Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ecryptfs/main.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* eCryptfs: Linux filesystem encryption layer
4
*
5
* Copyright (C) 1997-2003 Erez Zadok
6
* Copyright (C) 2001-2003 Stony Brook University
7
* Copyright (C) 2004-2007 International Business Machines Corp.
8
* Author(s): Michael A. Halcrow <[email protected]>
9
* Michael C. Thompson <[email protected]>
10
* Tyler Hicks <[email protected]>
11
*/
12
13
#include <linux/dcache.h>
14
#include <linux/file.h>
15
#include <linux/module.h>
16
#include <linux/namei.h>
17
#include <linux/skbuff.h>
18
#include <linux/pagemap.h>
19
#include <linux/key.h>
20
#include <linux/fs_context.h>
21
#include <linux/fs_parser.h>
22
#include <linux/fs_stack.h>
23
#include <linux/sysfs.h>
24
#include <linux/slab.h>
25
#include <linux/magic.h>
26
#include "ecryptfs_kernel.h"
27
28
/*
29
* Module parameter that defines the ecryptfs_verbosity level.
30
*/
31
int ecryptfs_verbosity = 0;
32
33
module_param(ecryptfs_verbosity, int, 0);
34
MODULE_PARM_DESC(ecryptfs_verbosity,
35
"Initial verbosity level (0 or 1; defaults to "
36
"0, which is Quiet)");
37
38
/*
39
* Module parameter that defines the number of message buffer elements
40
*/
41
unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
42
43
module_param(ecryptfs_message_buf_len, uint, 0);
44
MODULE_PARM_DESC(ecryptfs_message_buf_len,
45
"Number of message buffer elements");
46
47
/*
48
* Module parameter that defines the maximum guaranteed amount of time to wait
49
* for a response from ecryptfsd. The actual sleep time will be, more than
50
* likely, a small amount greater than this specified value, but only less if
51
* the message successfully arrives.
52
*/
53
signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
54
55
module_param(ecryptfs_message_wait_timeout, long, 0);
56
MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
57
"Maximum number of seconds that an operation will "
58
"sleep while waiting for a message response from "
59
"userspace");
60
61
/*
62
* Module parameter that is an estimate of the maximum number of users
63
* that will be concurrently using eCryptfs. Set this to the right
64
* value to balance performance and memory use.
65
*/
66
unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
67
68
module_param(ecryptfs_number_of_users, uint, 0);
69
MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
70
"concurrent users of eCryptfs");
71
72
void __ecryptfs_printk(const char *fmt, ...)
73
{
74
va_list args;
75
va_start(args, fmt);
76
if (fmt[1] == '7') { /* KERN_DEBUG */
77
if (ecryptfs_verbosity >= 1)
78
vprintk(fmt, args);
79
} else
80
vprintk(fmt, args);
81
va_end(args);
82
}
83
84
/*
85
* ecryptfs_init_lower_file
86
* @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
87
* the lower dentry and the lower mount set
88
*
89
* eCryptfs only ever keeps a single open file for every lower
90
* inode. All I/O operations to the lower inode occur through that
91
* file. When the first eCryptfs dentry that interposes with the first
92
* lower dentry for that inode is created, this function creates the
93
* lower file struct and associates it with the eCryptfs
94
* inode. When all eCryptfs files associated with the inode are released, the
95
* file is closed.
96
*
97
* The lower file will be opened with read/write permissions, if
98
* possible. Otherwise, it is opened read-only.
99
*
100
* This function does nothing if a lower file is already
101
* associated with the eCryptfs inode.
102
*
103
* Returns zero on success; non-zero otherwise
104
*/
105
static int ecryptfs_init_lower_file(struct dentry *dentry,
106
struct file **lower_file)
107
{
108
const struct cred *cred = current_cred();
109
struct path path = ecryptfs_lower_path(dentry);
110
int rc;
111
112
rc = ecryptfs_privileged_open(lower_file, path.dentry, path.mnt, cred);
113
if (rc) {
114
printk(KERN_ERR "Error opening lower file "
115
"for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116
"rc = [%d]\n", path.dentry, path.mnt, rc);
117
(*lower_file) = NULL;
118
}
119
return rc;
120
}
121
122
int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123
{
124
struct ecryptfs_inode_info *inode_info;
125
int count, rc = 0;
126
127
inode_info = ecryptfs_inode_to_private(inode);
128
mutex_lock(&inode_info->lower_file_mutex);
129
count = atomic_inc_return(&inode_info->lower_file_count);
130
if (WARN_ON_ONCE(count < 1))
131
rc = -EINVAL;
132
else if (count == 1) {
133
rc = ecryptfs_init_lower_file(dentry,
134
&inode_info->lower_file);
135
if (rc)
136
atomic_set(&inode_info->lower_file_count, 0);
137
}
138
mutex_unlock(&inode_info->lower_file_mutex);
139
return rc;
140
}
141
142
void ecryptfs_put_lower_file(struct inode *inode)
143
{
144
struct ecryptfs_inode_info *inode_info;
145
146
inode_info = ecryptfs_inode_to_private(inode);
147
if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148
&inode_info->lower_file_mutex)) {
149
filemap_write_and_wait(inode->i_mapping);
150
fput(inode_info->lower_file);
151
inode_info->lower_file = NULL;
152
mutex_unlock(&inode_info->lower_file_mutex);
153
}
154
}
155
156
enum {
157
Opt_sig, Opt_ecryptfs_sig, Opt_cipher, Opt_ecryptfs_cipher,
158
Opt_ecryptfs_key_bytes, Opt_passthrough, Opt_xattr_metadata,
159
Opt_encrypted_view, Opt_fnek_sig, Opt_fn_cipher,
160
Opt_fn_cipher_key_bytes, Opt_unlink_sigs, Opt_mount_auth_tok_only,
161
Opt_check_dev_ruid
162
};
163
164
static const struct fs_parameter_spec ecryptfs_fs_param_spec[] = {
165
fsparam_string ("sig", Opt_sig),
166
fsparam_string ("ecryptfs_sig", Opt_ecryptfs_sig),
167
fsparam_string ("cipher", Opt_cipher),
168
fsparam_string ("ecryptfs_cipher", Opt_ecryptfs_cipher),
169
fsparam_u32 ("ecryptfs_key_bytes", Opt_ecryptfs_key_bytes),
170
fsparam_flag ("ecryptfs_passthrough", Opt_passthrough),
171
fsparam_flag ("ecryptfs_xattr_metadata", Opt_xattr_metadata),
172
fsparam_flag ("ecryptfs_encrypted_view", Opt_encrypted_view),
173
fsparam_string ("ecryptfs_fnek_sig", Opt_fnek_sig),
174
fsparam_string ("ecryptfs_fn_cipher", Opt_fn_cipher),
175
fsparam_u32 ("ecryptfs_fn_key_bytes", Opt_fn_cipher_key_bytes),
176
fsparam_flag ("ecryptfs_unlink_sigs", Opt_unlink_sigs),
177
fsparam_flag ("ecryptfs_mount_auth_tok_only", Opt_mount_auth_tok_only),
178
fsparam_flag ("ecryptfs_check_dev_ruid", Opt_check_dev_ruid),
179
{}
180
};
181
182
static int ecryptfs_init_global_auth_toks(
183
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
184
{
185
struct ecryptfs_global_auth_tok *global_auth_tok;
186
struct ecryptfs_auth_tok *auth_tok;
187
int rc = 0;
188
189
list_for_each_entry(global_auth_tok,
190
&mount_crypt_stat->global_auth_tok_list,
191
mount_crypt_stat_list) {
192
rc = ecryptfs_keyring_auth_tok_for_sig(
193
&global_auth_tok->global_auth_tok_key, &auth_tok,
194
global_auth_tok->sig);
195
if (rc) {
196
printk(KERN_ERR "Could not find valid key in user "
197
"session keyring for sig specified in mount "
198
"option: [%s]\n", global_auth_tok->sig);
199
global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
200
goto out;
201
} else {
202
global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
203
up_write(&(global_auth_tok->global_auth_tok_key)->sem);
204
}
205
}
206
out:
207
return rc;
208
}
209
210
static void ecryptfs_init_mount_crypt_stat(
211
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
212
{
213
memset((void *)mount_crypt_stat, 0,
214
sizeof(struct ecryptfs_mount_crypt_stat));
215
INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
216
mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
217
mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
218
}
219
220
struct ecryptfs_fs_context {
221
/* Mount option status trackers */
222
bool check_ruid;
223
bool sig_set;
224
bool cipher_name_set;
225
bool cipher_key_bytes_set;
226
bool fn_cipher_name_set;
227
bool fn_cipher_key_bytes_set;
228
};
229
230
/**
231
* ecryptfs_parse_param
232
* @fc: The ecryptfs filesystem context
233
* @param: The mount parameter to parse
234
*
235
* The signature of the key to use must be the description of a key
236
* already in the keyring. Mounting will fail if the key can not be
237
* found.
238
*
239
* Returns zero on success; non-zero on error
240
*/
241
static int ecryptfs_parse_param(
242
struct fs_context *fc,
243
struct fs_parameter *param)
244
{
245
int rc;
246
int opt;
247
struct fs_parse_result result;
248
struct ecryptfs_fs_context *ctx = fc->fs_private;
249
struct ecryptfs_sb_info *sbi = fc->s_fs_info;
250
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
251
&sbi->mount_crypt_stat;
252
253
opt = fs_parse(fc, ecryptfs_fs_param_spec, param, &result);
254
if (opt < 0)
255
return opt;
256
257
switch (opt) {
258
case Opt_sig:
259
case Opt_ecryptfs_sig:
260
rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
261
param->string, 0);
262
if (rc) {
263
printk(KERN_ERR "Error attempting to register "
264
"global sig; rc = [%d]\n", rc);
265
return rc;
266
}
267
ctx->sig_set = 1;
268
break;
269
case Opt_cipher:
270
case Opt_ecryptfs_cipher:
271
strscpy(mount_crypt_stat->global_default_cipher_name,
272
param->string);
273
ctx->cipher_name_set = 1;
274
break;
275
case Opt_ecryptfs_key_bytes:
276
mount_crypt_stat->global_default_cipher_key_size =
277
result.uint_32;
278
ctx->cipher_key_bytes_set = 1;
279
break;
280
case Opt_passthrough:
281
mount_crypt_stat->flags |=
282
ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
283
break;
284
case Opt_xattr_metadata:
285
mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
286
break;
287
case Opt_encrypted_view:
288
mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
289
mount_crypt_stat->flags |= ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
290
break;
291
case Opt_fnek_sig:
292
strscpy(mount_crypt_stat->global_default_fnek_sig,
293
param->string);
294
rc = ecryptfs_add_global_auth_tok(
295
mount_crypt_stat,
296
mount_crypt_stat->global_default_fnek_sig,
297
ECRYPTFS_AUTH_TOK_FNEK);
298
if (rc) {
299
printk(KERN_ERR "Error attempting to register "
300
"global fnek sig [%s]; rc = [%d]\n",
301
mount_crypt_stat->global_default_fnek_sig, rc);
302
return rc;
303
}
304
mount_crypt_stat->flags |=
305
(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
306
| ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
307
break;
308
case Opt_fn_cipher:
309
strscpy(mount_crypt_stat->global_default_fn_cipher_name,
310
param->string);
311
ctx->fn_cipher_name_set = 1;
312
break;
313
case Opt_fn_cipher_key_bytes:
314
mount_crypt_stat->global_default_fn_cipher_key_bytes =
315
result.uint_32;
316
ctx->fn_cipher_key_bytes_set = 1;
317
break;
318
case Opt_unlink_sigs:
319
mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
320
break;
321
case Opt_mount_auth_tok_only:
322
mount_crypt_stat->flags |= ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
323
break;
324
case Opt_check_dev_ruid:
325
ctx->check_ruid = 1;
326
break;
327
default:
328
return -EINVAL;
329
}
330
331
return 0;
332
}
333
334
static int ecryptfs_validate_options(struct fs_context *fc)
335
{
336
int rc = 0;
337
u8 cipher_code;
338
struct ecryptfs_fs_context *ctx = fc->fs_private;
339
struct ecryptfs_sb_info *sbi = fc->s_fs_info;
340
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
341
342
343
mount_crypt_stat = &sbi->mount_crypt_stat;
344
345
if (!ctx->sig_set) {
346
rc = -EINVAL;
347
ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
348
"auth tok signature as a mount "
349
"parameter; see the eCryptfs README\n");
350
goto out;
351
}
352
if (!ctx->cipher_name_set) {
353
int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
354
355
BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
356
strcpy(mount_crypt_stat->global_default_cipher_name,
357
ECRYPTFS_DEFAULT_CIPHER);
358
}
359
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
360
&& !ctx->fn_cipher_name_set)
361
strcpy(mount_crypt_stat->global_default_fn_cipher_name,
362
mount_crypt_stat->global_default_cipher_name);
363
if (!ctx->cipher_key_bytes_set)
364
mount_crypt_stat->global_default_cipher_key_size = 0;
365
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
366
&& !ctx->fn_cipher_key_bytes_set)
367
mount_crypt_stat->global_default_fn_cipher_key_bytes =
368
mount_crypt_stat->global_default_cipher_key_size;
369
370
cipher_code = ecryptfs_code_for_cipher_string(
371
mount_crypt_stat->global_default_cipher_name,
372
mount_crypt_stat->global_default_cipher_key_size);
373
if (!cipher_code) {
374
ecryptfs_printk(KERN_ERR,
375
"eCryptfs doesn't support cipher: %s\n",
376
mount_crypt_stat->global_default_cipher_name);
377
rc = -EINVAL;
378
goto out;
379
}
380
381
mutex_lock(&key_tfm_list_mutex);
382
if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
383
NULL)) {
384
rc = ecryptfs_add_new_key_tfm(
385
NULL, mount_crypt_stat->global_default_cipher_name,
386
mount_crypt_stat->global_default_cipher_key_size);
387
if (rc) {
388
printk(KERN_ERR "Error attempting to initialize "
389
"cipher with name = [%s] and key size = [%td]; "
390
"rc = [%d]\n",
391
mount_crypt_stat->global_default_cipher_name,
392
mount_crypt_stat->global_default_cipher_key_size,
393
rc);
394
rc = -EINVAL;
395
mutex_unlock(&key_tfm_list_mutex);
396
goto out;
397
}
398
}
399
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
400
&& !ecryptfs_tfm_exists(
401
mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
402
rc = ecryptfs_add_new_key_tfm(
403
NULL, mount_crypt_stat->global_default_fn_cipher_name,
404
mount_crypt_stat->global_default_fn_cipher_key_bytes);
405
if (rc) {
406
printk(KERN_ERR "Error attempting to initialize "
407
"cipher with name = [%s] and key size = [%td]; "
408
"rc = [%d]\n",
409
mount_crypt_stat->global_default_fn_cipher_name,
410
mount_crypt_stat->global_default_fn_cipher_key_bytes,
411
rc);
412
rc = -EINVAL;
413
mutex_unlock(&key_tfm_list_mutex);
414
goto out;
415
}
416
}
417
mutex_unlock(&key_tfm_list_mutex);
418
rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
419
if (rc)
420
printk(KERN_WARNING "One or more global auth toks could not "
421
"properly register; rc = [%d]\n", rc);
422
out:
423
return rc;
424
}
425
426
struct kmem_cache *ecryptfs_sb_info_cache;
427
static struct file_system_type ecryptfs_fs_type;
428
429
/*
430
* ecryptfs_get_tree
431
* @fc: The filesystem context
432
*/
433
static int ecryptfs_get_tree(struct fs_context *fc)
434
{
435
struct super_block *s;
436
struct ecryptfs_fs_context *ctx = fc->fs_private;
437
struct ecryptfs_sb_info *sbi = fc->s_fs_info;
438
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
439
const char *err = "Getting sb failed";
440
struct inode *inode;
441
struct path path;
442
int rc;
443
444
if (!fc->source) {
445
rc = -EINVAL;
446
err = "Device name cannot be null";
447
goto out;
448
}
449
450
mount_crypt_stat = &sbi->mount_crypt_stat;
451
rc = ecryptfs_validate_options(fc);
452
if (rc) {
453
err = "Error validating options";
454
goto out;
455
}
456
457
s = sget_fc(fc, NULL, set_anon_super_fc);
458
if (IS_ERR(s)) {
459
rc = PTR_ERR(s);
460
goto out;
461
}
462
463
rc = super_setup_bdi(s);
464
if (rc)
465
goto out1;
466
467
ecryptfs_set_superblock_private(s, sbi);
468
469
/* ->kill_sb() will take care of sbi after that point */
470
sbi = NULL;
471
s->s_op = &ecryptfs_sops;
472
s->s_xattr = ecryptfs_xattr_handlers;
473
set_default_d_op(s, &ecryptfs_dops);
474
475
err = "Reading sb failed";
476
rc = kern_path(fc->source, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
477
if (rc) {
478
ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
479
goto out1;
480
}
481
if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
482
rc = -EINVAL;
483
printk(KERN_ERR "Mount on filesystem of type "
484
"eCryptfs explicitly disallowed due to "
485
"known incompatibilities\n");
486
goto out_free;
487
}
488
489
if (is_idmapped_mnt(path.mnt)) {
490
rc = -EINVAL;
491
printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
492
goto out_free;
493
}
494
495
if (ctx->check_ruid &&
496
!uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
497
rc = -EPERM;
498
printk(KERN_ERR "Mount of device (uid: %d) not owned by "
499
"requested user (uid: %d)\n",
500
i_uid_read(d_inode(path.dentry)),
501
from_kuid(&init_user_ns, current_uid()));
502
goto out_free;
503
}
504
505
ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
506
507
/**
508
* Set the POSIX ACL flag based on whether they're enabled in the lower
509
* mount.
510
*/
511
s->s_flags = fc->sb_flags & ~SB_POSIXACL;
512
s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
513
514
/**
515
* Force a read-only eCryptfs mount when:
516
* 1) The lower mount is ro
517
* 2) The ecryptfs_encrypted_view mount option is specified
518
*/
519
if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
520
s->s_flags |= SB_RDONLY;
521
522
s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
523
s->s_blocksize = path.dentry->d_sb->s_blocksize;
524
s->s_magic = ECRYPTFS_SUPER_MAGIC;
525
s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
526
527
rc = -EINVAL;
528
if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
529
pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
530
goto out_free;
531
}
532
533
inode = ecryptfs_get_inode(d_inode(path.dentry), s);
534
rc = PTR_ERR(inode);
535
if (IS_ERR(inode))
536
goto out_free;
537
538
s->s_root = d_make_root(inode);
539
if (!s->s_root) {
540
rc = -ENOMEM;
541
goto out_free;
542
}
543
544
ecryptfs_set_dentry_lower(s->s_root, path.dentry);
545
ecryptfs_superblock_to_private(s)->lower_mnt = path.mnt;
546
547
s->s_flags |= SB_ACTIVE;
548
fc->root = dget(s->s_root);
549
return 0;
550
551
out_free:
552
path_put(&path);
553
out1:
554
deactivate_locked_super(s);
555
out:
556
if (sbi)
557
ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
558
559
printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
560
return rc;
561
}
562
563
/**
564
* ecryptfs_kill_block_super
565
* @sb: The ecryptfs super block
566
*
567
* Used to bring the superblock down and free the private data.
568
*/
569
static void ecryptfs_kill_block_super(struct super_block *sb)
570
{
571
struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
572
kill_anon_super(sb);
573
if (!sb_info)
574
return;
575
mntput(sb_info->lower_mnt);
576
ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
577
kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
578
}
579
580
static void ecryptfs_free_fc(struct fs_context *fc)
581
{
582
struct ecryptfs_fs_context *ctx = fc->fs_private;
583
struct ecryptfs_sb_info *sbi = fc->s_fs_info;
584
585
kfree(ctx);
586
587
if (sbi) {
588
ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
589
kmem_cache_free(ecryptfs_sb_info_cache, sbi);
590
}
591
}
592
593
static const struct fs_context_operations ecryptfs_context_ops = {
594
.free = ecryptfs_free_fc,
595
.parse_param = ecryptfs_parse_param,
596
.get_tree = ecryptfs_get_tree,
597
.reconfigure = NULL,
598
};
599
600
static int ecryptfs_init_fs_context(struct fs_context *fc)
601
{
602
struct ecryptfs_fs_context *ctx;
603
struct ecryptfs_sb_info *sbi = NULL;
604
605
ctx = kzalloc(sizeof(struct ecryptfs_fs_context), GFP_KERNEL);
606
if (!ctx)
607
return -ENOMEM;
608
sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
609
if (!sbi) {
610
kfree(ctx);
611
ctx = NULL;
612
return -ENOMEM;
613
}
614
615
ecryptfs_init_mount_crypt_stat(&sbi->mount_crypt_stat);
616
617
fc->fs_private = ctx;
618
fc->s_fs_info = sbi;
619
fc->ops = &ecryptfs_context_ops;
620
return 0;
621
}
622
623
static struct file_system_type ecryptfs_fs_type = {
624
.owner = THIS_MODULE,
625
.name = "ecryptfs",
626
.init_fs_context = ecryptfs_init_fs_context,
627
.parameters = ecryptfs_fs_param_spec,
628
.kill_sb = ecryptfs_kill_block_super,
629
.fs_flags = 0
630
};
631
MODULE_ALIAS_FS("ecryptfs");
632
633
/*
634
* inode_info_init_once
635
*
636
* Initializes the ecryptfs_inode_info_cache when it is created
637
*/
638
static void
639
inode_info_init_once(void *vptr)
640
{
641
struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
642
643
inode_init_once(&ei->vfs_inode);
644
}
645
646
static struct ecryptfs_cache_info {
647
struct kmem_cache **cache;
648
const char *name;
649
size_t size;
650
slab_flags_t flags;
651
void (*ctor)(void *obj);
652
} ecryptfs_cache_infos[] = {
653
{
654
.cache = &ecryptfs_auth_tok_list_item_cache,
655
.name = "ecryptfs_auth_tok_list_item",
656
.size = sizeof(struct ecryptfs_auth_tok_list_item),
657
},
658
{
659
.cache = &ecryptfs_file_info_cache,
660
.name = "ecryptfs_file_cache",
661
.size = sizeof(struct ecryptfs_file_info),
662
},
663
{
664
.cache = &ecryptfs_inode_info_cache,
665
.name = "ecryptfs_inode_cache",
666
.size = sizeof(struct ecryptfs_inode_info),
667
.flags = SLAB_ACCOUNT,
668
.ctor = inode_info_init_once,
669
},
670
{
671
.cache = &ecryptfs_sb_info_cache,
672
.name = "ecryptfs_sb_cache",
673
.size = sizeof(struct ecryptfs_sb_info),
674
},
675
{
676
.cache = &ecryptfs_header_cache,
677
.name = "ecryptfs_headers",
678
.size = PAGE_SIZE,
679
},
680
{
681
.cache = &ecryptfs_xattr_cache,
682
.name = "ecryptfs_xattr_cache",
683
.size = PAGE_SIZE,
684
},
685
{
686
.cache = &ecryptfs_key_record_cache,
687
.name = "ecryptfs_key_record_cache",
688
.size = sizeof(struct ecryptfs_key_record),
689
},
690
{
691
.cache = &ecryptfs_key_sig_cache,
692
.name = "ecryptfs_key_sig_cache",
693
.size = sizeof(struct ecryptfs_key_sig),
694
},
695
{
696
.cache = &ecryptfs_global_auth_tok_cache,
697
.name = "ecryptfs_global_auth_tok_cache",
698
.size = sizeof(struct ecryptfs_global_auth_tok),
699
},
700
{
701
.cache = &ecryptfs_key_tfm_cache,
702
.name = "ecryptfs_key_tfm_cache",
703
.size = sizeof(struct ecryptfs_key_tfm),
704
},
705
};
706
707
static void ecryptfs_free_kmem_caches(void)
708
{
709
int i;
710
711
/*
712
* Make sure all delayed rcu free inodes are flushed before we
713
* destroy cache.
714
*/
715
rcu_barrier();
716
717
for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
718
struct ecryptfs_cache_info *info;
719
720
info = &ecryptfs_cache_infos[i];
721
kmem_cache_destroy(*(info->cache));
722
}
723
}
724
725
/**
726
* ecryptfs_init_kmem_caches
727
*
728
* Returns zero on success; non-zero otherwise
729
*/
730
static int ecryptfs_init_kmem_caches(void)
731
{
732
int i;
733
734
for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
735
struct ecryptfs_cache_info *info;
736
737
info = &ecryptfs_cache_infos[i];
738
*(info->cache) = kmem_cache_create(info->name, info->size, 0,
739
SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
740
if (!*(info->cache)) {
741
ecryptfs_free_kmem_caches();
742
ecryptfs_printk(KERN_WARNING, "%s: "
743
"kmem_cache_create failed\n",
744
info->name);
745
return -ENOMEM;
746
}
747
}
748
return 0;
749
}
750
751
static struct kobject *ecryptfs_kobj;
752
753
static ssize_t version_show(struct kobject *kobj,
754
struct kobj_attribute *attr, char *buff)
755
{
756
return sysfs_emit(buff, "%d\n", ECRYPTFS_VERSIONING_MASK);
757
}
758
759
static struct kobj_attribute version_attr = __ATTR_RO(version);
760
761
static struct attribute *attributes[] = {
762
&version_attr.attr,
763
NULL,
764
};
765
766
static const struct attribute_group attr_group = {
767
.attrs = attributes,
768
};
769
770
static int do_sysfs_registration(void)
771
{
772
int rc;
773
774
ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
775
if (!ecryptfs_kobj) {
776
printk(KERN_ERR "Unable to create ecryptfs kset\n");
777
rc = -ENOMEM;
778
goto out;
779
}
780
rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
781
if (rc) {
782
printk(KERN_ERR
783
"Unable to create ecryptfs version attributes\n");
784
kobject_put(ecryptfs_kobj);
785
}
786
out:
787
return rc;
788
}
789
790
static void do_sysfs_unregistration(void)
791
{
792
sysfs_remove_group(ecryptfs_kobj, &attr_group);
793
kobject_put(ecryptfs_kobj);
794
}
795
796
static int __init ecryptfs_init(void)
797
{
798
int rc;
799
800
if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
801
rc = -EINVAL;
802
ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
803
"larger than the host's page size, and so "
804
"eCryptfs cannot run on this system. The "
805
"default eCryptfs extent size is [%u] bytes; "
806
"the page size is [%lu] bytes.\n",
807
ECRYPTFS_DEFAULT_EXTENT_SIZE,
808
(unsigned long)PAGE_SIZE);
809
goto out;
810
}
811
rc = ecryptfs_init_kmem_caches();
812
if (rc) {
813
printk(KERN_ERR
814
"Failed to allocate one or more kmem_cache objects\n");
815
goto out;
816
}
817
rc = do_sysfs_registration();
818
if (rc) {
819
printk(KERN_ERR "sysfs registration failed\n");
820
goto out_free_kmem_caches;
821
}
822
rc = ecryptfs_init_kthread();
823
if (rc) {
824
printk(KERN_ERR "%s: kthread initialization failed; "
825
"rc = [%d]\n", __func__, rc);
826
goto out_do_sysfs_unregistration;
827
}
828
rc = ecryptfs_init_messaging();
829
if (rc) {
830
printk(KERN_ERR "Failure occurred while attempting to "
831
"initialize the communications channel to "
832
"ecryptfsd\n");
833
goto out_destroy_kthread;
834
}
835
rc = ecryptfs_init_crypto();
836
if (rc) {
837
printk(KERN_ERR "Failure whilst attempting to init crypto; "
838
"rc = [%d]\n", rc);
839
goto out_release_messaging;
840
}
841
rc = register_filesystem(&ecryptfs_fs_type);
842
if (rc) {
843
printk(KERN_ERR "Failed to register filesystem\n");
844
goto out_destroy_crypto;
845
}
846
if (ecryptfs_verbosity > 0)
847
printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
848
"will be written to the syslog!\n", ecryptfs_verbosity);
849
850
goto out;
851
out_destroy_crypto:
852
ecryptfs_destroy_crypto();
853
out_release_messaging:
854
ecryptfs_release_messaging();
855
out_destroy_kthread:
856
ecryptfs_destroy_kthread();
857
out_do_sysfs_unregistration:
858
do_sysfs_unregistration();
859
out_free_kmem_caches:
860
ecryptfs_free_kmem_caches();
861
out:
862
return rc;
863
}
864
865
static void __exit ecryptfs_exit(void)
866
{
867
int rc;
868
869
rc = ecryptfs_destroy_crypto();
870
if (rc)
871
printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
872
"rc = [%d]\n", rc);
873
ecryptfs_release_messaging();
874
ecryptfs_destroy_kthread();
875
do_sysfs_unregistration();
876
unregister_filesystem(&ecryptfs_fs_type);
877
ecryptfs_free_kmem_caches();
878
}
879
880
MODULE_AUTHOR("Michael A. Halcrow <[email protected]>");
881
MODULE_DESCRIPTION("eCryptfs");
882
883
MODULE_LICENSE("GPL");
884
885
module_init(ecryptfs_init)
886
module_exit(ecryptfs_exit)
887
888