Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/crypto/keysetup.c
29269 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Key setup facility for FS encryption support.
4
*
5
* Copyright (C) 2015, Google, Inc.
6
*
7
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8
* Heavily modified since then.
9
*/
10
11
#include <crypto/skcipher.h>
12
#include <linux/export.h>
13
#include <linux/random.h>
14
15
#include "fscrypt_private.h"
16
17
struct fscrypt_mode fscrypt_modes[] = {
18
[FSCRYPT_MODE_AES_256_XTS] = {
19
.friendly_name = "AES-256-XTS",
20
.cipher_str = "xts(aes)",
21
.keysize = 64,
22
.security_strength = 32,
23
.ivsize = 16,
24
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
25
},
26
[FSCRYPT_MODE_AES_256_CTS] = {
27
.friendly_name = "AES-256-CBC-CTS",
28
.cipher_str = "cts(cbc(aes))",
29
.keysize = 32,
30
.security_strength = 32,
31
.ivsize = 16,
32
},
33
[FSCRYPT_MODE_AES_128_CBC] = {
34
.friendly_name = "AES-128-CBC-ESSIV",
35
.cipher_str = "essiv(cbc(aes),sha256)",
36
.keysize = 16,
37
.security_strength = 16,
38
.ivsize = 16,
39
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
40
},
41
[FSCRYPT_MODE_AES_128_CTS] = {
42
.friendly_name = "AES-128-CBC-CTS",
43
.cipher_str = "cts(cbc(aes))",
44
.keysize = 16,
45
.security_strength = 16,
46
.ivsize = 16,
47
},
48
[FSCRYPT_MODE_SM4_XTS] = {
49
.friendly_name = "SM4-XTS",
50
.cipher_str = "xts(sm4)",
51
.keysize = 32,
52
.security_strength = 16,
53
.ivsize = 16,
54
.blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS,
55
},
56
[FSCRYPT_MODE_SM4_CTS] = {
57
.friendly_name = "SM4-CBC-CTS",
58
.cipher_str = "cts(cbc(sm4))",
59
.keysize = 16,
60
.security_strength = 16,
61
.ivsize = 16,
62
},
63
[FSCRYPT_MODE_ADIANTUM] = {
64
.friendly_name = "Adiantum",
65
.cipher_str = "adiantum(xchacha12,aes)",
66
.keysize = 32,
67
.security_strength = 32,
68
.ivsize = 32,
69
.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
70
},
71
[FSCRYPT_MODE_AES_256_HCTR2] = {
72
.friendly_name = "AES-256-HCTR2",
73
.cipher_str = "hctr2(aes)",
74
.keysize = 32,
75
.security_strength = 32,
76
.ivsize = 32,
77
},
78
};
79
80
static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
81
82
static struct fscrypt_mode *
83
select_encryption_mode(const union fscrypt_policy *policy,
84
const struct inode *inode)
85
{
86
BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
87
88
if (S_ISREG(inode->i_mode))
89
return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
90
91
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
92
return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
93
94
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
95
inode->i_ino, (inode->i_mode & S_IFMT));
96
return ERR_PTR(-EINVAL);
97
}
98
99
/* Create a symmetric cipher object for the given encryption mode and key */
100
static struct crypto_sync_skcipher *
101
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
102
const struct inode *inode)
103
{
104
struct crypto_sync_skcipher *tfm;
105
int err;
106
107
tfm = crypto_alloc_sync_skcipher(mode->cipher_str, 0,
108
FSCRYPT_CRYPTOAPI_MASK);
109
if (IS_ERR(tfm)) {
110
if (PTR_ERR(tfm) == -ENOENT) {
111
fscrypt_warn(inode,
112
"Missing crypto API support for %s (API name: \"%s\")",
113
mode->friendly_name, mode->cipher_str);
114
return ERR_PTR(-ENOPKG);
115
}
116
fscrypt_err(inode, "Error allocating '%s' transform: %ld",
117
mode->cipher_str, PTR_ERR(tfm));
118
return tfm;
119
}
120
if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
121
/*
122
* fscrypt performance can vary greatly depending on which
123
* crypto algorithm implementation is used. Help people debug
124
* performance problems by logging the ->cra_driver_name the
125
* first time a mode is used.
126
*/
127
pr_info("fscrypt: %s using implementation \"%s\"\n",
128
mode->friendly_name,
129
crypto_skcipher_driver_name(&tfm->base));
130
}
131
if (WARN_ON_ONCE(crypto_sync_skcipher_ivsize(tfm) != mode->ivsize)) {
132
err = -EINVAL;
133
goto err_free_tfm;
134
}
135
crypto_sync_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
136
err = crypto_sync_skcipher_setkey(tfm, raw_key, mode->keysize);
137
if (err)
138
goto err_free_tfm;
139
140
return tfm;
141
142
err_free_tfm:
143
crypto_free_sync_skcipher(tfm);
144
return ERR_PTR(err);
145
}
146
147
/*
148
* Prepare the crypto transform object or blk-crypto key in @prep_key, given the
149
* raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
150
* implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
151
* and IV generation method (@ci->ci_policy.flags).
152
*/
153
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
154
const u8 *raw_key, const struct fscrypt_inode_info *ci)
155
{
156
struct crypto_sync_skcipher *tfm;
157
158
if (fscrypt_using_inline_encryption(ci))
159
return fscrypt_prepare_inline_crypt_key(prep_key, raw_key,
160
ci->ci_mode->keysize,
161
false, ci);
162
163
tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
164
if (IS_ERR(tfm))
165
return PTR_ERR(tfm);
166
/*
167
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
168
* I.e., here we publish ->tfm with a RELEASE barrier so that
169
* concurrent tasks can ACQUIRE it. Note that this concurrency is only
170
* possible for per-mode keys, not for per-file keys.
171
*/
172
smp_store_release(&prep_key->tfm, tfm);
173
return 0;
174
}
175
176
/* Destroy a crypto transform object and/or blk-crypto key. */
177
void fscrypt_destroy_prepared_key(struct super_block *sb,
178
struct fscrypt_prepared_key *prep_key)
179
{
180
crypto_free_sync_skcipher(prep_key->tfm);
181
fscrypt_destroy_inline_crypt_key(sb, prep_key);
182
memzero_explicit(prep_key, sizeof(*prep_key));
183
}
184
185
/* Given a per-file encryption key, set up the file's crypto transform object */
186
int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
187
const u8 *raw_key)
188
{
189
ci->ci_owns_key = true;
190
return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
191
}
192
193
static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci,
194
struct fscrypt_master_key *mk,
195
struct fscrypt_prepared_key *keys,
196
u8 hkdf_context, bool include_fs_uuid)
197
{
198
const struct inode *inode = ci->ci_inode;
199
const struct super_block *sb = inode->i_sb;
200
struct fscrypt_mode *mode = ci->ci_mode;
201
const u8 mode_num = mode - fscrypt_modes;
202
struct fscrypt_prepared_key *prep_key;
203
u8 mode_key[FSCRYPT_MAX_RAW_KEY_SIZE];
204
u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
205
unsigned int hkdf_infolen = 0;
206
bool use_hw_wrapped_key = false;
207
int err;
208
209
if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX))
210
return -EINVAL;
211
212
if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
213
/* Using a hardware-wrapped key for file contents encryption */
214
if (!fscrypt_using_inline_encryption(ci)) {
215
if (sb->s_flags & SB_INLINECRYPT)
216
fscrypt_warn(ci->ci_inode,
217
"Hardware-wrapped key required, but no suitable inline encryption capabilities are available");
218
else
219
fscrypt_warn(ci->ci_inode,
220
"Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
221
return -EINVAL;
222
}
223
use_hw_wrapped_key = true;
224
}
225
226
prep_key = &keys[mode_num];
227
if (fscrypt_is_key_prepared(prep_key, ci)) {
228
ci->ci_enc_key = *prep_key;
229
return 0;
230
}
231
232
mutex_lock(&fscrypt_mode_key_setup_mutex);
233
234
if (fscrypt_is_key_prepared(prep_key, ci))
235
goto done_unlock;
236
237
if (use_hw_wrapped_key) {
238
err = fscrypt_prepare_inline_crypt_key(prep_key,
239
mk->mk_secret.bytes,
240
mk->mk_secret.size, true,
241
ci);
242
if (err)
243
goto out_unlock;
244
goto done_unlock;
245
}
246
247
BUILD_BUG_ON(sizeof(mode_num) != 1);
248
BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
249
BUILD_BUG_ON(sizeof(hkdf_info) != 17);
250
hkdf_info[hkdf_infolen++] = mode_num;
251
if (include_fs_uuid) {
252
memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
253
sizeof(sb->s_uuid));
254
hkdf_infolen += sizeof(sb->s_uuid);
255
}
256
fscrypt_hkdf_expand(&mk->mk_secret.hkdf, hkdf_context, hkdf_info,
257
hkdf_infolen, mode_key, mode->keysize);
258
err = fscrypt_prepare_key(prep_key, mode_key, ci);
259
memzero_explicit(mode_key, mode->keysize);
260
if (err)
261
goto out_unlock;
262
done_unlock:
263
ci->ci_enc_key = *prep_key;
264
err = 0;
265
out_unlock:
266
mutex_unlock(&fscrypt_mode_key_setup_mutex);
267
return err;
268
}
269
270
/*
271
* Derive a SipHash key from the given fscrypt master key and the given
272
* application-specific information string.
273
*
274
* Note that the KDF produces a byte array, but the SipHash APIs expect the key
275
* as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
276
* endianness swap in order to get the same results as on little endian CPUs.
277
*/
278
static void fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
279
u8 context, const u8 *info,
280
unsigned int infolen, siphash_key_t *key)
281
{
282
fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
283
(u8 *)key, sizeof(*key));
284
BUILD_BUG_ON(sizeof(*key) != 16);
285
BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
286
le64_to_cpus(&key->key[0]);
287
le64_to_cpus(&key->key[1]);
288
}
289
290
void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
291
const struct fscrypt_master_key *mk)
292
{
293
fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
294
ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
295
&ci->ci_dirhash_key);
296
ci->ci_dirhash_key_initialized = true;
297
}
298
299
void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
300
const struct fscrypt_master_key *mk)
301
{
302
WARN_ON_ONCE(ci->ci_inode->i_ino == 0);
303
WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized);
304
305
ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
306
&mk->mk_ino_hash_key);
307
}
308
309
static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci,
310
struct fscrypt_master_key *mk)
311
{
312
int err;
313
314
err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
315
HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
316
if (err)
317
return err;
318
319
/* pairs with smp_store_release() below */
320
if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
321
322
mutex_lock(&fscrypt_mode_key_setup_mutex);
323
324
if (mk->mk_ino_hash_key_initialized)
325
goto unlock;
326
327
fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_INODE_HASH_KEY,
328
NULL, 0, &mk->mk_ino_hash_key);
329
/* pairs with smp_load_acquire() above */
330
smp_store_release(&mk->mk_ino_hash_key_initialized, true);
331
unlock:
332
mutex_unlock(&fscrypt_mode_key_setup_mutex);
333
}
334
335
/*
336
* New inodes may not have an inode number assigned yet.
337
* Hashing their inode number is delayed until later.
338
*/
339
if (ci->ci_inode->i_ino)
340
fscrypt_hash_inode_number(ci, mk);
341
return 0;
342
}
343
344
static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci,
345
struct fscrypt_master_key *mk,
346
bool need_dirhash_key)
347
{
348
int err;
349
350
if (mk->mk_secret.is_hw_wrapped &&
351
!(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
352
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
353
fscrypt_warn(ci->ci_inode,
354
"Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
355
return -EINVAL;
356
}
357
358
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
359
/*
360
* DIRECT_KEY: instead of deriving per-file encryption keys, the
361
* per-file nonce will be included in all the IVs. But unlike
362
* v1 policies, for v2 policies in this case we don't encrypt
363
* with the master key directly but rather derive a per-mode
364
* encryption key. This ensures that the master key is
365
* consistently used only for HKDF, avoiding key reuse issues.
366
*/
367
err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
368
HKDF_CONTEXT_DIRECT_KEY, false);
369
} else if (ci->ci_policy.v2.flags &
370
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
371
/*
372
* IV_INO_LBLK_64: encryption keys are derived from (master_key,
373
* mode_num, filesystem_uuid), and inode number is included in
374
* the IVs. This format is optimized for use with inline
375
* encryption hardware compliant with the UFS standard.
376
*/
377
err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
378
HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
379
true);
380
} else if (ci->ci_policy.v2.flags &
381
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
382
err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
383
} else {
384
u8 derived_key[FSCRYPT_MAX_RAW_KEY_SIZE];
385
386
fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
387
HKDF_CONTEXT_PER_FILE_ENC_KEY,
388
ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
389
derived_key, ci->ci_mode->keysize);
390
err = fscrypt_set_per_file_enc_key(ci, derived_key);
391
memzero_explicit(derived_key, ci->ci_mode->keysize);
392
}
393
if (err)
394
return err;
395
396
/* Derive a secret dirhash key for directories that need it. */
397
if (need_dirhash_key)
398
fscrypt_derive_dirhash_key(ci, mk);
399
400
return 0;
401
}
402
403
/*
404
* Check whether the size of the given master key (@mk) is appropriate for the
405
* encryption settings which a particular file will use (@ci).
406
*
407
* If the file uses a v1 encryption policy, then the master key must be at least
408
* as long as the derived key, as this is a requirement of the v1 KDF.
409
*
410
* Otherwise, the KDF can accept any size key, so we enforce a slightly looser
411
* requirement: we require that the size of the master key be at least the
412
* maximum security strength of any algorithm whose key will be derived from it
413
* (but in practice we only need to consider @ci->ci_mode, since any other
414
* possible subkeys such as DIRHASH and INODE_HASH will never increase the
415
* required key size over @ci->ci_mode). This allows AES-256-XTS keys to be
416
* derived from a 256-bit master key, which is cryptographically sufficient,
417
* rather than requiring a 512-bit master key which is unnecessarily long. (We
418
* still allow 512-bit master keys if the user chooses to use them, though.)
419
*/
420
static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
421
const struct fscrypt_inode_info *ci)
422
{
423
unsigned int min_keysize;
424
425
if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
426
min_keysize = ci->ci_mode->keysize;
427
else
428
min_keysize = ci->ci_mode->security_strength;
429
430
if (mk->mk_secret.size < min_keysize) {
431
fscrypt_warn(NULL,
432
"key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
433
master_key_spec_type(&mk->mk_spec),
434
master_key_spec_len(&mk->mk_spec),
435
(u8 *)&mk->mk_spec.u,
436
mk->mk_secret.size, min_keysize);
437
return false;
438
}
439
return true;
440
}
441
442
/*
443
* Find the master key, then set up the inode's actual encryption key.
444
*
445
* If the master key is found in the filesystem-level keyring, then it is
446
* returned in *mk_ret with its semaphore read-locked. This is needed to ensure
447
* that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes
448
* (as multiple tasks may race to create an fscrypt_inode_info for the same
449
* inode), and to synchronize the master key being removed with a new inode
450
* starting to use it.
451
*/
452
static int setup_file_encryption_key(struct fscrypt_inode_info *ci,
453
bool need_dirhash_key,
454
struct fscrypt_master_key **mk_ret)
455
{
456
struct super_block *sb = ci->ci_inode->i_sb;
457
struct fscrypt_key_specifier mk_spec;
458
struct fscrypt_master_key *mk;
459
int err;
460
461
err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
462
if (err)
463
return err;
464
465
mk = fscrypt_find_master_key(sb, &mk_spec);
466
if (unlikely(!mk)) {
467
const union fscrypt_policy *dummy_policy =
468
fscrypt_get_dummy_policy(sb);
469
470
/*
471
* Add the test_dummy_encryption key on-demand. In principle,
472
* it should be added at mount time. Do it here instead so that
473
* the individual filesystems don't need to worry about adding
474
* this key at mount time and cleaning up on mount failure.
475
*/
476
if (dummy_policy &&
477
fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) {
478
err = fscrypt_add_test_dummy_key(sb, &mk_spec);
479
if (err)
480
return err;
481
mk = fscrypt_find_master_key(sb, &mk_spec);
482
}
483
}
484
if (unlikely(!mk)) {
485
if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
486
return -ENOKEY;
487
488
err = fscrypt_select_encryption_impl(ci, false);
489
if (err)
490
return err;
491
492
/*
493
* As a legacy fallback for v1 policies, search for the key in
494
* the current task's subscribed keyrings too. Don't move this
495
* to before the search of ->s_master_keys, since users
496
* shouldn't be able to override filesystem-level keys.
497
*/
498
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
499
}
500
down_read(&mk->mk_sem);
501
502
if (!mk->mk_present) {
503
/* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */
504
err = -ENOKEY;
505
goto out_release_key;
506
}
507
508
if (!fscrypt_valid_master_key_size(mk, ci)) {
509
err = -ENOKEY;
510
goto out_release_key;
511
}
512
513
err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
514
if (err)
515
goto out_release_key;
516
517
switch (ci->ci_policy.version) {
518
case FSCRYPT_POLICY_V1:
519
if (WARN_ON_ONCE(mk->mk_secret.is_hw_wrapped)) {
520
/*
521
* This should never happen, as adding a v1 policy key
522
* that is hardware-wrapped isn't allowed.
523
*/
524
err = -EINVAL;
525
goto out_release_key;
526
}
527
err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.bytes);
528
break;
529
case FSCRYPT_POLICY_V2:
530
err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
531
break;
532
default:
533
WARN_ON_ONCE(1);
534
err = -EINVAL;
535
break;
536
}
537
if (err)
538
goto out_release_key;
539
540
*mk_ret = mk;
541
return 0;
542
543
out_release_key:
544
up_read(&mk->mk_sem);
545
fscrypt_put_master_key(mk);
546
return err;
547
}
548
549
static void put_crypt_info(struct fscrypt_inode_info *ci)
550
{
551
struct fscrypt_master_key *mk;
552
553
if (!ci)
554
return;
555
556
if (ci->ci_direct_key)
557
fscrypt_put_direct_key(ci->ci_direct_key);
558
else if (ci->ci_owns_key)
559
fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
560
&ci->ci_enc_key);
561
562
mk = ci->ci_master_key;
563
if (mk) {
564
/*
565
* Remove this inode from the list of inodes that were unlocked
566
* with the master key. In addition, if we're removing the last
567
* inode from an incompletely removed key, then complete the
568
* full removal of the key.
569
*/
570
spin_lock(&mk->mk_decrypted_inodes_lock);
571
list_del(&ci->ci_master_key_link);
572
spin_unlock(&mk->mk_decrypted_inodes_lock);
573
fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
574
}
575
memzero_explicit(ci, sizeof(*ci));
576
kmem_cache_free(fscrypt_inode_info_cachep, ci);
577
}
578
579
static int
580
fscrypt_setup_encryption_info(struct inode *inode,
581
const union fscrypt_policy *policy,
582
const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
583
bool need_dirhash_key)
584
{
585
struct fscrypt_inode_info *crypt_info;
586
struct fscrypt_mode *mode;
587
struct fscrypt_master_key *mk = NULL;
588
int res;
589
590
res = fscrypt_initialize(inode->i_sb);
591
if (res)
592
return res;
593
594
crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL);
595
if (!crypt_info)
596
return -ENOMEM;
597
598
crypt_info->ci_inode = inode;
599
crypt_info->ci_policy = *policy;
600
memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
601
602
mode = select_encryption_mode(&crypt_info->ci_policy, inode);
603
if (IS_ERR(mode)) {
604
res = PTR_ERR(mode);
605
goto out;
606
}
607
WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
608
crypt_info->ci_mode = mode;
609
610
crypt_info->ci_data_unit_bits =
611
fscrypt_policy_du_bits(&crypt_info->ci_policy, inode);
612
crypt_info->ci_data_units_per_block_bits =
613
inode->i_blkbits - crypt_info->ci_data_unit_bits;
614
615
res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
616
if (res)
617
goto out;
618
619
/*
620
* For existing inodes, multiple tasks may race to set the inode's
621
* fscrypt info pointer. So use cmpxchg_release(). This pairs with the
622
* smp_load_acquire() in fscrypt_get_inode_info(). I.e., publish the
623
* pointer with a RELEASE barrier so that other tasks can ACQUIRE it.
624
*/
625
if (cmpxchg_release(fscrypt_inode_info_addr(inode), NULL, crypt_info) ==
626
NULL) {
627
/*
628
* We won the race and set the inode's fscrypt info to our
629
* crypt_info. Now link it into the master key's inode list.
630
*/
631
if (mk) {
632
crypt_info->ci_master_key = mk;
633
refcount_inc(&mk->mk_active_refs);
634
spin_lock(&mk->mk_decrypted_inodes_lock);
635
list_add(&crypt_info->ci_master_key_link,
636
&mk->mk_decrypted_inodes);
637
spin_unlock(&mk->mk_decrypted_inodes_lock);
638
}
639
crypt_info = NULL;
640
}
641
res = 0;
642
out:
643
if (mk) {
644
up_read(&mk->mk_sem);
645
fscrypt_put_master_key(mk);
646
}
647
put_crypt_info(crypt_info);
648
return res;
649
}
650
651
/**
652
* fscrypt_get_encryption_info() - set up an inode's encryption key
653
* @inode: the inode to set up the key for. Must be encrypted.
654
* @allow_unsupported: if %true, treat an unsupported encryption policy (or
655
* unrecognized encryption context) the same way as the key
656
* being unavailable, instead of returning an error. Use
657
* %false unless the operation being performed is needed in
658
* order for files (or directories) to be deleted.
659
*
660
* Set up the inode's encryption key, if it hasn't already been done.
661
*
662
* Note: unless the key setup was already done, this isn't %GFP_NOFS-safe. So
663
* generally this shouldn't be called from within a filesystem transaction.
664
*
665
* Return: 0 if the key is now set up, *or* if it couldn't be set up because the
666
* needed master key is absent. (Use fscrypt_has_encryption_key() to
667
* distinguish these cases.) Also can return another -errno code.
668
*/
669
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
670
{
671
int res;
672
union fscrypt_context ctx;
673
union fscrypt_policy policy;
674
675
if (fscrypt_has_encryption_key(inode))
676
return 0;
677
678
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
679
if (res < 0) {
680
if (res == -ERANGE && allow_unsupported)
681
return 0;
682
fscrypt_warn(inode, "Error %d getting encryption context", res);
683
return res;
684
}
685
686
res = fscrypt_policy_from_context(&policy, &ctx, res);
687
if (res) {
688
if (allow_unsupported)
689
return 0;
690
fscrypt_warn(inode,
691
"Unrecognized or corrupt encryption context");
692
return res;
693
}
694
695
if (!fscrypt_supported_policy(&policy, inode)) {
696
if (allow_unsupported)
697
return 0;
698
return -EINVAL;
699
}
700
701
res = fscrypt_setup_encryption_info(inode, &policy,
702
fscrypt_context_nonce(&ctx),
703
IS_CASEFOLDED(inode) &&
704
S_ISDIR(inode->i_mode));
705
706
if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
707
res = 0;
708
if (res == -ENOKEY)
709
res = 0;
710
return res;
711
}
712
713
/**
714
* fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
715
* @dir: a possibly-encrypted directory
716
* @inode: the new inode. ->i_mode and ->i_blkbits must be set already.
717
* ->i_ino doesn't need to be set yet.
718
* @encrypt_ret: (output) set to %true if the new inode will be encrypted
719
*
720
* If the directory is encrypted, set up its encryption key in preparation for
721
* encrypting the name of the new file. Also, if the new inode will be
722
* encrypted, set up its encryption key too and set *encrypt_ret=true.
723
*
724
* This isn't %GFP_NOFS-safe, and therefore it should be called before starting
725
* any filesystem transaction to create the inode. For this reason, ->i_ino
726
* isn't required to be set yet, as the filesystem may not have set it yet.
727
*
728
* This doesn't persist the new inode's encryption context. That still needs to
729
* be done later by calling fscrypt_set_context().
730
*
731
* Return: 0 on success, -ENOKEY if a key needs to be set up for @dir or @inode
732
* but the needed master key is absent, or another -errno code
733
*/
734
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
735
bool *encrypt_ret)
736
{
737
const union fscrypt_policy *policy;
738
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
739
740
policy = fscrypt_policy_to_inherit(dir);
741
if (policy == NULL)
742
return 0;
743
if (IS_ERR(policy))
744
return PTR_ERR(policy);
745
746
if (WARN_ON_ONCE(inode->i_blkbits == 0))
747
return -EINVAL;
748
749
if (WARN_ON_ONCE(inode->i_mode == 0))
750
return -EINVAL;
751
752
/*
753
* Only regular files, directories, and symlinks are encrypted.
754
* Special files like device nodes and named pipes aren't.
755
*/
756
if (!S_ISREG(inode->i_mode) &&
757
!S_ISDIR(inode->i_mode) &&
758
!S_ISLNK(inode->i_mode))
759
return 0;
760
761
*encrypt_ret = true;
762
763
get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
764
return fscrypt_setup_encryption_info(inode, policy, nonce,
765
IS_CASEFOLDED(dir) &&
766
S_ISDIR(inode->i_mode));
767
}
768
EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
769
770
/**
771
* fscrypt_put_encryption_info() - free most of an inode's fscrypt data
772
* @inode: an inode being evicted
773
*
774
* Free the inode's fscrypt_inode_info. Filesystems must call this when the
775
* inode is being evicted. An RCU grace period need not have elapsed yet.
776
*/
777
void fscrypt_put_encryption_info(struct inode *inode)
778
{
779
/*
780
* Ideally we'd start with a lightweight IS_ENCRYPTED() check here
781
* before proceeding to retrieve and check the pointer. However, during
782
* inode creation, the fscrypt_inode_info is set before S_ENCRYPTED. If
783
* an error occurs, it needs to be cleaned up regardless.
784
*/
785
struct fscrypt_inode_info **ci_addr = fscrypt_inode_info_addr(inode);
786
787
put_crypt_info(*ci_addr);
788
*ci_addr = NULL;
789
}
790
EXPORT_SYMBOL(fscrypt_put_encryption_info);
791
792
/**
793
* fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
794
* @inode: an inode being freed
795
*
796
* Free the inode's cached decrypted symlink target, if any. Filesystems must
797
* call this after an RCU grace period, just before they free the inode.
798
*/
799
void fscrypt_free_inode(struct inode *inode)
800
{
801
if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
802
kfree(inode->i_link);
803
inode->i_link = NULL;
804
}
805
}
806
EXPORT_SYMBOL(fscrypt_free_inode);
807
808
/**
809
* fscrypt_drop_inode() - check whether the inode's master key has been removed
810
* @inode: an inode being considered for eviction
811
*
812
* Filesystems supporting fscrypt must call this from their ->drop_inode()
813
* method so that encrypted inodes are evicted as soon as they're no longer in
814
* use and their master key has been removed.
815
*
816
* Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
817
*/
818
int fscrypt_drop_inode(struct inode *inode)
819
{
820
const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode);
821
822
/*
823
* If ci is NULL, then the inode doesn't have an encryption key set up
824
* so it's irrelevant. If ci_master_key is NULL, then the master key
825
* was provided via the legacy mechanism of the process-subscribed
826
* keyrings, so we don't know whether it's been removed or not.
827
*/
828
if (!ci || !ci->ci_master_key)
829
return 0;
830
831
/*
832
* With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
833
* protected by the key were cleaned by sync_filesystem(). But if
834
* userspace is still using the files, inodes can be dirtied between
835
* then and now. We mustn't lose any writes, so skip dirty inodes here.
836
*/
837
if (inode->i_state & I_DIRTY_ALL)
838
return 0;
839
840
/*
841
* We can't take ->mk_sem here, since this runs in atomic context.
842
* Therefore, ->mk_present can change concurrently, and our result may
843
* immediately become outdated. But there's no correctness problem with
844
* unnecessarily evicting. Nor is there a correctness problem with not
845
* evicting while iput() is racing with the key being removed, since
846
* then the thread removing the key will either evict the inode itself
847
* or will correctly detect that it wasn't evicted due to the race.
848
*/
849
return !READ_ONCE(ci->ci_master_key->mk_present);
850
}
851
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
852
853