Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/crypto/fscrypt_private.h
29269 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* fscrypt_private.h
4
*
5
* Copyright (C) 2015, Google, Inc.
6
*
7
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8
* Heavily modified since then.
9
*/
10
11
#ifndef _FSCRYPT_PRIVATE_H
12
#define _FSCRYPT_PRIVATE_H
13
14
#include <crypto/sha2.h>
15
#include <linux/fscrypt.h>
16
#include <linux/minmax.h>
17
#include <linux/siphash.h>
18
#include <linux/blk-crypto.h>
19
20
#define CONST_STRLEN(str) (sizeof(str) - 1)
21
22
#define FSCRYPT_FILE_NONCE_SIZE 16
23
24
/*
25
* Minimum size of an fscrypt master key. Note: a longer key will be required
26
* if ciphers with a 256-bit security strength are used. This is just the
27
* absolute minimum, which applies when only 128-bit encryption is used.
28
*/
29
#define FSCRYPT_MIN_KEY_SIZE 16
30
31
/* Maximum size of a raw fscrypt master key */
32
#define FSCRYPT_MAX_RAW_KEY_SIZE 64
33
34
/* Maximum size of a hardware-wrapped fscrypt master key */
35
#define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
36
37
/* Maximum size of an fscrypt master key across both key types */
38
#define FSCRYPT_MAX_ANY_KEY_SIZE \
39
MAX(FSCRYPT_MAX_RAW_KEY_SIZE, FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE)
40
41
/*
42
* FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
43
* hardware-wrapped keys has made it misleading as it's only for raw keys.
44
* Don't use it in kernel code; use one of the above constants instead.
45
*/
46
#undef FSCRYPT_MAX_KEY_SIZE
47
48
/*
49
* This mask is passed as the third argument to the crypto_alloc_*() functions
50
* to prevent fscrypt from using the Crypto API drivers for non-inline crypto
51
* engines. Those drivers have been problematic for fscrypt. fscrypt users
52
* have reported hangs and even incorrect en/decryption with these drivers.
53
* Since going to the driver, off CPU, and back again is really slow, such
54
* drivers can be over 50 times slower than the CPU-based code for fscrypt's
55
* workload. Even on platforms that lack AES instructions on the CPU, using the
56
* offloads has been shown to be slower, even staying with AES. (Of course,
57
* Adiantum is faster still, and is the recommended option on such platforms...)
58
*
59
* Note that fscrypt also supports inline crypto engines. Those don't use the
60
* Crypto API and work much better than the old-style (non-inline) engines.
61
*/
62
#define FSCRYPT_CRYPTOAPI_MASK \
63
(CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | \
64
CRYPTO_ALG_KERN_DRIVER_ONLY)
65
66
#define FSCRYPT_CONTEXT_V1 1
67
#define FSCRYPT_CONTEXT_V2 2
68
69
/* Keep this in sync with include/uapi/linux/fscrypt.h */
70
#define FSCRYPT_MODE_MAX FSCRYPT_MODE_AES_256_HCTR2
71
72
struct fscrypt_context_v1 {
73
u8 version; /* FSCRYPT_CONTEXT_V1 */
74
u8 contents_encryption_mode;
75
u8 filenames_encryption_mode;
76
u8 flags;
77
u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
78
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
79
};
80
81
struct fscrypt_context_v2 {
82
u8 version; /* FSCRYPT_CONTEXT_V2 */
83
u8 contents_encryption_mode;
84
u8 filenames_encryption_mode;
85
u8 flags;
86
u8 log2_data_unit_size;
87
u8 __reserved[3];
88
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
89
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
90
};
91
92
/*
93
* fscrypt_context - the encryption context of an inode
94
*
95
* This is the on-disk equivalent of an fscrypt_policy, stored alongside each
96
* encrypted file usually in a hidden extended attribute. It contains the
97
* fields from the fscrypt_policy, in order to identify the encryption algorithm
98
* and key with which the file is encrypted. It also contains a nonce that was
99
* randomly generated by fscrypt itself; this is used as KDF input or as a tweak
100
* to cause different files to be encrypted differently.
101
*/
102
union fscrypt_context {
103
u8 version;
104
struct fscrypt_context_v1 v1;
105
struct fscrypt_context_v2 v2;
106
};
107
108
/*
109
* Return the size expected for the given fscrypt_context based on its version
110
* number, or 0 if the context version is unrecognized.
111
*/
112
static inline int fscrypt_context_size(const union fscrypt_context *ctx)
113
{
114
switch (ctx->version) {
115
case FSCRYPT_CONTEXT_V1:
116
BUILD_BUG_ON(sizeof(ctx->v1) != 28);
117
return sizeof(ctx->v1);
118
case FSCRYPT_CONTEXT_V2:
119
BUILD_BUG_ON(sizeof(ctx->v2) != 40);
120
return sizeof(ctx->v2);
121
}
122
return 0;
123
}
124
125
/* Check whether an fscrypt_context has a recognized version number and size */
126
static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
127
int ctx_size)
128
{
129
return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
130
}
131
132
/* Retrieve the context's nonce, assuming the context was already validated */
133
static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
134
{
135
switch (ctx->version) {
136
case FSCRYPT_CONTEXT_V1:
137
return ctx->v1.nonce;
138
case FSCRYPT_CONTEXT_V2:
139
return ctx->v2.nonce;
140
}
141
WARN_ON_ONCE(1);
142
return NULL;
143
}
144
145
union fscrypt_policy {
146
u8 version;
147
struct fscrypt_policy_v1 v1;
148
struct fscrypt_policy_v2 v2;
149
};
150
151
/*
152
* Return the size expected for the given fscrypt_policy based on its version
153
* number, or 0 if the policy version is unrecognized.
154
*/
155
static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
156
{
157
switch (policy->version) {
158
case FSCRYPT_POLICY_V1:
159
return sizeof(policy->v1);
160
case FSCRYPT_POLICY_V2:
161
return sizeof(policy->v2);
162
}
163
return 0;
164
}
165
166
/* Return the contents encryption mode of a valid encryption policy */
167
static inline u8
168
fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
169
{
170
switch (policy->version) {
171
case FSCRYPT_POLICY_V1:
172
return policy->v1.contents_encryption_mode;
173
case FSCRYPT_POLICY_V2:
174
return policy->v2.contents_encryption_mode;
175
}
176
BUG();
177
}
178
179
/* Return the filenames encryption mode of a valid encryption policy */
180
static inline u8
181
fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
182
{
183
switch (policy->version) {
184
case FSCRYPT_POLICY_V1:
185
return policy->v1.filenames_encryption_mode;
186
case FSCRYPT_POLICY_V2:
187
return policy->v2.filenames_encryption_mode;
188
}
189
BUG();
190
}
191
192
/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
193
static inline u8
194
fscrypt_policy_flags(const union fscrypt_policy *policy)
195
{
196
switch (policy->version) {
197
case FSCRYPT_POLICY_V1:
198
return policy->v1.flags;
199
case FSCRYPT_POLICY_V2:
200
return policy->v2.flags;
201
}
202
BUG();
203
}
204
205
static inline int
206
fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
207
const struct inode *inode)
208
{
209
return policy->log2_data_unit_size ?: inode->i_blkbits;
210
}
211
212
static inline int
213
fscrypt_policy_du_bits(const union fscrypt_policy *policy,
214
const struct inode *inode)
215
{
216
switch (policy->version) {
217
case FSCRYPT_POLICY_V1:
218
return inode->i_blkbits;
219
case FSCRYPT_POLICY_V2:
220
return fscrypt_policy_v2_du_bits(&policy->v2, inode);
221
}
222
BUG();
223
}
224
225
/*
226
* For encrypted symlinks, the ciphertext length is stored at the beginning
227
* of the string in little-endian format.
228
*/
229
struct fscrypt_symlink_data {
230
__le16 len;
231
char encrypted_path[];
232
} __packed;
233
234
/**
235
* struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
236
* @tfm: crypto API transform object
237
* @blk_key: key for blk-crypto
238
*
239
* Normally only one of the fields will be non-NULL.
240
*/
241
struct fscrypt_prepared_key {
242
struct crypto_sync_skcipher *tfm;
243
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
244
struct blk_crypto_key *blk_key;
245
#endif
246
};
247
248
/*
249
* fscrypt_inode_info - the "encryption key" for an inode
250
*
251
* When an encrypted file's key is made available, an instance of this struct is
252
* allocated and a pointer to it is stored in the file's in-memory inode. Once
253
* created, it remains until the inode is evicted.
254
*/
255
struct fscrypt_inode_info {
256
257
/* The key in a form prepared for actual encryption/decryption */
258
struct fscrypt_prepared_key ci_enc_key;
259
260
/* True if ci_enc_key should be freed when this struct is freed */
261
u8 ci_owns_key : 1;
262
263
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
264
/*
265
* True if this inode will use inline encryption (blk-crypto) instead of
266
* the traditional filesystem-layer encryption.
267
*/
268
u8 ci_inlinecrypt : 1;
269
#endif
270
271
/* True if ci_dirhash_key is initialized */
272
u8 ci_dirhash_key_initialized : 1;
273
274
/*
275
* log2 of the data unit size (granularity of contents encryption) of
276
* this file. This is computable from ci_policy and ci_inode but is
277
* cached here for efficiency. Only used for regular files.
278
*/
279
u8 ci_data_unit_bits;
280
281
/* Cached value: log2 of number of data units per FS block */
282
u8 ci_data_units_per_block_bits;
283
284
/* Hashed inode number. Only set for IV_INO_LBLK_32 */
285
u32 ci_hashed_ino;
286
287
/*
288
* Encryption mode used for this inode. It corresponds to either the
289
* contents or filenames encryption mode, depending on the inode type.
290
*/
291
struct fscrypt_mode *ci_mode;
292
293
/* Back-pointer to the inode */
294
struct inode *ci_inode;
295
296
/*
297
* The master key with which this inode was unlocked (decrypted). This
298
* will be NULL if the master key was found in a process-subscribed
299
* keyring rather than in the filesystem-level keyring.
300
*/
301
struct fscrypt_master_key *ci_master_key;
302
303
/*
304
* Link in list of inodes that were unlocked with the master key.
305
* Only used when ->ci_master_key is set.
306
*/
307
struct list_head ci_master_key_link;
308
309
/*
310
* If non-NULL, then encryption is done using the master key directly
311
* and ci_enc_key will equal ci_direct_key->dk_key.
312
*/
313
struct fscrypt_direct_key *ci_direct_key;
314
315
/*
316
* This inode's hash key for filenames. This is a 128-bit SipHash-2-4
317
* key. This is only set for directories that use a keyed dirhash over
318
* the plaintext filenames -- currently just casefolded directories.
319
*/
320
siphash_key_t ci_dirhash_key;
321
322
/* The encryption policy used by this inode */
323
union fscrypt_policy ci_policy;
324
325
/* This inode's nonce, copied from the fscrypt_context */
326
u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
327
};
328
329
typedef enum {
330
FS_DECRYPT = 0,
331
FS_ENCRYPT,
332
} fscrypt_direction_t;
333
334
/* crypto.c */
335
extern struct kmem_cache *fscrypt_inode_info_cachep;
336
int fscrypt_initialize(struct super_block *sb);
337
int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
338
fscrypt_direction_t rw, u64 index,
339
struct page *src_page, struct page *dest_page,
340
unsigned int len, unsigned int offs);
341
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
342
343
void __printf(3, 4) __cold
344
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
345
346
#define fscrypt_warn(inode, fmt, ...) \
347
fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
348
#define fscrypt_err(inode, fmt, ...) \
349
fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
350
351
#define FSCRYPT_MAX_IV_SIZE 32
352
353
union fscrypt_iv {
354
struct {
355
/* zero-based index of data unit within the file */
356
__le64 index;
357
358
/* per-file nonce; only set in DIRECT_KEY mode */
359
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
360
};
361
u8 raw[FSCRYPT_MAX_IV_SIZE];
362
__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
363
};
364
365
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
366
const struct fscrypt_inode_info *ci);
367
368
/*
369
* Return the number of bits used by the maximum file data unit index that is
370
* possible on the given filesystem, using the given log2 data unit size.
371
*/
372
static inline int
373
fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
374
{
375
return fls64(sb->s_maxbytes - 1) - du_bits;
376
}
377
378
/* fname.c */
379
bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
380
u32 orig_len, u32 max_len,
381
u32 *encrypted_len_ret);
382
383
/* hkdf.c */
384
void fscrypt_init_hkdf(struct hmac_sha512_key *hkdf, const u8 *master_key,
385
unsigned int master_key_size);
386
387
/*
388
* The list of contexts in which fscrypt uses HKDF. These values are used as
389
* the first byte of the HKDF application-specific info string to guarantee that
390
* info strings are never repeated between contexts. This ensures that all HKDF
391
* outputs are unique and cryptographically isolated, i.e. knowledge of one
392
* output doesn't reveal another.
393
*/
394
#define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY 1 /* info=<empty> */
395
#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */
396
#define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */
397
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */
398
#define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */
399
#define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */
400
#define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */
401
#define HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY \
402
8 /* info=<empty> */
403
404
void fscrypt_hkdf_expand(const struct hmac_sha512_key *hkdf, u8 context,
405
const u8 *info, unsigned int infolen,
406
u8 *okm, unsigned int okmlen);
407
408
/* inline_crypt.c */
409
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
410
int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
411
bool is_hw_wrapped_key);
412
413
static inline bool
414
fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
415
{
416
return ci->ci_inlinecrypt;
417
}
418
419
int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
420
const u8 *key_bytes, size_t key_size,
421
bool is_hw_wrapped,
422
const struct fscrypt_inode_info *ci);
423
424
void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
425
struct fscrypt_prepared_key *prep_key);
426
427
int fscrypt_derive_sw_secret(struct super_block *sb,
428
const u8 *wrapped_key, size_t wrapped_key_size,
429
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
430
431
/*
432
* Check whether the crypto transform or blk-crypto key has been allocated in
433
* @prep_key, depending on which encryption implementation the file will use.
434
*/
435
static inline bool
436
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
437
const struct fscrypt_inode_info *ci)
438
{
439
/*
440
* The two smp_load_acquire()'s here pair with the smp_store_release()'s
441
* in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
442
* I.e., in some cases (namely, if this prep_key is a per-mode
443
* encryption key) another task can publish blk_key or tfm concurrently,
444
* executing a RELEASE barrier. We need to use smp_load_acquire() here
445
* to safely ACQUIRE the memory the other task published.
446
*/
447
if (fscrypt_using_inline_encryption(ci))
448
return smp_load_acquire(&prep_key->blk_key) != NULL;
449
return smp_load_acquire(&prep_key->tfm) != NULL;
450
}
451
452
#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
453
454
static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
455
bool is_hw_wrapped_key)
456
{
457
return 0;
458
}
459
460
static inline bool
461
fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
462
{
463
return false;
464
}
465
466
static inline int
467
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
468
const u8 *key_bytes, size_t key_size,
469
bool is_hw_wrapped,
470
const struct fscrypt_inode_info *ci)
471
{
472
WARN_ON_ONCE(1);
473
return -EOPNOTSUPP;
474
}
475
476
static inline void
477
fscrypt_destroy_inline_crypt_key(struct super_block *sb,
478
struct fscrypt_prepared_key *prep_key)
479
{
480
}
481
482
static inline int
483
fscrypt_derive_sw_secret(struct super_block *sb,
484
const u8 *wrapped_key, size_t wrapped_key_size,
485
u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
486
{
487
fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
488
return -EOPNOTSUPP;
489
}
490
491
static inline bool
492
fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
493
const struct fscrypt_inode_info *ci)
494
{
495
return smp_load_acquire(&prep_key->tfm) != NULL;
496
}
497
#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
498
499
/* keyring.c */
500
501
/*
502
* fscrypt_master_key_secret - secret key material of an in-use master key
503
*/
504
struct fscrypt_master_key_secret {
505
506
/*
507
* The KDF with which subkeys of this key can be derived.
508
*
509
* For v1 policy keys, this isn't applicable and won't be set.
510
* Otherwise, this KDF will be keyed by this master key if
511
* ->is_hw_wrapped=false, or by the "software secret" that hardware
512
* derived from this master key if ->is_hw_wrapped=true.
513
*/
514
struct hmac_sha512_key hkdf;
515
516
/*
517
* True if this key is a hardware-wrapped key; false if this key is a
518
* raw key (i.e. a "software key"). For v1 policy keys this will always
519
* be false, as v1 policy support is a legacy feature which doesn't
520
* support newer functionality such as hardware-wrapped keys.
521
*/
522
bool is_hw_wrapped;
523
524
/*
525
* Size of the key in bytes. This remains set even if ->bytes was
526
* zeroized due to no longer being needed. I.e. we still remember the
527
* size of the key even if we don't need to remember the key itself.
528
*/
529
u32 size;
530
531
/*
532
* The bytes of the key, when still needed. This can be either a raw
533
* key or a hardware-wrapped key, as indicated by ->is_hw_wrapped. In
534
* the case of a raw, v2 policy key, there is no need to remember the
535
* actual key separately from ->hkdf so this field will be zeroized as
536
* soon as ->hkdf is initialized.
537
*/
538
u8 bytes[FSCRYPT_MAX_ANY_KEY_SIZE];
539
540
} __randomize_layout;
541
542
/*
543
* fscrypt_master_key - an in-use master key
544
*
545
* This represents a master encryption key which has been added to the
546
* filesystem. There are three high-level states that a key can be in:
547
*
548
* FSCRYPT_KEY_STATUS_PRESENT
549
* Key is fully usable; it can be used to unlock inodes that are encrypted
550
* with it (this includes being able to create new inodes). ->mk_present
551
* indicates whether the key is in this state. ->mk_secret exists, the key
552
* is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
553
*
554
* FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
555
* Removal of this key has been initiated, but some inodes that were
556
* unlocked with it are still in-use. Like ABSENT, ->mk_secret is wiped,
557
* and the key can no longer be used to unlock inodes. Unlike ABSENT, the
558
* key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
559
* ->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
560
*
561
* This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
562
* or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
563
*
564
* FSCRYPT_KEY_STATUS_ABSENT
565
* Key is fully removed. The key is no longer in the keyring,
566
* ->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
567
* wiped, and the key can no longer be used to unlock inodes.
568
*/
569
struct fscrypt_master_key {
570
571
/*
572
* Link in ->s_master_keys->key_hashtable.
573
* Only valid if ->mk_active_refs > 0.
574
*/
575
struct hlist_node mk_node;
576
577
/* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
578
struct rw_semaphore mk_sem;
579
580
/*
581
* Active and structural reference counts. An active ref guarantees
582
* that the struct continues to exist, continues to be in the keyring
583
* ->s_master_keys, and that any embedded subkeys (e.g.
584
* ->mk_direct_keys) that have been prepared continue to exist.
585
* A structural ref only guarantees that the struct continues to exist.
586
*
587
* There is one active ref associated with ->mk_present being true, and
588
* one active ref for each inode in ->mk_decrypted_inodes.
589
*
590
* There is one structural ref associated with the active refcount being
591
* nonzero. Finding a key in the keyring also takes a structural ref,
592
* which is then held temporarily while the key is operated on.
593
*/
594
refcount_t mk_active_refs;
595
refcount_t mk_struct_refs;
596
597
struct rcu_head mk_rcu_head;
598
599
/*
600
* The secret key material. Wiped as soon as it is no longer needed;
601
* for details, see the fscrypt_master_key struct comment.
602
*
603
* Locking: protected by ->mk_sem.
604
*/
605
struct fscrypt_master_key_secret mk_secret;
606
607
/*
608
* For v1 policy keys: an arbitrary key descriptor which was assigned by
609
* userspace (->descriptor).
610
*
611
* For v2 policy keys: a cryptographic hash of this key (->identifier).
612
*/
613
struct fscrypt_key_specifier mk_spec;
614
615
/*
616
* Keyring which contains a key of type 'key_type_fscrypt_user' for each
617
* user who has added this key. Normally each key will be added by just
618
* one user, but it's possible that multiple users share a key, and in
619
* that case we need to keep track of those users so that one user can't
620
* remove the key before the others want it removed too.
621
*
622
* This is NULL for v1 policy keys; those can only be added by root.
623
*
624
* Locking: protected by ->mk_sem. (We don't just rely on the keyrings
625
* subsystem semaphore ->mk_users->sem, as we need support for atomic
626
* search+insert along with proper synchronization with other fields.)
627
*/
628
struct key *mk_users;
629
630
/*
631
* List of inodes that were unlocked using this key. This allows the
632
* inodes to be evicted efficiently if the key is removed.
633
*/
634
struct list_head mk_decrypted_inodes;
635
spinlock_t mk_decrypted_inodes_lock;
636
637
/*
638
* Per-mode encryption keys for the various types of encryption policies
639
* that use them. Allocated and derived on-demand.
640
*/
641
struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
642
struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
643
struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
644
645
/* Hash key for inode numbers. Initialized only when needed. */
646
siphash_key_t mk_ino_hash_key;
647
bool mk_ino_hash_key_initialized;
648
649
/*
650
* Whether this key is in the "present" state, i.e. fully usable. For
651
* details, see the fscrypt_master_key struct comment.
652
*
653
* Locking: protected by ->mk_sem, but can be read locklessly using
654
* READ_ONCE(). Writers must use WRITE_ONCE() when concurrent readers
655
* are possible.
656
*/
657
bool mk_present;
658
659
} __randomize_layout;
660
661
static inline const char *master_key_spec_type(
662
const struct fscrypt_key_specifier *spec)
663
{
664
switch (spec->type) {
665
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
666
return "descriptor";
667
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
668
return "identifier";
669
}
670
return "[unknown]";
671
}
672
673
static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
674
{
675
switch (spec->type) {
676
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
677
return FSCRYPT_KEY_DESCRIPTOR_SIZE;
678
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
679
return FSCRYPT_KEY_IDENTIFIER_SIZE;
680
}
681
return 0;
682
}
683
684
void fscrypt_put_master_key(struct fscrypt_master_key *mk);
685
686
void fscrypt_put_master_key_activeref(struct super_block *sb,
687
struct fscrypt_master_key *mk);
688
689
struct fscrypt_master_key *
690
fscrypt_find_master_key(struct super_block *sb,
691
const struct fscrypt_key_specifier *mk_spec);
692
693
void fscrypt_get_test_dummy_key_identifier(
694
u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
695
696
int fscrypt_add_test_dummy_key(struct super_block *sb,
697
struct fscrypt_key_specifier *key_spec);
698
699
int fscrypt_verify_key_added(struct super_block *sb,
700
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
701
702
int __init fscrypt_init_keyring(void);
703
704
/* keysetup.c */
705
706
struct fscrypt_mode {
707
const char *friendly_name;
708
const char *cipher_str;
709
int keysize; /* key size in bytes */
710
int security_strength; /* security strength in bytes */
711
int ivsize; /* IV size in bytes */
712
int logged_cryptoapi_impl;
713
int logged_blk_crypto_native;
714
int logged_blk_crypto_fallback;
715
enum blk_crypto_mode_num blk_crypto_mode;
716
};
717
718
extern struct fscrypt_mode fscrypt_modes[];
719
720
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
721
const u8 *raw_key, const struct fscrypt_inode_info *ci);
722
723
void fscrypt_destroy_prepared_key(struct super_block *sb,
724
struct fscrypt_prepared_key *prep_key);
725
726
int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
727
const u8 *raw_key);
728
729
void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
730
const struct fscrypt_master_key *mk);
731
732
void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
733
const struct fscrypt_master_key *mk);
734
735
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
736
737
/**
738
* fscrypt_require_key() - require an inode's encryption key
739
* @inode: the inode we need the key for
740
*
741
* If the inode is encrypted, set up its encryption key if not already done.
742
* Then require that the key be present and return -ENOKEY otherwise.
743
*
744
* No locks are needed, and the key will live as long as the struct inode --- so
745
* it won't go away from under you.
746
*
747
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
748
* if a problem occurred while setting up the encryption key.
749
*/
750
static inline int fscrypt_require_key(struct inode *inode)
751
{
752
if (IS_ENCRYPTED(inode)) {
753
int err = fscrypt_get_encryption_info(inode, false);
754
755
if (err)
756
return err;
757
if (!fscrypt_has_encryption_key(inode))
758
return -ENOKEY;
759
}
760
return 0;
761
}
762
763
/* keysetup_v1.c */
764
765
void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
766
767
int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
768
const u8 *raw_master_key);
769
770
int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
771
struct fscrypt_inode_info *ci);
772
773
/* policy.c */
774
775
bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
776
const union fscrypt_policy *policy2);
777
int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
778
struct fscrypt_key_specifier *key_spec);
779
const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
780
bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
781
const struct inode *inode);
782
int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
783
const union fscrypt_context *ctx_u,
784
int ctx_size);
785
const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
786
787
#endif /* _FSCRYPT_PRIVATE_H */
788
789