Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ext2/inode.c
29267 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* linux/fs/ext2/inode.c
4
*
5
* Copyright (C) 1992, 1993, 1994, 1995
6
* Remy Card ([email protected])
7
* Laboratoire MASI - Institut Blaise Pascal
8
* Universite Pierre et Marie Curie (Paris VI)
9
*
10
* from
11
*
12
* linux/fs/minix/inode.c
13
*
14
* Copyright (C) 1991, 1992 Linus Torvalds
15
*
16
* Goal-directed block allocation by Stephen Tweedie
17
* ([email protected]), 1993, 1998
18
* Big-endian to little-endian byte-swapping/bitmaps by
19
* David S. Miller ([email protected]), 1995
20
* 64-bit file support on 64-bit platforms by Jakub Jelinek
21
* ([email protected])
22
*
23
* Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24
*/
25
26
#include <linux/time.h>
27
#include <linux/highuid.h>
28
#include <linux/pagemap.h>
29
#include <linux/dax.h>
30
#include <linux/blkdev.h>
31
#include <linux/quotaops.h>
32
#include <linux/writeback.h>
33
#include <linux/buffer_head.h>
34
#include <linux/mpage.h>
35
#include <linux/fiemap.h>
36
#include <linux/iomap.h>
37
#include <linux/namei.h>
38
#include <linux/uio.h>
39
#include "ext2.h"
40
#include "acl.h"
41
#include "xattr.h"
42
43
static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45
/*
46
* Test whether an inode is a fast symlink.
47
*/
48
static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49
{
50
int ea_blocks = EXT2_I(inode)->i_file_acl ?
51
(inode->i_sb->s_blocksize >> 9) : 0;
52
53
return (S_ISLNK(inode->i_mode) &&
54
inode->i_blocks - ea_blocks == 0);
55
}
56
57
static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59
void ext2_write_failed(struct address_space *mapping, loff_t to)
60
{
61
struct inode *inode = mapping->host;
62
63
if (to > inode->i_size) {
64
truncate_pagecache(inode, inode->i_size);
65
ext2_truncate_blocks(inode, inode->i_size);
66
}
67
}
68
69
/*
70
* Called at the last iput() if i_nlink is zero.
71
*/
72
void ext2_evict_inode(struct inode * inode)
73
{
74
struct ext2_block_alloc_info *rsv;
75
int want_delete = 0;
76
77
if (!inode->i_nlink && !is_bad_inode(inode)) {
78
want_delete = 1;
79
dquot_initialize(inode);
80
} else {
81
dquot_drop(inode);
82
}
83
84
truncate_inode_pages_final(&inode->i_data);
85
86
if (want_delete) {
87
sb_start_intwrite(inode->i_sb);
88
/* set dtime */
89
EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
90
mark_inode_dirty(inode);
91
__ext2_write_inode(inode, inode_needs_sync(inode));
92
/* truncate to 0 */
93
inode->i_size = 0;
94
if (inode->i_blocks)
95
ext2_truncate_blocks(inode, 0);
96
ext2_xattr_delete_inode(inode);
97
}
98
99
invalidate_inode_buffers(inode);
100
clear_inode(inode);
101
102
ext2_discard_reservation(inode);
103
rsv = EXT2_I(inode)->i_block_alloc_info;
104
EXT2_I(inode)->i_block_alloc_info = NULL;
105
if (unlikely(rsv))
106
kfree(rsv);
107
108
if (want_delete) {
109
ext2_free_inode(inode);
110
sb_end_intwrite(inode->i_sb);
111
}
112
}
113
114
typedef struct {
115
__le32 *p;
116
__le32 key;
117
struct buffer_head *bh;
118
} Indirect;
119
120
static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121
{
122
p->key = *(p->p = v);
123
p->bh = bh;
124
}
125
126
static inline int verify_chain(Indirect *from, Indirect *to)
127
{
128
while (from <= to && from->key == *from->p)
129
from++;
130
return (from > to);
131
}
132
133
/**
134
* ext2_block_to_path - parse the block number into array of offsets
135
* @inode: inode in question (we are only interested in its superblock)
136
* @i_block: block number to be parsed
137
* @offsets: array to store the offsets in
138
* @boundary: set this non-zero if the referred-to block is likely to be
139
* followed (on disk) by an indirect block.
140
* To store the locations of file's data ext2 uses a data structure common
141
* for UNIX filesystems - tree of pointers anchored in the inode, with
142
* data blocks at leaves and indirect blocks in intermediate nodes.
143
* This function translates the block number into path in that tree -
144
* return value is the path length and @offsets[n] is the offset of
145
* pointer to (n+1)th node in the nth one. If @block is out of range
146
* (negative or too large) warning is printed and zero returned.
147
*
148
* Note: function doesn't find node addresses, so no IO is needed. All
149
* we need to know is the capacity of indirect blocks (taken from the
150
* inode->i_sb).
151
*/
152
153
/*
154
* Portability note: the last comparison (check that we fit into triple
155
* indirect block) is spelled differently, because otherwise on an
156
* architecture with 32-bit longs and 8Kb pages we might get into trouble
157
* if our filesystem had 8Kb blocks. We might use long long, but that would
158
* kill us on x86. Oh, well, at least the sign propagation does not matter -
159
* i_block would have to be negative in the very beginning, so we would not
160
* get there at all.
161
*/
162
163
static int ext2_block_to_path(struct inode *inode,
164
long i_block, int offsets[4], int *boundary)
165
{
166
int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167
int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168
const long direct_blocks = EXT2_NDIR_BLOCKS,
169
indirect_blocks = ptrs,
170
double_blocks = (1 << (ptrs_bits * 2));
171
int n = 0;
172
int final = 0;
173
174
if (i_block < 0) {
175
ext2_msg(inode->i_sb, KERN_WARNING,
176
"warning: %s: block < 0", __func__);
177
} else if (i_block < direct_blocks) {
178
offsets[n++] = i_block;
179
final = direct_blocks;
180
} else if ( (i_block -= direct_blocks) < indirect_blocks) {
181
offsets[n++] = EXT2_IND_BLOCK;
182
offsets[n++] = i_block;
183
final = ptrs;
184
} else if ((i_block -= indirect_blocks) < double_blocks) {
185
offsets[n++] = EXT2_DIND_BLOCK;
186
offsets[n++] = i_block >> ptrs_bits;
187
offsets[n++] = i_block & (ptrs - 1);
188
final = ptrs;
189
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190
offsets[n++] = EXT2_TIND_BLOCK;
191
offsets[n++] = i_block >> (ptrs_bits * 2);
192
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193
offsets[n++] = i_block & (ptrs - 1);
194
final = ptrs;
195
} else {
196
ext2_msg(inode->i_sb, KERN_WARNING,
197
"warning: %s: block is too big", __func__);
198
}
199
if (boundary)
200
*boundary = final - 1 - (i_block & (ptrs - 1));
201
202
return n;
203
}
204
205
/**
206
* ext2_get_branch - read the chain of indirect blocks leading to data
207
* @inode: inode in question
208
* @depth: depth of the chain (1 - direct pointer, etc.)
209
* @offsets: offsets of pointers in inode/indirect blocks
210
* @chain: place to store the result
211
* @err: here we store the error value
212
*
213
* Function fills the array of triples <key, p, bh> and returns %NULL
214
* if everything went OK or the pointer to the last filled triple
215
* (incomplete one) otherwise. Upon the return chain[i].key contains
216
* the number of (i+1)-th block in the chain (as it is stored in memory,
217
* i.e. little-endian 32-bit), chain[i].p contains the address of that
218
* number (it points into struct inode for i==0 and into the bh->b_data
219
* for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220
* block for i>0 and NULL for i==0. In other words, it holds the block
221
* numbers of the chain, addresses they were taken from (and where we can
222
* verify that chain did not change) and buffer_heads hosting these
223
* numbers.
224
*
225
* Function stops when it stumbles upon zero pointer (absent block)
226
* (pointer to last triple returned, *@err == 0)
227
* or when it gets an IO error reading an indirect block
228
* (ditto, *@err == -EIO)
229
* or when it notices that chain had been changed while it was reading
230
* (ditto, *@err == -EAGAIN)
231
* or when it reads all @depth-1 indirect blocks successfully and finds
232
* the whole chain, all way to the data (returns %NULL, *err == 0).
233
*/
234
static Indirect *ext2_get_branch(struct inode *inode,
235
int depth,
236
int *offsets,
237
Indirect chain[4],
238
int *err)
239
{
240
struct super_block *sb = inode->i_sb;
241
Indirect *p = chain;
242
struct buffer_head *bh;
243
244
*err = 0;
245
/* i_data is not going away, no lock needed */
246
add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247
if (!p->key)
248
goto no_block;
249
while (--depth) {
250
bh = sb_bread(sb, le32_to_cpu(p->key));
251
if (!bh)
252
goto failure;
253
read_lock(&EXT2_I(inode)->i_meta_lock);
254
if (!verify_chain(chain, p))
255
goto changed;
256
add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257
read_unlock(&EXT2_I(inode)->i_meta_lock);
258
if (!p->key)
259
goto no_block;
260
}
261
return NULL;
262
263
changed:
264
read_unlock(&EXT2_I(inode)->i_meta_lock);
265
brelse(bh);
266
*err = -EAGAIN;
267
goto no_block;
268
failure:
269
*err = -EIO;
270
no_block:
271
return p;
272
}
273
274
/**
275
* ext2_find_near - find a place for allocation with sufficient locality
276
* @inode: owner
277
* @ind: descriptor of indirect block.
278
*
279
* This function returns the preferred place for block allocation.
280
* It is used when heuristic for sequential allocation fails.
281
* Rules are:
282
* + if there is a block to the left of our position - allocate near it.
283
* + if pointer will live in indirect block - allocate near that block.
284
* + if pointer will live in inode - allocate in the same cylinder group.
285
*
286
* In the latter case we colour the starting block by the callers PID to
287
* prevent it from clashing with concurrent allocations for a different inode
288
* in the same block group. The PID is used here so that functionally related
289
* files will be close-by on-disk.
290
*
291
* Caller must make sure that @ind is valid and will stay that way.
292
*/
293
294
static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295
{
296
struct ext2_inode_info *ei = EXT2_I(inode);
297
__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298
__le32 *p;
299
ext2_fsblk_t bg_start;
300
ext2_fsblk_t colour;
301
302
/* Try to find previous block */
303
for (p = ind->p - 1; p >= start; p--)
304
if (*p)
305
return le32_to_cpu(*p);
306
307
/* No such thing, so let's try location of indirect block */
308
if (ind->bh)
309
return ind->bh->b_blocknr;
310
311
/*
312
* It is going to be referred from inode itself? OK, just put it into
313
* the same cylinder group then.
314
*/
315
bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316
colour = (current->pid % 16) *
317
(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318
return bg_start + colour;
319
}
320
321
/**
322
* ext2_find_goal - find a preferred place for allocation.
323
* @inode: owner
324
* @block: block we want
325
* @partial: pointer to the last triple within a chain
326
*
327
* Returns preferred place for a block (the goal).
328
*/
329
330
static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331
Indirect *partial)
332
{
333
struct ext2_block_alloc_info *block_i;
334
335
block_i = EXT2_I(inode)->i_block_alloc_info;
336
337
/*
338
* try the heuristic for sequential allocation,
339
* failing that at least try to get decent locality.
340
*/
341
if (block_i && (block == block_i->last_alloc_logical_block + 1)
342
&& (block_i->last_alloc_physical_block != 0)) {
343
return block_i->last_alloc_physical_block + 1;
344
}
345
346
return ext2_find_near(inode, partial);
347
}
348
349
/**
350
* ext2_blks_to_allocate: Look up the block map and count the number
351
* of direct blocks need to be allocated for the given branch.
352
*
353
* @branch: chain of indirect blocks
354
* @k: number of blocks need for indirect blocks
355
* @blks: number of data blocks to be mapped.
356
* @blocks_to_boundary: the offset in the indirect block
357
*
358
* return the number of direct blocks to allocate.
359
*/
360
static int
361
ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362
int blocks_to_boundary)
363
{
364
unsigned long count = 0;
365
366
/*
367
* Simple case, [t,d]Indirect block(s) has not allocated yet
368
* then it's clear blocks on that path have not allocated
369
*/
370
if (k > 0) {
371
/* right now don't hanel cross boundary allocation */
372
if (blks < blocks_to_boundary + 1)
373
count += blks;
374
else
375
count += blocks_to_boundary + 1;
376
return count;
377
}
378
379
count++;
380
while (count < blks && count <= blocks_to_boundary
381
&& le32_to_cpu(*(branch[0].p + count)) == 0) {
382
count++;
383
}
384
return count;
385
}
386
387
/**
388
* ext2_alloc_blocks: Allocate multiple blocks needed for a branch.
389
* @inode: Owner.
390
* @goal: Preferred place for allocation.
391
* @indirect_blks: The number of blocks needed to allocate for indirect blocks.
392
* @blks: The number of blocks need to allocate for direct blocks.
393
* @new_blocks: On return it will store the new block numbers for
394
* the indirect blocks(if needed) and the first direct block.
395
* @err: Error pointer.
396
*
397
* Return: Number of blocks allocated.
398
*/
399
static int ext2_alloc_blocks(struct inode *inode,
400
ext2_fsblk_t goal, int indirect_blks, int blks,
401
ext2_fsblk_t new_blocks[4], int *err)
402
{
403
int target, i;
404
unsigned long count = 0;
405
int index = 0;
406
ext2_fsblk_t current_block = 0;
407
int ret = 0;
408
409
/*
410
* Here we try to allocate the requested multiple blocks at once,
411
* on a best-effort basis.
412
* To build a branch, we should allocate blocks for
413
* the indirect blocks(if not allocated yet), and at least
414
* the first direct block of this branch. That's the
415
* minimum number of blocks need to allocate(required)
416
*/
417
target = blks + indirect_blks;
418
419
while (1) {
420
count = target;
421
/* allocating blocks for indirect blocks and direct blocks */
422
current_block = ext2_new_blocks(inode, goal, &count, err, 0);
423
if (*err)
424
goto failed_out;
425
426
target -= count;
427
/* allocate blocks for indirect blocks */
428
while (index < indirect_blks && count) {
429
new_blocks[index++] = current_block++;
430
count--;
431
}
432
433
if (count > 0)
434
break;
435
}
436
437
/* save the new block number for the first direct block */
438
new_blocks[index] = current_block;
439
440
/* total number of blocks allocated for direct blocks */
441
ret = count;
442
*err = 0;
443
return ret;
444
failed_out:
445
for (i = 0; i <index; i++)
446
ext2_free_blocks(inode, new_blocks[i], 1);
447
if (index)
448
mark_inode_dirty(inode);
449
return ret;
450
}
451
452
/**
453
* ext2_alloc_branch - allocate and set up a chain of blocks.
454
* @inode: owner
455
* @indirect_blks: depth of the chain (number of blocks to allocate)
456
* @blks: number of allocated direct blocks
457
* @goal: preferred place for allocation
458
* @offsets: offsets (in the blocks) to store the pointers to next.
459
* @branch: place to store the chain in.
460
*
461
* This function allocates @num blocks, zeroes out all but the last one,
462
* links them into chain and (if we are synchronous) writes them to disk.
463
* In other words, it prepares a branch that can be spliced onto the
464
* inode. It stores the information about that chain in the branch[], in
465
* the same format as ext2_get_branch() would do. We are calling it after
466
* we had read the existing part of chain and partial points to the last
467
* triple of that (one with zero ->key). Upon the exit we have the same
468
* picture as after the successful ext2_get_block(), except that in one
469
* place chain is disconnected - *branch->p is still zero (we did not
470
* set the last link), but branch->key contains the number that should
471
* be placed into *branch->p to fill that gap.
472
*
473
* If allocation fails we free all blocks we've allocated (and forget
474
* their buffer_heads) and return the error value the from failed
475
* ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
476
* as described above and return 0.
477
*/
478
479
static int ext2_alloc_branch(struct inode *inode,
480
int indirect_blks, int *blks, ext2_fsblk_t goal,
481
int *offsets, Indirect *branch)
482
{
483
int blocksize = inode->i_sb->s_blocksize;
484
int i, n = 0;
485
int err = 0;
486
struct buffer_head *bh;
487
int num;
488
ext2_fsblk_t new_blocks[4];
489
ext2_fsblk_t current_block;
490
491
num = ext2_alloc_blocks(inode, goal, indirect_blks,
492
*blks, new_blocks, &err);
493
if (err)
494
return err;
495
496
branch[0].key = cpu_to_le32(new_blocks[0]);
497
/*
498
* metadata blocks and data blocks are allocated.
499
*/
500
for (n = 1; n <= indirect_blks; n++) {
501
/*
502
* Get buffer_head for parent block, zero it out
503
* and set the pointer to new one, then send
504
* parent to disk.
505
*/
506
bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
507
if (unlikely(!bh)) {
508
err = -ENOMEM;
509
goto failed;
510
}
511
branch[n].bh = bh;
512
lock_buffer(bh);
513
memset(bh->b_data, 0, blocksize);
514
branch[n].p = (__le32 *) bh->b_data + offsets[n];
515
branch[n].key = cpu_to_le32(new_blocks[n]);
516
*branch[n].p = branch[n].key;
517
if ( n == indirect_blks) {
518
current_block = new_blocks[n];
519
/*
520
* End of chain, update the last new metablock of
521
* the chain to point to the new allocated
522
* data blocks numbers
523
*/
524
for (i=1; i < num; i++)
525
*(branch[n].p + i) = cpu_to_le32(++current_block);
526
}
527
set_buffer_uptodate(bh);
528
unlock_buffer(bh);
529
mark_buffer_dirty_inode(bh, inode);
530
/* We used to sync bh here if IS_SYNC(inode).
531
* But we now rely upon generic_write_sync()
532
* and b_inode_buffers. But not for directories.
533
*/
534
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
535
sync_dirty_buffer(bh);
536
}
537
*blks = num;
538
return err;
539
540
failed:
541
for (i = 1; i < n; i++)
542
bforget(branch[i].bh);
543
for (i = 0; i < indirect_blks; i++)
544
ext2_free_blocks(inode, new_blocks[i], 1);
545
ext2_free_blocks(inode, new_blocks[i], num);
546
return err;
547
}
548
549
/**
550
* ext2_splice_branch - splice the allocated branch onto inode.
551
* @inode: owner
552
* @block: (logical) number of block we are adding
553
* @where: location of missing link
554
* @num: number of indirect blocks we are adding
555
* @blks: number of direct blocks we are adding
556
*
557
* This function fills the missing link and does all housekeeping needed in
558
* inode (->i_blocks, etc.). In case of success we end up with the full
559
* chain to new block and return 0.
560
*/
561
static void ext2_splice_branch(struct inode *inode,
562
long block, Indirect *where, int num, int blks)
563
{
564
int i;
565
struct ext2_block_alloc_info *block_i;
566
ext2_fsblk_t current_block;
567
568
block_i = EXT2_I(inode)->i_block_alloc_info;
569
570
/* XXX LOCKING probably should have i_meta_lock ?*/
571
/* That's it */
572
573
*where->p = where->key;
574
575
/*
576
* Update the host buffer_head or inode to point to more just allocated
577
* direct blocks blocks
578
*/
579
if (num == 0 && blks > 1) {
580
current_block = le32_to_cpu(where->key) + 1;
581
for (i = 1; i < blks; i++)
582
*(where->p + i ) = cpu_to_le32(current_block++);
583
}
584
585
/*
586
* update the most recently allocated logical & physical block
587
* in i_block_alloc_info, to assist find the proper goal block for next
588
* allocation
589
*/
590
if (block_i) {
591
block_i->last_alloc_logical_block = block + blks - 1;
592
block_i->last_alloc_physical_block =
593
le32_to_cpu(where[num].key) + blks - 1;
594
}
595
596
/* We are done with atomic stuff, now do the rest of housekeeping */
597
598
/* had we spliced it onto indirect block? */
599
if (where->bh)
600
mark_buffer_dirty_inode(where->bh, inode);
601
602
inode_set_ctime_current(inode);
603
mark_inode_dirty(inode);
604
}
605
606
/*
607
* Allocation strategy is simple: if we have to allocate something, we will
608
* have to go the whole way to leaf. So let's do it before attaching anything
609
* to tree, set linkage between the newborn blocks, write them if sync is
610
* required, recheck the path, free and repeat if check fails, otherwise
611
* set the last missing link (that will protect us from any truncate-generated
612
* removals - all blocks on the path are immune now) and possibly force the
613
* write on the parent block.
614
* That has a nice additional property: no special recovery from the failed
615
* allocations is needed - we simply release blocks and do not touch anything
616
* reachable from inode.
617
*
618
* `handle' can be NULL if create == 0.
619
*
620
* return > 0, # of blocks mapped or allocated.
621
* return = 0, if plain lookup failed.
622
* return < 0, error case.
623
*/
624
static int ext2_get_blocks(struct inode *inode,
625
sector_t iblock, unsigned long maxblocks,
626
u32 *bno, bool *new, bool *boundary,
627
int create)
628
{
629
int err;
630
int offsets[4];
631
Indirect chain[4];
632
Indirect *partial;
633
ext2_fsblk_t goal;
634
int indirect_blks;
635
int blocks_to_boundary = 0;
636
int depth;
637
struct ext2_inode_info *ei = EXT2_I(inode);
638
int count = 0;
639
ext2_fsblk_t first_block = 0;
640
641
BUG_ON(maxblocks == 0);
642
643
depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
644
645
if (depth == 0)
646
return -EIO;
647
648
partial = ext2_get_branch(inode, depth, offsets, chain, &err);
649
/* Simplest case - block found, no allocation needed */
650
if (!partial) {
651
first_block = le32_to_cpu(chain[depth - 1].key);
652
count++;
653
/*map more blocks*/
654
while (count < maxblocks && count <= blocks_to_boundary) {
655
ext2_fsblk_t blk;
656
657
if (!verify_chain(chain, chain + depth - 1)) {
658
/*
659
* Indirect block might be removed by
660
* truncate while we were reading it.
661
* Handling of that case: forget what we've
662
* got now, go to reread.
663
*/
664
err = -EAGAIN;
665
count = 0;
666
partial = chain + depth - 1;
667
break;
668
}
669
blk = le32_to_cpu(*(chain[depth-1].p + count));
670
if (blk == first_block + count)
671
count++;
672
else
673
break;
674
}
675
if (err != -EAGAIN)
676
goto got_it;
677
}
678
679
/* Next simple case - plain lookup or failed read of indirect block */
680
if (!create || err == -EIO)
681
goto cleanup;
682
683
mutex_lock(&ei->truncate_mutex);
684
/*
685
* If the indirect block is missing while we are reading
686
* the chain(ext2_get_branch() returns -EAGAIN err), or
687
* if the chain has been changed after we grab the semaphore,
688
* (either because another process truncated this branch, or
689
* another get_block allocated this branch) re-grab the chain to see if
690
* the request block has been allocated or not.
691
*
692
* Since we already block the truncate/other get_block
693
* at this point, we will have the current copy of the chain when we
694
* splice the branch into the tree.
695
*/
696
if (err == -EAGAIN || !verify_chain(chain, partial)) {
697
while (partial > chain) {
698
brelse(partial->bh);
699
partial--;
700
}
701
partial = ext2_get_branch(inode, depth, offsets, chain, &err);
702
if (!partial) {
703
count++;
704
mutex_unlock(&ei->truncate_mutex);
705
goto got_it;
706
}
707
708
if (err) {
709
mutex_unlock(&ei->truncate_mutex);
710
goto cleanup;
711
}
712
}
713
714
/*
715
* Okay, we need to do block allocation. Lazily initialize the block
716
* allocation info here if necessary
717
*/
718
if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
719
ext2_init_block_alloc_info(inode);
720
721
goal = ext2_find_goal(inode, iblock, partial);
722
723
/* the number of blocks need to allocate for [d,t]indirect blocks */
724
indirect_blks = (chain + depth) - partial - 1;
725
/*
726
* Next look up the indirect map to count the total number of
727
* direct blocks to allocate for this branch.
728
*/
729
count = ext2_blks_to_allocate(partial, indirect_blks,
730
maxblocks, blocks_to_boundary);
731
/*
732
* XXX ???? Block out ext2_truncate while we alter the tree
733
*/
734
err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
735
offsets + (partial - chain), partial);
736
737
if (err) {
738
mutex_unlock(&ei->truncate_mutex);
739
goto cleanup;
740
}
741
742
if (IS_DAX(inode)) {
743
/*
744
* We must unmap blocks before zeroing so that writeback cannot
745
* overwrite zeros with stale data from block device page cache.
746
*/
747
clean_bdev_aliases(inode->i_sb->s_bdev,
748
le32_to_cpu(chain[depth-1].key),
749
count);
750
/*
751
* block must be initialised before we put it in the tree
752
* so that it's not found by another thread before it's
753
* initialised
754
*/
755
err = sb_issue_zeroout(inode->i_sb,
756
le32_to_cpu(chain[depth-1].key), count,
757
GFP_KERNEL);
758
if (err) {
759
mutex_unlock(&ei->truncate_mutex);
760
goto cleanup;
761
}
762
}
763
*new = true;
764
765
ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
766
mutex_unlock(&ei->truncate_mutex);
767
got_it:
768
if (count > blocks_to_boundary)
769
*boundary = true;
770
err = count;
771
/* Clean up and exit */
772
partial = chain + depth - 1; /* the whole chain */
773
cleanup:
774
while (partial > chain) {
775
brelse(partial->bh);
776
partial--;
777
}
778
if (err > 0)
779
*bno = le32_to_cpu(chain[depth-1].key);
780
return err;
781
}
782
783
int ext2_get_block(struct inode *inode, sector_t iblock,
784
struct buffer_head *bh_result, int create)
785
{
786
unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
787
bool new = false, boundary = false;
788
u32 bno;
789
int ret;
790
791
ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
792
create);
793
if (ret <= 0)
794
return ret;
795
796
map_bh(bh_result, inode->i_sb, bno);
797
bh_result->b_size = (ret << inode->i_blkbits);
798
if (new)
799
set_buffer_new(bh_result);
800
if (boundary)
801
set_buffer_boundary(bh_result);
802
return 0;
803
804
}
805
806
static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
807
unsigned flags, struct iomap *iomap, struct iomap *srcmap)
808
{
809
unsigned int blkbits = inode->i_blkbits;
810
unsigned long first_block = offset >> blkbits;
811
unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
812
struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
813
bool new = false, boundary = false;
814
u32 bno;
815
int ret;
816
bool create = flags & IOMAP_WRITE;
817
818
/*
819
* For writes that could fill holes inside i_size on a
820
* DIO_SKIP_HOLES filesystem we forbid block creations: only
821
* overwrites are permitted.
822
*/
823
if ((flags & IOMAP_DIRECT) &&
824
(first_block << blkbits) < i_size_read(inode))
825
create = 0;
826
827
/*
828
* Writes that span EOF might trigger an IO size update on completion,
829
* so consider them to be dirty for the purposes of O_DSYNC even if
830
* there is no other metadata changes pending or have been made here.
831
*/
832
if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode))
833
iomap->flags |= IOMAP_F_DIRTY;
834
835
ret = ext2_get_blocks(inode, first_block, max_blocks,
836
&bno, &new, &boundary, create);
837
if (ret < 0)
838
return ret;
839
840
iomap->flags = 0;
841
iomap->offset = (u64)first_block << blkbits;
842
if (flags & IOMAP_DAX)
843
iomap->dax_dev = sbi->s_daxdev;
844
else
845
iomap->bdev = inode->i_sb->s_bdev;
846
847
if (ret == 0) {
848
/*
849
* Switch to buffered-io for writing to holes in a non-extent
850
* based filesystem to avoid stale data exposure problem.
851
*/
852
if (!create && (flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT))
853
return -ENOTBLK;
854
iomap->type = IOMAP_HOLE;
855
iomap->addr = IOMAP_NULL_ADDR;
856
iomap->length = 1 << blkbits;
857
} else {
858
iomap->type = IOMAP_MAPPED;
859
iomap->addr = (u64)bno << blkbits;
860
if (flags & IOMAP_DAX)
861
iomap->addr += sbi->s_dax_part_off;
862
iomap->length = (u64)ret << blkbits;
863
iomap->flags |= IOMAP_F_MERGED;
864
}
865
866
if (new)
867
iomap->flags |= IOMAP_F_NEW;
868
return 0;
869
}
870
871
static int
872
ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
873
ssize_t written, unsigned flags, struct iomap *iomap)
874
{
875
/*
876
* Switch to buffered-io in case of any error.
877
* Blocks allocated can be used by the buffered-io path.
878
*/
879
if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE) && written == 0)
880
return -ENOTBLK;
881
882
if (iomap->type == IOMAP_MAPPED &&
883
written < length &&
884
(flags & IOMAP_WRITE))
885
ext2_write_failed(inode->i_mapping, offset + length);
886
return 0;
887
}
888
889
const struct iomap_ops ext2_iomap_ops = {
890
.iomap_begin = ext2_iomap_begin,
891
.iomap_end = ext2_iomap_end,
892
};
893
894
int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
895
u64 start, u64 len)
896
{
897
int ret;
898
loff_t i_size;
899
900
inode_lock(inode);
901
i_size = i_size_read(inode);
902
/*
903
* iomap_fiemap() returns EINVAL for 0 length. Make sure we don't trim
904
* length to 0 but still trim the range as much as possible since
905
* ext2_get_blocks() iterates unmapped space block by block which is
906
* slow.
907
*/
908
if (i_size == 0)
909
i_size = 1;
910
len = min_t(u64, len, i_size);
911
ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
912
inode_unlock(inode);
913
914
return ret;
915
}
916
917
static int ext2_read_folio(struct file *file, struct folio *folio)
918
{
919
return mpage_read_folio(folio, ext2_get_block);
920
}
921
922
static void ext2_readahead(struct readahead_control *rac)
923
{
924
mpage_readahead(rac, ext2_get_block);
925
}
926
927
static int
928
ext2_write_begin(const struct kiocb *iocb, struct address_space *mapping,
929
loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
930
{
931
int ret;
932
933
ret = block_write_begin(mapping, pos, len, foliop, ext2_get_block);
934
if (ret < 0)
935
ext2_write_failed(mapping, pos + len);
936
return ret;
937
}
938
939
static int ext2_write_end(const struct kiocb *iocb,
940
struct address_space *mapping,
941
loff_t pos, unsigned len, unsigned copied,
942
struct folio *folio, void *fsdata)
943
{
944
int ret;
945
946
ret = generic_write_end(iocb, mapping, pos, len, copied, folio, fsdata);
947
if (ret < len)
948
ext2_write_failed(mapping, pos + len);
949
return ret;
950
}
951
952
static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
953
{
954
return generic_block_bmap(mapping,block,ext2_get_block);
955
}
956
957
static int
958
ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
959
{
960
return mpage_writepages(mapping, wbc, ext2_get_block);
961
}
962
963
static int
964
ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
965
{
966
struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
967
968
return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
969
}
970
971
const struct address_space_operations ext2_aops = {
972
.dirty_folio = block_dirty_folio,
973
.invalidate_folio = block_invalidate_folio,
974
.read_folio = ext2_read_folio,
975
.readahead = ext2_readahead,
976
.write_begin = ext2_write_begin,
977
.write_end = ext2_write_end,
978
.bmap = ext2_bmap,
979
.writepages = ext2_writepages,
980
.migrate_folio = buffer_migrate_folio,
981
.is_partially_uptodate = block_is_partially_uptodate,
982
.error_remove_folio = generic_error_remove_folio,
983
};
984
985
static const struct address_space_operations ext2_dax_aops = {
986
.writepages = ext2_dax_writepages,
987
.dirty_folio = noop_dirty_folio,
988
};
989
990
/*
991
* Probably it should be a library function... search for first non-zero word
992
* or memcmp with zero_page, whatever is better for particular architecture.
993
* Linus?
994
*/
995
static inline int all_zeroes(__le32 *p, __le32 *q)
996
{
997
while (p < q)
998
if (*p++)
999
return 0;
1000
return 1;
1001
}
1002
1003
/**
1004
* ext2_find_shared - find the indirect blocks for partial truncation.
1005
* @inode: inode in question
1006
* @depth: depth of the affected branch
1007
* @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1008
* @chain: place to store the pointers to partial indirect blocks
1009
* @top: place to the (detached) top of branch
1010
*
1011
* This is a helper function used by ext2_truncate().
1012
*
1013
* When we do truncate() we may have to clean the ends of several indirect
1014
* blocks but leave the blocks themselves alive. Block is partially
1015
* truncated if some data below the new i_size is referred from it (and
1016
* it is on the path to the first completely truncated data block, indeed).
1017
* We have to free the top of that path along with everything to the right
1018
* of the path. Since no allocation past the truncation point is possible
1019
* until ext2_truncate() finishes, we may safely do the latter, but top
1020
* of branch may require special attention - pageout below the truncation
1021
* point might try to populate it.
1022
*
1023
* We atomically detach the top of branch from the tree, store the block
1024
* number of its root in *@top, pointers to buffer_heads of partially
1025
* truncated blocks - in @chain[].bh and pointers to their last elements
1026
* that should not be removed - in @chain[].p. Return value is the pointer
1027
* to last filled element of @chain.
1028
*
1029
* The work left to caller to do the actual freeing of subtrees:
1030
* a) free the subtree starting from *@top
1031
* b) free the subtrees whose roots are stored in
1032
* (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1033
* c) free the subtrees growing from the inode past the @chain[0].p
1034
* (no partially truncated stuff there).
1035
*/
1036
1037
static Indirect *ext2_find_shared(struct inode *inode,
1038
int depth,
1039
int offsets[4],
1040
Indirect chain[4],
1041
__le32 *top)
1042
{
1043
Indirect *partial, *p;
1044
int k, err;
1045
1046
*top = 0;
1047
for (k = depth; k > 1 && !offsets[k-1]; k--)
1048
;
1049
partial = ext2_get_branch(inode, k, offsets, chain, &err);
1050
if (!partial)
1051
partial = chain + k-1;
1052
/*
1053
* If the branch acquired continuation since we've looked at it -
1054
* fine, it should all survive and (new) top doesn't belong to us.
1055
*/
1056
write_lock(&EXT2_I(inode)->i_meta_lock);
1057
if (!partial->key && *partial->p) {
1058
write_unlock(&EXT2_I(inode)->i_meta_lock);
1059
goto no_top;
1060
}
1061
for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1062
;
1063
/*
1064
* OK, we've found the last block that must survive. The rest of our
1065
* branch should be detached before unlocking. However, if that rest
1066
* of branch is all ours and does not grow immediately from the inode
1067
* it's easier to cheat and just decrement partial->p.
1068
*/
1069
if (p == chain + k - 1 && p > chain) {
1070
p->p--;
1071
} else {
1072
*top = *p->p;
1073
*p->p = 0;
1074
}
1075
write_unlock(&EXT2_I(inode)->i_meta_lock);
1076
1077
while(partial > p)
1078
{
1079
brelse(partial->bh);
1080
partial--;
1081
}
1082
no_top:
1083
return partial;
1084
}
1085
1086
/**
1087
* ext2_free_data - free a list of data blocks
1088
* @inode: inode we are dealing with
1089
* @p: array of block numbers
1090
* @q: points immediately past the end of array
1091
*
1092
* We are freeing all blocks referred from that array (numbers are
1093
* stored as little-endian 32-bit) and updating @inode->i_blocks
1094
* appropriately.
1095
*/
1096
static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1097
{
1098
ext2_fsblk_t block_to_free = 0, count = 0;
1099
ext2_fsblk_t nr;
1100
1101
for ( ; p < q ; p++) {
1102
nr = le32_to_cpu(*p);
1103
if (nr) {
1104
*p = 0;
1105
/* accumulate blocks to free if they're contiguous */
1106
if (count == 0)
1107
goto free_this;
1108
else if (block_to_free == nr - count)
1109
count++;
1110
else {
1111
ext2_free_blocks (inode, block_to_free, count);
1112
mark_inode_dirty(inode);
1113
free_this:
1114
block_to_free = nr;
1115
count = 1;
1116
}
1117
}
1118
}
1119
if (count > 0) {
1120
ext2_free_blocks (inode, block_to_free, count);
1121
mark_inode_dirty(inode);
1122
}
1123
}
1124
1125
/**
1126
* ext2_free_branches - free an array of branches
1127
* @inode: inode we are dealing with
1128
* @p: array of block numbers
1129
* @q: pointer immediately past the end of array
1130
* @depth: depth of the branches to free
1131
*
1132
* We are freeing all blocks referred from these branches (numbers are
1133
* stored as little-endian 32-bit) and updating @inode->i_blocks
1134
* appropriately.
1135
*/
1136
static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1137
{
1138
struct buffer_head * bh;
1139
ext2_fsblk_t nr;
1140
1141
if (depth--) {
1142
int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1143
for ( ; p < q ; p++) {
1144
nr = le32_to_cpu(*p);
1145
if (!nr)
1146
continue;
1147
*p = 0;
1148
bh = sb_bread(inode->i_sb, nr);
1149
/*
1150
* A read failure? Report error and clear slot
1151
* (should be rare).
1152
*/
1153
if (!bh) {
1154
ext2_error(inode->i_sb, "ext2_free_branches",
1155
"Read failure, inode=%ld, block=%ld",
1156
inode->i_ino, nr);
1157
continue;
1158
}
1159
ext2_free_branches(inode,
1160
(__le32*)bh->b_data,
1161
(__le32*)bh->b_data + addr_per_block,
1162
depth);
1163
bforget(bh);
1164
ext2_free_blocks(inode, nr, 1);
1165
mark_inode_dirty(inode);
1166
}
1167
} else
1168
ext2_free_data(inode, p, q);
1169
}
1170
1171
/* mapping->invalidate_lock must be held when calling this function */
1172
static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1173
{
1174
__le32 *i_data = EXT2_I(inode)->i_data;
1175
struct ext2_inode_info *ei = EXT2_I(inode);
1176
int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1177
int offsets[4];
1178
Indirect chain[4];
1179
Indirect *partial;
1180
__le32 nr = 0;
1181
int n;
1182
long iblock;
1183
unsigned blocksize;
1184
blocksize = inode->i_sb->s_blocksize;
1185
iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1186
1187
#ifdef CONFIG_FS_DAX
1188
WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1189
#endif
1190
1191
n = ext2_block_to_path(inode, iblock, offsets, NULL);
1192
if (n == 0)
1193
return;
1194
1195
/*
1196
* From here we block out all ext2_get_block() callers who want to
1197
* modify the block allocation tree.
1198
*/
1199
mutex_lock(&ei->truncate_mutex);
1200
1201
if (n == 1) {
1202
ext2_free_data(inode, i_data+offsets[0],
1203
i_data + EXT2_NDIR_BLOCKS);
1204
goto do_indirects;
1205
}
1206
1207
partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1208
/* Kill the top of shared branch (already detached) */
1209
if (nr) {
1210
if (partial == chain)
1211
mark_inode_dirty(inode);
1212
else
1213
mark_buffer_dirty_inode(partial->bh, inode);
1214
ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1215
}
1216
/* Clear the ends of indirect blocks on the shared branch */
1217
while (partial > chain) {
1218
ext2_free_branches(inode,
1219
partial->p + 1,
1220
(__le32*)partial->bh->b_data+addr_per_block,
1221
(chain+n-1) - partial);
1222
mark_buffer_dirty_inode(partial->bh, inode);
1223
brelse (partial->bh);
1224
partial--;
1225
}
1226
do_indirects:
1227
/* Kill the remaining (whole) subtrees */
1228
switch (offsets[0]) {
1229
default:
1230
nr = i_data[EXT2_IND_BLOCK];
1231
if (nr) {
1232
i_data[EXT2_IND_BLOCK] = 0;
1233
mark_inode_dirty(inode);
1234
ext2_free_branches(inode, &nr, &nr+1, 1);
1235
}
1236
fallthrough;
1237
case EXT2_IND_BLOCK:
1238
nr = i_data[EXT2_DIND_BLOCK];
1239
if (nr) {
1240
i_data[EXT2_DIND_BLOCK] = 0;
1241
mark_inode_dirty(inode);
1242
ext2_free_branches(inode, &nr, &nr+1, 2);
1243
}
1244
fallthrough;
1245
case EXT2_DIND_BLOCK:
1246
nr = i_data[EXT2_TIND_BLOCK];
1247
if (nr) {
1248
i_data[EXT2_TIND_BLOCK] = 0;
1249
mark_inode_dirty(inode);
1250
ext2_free_branches(inode, &nr, &nr+1, 3);
1251
}
1252
break;
1253
case EXT2_TIND_BLOCK:
1254
;
1255
}
1256
1257
ext2_discard_reservation(inode);
1258
1259
mutex_unlock(&ei->truncate_mutex);
1260
}
1261
1262
static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1263
{
1264
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1265
S_ISLNK(inode->i_mode)))
1266
return;
1267
if (ext2_inode_is_fast_symlink(inode))
1268
return;
1269
1270
filemap_invalidate_lock(inode->i_mapping);
1271
__ext2_truncate_blocks(inode, offset);
1272
filemap_invalidate_unlock(inode->i_mapping);
1273
}
1274
1275
static int ext2_setsize(struct inode *inode, loff_t newsize)
1276
{
1277
int error;
1278
1279
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1280
S_ISLNK(inode->i_mode)))
1281
return -EINVAL;
1282
if (ext2_inode_is_fast_symlink(inode))
1283
return -EINVAL;
1284
if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1285
return -EPERM;
1286
1287
inode_dio_wait(inode);
1288
1289
if (IS_DAX(inode))
1290
error = dax_truncate_page(inode, newsize, NULL,
1291
&ext2_iomap_ops);
1292
else
1293
error = block_truncate_page(inode->i_mapping,
1294
newsize, ext2_get_block);
1295
if (error)
1296
return error;
1297
1298
filemap_invalidate_lock(inode->i_mapping);
1299
truncate_setsize(inode, newsize);
1300
__ext2_truncate_blocks(inode, newsize);
1301
filemap_invalidate_unlock(inode->i_mapping);
1302
1303
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1304
if (inode_needs_sync(inode)) {
1305
sync_mapping_buffers(inode->i_mapping);
1306
sync_inode_metadata(inode, 1);
1307
} else {
1308
mark_inode_dirty(inode);
1309
}
1310
1311
return 0;
1312
}
1313
1314
static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1315
struct buffer_head **p)
1316
{
1317
struct buffer_head * bh;
1318
unsigned long block_group;
1319
unsigned long block;
1320
unsigned long offset;
1321
struct ext2_group_desc * gdp;
1322
1323
*p = NULL;
1324
if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1325
ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1326
goto Einval;
1327
1328
block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1329
gdp = ext2_get_group_desc(sb, block_group, NULL);
1330
if (!gdp)
1331
goto Egdp;
1332
/*
1333
* Figure out the offset within the block group inode table
1334
*/
1335
offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1336
block = le32_to_cpu(gdp->bg_inode_table) +
1337
(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1338
if (!(bh = sb_bread(sb, block)))
1339
goto Eio;
1340
1341
*p = bh;
1342
offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1343
return (struct ext2_inode *) (bh->b_data + offset);
1344
1345
Einval:
1346
ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1347
(unsigned long) ino);
1348
return ERR_PTR(-EINVAL);
1349
Eio:
1350
ext2_error(sb, "ext2_get_inode",
1351
"unable to read inode block - inode=%lu, block=%lu",
1352
(unsigned long) ino, block);
1353
Egdp:
1354
return ERR_PTR(-EIO);
1355
}
1356
1357
void ext2_set_inode_flags(struct inode *inode)
1358
{
1359
unsigned int flags = EXT2_I(inode)->i_flags;
1360
1361
inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1362
S_DIRSYNC | S_DAX);
1363
if (flags & EXT2_SYNC_FL)
1364
inode->i_flags |= S_SYNC;
1365
if (flags & EXT2_APPEND_FL)
1366
inode->i_flags |= S_APPEND;
1367
if (flags & EXT2_IMMUTABLE_FL)
1368
inode->i_flags |= S_IMMUTABLE;
1369
if (flags & EXT2_NOATIME_FL)
1370
inode->i_flags |= S_NOATIME;
1371
if (flags & EXT2_DIRSYNC_FL)
1372
inode->i_flags |= S_DIRSYNC;
1373
if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1374
inode->i_flags |= S_DAX;
1375
}
1376
1377
void ext2_set_file_ops(struct inode *inode)
1378
{
1379
inode->i_op = &ext2_file_inode_operations;
1380
inode->i_fop = &ext2_file_operations;
1381
if (IS_DAX(inode))
1382
inode->i_mapping->a_ops = &ext2_dax_aops;
1383
else
1384
inode->i_mapping->a_ops = &ext2_aops;
1385
}
1386
1387
struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1388
{
1389
struct ext2_inode_info *ei;
1390
struct buffer_head * bh = NULL;
1391
struct ext2_inode *raw_inode;
1392
struct inode *inode;
1393
long ret = -EIO;
1394
int n;
1395
uid_t i_uid;
1396
gid_t i_gid;
1397
1398
inode = iget_locked(sb, ino);
1399
if (!inode)
1400
return ERR_PTR(-ENOMEM);
1401
if (!(inode->i_state & I_NEW))
1402
return inode;
1403
1404
ei = EXT2_I(inode);
1405
ei->i_block_alloc_info = NULL;
1406
1407
raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1408
if (IS_ERR(raw_inode)) {
1409
ret = PTR_ERR(raw_inode);
1410
goto bad_inode;
1411
}
1412
1413
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1414
i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1415
i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1416
if (!(test_opt (inode->i_sb, NO_UID32))) {
1417
i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1418
i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1419
}
1420
i_uid_write(inode, i_uid);
1421
i_gid_write(inode, i_gid);
1422
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1423
inode->i_size = le32_to_cpu(raw_inode->i_size);
1424
inode_set_atime(inode, (signed)le32_to_cpu(raw_inode->i_atime), 0);
1425
inode_set_ctime(inode, (signed)le32_to_cpu(raw_inode->i_ctime), 0);
1426
inode_set_mtime(inode, (signed)le32_to_cpu(raw_inode->i_mtime), 0);
1427
ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1428
/* We now have enough fields to check if the inode was active or not.
1429
* This is needed because nfsd might try to access dead inodes
1430
* the test is that same one that e2fsck uses
1431
* NeilBrown 1999oct15
1432
*/
1433
if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1434
/* this inode is deleted */
1435
ret = -ESTALE;
1436
goto bad_inode;
1437
}
1438
inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1439
ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1440
ext2_set_inode_flags(inode);
1441
ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1442
ei->i_frag_no = raw_inode->i_frag;
1443
ei->i_frag_size = raw_inode->i_fsize;
1444
ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1445
ei->i_dir_acl = 0;
1446
1447
if (ei->i_file_acl &&
1448
!ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1449
ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1450
ei->i_file_acl);
1451
ret = -EFSCORRUPTED;
1452
goto bad_inode;
1453
}
1454
1455
if (S_ISREG(inode->i_mode))
1456
inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1457
else
1458
ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1459
if (i_size_read(inode) < 0) {
1460
ret = -EFSCORRUPTED;
1461
goto bad_inode;
1462
}
1463
ei->i_dtime = 0;
1464
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1465
ei->i_state = 0;
1466
ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1467
ei->i_dir_start_lookup = 0;
1468
1469
/*
1470
* NOTE! The in-memory inode i_data array is in little-endian order
1471
* even on big-endian machines: we do NOT byteswap the block numbers!
1472
*/
1473
for (n = 0; n < EXT2_N_BLOCKS; n++)
1474
ei->i_data[n] = raw_inode->i_block[n];
1475
1476
if (S_ISREG(inode->i_mode)) {
1477
ext2_set_file_ops(inode);
1478
} else if (S_ISDIR(inode->i_mode)) {
1479
inode->i_op = &ext2_dir_inode_operations;
1480
inode->i_fop = &ext2_dir_operations;
1481
inode->i_mapping->a_ops = &ext2_aops;
1482
} else if (S_ISLNK(inode->i_mode)) {
1483
if (ext2_inode_is_fast_symlink(inode)) {
1484
inode->i_link = (char *)ei->i_data;
1485
inode->i_op = &ext2_fast_symlink_inode_operations;
1486
nd_terminate_link(ei->i_data, inode->i_size,
1487
sizeof(ei->i_data) - 1);
1488
} else {
1489
inode->i_op = &ext2_symlink_inode_operations;
1490
inode_nohighmem(inode);
1491
inode->i_mapping->a_ops = &ext2_aops;
1492
}
1493
} else {
1494
inode->i_op = &ext2_special_inode_operations;
1495
if (raw_inode->i_block[0])
1496
init_special_inode(inode, inode->i_mode,
1497
old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1498
else
1499
init_special_inode(inode, inode->i_mode,
1500
new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1501
}
1502
brelse (bh);
1503
unlock_new_inode(inode);
1504
return inode;
1505
1506
bad_inode:
1507
brelse(bh);
1508
iget_failed(inode);
1509
return ERR_PTR(ret);
1510
}
1511
1512
static int __ext2_write_inode(struct inode *inode, int do_sync)
1513
{
1514
struct ext2_inode_info *ei = EXT2_I(inode);
1515
struct super_block *sb = inode->i_sb;
1516
ino_t ino = inode->i_ino;
1517
uid_t uid = i_uid_read(inode);
1518
gid_t gid = i_gid_read(inode);
1519
struct buffer_head * bh;
1520
struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1521
int n;
1522
int err = 0;
1523
1524
if (IS_ERR(raw_inode))
1525
return -EIO;
1526
1527
/* For fields not tracking in the in-memory inode,
1528
* initialise them to zero for new inodes. */
1529
if (ei->i_state & EXT2_STATE_NEW)
1530
memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1531
1532
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1533
if (!(test_opt(sb, NO_UID32))) {
1534
raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1535
raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1536
/*
1537
* Fix up interoperability with old kernels. Otherwise, old inodes get
1538
* re-used with the upper 16 bits of the uid/gid intact
1539
*/
1540
if (!ei->i_dtime) {
1541
raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1542
raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1543
} else {
1544
raw_inode->i_uid_high = 0;
1545
raw_inode->i_gid_high = 0;
1546
}
1547
} else {
1548
raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1549
raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1550
raw_inode->i_uid_high = 0;
1551
raw_inode->i_gid_high = 0;
1552
}
1553
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1554
raw_inode->i_size = cpu_to_le32(inode->i_size);
1555
raw_inode->i_atime = cpu_to_le32(inode_get_atime_sec(inode));
1556
raw_inode->i_ctime = cpu_to_le32(inode_get_ctime_sec(inode));
1557
raw_inode->i_mtime = cpu_to_le32(inode_get_mtime_sec(inode));
1558
1559
raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1560
raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1561
raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1562
raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1563
raw_inode->i_frag = ei->i_frag_no;
1564
raw_inode->i_fsize = ei->i_frag_size;
1565
raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1566
if (!S_ISREG(inode->i_mode))
1567
raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1568
else {
1569
raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1570
if (inode->i_size > 0x7fffffffULL) {
1571
if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1572
EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1573
EXT2_SB(sb)->s_es->s_rev_level ==
1574
cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1575
/* If this is the first large file
1576
* created, add a flag to the superblock.
1577
*/
1578
spin_lock(&EXT2_SB(sb)->s_lock);
1579
ext2_update_dynamic_rev(sb);
1580
EXT2_SET_RO_COMPAT_FEATURE(sb,
1581
EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1582
spin_unlock(&EXT2_SB(sb)->s_lock);
1583
ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1584
}
1585
}
1586
}
1587
1588
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1589
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1590
if (old_valid_dev(inode->i_rdev)) {
1591
raw_inode->i_block[0] =
1592
cpu_to_le32(old_encode_dev(inode->i_rdev));
1593
raw_inode->i_block[1] = 0;
1594
} else {
1595
raw_inode->i_block[0] = 0;
1596
raw_inode->i_block[1] =
1597
cpu_to_le32(new_encode_dev(inode->i_rdev));
1598
raw_inode->i_block[2] = 0;
1599
}
1600
} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1601
raw_inode->i_block[n] = ei->i_data[n];
1602
mark_buffer_dirty(bh);
1603
if (do_sync) {
1604
sync_dirty_buffer(bh);
1605
if (buffer_req(bh) && !buffer_uptodate(bh)) {
1606
printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1607
sb->s_id, (unsigned long) ino);
1608
err = -EIO;
1609
}
1610
}
1611
ei->i_state &= ~EXT2_STATE_NEW;
1612
brelse (bh);
1613
return err;
1614
}
1615
1616
int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1617
{
1618
return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1619
}
1620
1621
int ext2_getattr(struct mnt_idmap *idmap, const struct path *path,
1622
struct kstat *stat, u32 request_mask, unsigned int query_flags)
1623
{
1624
struct inode *inode = d_inode(path->dentry);
1625
struct ext2_inode_info *ei = EXT2_I(inode);
1626
unsigned int flags;
1627
1628
flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1629
if (flags & EXT2_APPEND_FL)
1630
stat->attributes |= STATX_ATTR_APPEND;
1631
if (flags & EXT2_COMPR_FL)
1632
stat->attributes |= STATX_ATTR_COMPRESSED;
1633
if (flags & EXT2_IMMUTABLE_FL)
1634
stat->attributes |= STATX_ATTR_IMMUTABLE;
1635
if (flags & EXT2_NODUMP_FL)
1636
stat->attributes |= STATX_ATTR_NODUMP;
1637
stat->attributes_mask |= (STATX_ATTR_APPEND |
1638
STATX_ATTR_COMPRESSED |
1639
STATX_ATTR_ENCRYPTED |
1640
STATX_ATTR_IMMUTABLE |
1641
STATX_ATTR_NODUMP);
1642
1643
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1644
return 0;
1645
}
1646
1647
int ext2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1648
struct iattr *iattr)
1649
{
1650
struct inode *inode = d_inode(dentry);
1651
int error;
1652
1653
error = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
1654
if (error)
1655
return error;
1656
1657
if (is_quota_modification(&nop_mnt_idmap, inode, iattr)) {
1658
error = dquot_initialize(inode);
1659
if (error)
1660
return error;
1661
}
1662
if (i_uid_needs_update(&nop_mnt_idmap, iattr, inode) ||
1663
i_gid_needs_update(&nop_mnt_idmap, iattr, inode)) {
1664
error = dquot_transfer(&nop_mnt_idmap, inode, iattr);
1665
if (error)
1666
return error;
1667
}
1668
if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1669
error = ext2_setsize(inode, iattr->ia_size);
1670
if (error)
1671
return error;
1672
}
1673
setattr_copy(&nop_mnt_idmap, inode, iattr);
1674
if (iattr->ia_valid & ATTR_MODE)
1675
error = posix_acl_chmod(&nop_mnt_idmap, dentry, inode->i_mode);
1676
mark_inode_dirty(inode);
1677
1678
return error;
1679
}
1680
1681