(&fs_info->fs_roots_radix_lock);
2996
found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2997
(void **)gang, root_objectid,
2998
ARRAY_SIZE(gang));
2999
if (!found) {
3000
spin_unlock(&fs_info->fs_roots_radix_lock);
3001
break;
3002
}
3003
root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3004
3005
for (int i = 0; i < found; i++) {
3006
/* Avoid to grab roots in dead_roots. */
3007
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3008
gang[i] = NULL;
3009
continue;
3010
}
3011
/* Grab all the search result for later use. */
3012
gang[i] = btrfs_grab_root(gang[i]);
3013
}
3014
spin_unlock(&fs_info->fs_roots_radix_lock);
3015
3016
for (int i = 0; i < found; i++) {
3017
if (!gang[i])
3018
continue;
3019
root_objectid = btrfs_root_id(gang[i]);
3020
/*
3021
* Continue to release the remaining roots after the first
3022
* error without cleanup and preserve the first error
3023
* for the return.
3024
*/
3025
if (!ret)
3026
ret = btrfs_orphan_cleanup(gang[i]);
3027
btrfs_put_root(gang[i]);
3028
}
3029
if (ret)
3030
break;
3031
3032
root_objectid++;
3033
}
3034
return ret;
3035
}
3036
3037
/*
3038
* Mounting logic specific to read-write file systems. Shared by open_ctree
3039
* and btrfs_remount when remounting from read-only to read-write.
3040
*/
3041
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3042
{
3043
int ret;
3044
const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3045
bool rebuild_free_space_tree = false;
3046
3047
if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3048
btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3049
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3050
btrfs_warn(fs_info,
3051
"'clear_cache' option is ignored with extent tree v2");
3052
else
3053
rebuild_free_space_tree = true;
3054
} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3055
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3056
btrfs_warn(fs_info, "free space tree is invalid");
3057
rebuild_free_space_tree = true;
3058
}
3059
3060
if (rebuild_free_space_tree) {
3061
btrfs_info(fs_info, "rebuilding free space tree");
3062
ret = btrfs_rebuild_free_space_tree(fs_info);
3063
if (ret) {
3064
btrfs_warn(fs_info,
3065
"failed to rebuild free space tree: %d", ret);
3066
goto out;
3067
}
3068
}
3069
3070
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3071
!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3072
btrfs_info(fs_info, "disabling free space tree");
3073
ret = btrfs_delete_free_space_tree(fs_info);
3074
if (ret) {
3075
btrfs_warn(fs_info,
3076
"failed to disable free space tree: %d", ret);
3077
goto out;
3078
}
3079
}
3080
3081
/*
3082
* btrfs_find_orphan_roots() is responsible for finding all the dead
3083
* roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3084
* them into the fs_info->fs_roots_radix tree. This must be done before
3085
* calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3086
* first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3087
* item before the root's tree is deleted - this means that if we unmount
3088
* or crash before the deletion completes, on the next mount we will not
3089
* delete what remains of the tree because the orphan item does not
3090
* exists anymore, which is what tells us we have a pending deletion.
3091
*/
3092
ret = btrfs_find_orphan_roots(fs_info);
3093
if (ret)
3094
goto out;
3095
3096
ret = btrfs_cleanup_fs_roots(fs_info);
3097
if (ret)
3098
goto out;
3099
3100
down_read(&fs_info->cleanup_work_sem);
3101
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3102
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3103
up_read(&fs_info->cleanup_work_sem);
3104
goto out;
3105
}
3106
up_read(&fs_info->cleanup_work_sem);
3107
3108
mutex_lock(&fs_info->cleaner_mutex);
3109
ret = btrfs_recover_relocation(fs_info);
3110
mutex_unlock(&fs_info->cleaner_mutex);
3111
if (ret < 0) {
3112
btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3113
goto out;
3114
}
3115
3116
if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3117
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3118
btrfs_info(fs_info, "creating free space tree");
3119
ret = btrfs_create_free_space_tree(fs_info);
3120
if (ret) {
3121
btrfs_warn(fs_info,
3122
"failed to create free space tree: %d", ret);
3123
goto out;
3124
}
3125
}
3126
3127
if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3128
ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3129
if (ret)
3130
goto out;
3131
}
3132
3133
ret = btrfs_resume_balance_async(fs_info);
3134
if (ret)
3135
goto out;
3136
3137
ret = btrfs_resume_dev_replace_async(fs_info);
3138
if (ret) {
3139
btrfs_warn(fs_info, "failed to resume dev_replace");
3140
goto out;
3141
}
3142
3143
btrfs_qgroup_rescan_resume(fs_info);
3144
3145
if (!fs_info->uuid_root) {
3146
btrfs_info(fs_info, "creating UUID tree");
3147
ret = btrfs_create_uuid_tree(fs_info);
3148
if (ret) {
3149
btrfs_warn(fs_info,
3150
"failed to create the UUID tree %d", ret);
3151
goto out;
3152
}
3153
}
3154
3155
out:
3156
return ret;
3157
}
3158
3159
/*
3160
* Do various sanity and dependency checks of different features.
3161
*
3162
* @is_rw_mount: If the mount is read-write.
3163
*
3164
* This is the place for less strict checks (like for subpage or artificial
3165
* feature dependencies).
3166
*
3167
* For strict checks or possible corruption detection, see
3168
* btrfs_validate_super().
3169
*
3170
* This should be called after btrfs_parse_options(), as some mount options
3171
* (space cache related) can modify on-disk format like free space tree and
3172
* screw up certain feature dependencies.
3173
*/
3174
int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3175
{
3176
struct btrfs_super_block *disk_super = fs_info->super_copy;
3177
u64 incompat = btrfs_super_incompat_flags(disk_super);
3178
const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3179
const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3180
3181
if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3182
btrfs_err(fs_info,
3183
"cannot mount because of unknown incompat features (0x%llx)",
3184
incompat);
3185
return -EINVAL;
3186
}
3187
3188
/* Runtime limitation for mixed block groups. */
3189
if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3190
(fs_info->sectorsize != fs_info->nodesize)) {
3191
btrfs_err(fs_info,
3192
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3193
fs_info->nodesize, fs_info->sectorsize);
3194
return -EINVAL;
3195
}
3196
3197
/* Mixed backref is an always-enabled feature. */
3198
incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3199
3200
/* Set compression related flags just in case. */
3201
if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3202
incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3203
else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3204
incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3205
3206
/*
3207
* An ancient flag, which should really be marked deprecated.
3208
* Such runtime limitation doesn't really need a incompat flag.
3209
*/
3210
if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3211
incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3212
3213
if (compat_ro_unsupp && is_rw_mount) {
3214
btrfs_err(fs_info,
3215
"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3216
compat_ro);
3217
return -EINVAL;
3218
}
3219
3220
/*
3221
* We have unsupported RO compat features, although RO mounted, we
3222
* should not cause any metadata writes, including log replay.
3223
* Or we could screw up whatever the new feature requires.
3224
*/
3225
if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3226
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3227
btrfs_err(fs_info,
3228
"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3229
compat_ro);
3230
return -EINVAL;
3231
}
3232
3233
/*
3234
* Artificial limitations for block group tree, to force
3235
* block-group-tree to rely on no-holes and free-space-tree.
3236
*/
3237
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3238
(!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3239
!btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3240
btrfs_err(fs_info,
3241
"block-group-tree feature requires no-holes and free-space-tree features");
3242
return -EINVAL;
3243
}
3244
3245
/*
3246
* Subpage/bs > ps runtime limitation on v1 cache.
3247
*
3248
* V1 space cache still has some hard coded PAGE_SIZE usage, while
3249
* we're already defaulting to v2 cache, no need to bother v1 as it's
3250
* going to be deprecated anyway.
3251
*/
3252
if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3253
btrfs_warn(fs_info,
3254
"v1 space cache is not supported for page size %lu with sectorsize %u",
3255
PAGE_SIZE, fs_info->sectorsize);
3256
return -EINVAL;
3257
}
3258
if (fs_info->sectorsize > PAGE_SIZE && btrfs_fs_incompat(fs_info, RAID56)) {
3259
btrfs_err(fs_info,
3260
"RAID56 is not supported for page size %lu with sectorsize %u",
3261
PAGE_SIZE, fs_info->sectorsize);
3262
return -EINVAL;
3263
}
3264
3265
/* This can be called by remount, we need to protect the super block. */
3266
spin_lock(&fs_info->super_lock);
3267
btrfs_set_super_incompat_flags(disk_super, incompat);
3268
spin_unlock(&fs_info->super_lock);
3269
3270
return 0;
3271
}
3272
3273
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3274
{
3275
u32 sectorsize;
3276
u32 nodesize;
3277
u32 stripesize;
3278
u64 generation;
3279
u16 csum_type;
3280
struct btrfs_super_block *disk_super;
3281
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3282
struct btrfs_root *tree_root;
3283
struct btrfs_root *chunk_root;
3284
int ret;
3285
int level;
3286
3287
ret = init_mount_fs_info(fs_info, sb);
3288
if (ret)
3289
goto fail;
3290
3291
/* These need to be init'ed before we start creating inodes and such. */
3292
tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3293
GFP_KERNEL);
3294
fs_info->tree_root = tree_root;
3295
chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3296
GFP_KERNEL);
3297
fs_info->chunk_root = chunk_root;
3298
if (!tree_root || !chunk_root) {
3299
ret = -ENOMEM;
3300
goto fail;
3301
}
3302
3303
ret = btrfs_init_btree_inode(sb);
3304
if (ret)
3305
goto fail;
3306
3307
invalidate_bdev(fs_devices->latest_dev->bdev);
3308
3309
/*
3310
* Read super block and check the signature bytes only
3311
*/
3312
disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3313
if (IS_ERR(disk_super)) {
3314
ret = PTR_ERR(disk_super);
3315
goto fail_alloc;
3316
}
3317
3318
btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3319
/*
3320
* Verify the type first, if that or the checksum value are
3321
* corrupted, we'll find out
3322
*/
3323
csum_type = btrfs_super_csum_type(disk_super);
3324
if (!btrfs_supported_super_csum(csum_type)) {
3325
btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3326
csum_type);
3327
ret = -EINVAL;
3328
btrfs_release_disk_super(disk_super);
3329
goto fail_alloc;
3330
}
3331
3332
fs_info->csum_size = btrfs_super_csum_size(disk_super);
3333
3334
ret = btrfs_init_csum_hash(fs_info, csum_type);
3335
if (ret) {
3336
btrfs_release_disk_super(disk_super);
3337
goto fail_alloc;
3338
}
3339
3340
/*
3341
* We want to check superblock checksum, the type is stored inside.
3342
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3343
*/
3344
if (btrfs_check_super_csum(fs_info, disk_super)) {
3345
btrfs_err(fs_info, "superblock checksum mismatch");
3346
ret = -EINVAL;
3347
btrfs_release_disk_super(disk_super);
3348
goto fail_alloc;
3349
}
3350
3351
/*
3352
* super_copy is zeroed at allocation time and we never touch the
3353
* following bytes up to INFO_SIZE, the checksum is calculated from
3354
* the whole block of INFO_SIZE
3355
*/
3356
memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3357
btrfs_release_disk_super(disk_super);
3358
3359
disk_super = fs_info->super_copy;
3360
3361
memcpy(fs_info->super_for_commit, fs_info->super_copy,
3362
sizeof(*fs_info->super_for_commit));
3363
3364
ret = btrfs_validate_mount_super(fs_info);
3365
if (ret) {
3366
btrfs_err(fs_info, "superblock contains fatal errors");
3367
ret = -EINVAL;
3368
goto fail_alloc;
3369
}
3370
3371
if (!btrfs_super_root(disk_super)) {
3372
btrfs_err(fs_info, "invalid superblock tree root bytenr");
3373
ret = -EINVAL;
3374
goto fail_alloc;
3375
}
3376
3377
/* check FS state, whether FS is broken. */
3378
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3379
WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3380
3381
/* Set up fs_info before parsing mount options */
3382
nodesize = btrfs_super_nodesize(disk_super);
3383
sectorsize = btrfs_super_sectorsize(disk_super);
3384
stripesize = sectorsize;
3385
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3386
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3387
3388
fs_info->nodesize = nodesize;
3389
fs_info->nodesize_bits = ilog2(nodesize);
3390
fs_info->sectorsize = sectorsize;
3391
fs_info->sectorsize_bits = ilog2(sectorsize);
3392
fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT);
3393
fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT);
3394
fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3395
fs_info->stripesize = stripesize;
3396
fs_info->fs_devices->fs_info = fs_info;
3397
3398
if (fs_info->sectorsize > PAGE_SIZE)
3399
btrfs_warn(fs_info,
3400
"support for block size %u with page size %zu is experimental, some features may be missing",
3401
fs_info->sectorsize, PAGE_SIZE);
3402
/*
3403
* Handle the space caching options appropriately now that we have the
3404
* super block loaded and validated.
3405
*/
3406
btrfs_set_free_space_cache_settings(fs_info);
3407
3408
if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3409
ret = -EINVAL;
3410
goto fail_alloc;
3411
}
3412
3413
ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3414
if (ret < 0)
3415
goto fail_alloc;
3416
3417
/*
3418
* At this point our mount options are validated, if we set ->max_inline
3419
* to something non-standard make sure we truncate it to sectorsize.
3420
*/
3421
fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3422
3423
ret = btrfs_alloc_compress_wsm(fs_info);
3424
if (ret)
3425
goto fail_sb_buffer;
3426
ret = btrfs_init_workqueues(fs_info);
3427
if (ret)
3428
goto fail_sb_buffer;
3429
3430
sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3431
sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3432
3433
/* Update the values for the current filesystem. */
3434
sb->s_blocksize = sectorsize;
3435
sb->s_blocksize_bits = blksize_bits(sectorsize);
3436
memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3437
3438
mutex_lock(&fs_info->chunk_mutex);
3439
ret = btrfs_read_sys_array(fs_info);
3440
mutex_unlock(&fs_info->chunk_mutex);
3441
if (ret) {
3442
btrfs_err(fs_info, "failed to read the system array: %d", ret);
3443
goto fail_sb_buffer;
3444
}
3445
3446
generation = btrfs_super_chunk_root_generation(disk_super);
3447
level = btrfs_super_chunk_root_level(disk_super);
3448
ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3449
generation, level);
3450
if (ret) {
3451
btrfs_err(fs_info, "failed to read chunk root");
3452
goto fail_tree_roots;
3453
}
3454
3455
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3456
offsetof(struct btrfs_header, chunk_tree_uuid),
3457
BTRFS_UUID_SIZE);
3458
3459
ret = btrfs_read_chunk_tree(fs_info);
3460
if (ret) {
3461
btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3462
goto fail_tree_roots;
3463
}
3464
3465
/*
3466
* At this point we know all the devices that make this filesystem,
3467
* including the seed devices but we don't know yet if the replace
3468
* target is required. So free devices that are not part of this
3469
* filesystem but skip the replace target device which is checked
3470
* below in btrfs_init_dev_replace().
3471
*/
3472
btrfs_free_extra_devids(fs_devices);
3473
if (unlikely(!fs_devices->latest_dev->bdev)) {
3474
btrfs_err(fs_info, "failed to read devices");
3475
ret = -EIO;
3476
goto fail_tree_roots;
3477
}
3478
3479
ret = init_tree_roots(fs_info);
3480
if (ret)
3481
goto fail_tree_roots;
3482
3483
/*
3484
* Get zone type information of zoned block devices. This will also
3485
* handle emulation of a zoned filesystem if a regular device has the
3486
* zoned incompat feature flag set.
3487
*/
3488
ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3489
if (ret) {
3490
btrfs_err(fs_info,
3491
"zoned: failed to read device zone info: %d", ret);
3492
goto fail_block_groups;
3493
}
3494
3495
/*
3496
* If we have a uuid root and we're not being told to rescan we need to
3497
* check the generation here so we can set the
3498
* BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3499
* transaction during a balance or the log replay without updating the
3500
* uuid generation, and then if we crash we would rescan the uuid tree,
3501
* even though it was perfectly fine.
3502
*/
3503
if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3504
fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3505
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3506
3507
ret = btrfs_verify_dev_extents(fs_info);
3508
if (ret) {
3509
btrfs_err(fs_info,
3510
"failed to verify dev extents against chunks: %d",
3511
ret);
3512
goto fail_block_groups;
3513
}
3514
ret = btrfs_recover_balance(fs_info);
3515
if (ret) {
3516
btrfs_err(fs_info, "failed to recover balance: %d", ret);
3517
goto fail_block_groups;
3518
}
3519
3520
ret = btrfs_init_dev_stats(fs_info);
3521
if (ret) {
3522
btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3523
goto fail_block_groups;
3524
}
3525
3526
ret = btrfs_init_dev_replace(fs_info);
3527
if (ret) {
3528
btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3529
goto fail_block_groups;
3530
}
3531
3532
ret = btrfs_check_zoned_mode(fs_info);
3533
if (ret) {
3534
btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3535
ret);
3536
goto fail_block_groups;
3537
}
3538
3539
ret = btrfs_sysfs_add_fsid(fs_devices);
3540
if (ret) {
3541
btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3542
ret);
3543
goto fail_block_groups;
3544
}
3545
3546
ret = btrfs_sysfs_add_mounted(fs_info);
3547
if (ret) {
3548
btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3549
goto fail_fsdev_sysfs;
3550
}
3551
3552
ret = btrfs_init_space_info(fs_info);
3553
if (ret) {
3554
btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3555
goto fail_sysfs;
3556
}
3557
3558
ret = btrfs_read_block_groups(fs_info);
3559
if (ret) {
3560
btrfs_err(fs_info, "failed to read block groups: %d", ret);
3561
goto fail_sysfs;
3562
}
3563
3564
btrfs_zoned_reserve_data_reloc_bg(fs_info);
3565
btrfs_free_zone_cache(fs_info);
3566
3567
btrfs_check_active_zone_reservation(fs_info);
3568
3569
if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3570
!btrfs_check_rw_degradable(fs_info, NULL)) {
3571
btrfs_warn(fs_info,
3572
"writable mount is not allowed due to too many missing devices");
3573
ret = -EINVAL;
3574
goto fail_sysfs;
3575
}
3576
3577
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3578
"btrfs-cleaner");
3579
if (IS_ERR(fs_info->cleaner_kthread)) {
3580
ret = PTR_ERR(fs_info->cleaner_kthread);
3581
goto fail_sysfs;
3582
}
3583
3584
fs_info->transaction_kthread = kthread_run(transaction_kthread,
3585
tree_root,
3586
"btrfs-transaction");
3587
if (IS_ERR(fs_info->transaction_kthread)) {
3588
ret = PTR_ERR(fs_info->transaction_kthread);
3589
goto fail_cleaner;
3590
}
3591
3592
ret = btrfs_read_qgroup_config(fs_info);
3593
if (ret)
3594
goto fail_trans_kthread;
3595
3596
if (btrfs_build_ref_tree(fs_info))
3597
btrfs_err(fs_info, "couldn't build ref tree");
3598
3599
/* do not make disk changes in broken FS or nologreplay is given */
3600
if (btrfs_super_log_root(disk_super) != 0 &&
3601
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3602
btrfs_info(fs_info, "start tree-log replay");
3603
ret = btrfs_replay_log(fs_info, fs_devices);
3604
if (ret)
3605
goto fail_qgroup;
3606
}
3607
3608
fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3609
if (IS_ERR(fs_info->fs_root)) {
3610
ret = PTR_ERR(fs_info->fs_root);
3611
btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3612
fs_info->fs_root = NULL;
3613
goto fail_qgroup;
3614
}
3615
3616
if (sb_rdonly(sb))
3617
return 0;
3618
3619
ret = btrfs_start_pre_rw_mount(fs_info);
3620
if (ret) {
3621
close_ctree(fs_info);
3622
return ret;
3623
}
3624
btrfs_discard_resume(fs_info);
3625
3626
if (fs_info->uuid_root &&
3627
(btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3628
fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3629
btrfs_info(fs_info, "checking UUID tree");
3630
ret = btrfs_check_uuid_tree(fs_info);
3631
if (ret) {
3632
btrfs_warn(fs_info,
3633
"failed to check the UUID tree: %d", ret);
3634
close_ctree(fs_info);
3635
return ret;
3636
}
3637
}
3638
3639
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3640
3641
/* Kick the cleaner thread so it'll start deleting snapshots. */
3642
if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3643
wake_up_process(fs_info->cleaner_kthread);
3644
3645
return 0;
3646
3647
fail_qgroup:
3648
btrfs_free_qgroup_config(fs_info);
3649
fail_trans_kthread:
3650
kthread_stop(fs_info->transaction_kthread);
3651
btrfs_cleanup_transaction(fs_info);
3652
btrfs_free_fs_roots(fs_info);
3653
fail_cleaner:
3654
kthread_stop(fs_info->cleaner_kthread);
3655
3656
/*
3657
* make sure we're done with the btree inode before we stop our
3658
* kthreads
3659
*/
3660
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3661
3662
fail_sysfs:
3663
btrfs_sysfs_remove_mounted(fs_info);
3664
3665
fail_fsdev_sysfs:
3666
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3667
3668
fail_block_groups:
3669
btrfs_put_block_group_cache(fs_info);
3670
3671
fail_tree_roots:
3672
if (fs_info->data_reloc_root)
3673
btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3674
free_root_pointers(fs_info, true);
3675
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3676
3677
fail_sb_buffer:
3678
btrfs_stop_all_workers(fs_info);
3679
btrfs_free_block_groups(fs_info);
3680
fail_alloc:
3681
btrfs_mapping_tree_free(fs_info);
3682
3683
iput(fs_info->btree_inode);
3684
fail:
3685
ASSERT(ret < 0);
3686
return ret;
3687
}
3688
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3689
3690
static void btrfs_end_super_write(struct bio *bio)
3691
{
3692
struct btrfs_device *device = bio->bi_private;
3693
struct folio_iter fi;
3694
3695
bio_for_each_folio_all(fi, bio) {
3696
if (bio->bi_status) {
3697
btrfs_warn_rl(device->fs_info,
3698
"lost super block write due to IO error on %s (%d)",
3699
btrfs_dev_name(device),
3700
blk_status_to_errno(bio->bi_status));
3701
btrfs_dev_stat_inc_and_print(device,
3702
BTRFS_DEV_STAT_WRITE_ERRS);
3703
/* Ensure failure if the primary sb fails. */
3704
if (bio->bi_opf & REQ_FUA)
3705
atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3706
&device->sb_write_errors);
3707
else
3708
atomic_inc(&device->sb_write_errors);
3709
}
3710
folio_unlock(fi.folio);
3711
folio_put(fi.folio);
3712
}
3713
3714
bio_put(bio);
3715
}
3716
3717
/*
3718
* Write superblock @sb to the @device. Do not wait for completion, all the
3719
* folios we use for writing are locked.
3720
*
3721
* Write @max_mirrors copies of the superblock, where 0 means default that fit
3722
* the expected device size at commit time. Note that max_mirrors must be
3723
* same for write and wait phases.
3724
*
3725
* Return number of errors when folio is not found or submission fails.
3726
*/
3727
static int write_dev_supers(struct btrfs_device *device,
3728
struct btrfs_super_block *sb, int max_mirrors)
3729
{
3730
struct btrfs_fs_info *fs_info = device->fs_info;
3731
struct address_space *mapping = device->bdev->bd_mapping;
3732
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3733
int i;
3734
int ret;
3735
u64 bytenr, bytenr_orig;
3736
3737
atomic_set(&device->sb_write_errors, 0);
3738
3739
if (max_mirrors == 0)
3740
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3741
3742
shash->tfm = fs_info->csum_shash;
3743
3744
for (i = 0; i < max_mirrors; i++) {
3745
struct folio *folio;
3746
struct bio *bio;
3747
struct btrfs_super_block *disk_super;
3748
size_t offset;
3749
3750
bytenr_orig = btrfs_sb_offset(i);
3751
ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3752
if (ret == -ENOENT) {
3753
continue;
3754
} else if (ret < 0) {
3755
btrfs_err(device->fs_info,
3756
"couldn't get super block location for mirror %d error %d",
3757
i, ret);
3758
atomic_inc(&device->sb_write_errors);
3759
continue;
3760
}
3761
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3762
device->commit_total_bytes)
3763
break;
3764
3765
btrfs_set_super_bytenr(sb, bytenr_orig);
3766
3767
crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3768
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3769
sb->csum);
3770
3771
folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3772
FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3773
GFP_NOFS);
3774
if (IS_ERR(folio)) {
3775
btrfs_err(device->fs_info,
3776
"couldn't get super block page for bytenr %llu error %ld",
3777
bytenr, PTR_ERR(folio));
3778
atomic_inc(&device->sb_write_errors);
3779
continue;
3780
}
3781
3782
offset = offset_in_folio(folio, bytenr);
3783
disk_super = folio_address(folio) + offset;
3784
memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3785
3786
/*
3787
* Directly use bios here instead of relying on the page cache
3788
* to do I/O, so we don't lose the ability to do integrity
3789
* checking.
3790
*/
3791
bio = bio_alloc(device->bdev, 1,
3792
REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3793
GFP_NOFS);
3794
bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3795
bio->bi_private = device;
3796
bio->bi_end_io = btrfs_end_super_write;
3797
bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3798
3799
/*
3800
* We FUA only the first super block. The others we allow to
3801
* go down lazy and there's a short window where the on-disk
3802
* copies might still contain the older version.
3803
*/
3804
if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3805
bio->bi_opf |= REQ_FUA;
3806
submit_bio(bio);
3807
3808
if (btrfs_advance_sb_log(device, i))
3809
atomic_inc(&device->sb_write_errors);
3810
}
3811
return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3812
}
3813
3814
/*
3815
* Wait for write completion of superblocks done by write_dev_supers,
3816
* @max_mirrors same for write and wait phases.
3817
*
3818
* Return -1 if primary super block write failed or when there were no super block
3819
* copies written. Otherwise 0.
3820
*/
3821
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3822
{
3823
int i;
3824
int errors = 0;
3825
bool primary_failed = false;
3826
int ret;
3827
u64 bytenr;
3828
3829
if (max_mirrors == 0)
3830
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3831
3832
for (i = 0; i < max_mirrors; i++) {
3833
struct folio *folio;
3834
3835
ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3836
if (ret == -ENOENT) {
3837
break;
3838
} else if (ret < 0) {
3839
errors++;
3840
if (i == 0)
3841
primary_failed = true;
3842
continue;
3843
}
3844
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3845
device->commit_total_bytes)
3846
break;
3847
3848
folio = filemap_get_folio(device->bdev->bd_mapping,
3849
bytenr >> PAGE_SHIFT);
3850
/* If the folio has been removed, then we know it completed. */
3851
if (IS_ERR(folio))
3852
continue;
3853
3854
/* Folio will be unlocked once the write completes. */
3855
folio_wait_locked(folio);
3856
folio_put(folio);
3857
}
3858
3859
errors += atomic_read(&device->sb_write_errors);
3860
if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3861
primary_failed = true;
3862
if (primary_failed) {
3863
btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3864
device->devid);
3865
return -1;
3866
}
3867
3868
return errors < i ? 0 : -1;
3869
}
3870
3871
/*
3872
* endio for the write_dev_flush, this will wake anyone waiting
3873
* for the barrier when it is done
3874
*/
3875
static void btrfs_end_empty_barrier(struct bio *bio)
3876
{
3877
bio_uninit(bio);
3878
complete(bio->bi_private);
3879
}
3880
3881
/*
3882
* Submit a flush request to the device if it supports it. Error handling is
3883
* done in the waiting counterpart.
3884
*/
3885
static void write_dev_flush(struct btrfs_device *device)
3886
{
3887
struct bio *bio = &device->flush_bio;
3888
3889
device->last_flush_error = BLK_STS_OK;
3890
3891
bio_init(bio, device->bdev, NULL, 0,
3892
REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3893
bio->bi_end_io = btrfs_end_empty_barrier;
3894
init_completion(&device->flush_wait);
3895
bio->bi_private = &device->flush_wait;
3896
submit_bio(bio);
3897
set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3898
}
3899
3900
/*
3901
* If the flush bio has been submitted by write_dev_flush, wait for it.
3902
* Return true for any error, and false otherwise.
3903
*/
3904
static bool wait_dev_flush(struct btrfs_device *device)
3905
{
3906
struct bio *bio = &device->flush_bio;
3907
3908
if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3909
return false;
3910
3911
wait_for_completion_io(&device->flush_wait);
3912
3913
if (bio->bi_status) {
3914
device->last_flush_error = bio->bi_status;
3915
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3916
return true;
3917
}
3918
3919
return false;
3920
}
3921
3922
/*
3923
* send an empty flush down to each device in parallel,
3924
* then wait for them
3925
*/
3926
static int barrier_all_devices(struct btrfs_fs_info *info)
3927
{
3928
struct list_head *head;
3929
struct btrfs_device *dev;
3930
int errors_wait = 0;
3931
3932
lockdep_assert_held(&info->fs_devices->device_list_mutex);
3933
/* send down all the barriers */
3934
head = &info->fs_devices->devices;
3935
list_for_each_entry(dev, head, dev_list) {
3936
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3937
continue;
3938
if (!dev->bdev)
3939
continue;
3940
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3941
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3942
continue;
3943
3944
write_dev_flush(dev);
3945
}
3946
3947
/* wait for all the barriers */
3948
list_for_each_entry(dev, head, dev_list) {
3949
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3950
continue;
3951
if (!dev->bdev) {
3952
errors_wait++;
3953
continue;
3954
}
3955
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3956
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3957
continue;
3958
3959
if (wait_dev_flush(dev))
3960
errors_wait++;
3961
}
3962
3963
/*
3964
* Checks last_flush_error of disks in order to determine the device
3965
* state.
3966
*/
3967
if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL)))
3968
return -EIO;
3969
3970
return 0;
3971
}
3972
3973
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3974
{
3975
int raid_type;
3976
int min_tolerated = INT_MAX;
3977
3978
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3979
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3980
min_tolerated = min_t(int, min_tolerated,
3981
btrfs_raid_array[BTRFS_RAID_SINGLE].
3982
tolerated_failures);
3983
3984
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3985
if (raid_type == BTRFS_RAID_SINGLE)
3986
continue;
3987
if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3988
continue;
3989
min_tolerated = min_t(int, min_tolerated,
3990
btrfs_raid_array[raid_type].
3991
tolerated_failures);
3992
}
3993
3994
if (min_tolerated == INT_MAX) {
3995
btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3996
min_tolerated = 0;
3997
}
3998
3999
return min_tolerated;
4000
}
4001
4002
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4003
{
4004
struct list_head *head;
4005
struct btrfs_device *dev;
4006
struct btrfs_super_block *sb;
4007
struct btrfs_dev_item *dev_item;
4008
int ret;
4009
int do_barriers;
4010
int max_errors;
4011
int total_errors = 0;
4012
u64 flags;
4013
4014
do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4015
4016
/*
4017
* max_mirrors == 0 indicates we're from commit_transaction,
4018
* not from fsync where the tree roots in fs_info have not
4019
* been consistent on disk.
4020
*/
4021
if (max_mirrors == 0)
4022
backup_super_roots(fs_info);
4023
4024
sb = fs_info->super_for_commit;
4025
dev_item = &sb->dev_item;
4026
4027
mutex_lock(&fs_info->fs_devices->device_list_mutex);
4028
head = &fs_info->fs_devices->devices;
4029
max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4030
4031
if (do_barriers) {
4032
ret = barrier_all_devices(fs_info);
4033
if (ret) {
4034
mutex_unlock(
4035
&fs_info->fs_devices->device_list_mutex);
4036
btrfs_handle_fs_error(fs_info, ret,
4037
"errors while submitting device barriers.");
4038
return ret;
4039
}
4040
}
4041
4042
list_for_each_entry(dev, head, dev_list) {
4043
if (!dev->bdev) {
4044
total_errors++;
4045
continue;
4046
}
4047
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4048
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4049
continue;
4050
4051
btrfs_set_stack_device_generation(dev_item, 0);
4052
btrfs_set_stack_device_type(dev_item, dev->type);
4053
btrfs_set_stack_device_id(dev_item, dev->devid);
4054
btrfs_set_stack_device_total_bytes(dev_item,
4055
dev->commit_total_bytes);
4056
btrfs_set_stack_device_bytes_used(dev_item,
4057
dev->commit_bytes_used);
4058
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4059
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4060
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4061
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4062
memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4063
BTRFS_FSID_SIZE);
4064
4065
flags = btrfs_super_flags(sb);
4066
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4067
4068
ret = btrfs_validate_write_super(fs_info, sb);
4069
if (unlikely(ret < 0)) {
4070
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4071
btrfs_handle_fs_error(fs_info, -EUCLEAN,
4072
"unexpected superblock corruption detected");
4073
return -EUCLEAN;
4074
}
4075
4076
ret = write_dev_supers(dev, sb, max_mirrors);
4077
if (ret)
4078
total_errors++;
4079
}
4080
if (unlikely(total_errors > max_errors)) {
4081
btrfs_err(fs_info, "%d errors while writing supers",
4082
total_errors);
4083
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4084
4085
/* FUA is masked off if unsupported and can't be the reason */
4086
btrfs_handle_fs_error(fs_info, -EIO,
4087
"%d errors while writing supers",
4088
total_errors);
4089
return -EIO;
4090
}
4091
4092
total_errors = 0;
4093
list_for_each_entry(dev, head, dev_list) {
4094
if (!dev->bdev)
4095
continue;
4096
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4097
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4098
continue;
4099
4100
ret = wait_dev_supers(dev, max_mirrors);
4101
if (ret)
4102
total_errors++;
4103
}
4104
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4105
if (unlikely(total_errors > max_errors)) {
4106
btrfs_handle_fs_error(fs_info, -EIO,
4107
"%d errors while writing supers",
4108
total_errors);
4109
return -EIO;
4110
}
4111
return 0;
4112
}
4113
4114
/* Drop a fs root from the radix tree and free it. */
4115
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4116
struct btrfs_root *root)
4117
{
4118
bool drop_ref = false;
4119
4120
spin_lock(&fs_info->fs_roots_radix_lock);
4121
radix_tree_delete(&fs_info->fs_roots_radix,
4122
(unsigned long)btrfs_root_id(root));
4123
if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4124
drop_ref = true;
4125
spin_unlock(&fs_info->fs_roots_radix_lock);
4126
4127
if (BTRFS_FS_ERROR(fs_info)) {
4128
ASSERT(root->log_root == NULL);
4129
if (root->reloc_root) {
4130
btrfs_put_root(root->reloc_root);
4131
root->reloc_root = NULL;
4132
}
4133
}
4134
4135
if (drop_ref)
4136
btrfs_put_root(root);
4137
}
4138
4139
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4140
{
4141
mutex_lock(&fs_info->cleaner_mutex);
4142
btrfs_run_delayed_iputs(fs_info);
4143
mutex_unlock(&fs_info->cleaner_mutex);
4144
wake_up_process(fs_info->cleaner_kthread);
4145
4146
/* wait until ongoing cleanup work done */
4147
down_write(&fs_info->cleanup_work_sem);
4148
up_write(&fs_info->cleanup_work_sem);
4149
4150
return btrfs_commit_current_transaction(fs_info->tree_root);
4151
}
4152
4153
static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4154
{
4155
struct btrfs_transaction *trans;
4156
struct btrfs_transaction *tmp;
4157
bool found = false;
4158
4159
/*
4160
* This function is only called at the very end of close_ctree(),
4161
* thus no other running transaction, no need to take trans_lock.
4162
*/
4163
ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4164
list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4165
struct extent_state *cached = NULL;
4166
u64 dirty_bytes = 0;
4167
u64 cur = 0;
4168
u64 found_start;
4169
u64 found_end;
4170
4171
found = true;
4172
while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4173
&found_start, &found_end,
4174
EXTENT_DIRTY, &cached)) {
4175
dirty_bytes += found_end + 1 - found_start;
4176
cur = found_end + 1;
4177
}
4178
btrfs_warn(fs_info,
4179
"transaction %llu (with %llu dirty metadata bytes) is not committed",
4180
trans->transid, dirty_bytes);
4181
btrfs_cleanup_one_transaction(trans);
4182
4183
if (trans == fs_info->running_transaction)
4184
fs_info->running_transaction = NULL;
4185
list_del_init(&trans->list);
4186
4187
btrfs_put_transaction(trans);
4188
trace_btrfs_transaction_commit(fs_info);
4189
}
4190
ASSERT(!found);
4191
}
4192
4193
void __cold close_ctree(struct btrfs_fs_info *fs_info)
4194
{
4195
int ret;
4196
4197
set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4198
4199
/*
4200
* If we had UNFINISHED_DROPS we could still be processing them, so
4201
* clear that bit and wake up relocation so it can stop.
4202
* We must do this before stopping the block group reclaim task, because
4203
* at btrfs_relocate_block_group() we wait for this bit, and after the
4204
* wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4205
* have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4206
* return 1.
4207
*/
4208
btrfs_wake_unfinished_drop(fs_info);
4209
4210
/*
4211
* We may have the reclaim task running and relocating a data block group,
4212
* in which case it may create delayed iputs. So stop it before we park
4213
* the cleaner kthread otherwise we can get new delayed iputs after
4214
* parking the cleaner, and that can make the async reclaim task to hang
4215
* if it's waiting for delayed iputs to complete, since the cleaner is
4216
* parked and can not run delayed iputs - this will make us hang when
4217
* trying to stop the async reclaim task.
4218
*/
4219
cancel_work_sync(&fs_info->reclaim_bgs_work);
4220
/*
4221
* We don't want the cleaner to start new transactions, add more delayed
4222
* iputs, etc. while we're closing. We can't use kthread_stop() yet
4223
* because that frees the task_struct, and the transaction kthread might
4224
* still try to wake up the cleaner.
4225
*/
4226
kthread_park(fs_info->cleaner_kthread);
4227
4228
/* wait for the qgroup rescan worker to stop */
4229
btrfs_qgroup_wait_for_completion(fs_info, false);
4230
4231
/* wait for the uuid_scan task to finish */
4232
down(&fs_info->uuid_tree_rescan_sem);
4233
/* avoid complains from lockdep et al., set sem back to initial state */
4234
up(&fs_info->uuid_tree_rescan_sem);
4235
4236
/* pause restriper - we want to resume on mount */
4237
btrfs_pause_balance(fs_info);
4238
4239
btrfs_dev_replace_suspend_for_unmount(fs_info);
4240
4241
btrfs_scrub_cancel(fs_info);
4242
4243
/* wait for any defraggers to finish */
4244
wait_event(fs_info->transaction_wait,
4245
(atomic_read(&fs_info->defrag_running) == 0));
4246
4247
/* clear out the rbtree of defraggable inodes */
4248
btrfs_cleanup_defrag_inodes(fs_info);
4249
4250
/*
4251
* Handle the error fs first, as it will flush and wait for all ordered
4252
* extents. This will generate delayed iputs, thus we want to handle
4253
* it first.
4254
*/
4255
if (unlikely(BTRFS_FS_ERROR(fs_info)))
4256
btrfs_error_commit_super(fs_info);
4257
4258
/*
4259
* Wait for any fixup workers to complete.
4260
* If we don't wait for them here and they are still running by the time
4261
* we call kthread_stop() against the cleaner kthread further below, we
4262
* get an use-after-free on the cleaner because the fixup worker adds an
4263
* inode to the list of delayed iputs and then attempts to wakeup the
4264
* cleaner kthread, which was already stopped and destroyed. We parked
4265
* already the cleaner, but below we run all pending delayed iputs.
4266
*/
4267
btrfs_flush_workqueue(fs_info->fixup_workers);
4268
/*
4269
* Similar case here, we have to wait for delalloc workers before we
4270
* proceed below and stop the cleaner kthread, otherwise we trigger a
4271
* use-after-tree on the cleaner kthread task_struct when a delalloc
4272
* worker running submit_compressed_extents() adds a delayed iput, which
4273
* does a wake up on the cleaner kthread, which was already freed below
4274
* when we call kthread_stop().
4275
*/
4276
btrfs_flush_workqueue(fs_info->delalloc_workers);
4277
4278
/*
4279
* We can have ordered extents getting their last reference dropped from
4280
* the fs_info->workers queue because for async writes for data bios we
4281
* queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4282
* run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4283
* has an error, and that later function can do the final
4284
* btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4285
* which adds a delayed iput for the inode. So we must flush the queue
4286
* so that we don't have delayed iputs after committing the current
4287
* transaction below and stopping the cleaner and transaction kthreads.
4288
*/
4289
btrfs_flush_workqueue(fs_info->workers);
4290
4291
/*
4292
* When finishing a compressed write bio we schedule a work queue item
4293
* to finish an ordered extent - btrfs_finish_compressed_write_work()
4294
* calls btrfs_finish_ordered_extent() which in turns does a call to
4295
* btrfs_queue_ordered_fn(), and that queues the ordered extent
4296
* completion either in the endio_write_workers work queue or in the
4297
* fs_info->endio_freespace_worker work queue. We flush those queues
4298
* below, so before we flush them we must flush this queue for the
4299
* workers of compressed writes.
4300
*/
4301
flush_workqueue(fs_info->compressed_write_workers);
4302
4303
/*
4304
* After we parked the cleaner kthread, ordered extents may have
4305
* completed and created new delayed iputs. If one of the async reclaim
4306
* tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4307
* can hang forever trying to stop it, because if a delayed iput is
4308
* added after it ran btrfs_run_delayed_iputs() and before it called
4309
* btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4310
* no one else to run iputs.
4311
*
4312
* So wait for all ongoing ordered extents to complete and then run
4313
* delayed iputs. This works because once we reach this point no one
4314
* can create new ordered extents, but delayed iputs can still be added
4315
* by a reclaim worker (see comments further below).
4316
*
4317
* Also note that btrfs_wait_ordered_roots() is not safe here, because
4318
* it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4319
* but the delayed iput for the respective inode is made only when doing
4320
* the final btrfs_put_ordered_extent() (which must happen at
4321
* btrfs_finish_ordered_io() when we are unmounting).
4322
*/
4323
btrfs_flush_workqueue(fs_info->endio_write_workers);
4324
/* Ordered extents for free space inodes. */
4325
btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4326
/*
4327
* Run delayed iputs in case an async reclaim worker is waiting for them
4328
* to be run as mentioned above.
4329
*/
4330
btrfs_run_delayed_iputs(fs_info);
4331
4332
cancel_work_sync(&fs_info->async_reclaim_work);
4333
cancel_work_sync(&fs_info->async_data_reclaim_work);
4334
cancel_work_sync(&fs_info->preempt_reclaim_work);
4335
cancel_work_sync(&fs_info->em_shrinker_work);
4336
4337
/*
4338
* Run delayed iputs again because an async reclaim worker may have
4339
* added new ones if it was flushing delalloc:
4340
*
4341
* shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4342
* start_delalloc_inodes() -> btrfs_add_delayed_iput()
4343
*/
4344
btrfs_run_delayed_iputs(fs_info);
4345
4346
/* There should be no more workload to generate new delayed iputs. */
4347
set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4348
4349
/* Cancel or finish ongoing discard work */
4350
btrfs_discard_cleanup(fs_info);
4351
4352
if (!sb_rdonly(fs_info->sb)) {
4353
/*
4354
* The cleaner kthread is stopped, so do one final pass over
4355
* unused block groups.
4356
*/
4357
btrfs_delete_unused_bgs(fs_info);
4358
4359
/*
4360
* There might be existing delayed inode workers still running
4361
* and holding an empty delayed inode item. We must wait for
4362
* them to complete first because they can create a transaction.
4363
* This happens when someone calls btrfs_balance_delayed_items()
4364
* and then a transaction commit runs the same delayed nodes
4365
* before any delayed worker has done something with the nodes.
4366
* We must wait for any worker here and not at transaction
4367
* commit time since that could cause a deadlock.
4368
* This is a very rare case.
4369
*/
4370
btrfs_flush_workqueue(fs_info->delayed_workers);
4371
4372
ret = btrfs_commit_super(fs_info);
4373
if (ret)
4374
btrfs_err(fs_info, "commit super ret %d", ret);
4375
}
4376
4377
kthread_stop(fs_info->transaction_kthread);
4378
kthread_stop(fs_info->cleaner_kthread);
4379
4380
ASSERT(list_empty(&fs_info->delayed_iputs));
4381
set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4382
4383
if (btrfs_check_quota_leak(fs_info)) {
4384
DEBUG_WARN("qgroup reserved space leaked");
4385
btrfs_err(fs_info, "qgroup reserved space leaked");
4386
}
4387
4388
btrfs_free_qgroup_config(fs_info);
4389
ASSERT(list_empty(&fs_info->delalloc_roots));
4390
4391
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4392
btrfs_info(fs_info, "at unmount delalloc count %lld",
4393
percpu_counter_sum(&fs_info->delalloc_bytes));
4394
}
4395
4396
if (percpu_counter_sum(&fs_info->ordered_bytes))
4397
btrfs_info(fs_info, "at unmount dio bytes count %lld",
4398
percpu_counter_sum(&fs_info->ordered_bytes));
4399
4400
btrfs_sysfs_remove_mounted(fs_info);
4401
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4402
4403
btrfs_put_block_group_cache(fs_info);
4404
4405
/*
4406
* we must make sure there is not any read request to
4407
* submit after we stopping all workers.
4408
*/
4409
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4410
btrfs_stop_all_workers(fs_info);
4411
4412
/* We shouldn't have any transaction open at this point */
4413
warn_about_uncommitted_trans(fs_info);
4414
4415
clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4416
free_root_pointers(fs_info, true);
4417
btrfs_free_fs_roots(fs_info);
4418
4419
/*
4420
* We must free the block groups after dropping the fs_roots as we could
4421
* have had an IO error and have left over tree log blocks that aren't
4422
* cleaned up until the fs roots are freed. This makes the block group
4423
* accounting appear to be wrong because there's pending reserved bytes,
4424
* so make sure we do the block group cleanup afterwards.
4425
*/
4426
btrfs_free_block_groups(fs_info);
4427
4428
iput(fs_info->btree_inode);
4429
4430
btrfs_mapping_tree_free(fs_info);
4431
}
4432
4433
void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4434
struct extent_buffer *buf)
4435
{
4436
struct btrfs_fs_info *fs_info = buf->fs_info;
4437
u64 transid = btrfs_header_generation(buf);
4438
4439
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4440
/*
4441
* This is a fast path so only do this check if we have sanity tests
4442
* enabled. Normal people shouldn't be using unmapped buffers as dirty
4443
* outside of the sanity tests.
4444
*/
4445
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4446
return;
4447
#endif
4448
/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4449
ASSERT(trans->transid == fs_info->generation);
4450
btrfs_assert_tree_write_locked(buf);
4451
if (unlikely(transid != fs_info->generation)) {
4452
btrfs_abort_transaction(trans, -EUCLEAN);
4453
btrfs_crit(fs_info,
4454
"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4455
buf->start, transid, fs_info->generation);
4456
}
4457
set_extent_buffer_dirty(buf);
4458
}
4459
4460
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4461
int flush_delayed)
4462
{
4463
/*
4464
* looks as though older kernels can get into trouble with
4465
* this code, they end up stuck in balance_dirty_pages forever
4466
*/
4467
int ret;
4468
4469
if (current->flags & PF_MEMALLOC)
4470
return;
4471
4472
if (flush_delayed)
4473
btrfs_balance_delayed_items(fs_info);
4474
4475
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4476
BTRFS_DIRTY_METADATA_THRESH,
4477
fs_info->dirty_metadata_batch);
4478
if (ret > 0) {
4479
balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4480
}
4481
}
4482
4483
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4484
{
4485
__btrfs_btree_balance_dirty(fs_info, 1);
4486
}
4487
4488
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4489
{
4490
__btrfs_btree_balance_dirty(fs_info, 0);
4491
}
4492
4493
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4494
{
4495
/* cleanup FS via transaction */
4496
btrfs_cleanup_transaction(fs_info);
4497
4498
down_write(&fs_info->cleanup_work_sem);
4499
up_write(&fs_info->cleanup_work_sem);
4500
}
4501
4502
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4503
{
4504
struct btrfs_root *gang[8];
4505
u64 root_objectid = 0;
4506
int ret;
4507
4508
spin_lock(&fs_info->fs_roots_radix_lock);
4509
while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4510
(void **)gang, root_objectid,
4511
ARRAY_SIZE(gang))) != 0) {
4512
int i;
4513
4514
for (i = 0; i < ret; i++)
4515
gang[i] = btrfs_grab_root(gang[i]);
4516
spin_unlock(&fs_info->fs_roots_radix_lock);
4517
4518
for (i = 0; i < ret; i++) {
4519
if (!gang[i])
4520
continue;
4521
root_objectid = btrfs_root_id(gang[i]);
4522
btrfs_free_log(NULL, gang[i]);
4523
btrfs_put_root(gang[i]);
4524
}
4525
root_objectid++;
4526
spin_lock(&fs_info->fs_roots_radix_lock);
4527
}
4528
spin_unlock(&fs_info->fs_roots_radix_lock);
4529
btrfs_free_log_root_tree(NULL, fs_info);
4530
}
4531
4532
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4533
{
4534
struct btrfs_ordered_extent *ordered;
4535
4536
spin_lock(&root->ordered_extent_lock);
4537
/*
4538
* This will just short circuit the ordered completion stuff which will
4539
* make sure the ordered extent gets properly cleaned up.
4540
*/
4541
list_for_each_entry(ordered, &root->ordered_extents,
4542
root_extent_list)
4543
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4544
spin_unlock(&root->ordered_extent_lock);
4545
}
4546
4547
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4548
{
4549
struct btrfs_root *root;
4550
LIST_HEAD(splice);
4551
4552
spin_lock(&fs_info->ordered_root_lock);
4553
list_splice_init(&fs_info->ordered_roots, &splice);
4554
while (!list_empty(&splice)) {
4555
root = list_first_entry(&splice, struct btrfs_root,
4556
ordered_root);
4557
list_move_tail(&root->ordered_root,
4558
&fs_info->ordered_roots);
4559
4560
spin_unlock(&fs_info->ordered_root_lock);
4561
btrfs_destroy_ordered_extents(root);
4562
4563
cond_resched();
4564
spin_lock(&fs_info->ordered_root_lock);
4565
}
4566
spin_unlock(&fs_info->ordered_root_lock);
4567
4568
/*
4569
* We need this here because if we've been flipped read-only we won't
4570
* get sync() from the umount, so we need to make sure any ordered
4571
* extents that haven't had their dirty pages IO start writeout yet
4572
* actually get run and error out properly.
4573
*/
4574
btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4575
}
4576
4577
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4578
{
4579
struct btrfs_inode *btrfs_inode;
4580
LIST_HEAD(splice);
4581
4582
spin_lock(&root->delalloc_lock);
4583
list_splice_init(&root->delalloc_inodes, &splice);
4584
4585
while (!list_empty(&splice)) {
4586
struct inode *inode = NULL;
4587
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4588
delalloc_inodes);
4589
btrfs_del_delalloc_inode(btrfs_inode);
4590
spin_unlock(&root->delalloc_lock);
4591
4592
/*
4593
* Make sure we get a live inode and that it'll not disappear
4594
* meanwhile.
4595
*/
4596
inode = igrab(&btrfs_inode->vfs_inode);
4597
if (inode) {
4598
unsigned int nofs_flag;
4599
4600
nofs_flag = memalloc_nofs_save();
4601
invalidate_inode_pages2(inode->i_mapping);
4602
memalloc_nofs_restore(nofs_flag);
4603
iput(inode);
4604
}
4605
spin_lock(&root->delalloc_lock);
4606
}
4607
spin_unlock(&root->delalloc_lock);
4608
}
4609
4610
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4611
{
4612
struct btrfs_root *root;
4613
LIST_HEAD(splice);
4614
4615
spin_lock(&fs_info->delalloc_root_lock);
4616
list_splice_init(&fs_info->delalloc_roots, &splice);
4617
while (!list_empty(&splice)) {
4618
root = list_first_entry(&splice, struct btrfs_root,
4619
delalloc_root);
4620
root = btrfs_grab_root(root);
4621
BUG_ON(!root);
4622
spin_unlock(&fs_info->delalloc_root_lock);
4623
4624
btrfs_destroy_delalloc_inodes(root);
4625
btrfs_put_root(root);
4626
4627
spin_lock(&fs_info->delalloc_root_lock);
4628
}
4629
spin_unlock(&fs_info->delalloc_root_lock);
4630
}
4631
4632
static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4633
struct extent_io_tree *dirty_pages,
4634
int mark)
4635
{
4636
struct extent_buffer *eb;
4637
u64 start = 0;
4638
u64 end;
4639
4640
while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4641
mark, NULL)) {
4642
btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4643
while (start <= end) {
4644
eb = find_extent_buffer(fs_info, start);
4645
start += fs_info->nodesize;
4646
if (!eb)
4647
continue;
4648
4649
btrfs_tree_lock(eb);
4650
wait_on_extent_buffer_writeback(eb);
4651
btrfs_clear_buffer_dirty(NULL, eb);
4652
btrfs_tree_unlock(eb);
4653
4654
free_extent_buffer_stale(eb);
4655
}
4656
}
4657
}
4658
4659
static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4660
struct extent_io_tree *unpin)
4661
{
4662
u64 start;
4663
u64 end;
4664
4665
while (1) {
4666
struct extent_state *cached_state = NULL;
4667
4668
/*
4669
* The btrfs_finish_extent_commit() may get the same range as
4670
* ours between find_first_extent_bit and clear_extent_dirty.
4671
* Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4672
* the same extent range.
4673
*/
4674
mutex_lock(&fs_info->unused_bg_unpin_mutex);
4675
if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4676
EXTENT_DIRTY, &cached_state)) {
4677
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4678
break;
4679
}
4680
4681
btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4682
btrfs_free_extent_state(cached_state);
4683
btrfs_error_unpin_extent_range(fs_info, start, end);
4684
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4685
cond_resched();
4686
}
4687
}
4688
4689
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4690
{
4691
struct inode *inode;
4692
4693
inode = cache->io_ctl.inode;
4694
if (inode) {
4695
unsigned int nofs_flag;
4696
4697
nofs_flag = memalloc_nofs_save();
4698
invalidate_inode_pages2(inode->i_mapping);
4699
memalloc_nofs_restore(nofs_flag);
4700
4701
BTRFS_I(inode)->generation = 0;
4702
cache->io_ctl.inode = NULL;
4703
iput(inode);
4704
}
4705
ASSERT(cache->io_ctl.pages == NULL);
4706
btrfs_put_block_group(cache);
4707
}
4708
4709
void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4710
struct btrfs_fs_info *fs_info)
4711
{
4712
struct btrfs_block_group *cache;
4713
4714
spin_lock(&cur_trans->dirty_bgs_lock);
4715
while (!list_empty(&cur_trans->dirty_bgs)) {
4716
cache = list_first_entry(&cur_trans->dirty_bgs,
4717
struct btrfs_block_group,
4718
dirty_list);
4719
4720
if (!list_empty(&cache->io_list)) {
4721
spin_unlock(&cur_trans->dirty_bgs_lock);
4722
list_del_init(&cache->io_list);
4723
btrfs_cleanup_bg_io(cache);
4724
spin_lock(&cur_trans->dirty_bgs_lock);
4725
}
4726
4727
list_del_init(&cache->dirty_list);
4728
spin_lock(&cache->lock);
4729
cache->disk_cache_state = BTRFS_DC_ERROR;
4730
spin_unlock(&cache->lock);
4731
4732
spin_unlock(&cur_trans->dirty_bgs_lock);
4733
btrfs_put_block_group(cache);
4734
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4735
spin_lock(&cur_trans->dirty_bgs_lock);
4736
}
4737
spin_unlock(&cur_trans->dirty_bgs_lock);
4738
4739
/*
4740
* Refer to the definition of io_bgs member for details why it's safe
4741
* to use it without any locking
4742
*/
4743
while (!list_empty(&cur_trans->io_bgs)) {
4744
cache = list_first_entry(&cur_trans->io_bgs,
4745
struct btrfs_block_group,
4746
io_list);
4747
4748
list_del_init(&cache->io_list);
4749
spin_lock(&cache->lock);
4750
cache->disk_cache_state = BTRFS_DC_ERROR;
4751
spin_unlock(&cache->lock);
4752
btrfs_cleanup_bg_io(cache);
4753
}
4754
}
4755
4756
static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4757
{
4758
struct btrfs_root *gang[8];
4759
int i;
4760
int ret;
4761
4762
spin_lock(&fs_info->fs_roots_radix_lock);
4763
while (1) {
4764
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4765
(void **)gang, 0,
4766
ARRAY_SIZE(gang),
4767
BTRFS_ROOT_TRANS_TAG);
4768
if (ret == 0)
4769
break;
4770
for (i = 0; i < ret; i++) {
4771
struct btrfs_root *root = gang[i];
4772
4773
btrfs_qgroup_free_meta_all_pertrans(root);
4774
radix_tree_tag_clear(&fs_info->fs_roots_radix,
4775
(unsigned long)btrfs_root_id(root),
4776
BTRFS_ROOT_TRANS_TAG);
4777
}
4778
}
4779
spin_unlock(&fs_info->fs_roots_radix_lock);
4780
}
4781
4782
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4783
{
4784
struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4785
struct btrfs_device *dev, *tmp;
4786
4787
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4788
ASSERT(list_empty(&cur_trans->dirty_bgs));
4789
ASSERT(list_empty(&cur_trans->io_bgs));
4790
4791
list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4792
post_commit_list) {
4793
list_del_init(&dev->post_commit_list);
4794
}
4795
4796
btrfs_destroy_delayed_refs(cur_trans);
4797
4798
cur_trans->state = TRANS_STATE_COMMIT_START;
4799
wake_up(&fs_info->transaction_blocked_wait);
4800
4801
cur_trans->state = TRANS_STATE_UNBLOCKED;
4802
wake_up(&fs_info->transaction_wait);
4803
4804
btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4805
EXTENT_DIRTY);
4806
btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4807
4808
cur_trans->state =TRANS_STATE_COMPLETED;
4809
wake_up(&cur_trans->commit_wait);
4810
}
4811
4812
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4813
{
4814
struct btrfs_transaction *t;
4815
4816
mutex_lock(&fs_info->transaction_kthread_mutex);
4817
4818
spin_lock(&fs_info->trans_lock);
4819
while (!list_empty(&fs_info->trans_list)) {
4820
t = list_first_entry(&fs_info->trans_list,
4821
struct btrfs_transaction, list);
4822
if (t->state >= TRANS_STATE_COMMIT_PREP) {
4823
refcount_inc(&t->use_count);
4824
spin_unlock(&fs_info->trans_lock);
4825
btrfs_wait_for_commit(fs_info, t->transid);
4826
btrfs_put_transaction(t);
4827
spin_lock(&fs_info->trans_lock);
4828
continue;
4829
}
4830
if (t == fs_info->running_transaction) {
4831
t->state = TRANS_STATE_COMMIT_DOING;
4832
spin_unlock(&fs_info->trans_lock);
4833
/*
4834
* We wait for 0 num_writers since we don't hold a trans
4835
* handle open currently for this transaction.
4836
*/
4837
wait_event(t->writer_wait,
4838
atomic_read(&t->num_writers) == 0);
4839
} else {
4840
spin_unlock(&fs_info->trans_lock);
4841
}
4842
btrfs_cleanup_one_transaction(t);
4843
4844
spin_lock(&fs_info->trans_lock);
4845
if (t == fs_info->running_transaction)
4846
fs_info->running_transaction = NULL;
4847
list_del_init(&t->list);
4848
spin_unlock(&fs_info->trans_lock);
4849
4850
btrfs_put_transaction(t);
4851
trace_btrfs_transaction_commit(fs_info);
4852
spin_lock(&fs_info->trans_lock);
4853
}
4854
spin_unlock(&fs_info->trans_lock);
4855
btrfs_destroy_all_ordered_extents(fs_info);
4856
btrfs_destroy_delayed_inodes(fs_info);
4857
btrfs_assert_delayed_root_empty(fs_info);
4858
btrfs_destroy_all_delalloc_inodes(fs_info);
4859
btrfs_drop_all_logs(fs_info);
4860
btrfs_free_all_qgroup_pertrans(fs_info);
4861
mutex_unlock(&fs_info->transaction_kthread_mutex);
4862
4863
return 0;
4864
}
4865
4866
int btrfs_init_root_free_objectid(struct btrfs_root *root)
4867
{
4868
BTRFS_PATH_AUTO_FREE(path);
4869
int ret;
4870
struct extent_buffer *l;
4871
struct btrfs_key search_key;
4872
struct btrfs_key found_key;
4873
int slot;
4874
4875
path = btrfs_alloc_path();
4876
if (!path)
4877
return -ENOMEM;
4878
4879
search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4880
search_key.type = -1;
4881
search_key.offset = (u64)-1;
4882
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4883
if (ret < 0)
4884
return ret;
4885
if (unlikely(ret == 0)) {
4886
/*
4887
* Key with offset -1 found, there would have to exist a root
4888
* with such id, but this is out of valid range.
4889
*/
4890
return -EUCLEAN;
4891
}
4892
if (path->slots[0] > 0) {
4893
slot = path->slots[0] - 1;
4894
l = path->nodes[0];
4895
btrfs_item_key_to_cpu(l, &found_key, slot);
4896
root->free_objectid = max_t(u64, found_key.objectid + 1,
4897
BTRFS_FIRST_FREE_OBJECTID);
4898
} else {
4899
root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4900
}
4901
4902
return 0;
4903
}
4904
4905
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4906
{
4907
int ret;
4908
mutex_lock(&root->objectid_mutex);
4909
4910
if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4911
btrfs_warn(root->fs_info,
4912
"the objectid of root %llu reaches its highest value",
4913
btrfs_root_id(root));
4914
ret = -ENOSPC;
4915
goto out;
4916
}
4917
4918
*objectid = root->free_objectid++;
4919
ret = 0;
4920
out:
4921
mutex_unlock(&root->objectid_mutex);
4922
return ret;
4923
}
4924
4925