Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/io_uring/io_uring.c
53281 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Shared application/kernel submission and completion ring pairs, for
4
* supporting fast/efficient IO.
5
*
6
* A note on the read/write ordering memory barriers that are matched between
7
* the application and kernel side.
8
*
9
* After the application reads the CQ ring tail, it must use an
10
* appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11
* before writing the tail (using smp_load_acquire to read the tail will
12
* do). It also needs a smp_mb() before updating CQ head (ordering the
13
* entry load(s) with the head store), pairing with an implicit barrier
14
* through a control-dependency in io_get_cqe (smp_store_release to
15
* store head will do). Failure to do so could lead to reading invalid
16
* CQ entries.
17
*
18
* Likewise, the application must use an appropriate smp_wmb() before
19
* writing the SQ tail (ordering SQ entry stores with the tail store),
20
* which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21
* to store the tail will do). And it needs a barrier ordering the SQ
22
* head load before writing new SQ entries (smp_load_acquire to read
23
* head will do).
24
*
25
* When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26
* needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27
* updating the SQ tail; a full memory barrier smp_mb() is needed
28
* between.
29
*
30
* Also see the examples in the liburing library:
31
*
32
* git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git
33
*
34
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35
* from data shared between the kernel and application. This is done both
36
* for ordering purposes, but also to ensure that once a value is loaded from
37
* data that the application could potentially modify, it remains stable.
38
*
39
* Copyright (C) 2018-2019 Jens Axboe
40
* Copyright (c) 2018-2019 Christoph Hellwig
41
*/
42
#include <linux/kernel.h>
43
#include <linux/errno.h>
44
#include <linux/syscalls.h>
45
#include <linux/refcount.h>
46
#include <linux/bits.h>
47
48
#include <linux/sched/signal.h>
49
#include <linux/fs.h>
50
#include <linux/mm.h>
51
#include <linux/percpu.h>
52
#include <linux/slab.h>
53
#include <linux/anon_inodes.h>
54
#include <linux/uaccess.h>
55
#include <linux/nospec.h>
56
#include <linux/task_work.h>
57
#include <linux/io_uring.h>
58
#include <linux/io_uring/cmd.h>
59
#include <linux/audit.h>
60
#include <linux/security.h>
61
#include <linux/jump_label.h>
62
63
#define CREATE_TRACE_POINTS
64
#include <trace/events/io_uring.h>
65
66
#include <uapi/linux/io_uring.h>
67
68
#include "io-wq.h"
69
70
#include "filetable.h"
71
#include "io_uring.h"
72
#include "opdef.h"
73
#include "refs.h"
74
#include "tctx.h"
75
#include "register.h"
76
#include "sqpoll.h"
77
#include "fdinfo.h"
78
#include "kbuf.h"
79
#include "rsrc.h"
80
#include "cancel.h"
81
#include "net.h"
82
#include "notif.h"
83
#include "waitid.h"
84
#include "futex.h"
85
#include "napi.h"
86
#include "uring_cmd.h"
87
#include "msg_ring.h"
88
#include "memmap.h"
89
#include "zcrx.h"
90
91
#include "timeout.h"
92
#include "poll.h"
93
#include "rw.h"
94
#include "alloc_cache.h"
95
#include "eventfd.h"
96
#include "wait.h"
97
#include "bpf_filter.h"
98
99
#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
100
IOSQE_IO_HARDLINK | IOSQE_ASYNC)
101
102
#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
103
104
#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
105
REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
106
107
#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
108
REQ_F_REISSUE | REQ_F_POLLED | \
109
IO_REQ_CLEAN_FLAGS)
110
111
#define IO_TCTX_REFS_CACHE_NR (1U << 10)
112
113
#define IO_COMPL_BATCH 32
114
#define IO_REQ_ALLOC_BATCH 8
115
116
/* requests with any of those set should undergo io_disarm_next() */
117
#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
118
119
static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
120
static void __io_req_caches_free(struct io_ring_ctx *ctx);
121
122
static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
123
124
struct kmem_cache *req_cachep;
125
static struct workqueue_struct *iou_wq __ro_after_init;
126
127
static int __read_mostly sysctl_io_uring_disabled;
128
static int __read_mostly sysctl_io_uring_group = -1;
129
130
#ifdef CONFIG_SYSCTL
131
static const struct ctl_table kernel_io_uring_disabled_table[] = {
132
{
133
.procname = "io_uring_disabled",
134
.data = &sysctl_io_uring_disabled,
135
.maxlen = sizeof(sysctl_io_uring_disabled),
136
.mode = 0644,
137
.proc_handler = proc_dointvec_minmax,
138
.extra1 = SYSCTL_ZERO,
139
.extra2 = SYSCTL_TWO,
140
},
141
{
142
.procname = "io_uring_group",
143
.data = &sysctl_io_uring_group,
144
.maxlen = sizeof(gid_t),
145
.mode = 0644,
146
.proc_handler = proc_dointvec,
147
},
148
};
149
#endif
150
151
static void io_poison_cached_req(struct io_kiocb *req)
152
{
153
req->ctx = IO_URING_PTR_POISON;
154
req->tctx = IO_URING_PTR_POISON;
155
req->file = IO_URING_PTR_POISON;
156
req->creds = IO_URING_PTR_POISON;
157
req->io_task_work.func = IO_URING_PTR_POISON;
158
req->apoll = IO_URING_PTR_POISON;
159
}
160
161
static void io_poison_req(struct io_kiocb *req)
162
{
163
io_poison_cached_req(req);
164
req->async_data = IO_URING_PTR_POISON;
165
req->kbuf = IO_URING_PTR_POISON;
166
req->comp_list.next = IO_URING_PTR_POISON;
167
req->file_node = IO_URING_PTR_POISON;
168
req->link = IO_URING_PTR_POISON;
169
}
170
171
static inline void req_fail_link_node(struct io_kiocb *req, int res)
172
{
173
req_set_fail(req);
174
io_req_set_res(req, res, 0);
175
}
176
177
static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
178
{
179
if (IS_ENABLED(CONFIG_KASAN))
180
io_poison_cached_req(req);
181
wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
182
}
183
184
static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
185
{
186
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
187
188
complete(&ctx->ref_comp);
189
}
190
191
static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
192
{
193
unsigned int hash_buckets;
194
int i;
195
196
do {
197
hash_buckets = 1U << bits;
198
table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
199
GFP_KERNEL_ACCOUNT);
200
if (table->hbs)
201
break;
202
if (bits == 1)
203
return -ENOMEM;
204
bits--;
205
} while (1);
206
207
table->hash_bits = bits;
208
for (i = 0; i < hash_buckets; i++)
209
INIT_HLIST_HEAD(&table->hbs[i].list);
210
return 0;
211
}
212
213
static void io_free_alloc_caches(struct io_ring_ctx *ctx)
214
{
215
io_alloc_cache_free(&ctx->apoll_cache, kfree);
216
io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
217
io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
218
io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
219
io_futex_cache_free(ctx);
220
io_rsrc_cache_free(ctx);
221
}
222
223
static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
224
{
225
struct io_ring_ctx *ctx;
226
int hash_bits;
227
bool ret;
228
229
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
230
if (!ctx)
231
return NULL;
232
233
xa_init(&ctx->io_bl_xa);
234
235
/*
236
* Use 5 bits less than the max cq entries, that should give us around
237
* 32 entries per hash list if totally full and uniformly spread, but
238
* don't keep too many buckets to not overconsume memory.
239
*/
240
hash_bits = ilog2(p->cq_entries) - 5;
241
hash_bits = clamp(hash_bits, 1, 8);
242
if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
243
goto err;
244
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
245
0, GFP_KERNEL))
246
goto err;
247
248
ctx->flags = p->flags;
249
ctx->hybrid_poll_time = LLONG_MAX;
250
atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
251
init_waitqueue_head(&ctx->sqo_sq_wait);
252
INIT_LIST_HEAD(&ctx->sqd_list);
253
INIT_LIST_HEAD(&ctx->cq_overflow_list);
254
ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
255
sizeof(struct async_poll), 0);
256
ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
257
sizeof(struct io_async_msghdr),
258
offsetof(struct io_async_msghdr, clear));
259
ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
260
sizeof(struct io_async_rw),
261
offsetof(struct io_async_rw, clear));
262
ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
263
sizeof(struct io_async_cmd),
264
sizeof(struct io_async_cmd));
265
ret |= io_futex_cache_init(ctx);
266
ret |= io_rsrc_cache_init(ctx);
267
if (ret)
268
goto free_ref;
269
init_completion(&ctx->ref_comp);
270
xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
271
mutex_init(&ctx->uring_lock);
272
init_waitqueue_head(&ctx->cq_wait);
273
init_waitqueue_head(&ctx->poll_wq);
274
spin_lock_init(&ctx->completion_lock);
275
raw_spin_lock_init(&ctx->timeout_lock);
276
INIT_LIST_HEAD(&ctx->iopoll_list);
277
INIT_LIST_HEAD(&ctx->defer_list);
278
INIT_LIST_HEAD(&ctx->timeout_list);
279
INIT_LIST_HEAD(&ctx->ltimeout_list);
280
init_llist_head(&ctx->work_llist);
281
INIT_LIST_HEAD(&ctx->tctx_list);
282
mutex_init(&ctx->tctx_lock);
283
ctx->submit_state.free_list.next = NULL;
284
INIT_HLIST_HEAD(&ctx->waitid_list);
285
xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
286
#ifdef CONFIG_FUTEX
287
INIT_HLIST_HEAD(&ctx->futex_list);
288
#endif
289
INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
290
INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
291
INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
292
io_napi_init(ctx);
293
mutex_init(&ctx->mmap_lock);
294
295
return ctx;
296
297
free_ref:
298
percpu_ref_exit(&ctx->refs);
299
err:
300
io_free_alloc_caches(ctx);
301
kvfree(ctx->cancel_table.hbs);
302
xa_destroy(&ctx->io_bl_xa);
303
kfree(ctx);
304
return NULL;
305
}
306
307
static void io_clean_op(struct io_kiocb *req)
308
{
309
if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
310
io_kbuf_drop_legacy(req);
311
312
if (req->flags & REQ_F_NEED_CLEANUP) {
313
const struct io_cold_def *def = &io_cold_defs[req->opcode];
314
315
if (def->cleanup)
316
def->cleanup(req);
317
}
318
if (req->flags & REQ_F_INFLIGHT)
319
atomic_dec(&req->tctx->inflight_tracked);
320
if (req->flags & REQ_F_CREDS)
321
put_cred(req->creds);
322
if (req->flags & REQ_F_ASYNC_DATA) {
323
kfree(req->async_data);
324
req->async_data = NULL;
325
}
326
req->flags &= ~IO_REQ_CLEAN_FLAGS;
327
}
328
329
/*
330
* Mark the request as inflight, so that file cancelation will find it.
331
* Can be used if the file is an io_uring instance, or if the request itself
332
* relies on ->mm being alive for the duration of the request.
333
*/
334
inline void io_req_track_inflight(struct io_kiocb *req)
335
{
336
if (!(req->flags & REQ_F_INFLIGHT)) {
337
req->flags |= REQ_F_INFLIGHT;
338
atomic_inc(&req->tctx->inflight_tracked);
339
}
340
}
341
342
static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
343
{
344
if (WARN_ON_ONCE(!req->link))
345
return NULL;
346
347
req->flags &= ~REQ_F_ARM_LTIMEOUT;
348
req->flags |= REQ_F_LINK_TIMEOUT;
349
350
/* linked timeouts should have two refs once prep'ed */
351
io_req_set_refcount(req);
352
__io_req_set_refcount(req->link, 2);
353
return req->link;
354
}
355
356
static void io_prep_async_work(struct io_kiocb *req)
357
{
358
const struct io_issue_def *def = &io_issue_defs[req->opcode];
359
struct io_ring_ctx *ctx = req->ctx;
360
361
if (!(req->flags & REQ_F_CREDS)) {
362
req->flags |= REQ_F_CREDS;
363
req->creds = get_current_cred();
364
}
365
366
req->work.list.next = NULL;
367
atomic_set(&req->work.flags, 0);
368
if (req->flags & REQ_F_FORCE_ASYNC)
369
atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
370
371
if (req->file && !(req->flags & REQ_F_FIXED_FILE))
372
req->flags |= io_file_get_flags(req->file);
373
374
if (req->file && (req->flags & REQ_F_ISREG)) {
375
bool should_hash = def->hash_reg_file;
376
377
/* don't serialize this request if the fs doesn't need it */
378
if (should_hash && (req->file->f_flags & O_DIRECT) &&
379
(req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
380
should_hash = false;
381
if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
382
io_wq_hash_work(&req->work, file_inode(req->file));
383
} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
384
if (def->unbound_nonreg_file)
385
atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
386
}
387
}
388
389
static void io_prep_async_link(struct io_kiocb *req)
390
{
391
struct io_kiocb *cur;
392
393
if (req->flags & REQ_F_LINK_TIMEOUT) {
394
struct io_ring_ctx *ctx = req->ctx;
395
396
raw_spin_lock_irq(&ctx->timeout_lock);
397
io_for_each_link(cur, req)
398
io_prep_async_work(cur);
399
raw_spin_unlock_irq(&ctx->timeout_lock);
400
} else {
401
io_for_each_link(cur, req)
402
io_prep_async_work(cur);
403
}
404
}
405
406
static void io_queue_iowq(struct io_kiocb *req)
407
{
408
struct io_uring_task *tctx = req->tctx;
409
410
BUG_ON(!tctx);
411
412
if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
413
io_req_task_queue_fail(req, -ECANCELED);
414
return;
415
}
416
417
/* init ->work of the whole link before punting */
418
io_prep_async_link(req);
419
420
/*
421
* Not expected to happen, but if we do have a bug where this _can_
422
* happen, catch it here and ensure the request is marked as
423
* canceled. That will make io-wq go through the usual work cancel
424
* procedure rather than attempt to run this request (or create a new
425
* worker for it).
426
*/
427
if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
428
atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
429
430
trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
431
io_wq_enqueue(tctx->io_wq, &req->work);
432
}
433
434
static void io_req_queue_iowq_tw(struct io_tw_req tw_req, io_tw_token_t tw)
435
{
436
io_queue_iowq(tw_req.req);
437
}
438
439
void io_req_queue_iowq(struct io_kiocb *req)
440
{
441
req->io_task_work.func = io_req_queue_iowq_tw;
442
io_req_task_work_add(req);
443
}
444
445
unsigned io_linked_nr(struct io_kiocb *req)
446
{
447
struct io_kiocb *tmp;
448
unsigned nr = 0;
449
450
io_for_each_link(tmp, req)
451
nr++;
452
return nr;
453
}
454
455
static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
456
{
457
bool drain_seen = false, first = true;
458
459
lockdep_assert_held(&ctx->uring_lock);
460
__io_req_caches_free(ctx);
461
462
while (!list_empty(&ctx->defer_list)) {
463
struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
464
struct io_defer_entry, list);
465
466
drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
467
if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
468
return;
469
470
list_del_init(&de->list);
471
ctx->nr_drained -= io_linked_nr(de->req);
472
io_req_task_queue(de->req);
473
kfree(de);
474
first = false;
475
}
476
}
477
478
void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
479
{
480
if (ctx->poll_activated)
481
io_poll_wq_wake(ctx);
482
if (ctx->off_timeout_used)
483
io_flush_timeouts(ctx);
484
if (ctx->has_evfd)
485
io_eventfd_signal(ctx, true);
486
}
487
488
static inline void __io_cq_lock(struct io_ring_ctx *ctx)
489
{
490
if (!ctx->lockless_cq)
491
spin_lock(&ctx->completion_lock);
492
}
493
494
static inline void io_cq_lock(struct io_ring_ctx *ctx)
495
__acquires(ctx->completion_lock)
496
{
497
spin_lock(&ctx->completion_lock);
498
}
499
500
static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
501
{
502
io_commit_cqring(ctx);
503
if (!ctx->task_complete) {
504
if (!ctx->lockless_cq)
505
spin_unlock(&ctx->completion_lock);
506
/* IOPOLL rings only need to wake up if it's also SQPOLL */
507
if (!ctx->syscall_iopoll)
508
io_cqring_wake(ctx);
509
}
510
io_commit_cqring_flush(ctx);
511
}
512
513
static void io_cq_unlock_post(struct io_ring_ctx *ctx)
514
__releases(ctx->completion_lock)
515
{
516
io_commit_cqring(ctx);
517
spin_unlock(&ctx->completion_lock);
518
io_cqring_wake(ctx);
519
io_commit_cqring_flush(ctx);
520
}
521
522
static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
523
{
524
lockdep_assert_held(&ctx->uring_lock);
525
526
/* don't abort if we're dying, entries must get freed */
527
if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
528
return;
529
530
io_cq_lock(ctx);
531
while (!list_empty(&ctx->cq_overflow_list)) {
532
size_t cqe_size = sizeof(struct io_uring_cqe);
533
struct io_uring_cqe *cqe;
534
struct io_overflow_cqe *ocqe;
535
bool is_cqe32 = false;
536
537
ocqe = list_first_entry(&ctx->cq_overflow_list,
538
struct io_overflow_cqe, list);
539
if (ocqe->cqe.flags & IORING_CQE_F_32 ||
540
ctx->flags & IORING_SETUP_CQE32) {
541
is_cqe32 = true;
542
cqe_size <<= 1;
543
}
544
if (ctx->flags & IORING_SETUP_CQE32)
545
is_cqe32 = false;
546
547
if (!dying) {
548
if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
549
break;
550
memcpy(cqe, &ocqe->cqe, cqe_size);
551
}
552
list_del(&ocqe->list);
553
kfree(ocqe);
554
555
/*
556
* For silly syzbot cases that deliberately overflow by huge
557
* amounts, check if we need to resched and drop and
558
* reacquire the locks if so. Nothing real would ever hit this.
559
* Ideally we'd have a non-posting unlock for this, but hard
560
* to care for a non-real case.
561
*/
562
if (need_resched()) {
563
ctx->cqe_sentinel = ctx->cqe_cached;
564
io_cq_unlock_post(ctx);
565
mutex_unlock(&ctx->uring_lock);
566
cond_resched();
567
mutex_lock(&ctx->uring_lock);
568
io_cq_lock(ctx);
569
}
570
}
571
572
if (list_empty(&ctx->cq_overflow_list)) {
573
clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
574
atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
575
}
576
io_cq_unlock_post(ctx);
577
}
578
579
static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
580
{
581
if (ctx->rings)
582
__io_cqring_overflow_flush(ctx, true);
583
}
584
585
void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
586
{
587
mutex_lock(&ctx->uring_lock);
588
__io_cqring_overflow_flush(ctx, false);
589
mutex_unlock(&ctx->uring_lock);
590
}
591
592
/* must to be called somewhat shortly after putting a request */
593
static inline void io_put_task(struct io_kiocb *req)
594
{
595
struct io_uring_task *tctx = req->tctx;
596
597
if (likely(tctx->task == current)) {
598
tctx->cached_refs++;
599
} else {
600
percpu_counter_sub(&tctx->inflight, 1);
601
if (unlikely(atomic_read(&tctx->in_cancel)))
602
wake_up(&tctx->wait);
603
put_task_struct(tctx->task);
604
}
605
}
606
607
void io_task_refs_refill(struct io_uring_task *tctx)
608
{
609
unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
610
611
percpu_counter_add(&tctx->inflight, refill);
612
refcount_add(refill, &current->usage);
613
tctx->cached_refs += refill;
614
}
615
616
__cold void io_uring_drop_tctx_refs(struct task_struct *task)
617
{
618
struct io_uring_task *tctx = task->io_uring;
619
unsigned int refs = tctx->cached_refs;
620
621
if (refs) {
622
tctx->cached_refs = 0;
623
percpu_counter_sub(&tctx->inflight, refs);
624
put_task_struct_many(task, refs);
625
}
626
}
627
628
static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
629
struct io_overflow_cqe *ocqe)
630
{
631
lockdep_assert_held(&ctx->completion_lock);
632
633
if (!ocqe) {
634
struct io_rings *r = ctx->rings;
635
636
/*
637
* If we're in ring overflow flush mode, or in task cancel mode,
638
* or cannot allocate an overflow entry, then we need to drop it
639
* on the floor.
640
*/
641
WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
642
set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
643
return false;
644
}
645
if (list_empty(&ctx->cq_overflow_list)) {
646
set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
647
atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
648
649
}
650
list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
651
return true;
652
}
653
654
static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
655
struct io_cqe *cqe,
656
struct io_big_cqe *big_cqe, gfp_t gfp)
657
{
658
struct io_overflow_cqe *ocqe;
659
size_t ocq_size = sizeof(struct io_overflow_cqe);
660
bool is_cqe32 = false;
661
662
if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
663
is_cqe32 = true;
664
ocq_size += sizeof(struct io_uring_cqe);
665
}
666
667
ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
668
trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
669
if (ocqe) {
670
ocqe->cqe.user_data = cqe->user_data;
671
ocqe->cqe.res = cqe->res;
672
ocqe->cqe.flags = cqe->flags;
673
if (is_cqe32 && big_cqe) {
674
ocqe->cqe.big_cqe[0] = big_cqe->extra1;
675
ocqe->cqe.big_cqe[1] = big_cqe->extra2;
676
}
677
}
678
if (big_cqe)
679
big_cqe->extra1 = big_cqe->extra2 = 0;
680
return ocqe;
681
}
682
683
/*
684
* Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
685
* because the ring is a single 16b entry away from wrapping.
686
*/
687
static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
688
{
689
if (__io_cqring_events(ctx) < ctx->cq_entries) {
690
struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
691
692
cqe->user_data = 0;
693
cqe->res = 0;
694
cqe->flags = IORING_CQE_F_SKIP;
695
ctx->cached_cq_tail++;
696
return true;
697
}
698
return false;
699
}
700
701
/*
702
* writes to the cq entry need to come after reading head; the
703
* control dependency is enough as we're using WRITE_ONCE to
704
* fill the cq entry
705
*/
706
bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
707
{
708
struct io_rings *rings = ctx->rings;
709
unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
710
unsigned int free, queued, len;
711
712
/*
713
* Posting into the CQ when there are pending overflowed CQEs may break
714
* ordering guarantees, which will affect links, F_MORE users and more.
715
* Force overflow the completion.
716
*/
717
if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
718
return false;
719
720
/*
721
* Post dummy CQE if a 32b CQE is needed and there's only room for a
722
* 16b CQE before the ring wraps.
723
*/
724
if (cqe32 && off + 1 == ctx->cq_entries) {
725
if (!io_fill_nop_cqe(ctx, off))
726
return false;
727
off = 0;
728
}
729
730
/* userspace may cheat modifying the tail, be safe and do min */
731
queued = min(__io_cqring_events(ctx), ctx->cq_entries);
732
free = ctx->cq_entries - queued;
733
/* we need a contiguous range, limit based on the current array offset */
734
len = min(free, ctx->cq_entries - off);
735
if (len < (cqe32 + 1))
736
return false;
737
738
if (ctx->flags & IORING_SETUP_CQE32) {
739
off <<= 1;
740
len <<= 1;
741
}
742
743
ctx->cqe_cached = &rings->cqes[off];
744
ctx->cqe_sentinel = ctx->cqe_cached + len;
745
return true;
746
}
747
748
static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
749
struct io_uring_cqe src_cqe[2])
750
{
751
struct io_uring_cqe *cqe;
752
753
if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
754
return false;
755
if (unlikely(!io_get_cqe(ctx, &cqe, true)))
756
return false;
757
758
memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
759
trace_io_uring_complete(ctx, NULL, cqe);
760
return true;
761
}
762
763
static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
764
u32 cflags)
765
{
766
bool cqe32 = cflags & IORING_CQE_F_32;
767
struct io_uring_cqe *cqe;
768
769
if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
770
WRITE_ONCE(cqe->user_data, user_data);
771
WRITE_ONCE(cqe->res, res);
772
WRITE_ONCE(cqe->flags, cflags);
773
774
if (cqe32) {
775
WRITE_ONCE(cqe->big_cqe[0], 0);
776
WRITE_ONCE(cqe->big_cqe[1], 0);
777
}
778
779
trace_io_uring_complete(ctx, NULL, cqe);
780
return true;
781
}
782
return false;
783
}
784
785
static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
786
{
787
return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
788
}
789
790
static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
791
struct io_big_cqe *big_cqe)
792
{
793
struct io_overflow_cqe *ocqe;
794
795
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
796
spin_lock(&ctx->completion_lock);
797
io_cqring_add_overflow(ctx, ocqe);
798
spin_unlock(&ctx->completion_lock);
799
}
800
801
static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
802
struct io_cqe *cqe,
803
struct io_big_cqe *big_cqe)
804
{
805
struct io_overflow_cqe *ocqe;
806
807
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_NOWAIT);
808
return io_cqring_add_overflow(ctx, ocqe);
809
}
810
811
bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
812
{
813
bool filled;
814
815
io_cq_lock(ctx);
816
filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
817
if (unlikely(!filled)) {
818
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
819
820
filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
821
}
822
io_cq_unlock_post(ctx);
823
return filled;
824
}
825
826
/*
827
* Must be called from inline task_work so we know a flush will happen later,
828
* and obviously with ctx->uring_lock held (tw always has that).
829
*/
830
void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
831
{
832
lockdep_assert_held(&ctx->uring_lock);
833
lockdep_assert(ctx->lockless_cq);
834
835
if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
836
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
837
838
io_cqe_overflow(ctx, &cqe, NULL);
839
}
840
ctx->submit_state.cq_flush = true;
841
}
842
843
/*
844
* A helper for multishot requests posting additional CQEs.
845
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
846
*/
847
bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
848
{
849
struct io_ring_ctx *ctx = req->ctx;
850
bool posted;
851
852
/*
853
* If multishot has already posted deferred completions, ensure that
854
* those are flushed first before posting this one. If not, CQEs
855
* could get reordered.
856
*/
857
if (!wq_list_empty(&ctx->submit_state.compl_reqs))
858
__io_submit_flush_completions(ctx);
859
860
lockdep_assert(!io_wq_current_is_worker());
861
lockdep_assert_held(&ctx->uring_lock);
862
863
if (!ctx->lockless_cq) {
864
spin_lock(&ctx->completion_lock);
865
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
866
spin_unlock(&ctx->completion_lock);
867
} else {
868
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
869
}
870
871
ctx->submit_state.cq_flush = true;
872
return posted;
873
}
874
875
/*
876
* A helper for multishot requests posting additional CQEs.
877
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
878
*/
879
bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
880
{
881
struct io_ring_ctx *ctx = req->ctx;
882
bool posted;
883
884
lockdep_assert(!io_wq_current_is_worker());
885
lockdep_assert_held(&ctx->uring_lock);
886
887
cqe[0].user_data = req->cqe.user_data;
888
if (!ctx->lockless_cq) {
889
spin_lock(&ctx->completion_lock);
890
posted = io_fill_cqe_aux32(ctx, cqe);
891
spin_unlock(&ctx->completion_lock);
892
} else {
893
posted = io_fill_cqe_aux32(ctx, cqe);
894
}
895
896
ctx->submit_state.cq_flush = true;
897
return posted;
898
}
899
900
static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
901
{
902
struct io_ring_ctx *ctx = req->ctx;
903
bool completed = true;
904
905
/*
906
* All execution paths but io-wq use the deferred completions by
907
* passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
908
*/
909
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
910
return;
911
912
/*
913
* Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
914
* the submitter task context, IOPOLL protects with uring_lock.
915
*/
916
if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
917
defer_complete:
918
req->io_task_work.func = io_req_task_complete;
919
io_req_task_work_add(req);
920
return;
921
}
922
923
io_cq_lock(ctx);
924
if (!(req->flags & REQ_F_CQE_SKIP))
925
completed = io_fill_cqe_req(ctx, req);
926
io_cq_unlock_post(ctx);
927
928
if (!completed)
929
goto defer_complete;
930
931
/*
932
* We don't free the request here because we know it's called from
933
* io-wq only, which holds a reference, so it cannot be the last put.
934
*/
935
req_ref_put(req);
936
}
937
938
void io_req_defer_failed(struct io_kiocb *req, s32 res)
939
__must_hold(&ctx->uring_lock)
940
{
941
const struct io_cold_def *def = &io_cold_defs[req->opcode];
942
943
lockdep_assert_held(&req->ctx->uring_lock);
944
945
req_set_fail(req);
946
io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
947
if (def->fail)
948
def->fail(req);
949
io_req_complete_defer(req);
950
}
951
952
/*
953
* A request might get retired back into the request caches even before opcode
954
* handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955
* Because of that, io_alloc_req() should be called only under ->uring_lock
956
* and with extra caution to not get a request that is still worked on.
957
*/
958
__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
959
__must_hold(&ctx->uring_lock)
960
{
961
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
962
void *reqs[IO_REQ_ALLOC_BATCH];
963
int ret;
964
965
ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
966
967
/*
968
* Bulk alloc is all-or-nothing. If we fail to get a batch,
969
* retry single alloc to be on the safe side.
970
*/
971
if (unlikely(ret <= 0)) {
972
reqs[0] = kmem_cache_alloc(req_cachep, gfp);
973
if (!reqs[0])
974
return false;
975
ret = 1;
976
}
977
978
percpu_ref_get_many(&ctx->refs, ret);
979
ctx->nr_req_allocated += ret;
980
981
while (ret--) {
982
struct io_kiocb *req = reqs[ret];
983
984
io_req_add_to_cache(req, ctx);
985
}
986
return true;
987
}
988
989
__cold void io_free_req(struct io_kiocb *req)
990
{
991
/* refs were already put, restore them for io_req_task_complete() */
992
req->flags &= ~REQ_F_REFCOUNT;
993
/* we only want to free it, don't post CQEs */
994
req->flags |= REQ_F_CQE_SKIP;
995
req->io_task_work.func = io_req_task_complete;
996
io_req_task_work_add(req);
997
}
998
999
static void __io_req_find_next_prep(struct io_kiocb *req)
1000
{
1001
struct io_ring_ctx *ctx = req->ctx;
1002
1003
spin_lock(&ctx->completion_lock);
1004
io_disarm_next(req);
1005
spin_unlock(&ctx->completion_lock);
1006
}
1007
1008
static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1009
{
1010
struct io_kiocb *nxt;
1011
1012
/*
1013
* If LINK is set, we have dependent requests in this chain. If we
1014
* didn't fail this request, queue the first one up, moving any other
1015
* dependencies to the next request. In case of failure, fail the rest
1016
* of the chain.
1017
*/
1018
if (unlikely(req->flags & IO_DISARM_MASK))
1019
__io_req_find_next_prep(req);
1020
nxt = req->link;
1021
req->link = NULL;
1022
return nxt;
1023
}
1024
1025
static void io_req_task_cancel(struct io_tw_req tw_req, io_tw_token_t tw)
1026
{
1027
struct io_kiocb *req = tw_req.req;
1028
1029
io_tw_lock(req->ctx, tw);
1030
io_req_defer_failed(req, req->cqe.res);
1031
}
1032
1033
void io_req_task_submit(struct io_tw_req tw_req, io_tw_token_t tw)
1034
{
1035
struct io_kiocb *req = tw_req.req;
1036
struct io_ring_ctx *ctx = req->ctx;
1037
1038
io_tw_lock(ctx, tw);
1039
if (unlikely(tw.cancel))
1040
io_req_defer_failed(req, -EFAULT);
1041
else if (req->flags & REQ_F_FORCE_ASYNC)
1042
io_queue_iowq(req);
1043
else
1044
io_queue_sqe(req, 0);
1045
}
1046
1047
void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1048
{
1049
io_req_set_res(req, ret, 0);
1050
req->io_task_work.func = io_req_task_cancel;
1051
io_req_task_work_add(req);
1052
}
1053
1054
void io_req_task_queue(struct io_kiocb *req)
1055
{
1056
req->io_task_work.func = io_req_task_submit;
1057
io_req_task_work_add(req);
1058
}
1059
1060
void io_queue_next(struct io_kiocb *req)
1061
{
1062
struct io_kiocb *nxt = io_req_find_next(req);
1063
1064
if (nxt)
1065
io_req_task_queue(nxt);
1066
}
1067
1068
static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1069
{
1070
if (req->file_node) {
1071
io_put_rsrc_node(req->ctx, req->file_node);
1072
req->file_node = NULL;
1073
}
1074
if (req->flags & REQ_F_BUF_NODE)
1075
io_put_rsrc_node(req->ctx, req->buf_node);
1076
}
1077
1078
static void io_free_batch_list(struct io_ring_ctx *ctx,
1079
struct io_wq_work_node *node)
1080
__must_hold(&ctx->uring_lock)
1081
{
1082
do {
1083
struct io_kiocb *req = container_of(node, struct io_kiocb,
1084
comp_list);
1085
1086
if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1087
if (req->flags & REQ_F_REISSUE) {
1088
node = req->comp_list.next;
1089
req->flags &= ~REQ_F_REISSUE;
1090
io_queue_iowq(req);
1091
continue;
1092
}
1093
if (req->flags & REQ_F_REFCOUNT) {
1094
node = req->comp_list.next;
1095
if (!req_ref_put_and_test(req))
1096
continue;
1097
}
1098
if ((req->flags & REQ_F_POLLED) && req->apoll) {
1099
struct async_poll *apoll = req->apoll;
1100
1101
if (apoll->double_poll)
1102
kfree(apoll->double_poll);
1103
io_cache_free(&ctx->apoll_cache, apoll);
1104
req->flags &= ~REQ_F_POLLED;
1105
}
1106
if (req->flags & IO_REQ_LINK_FLAGS)
1107
io_queue_next(req);
1108
if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1109
io_clean_op(req);
1110
}
1111
io_put_file(req);
1112
io_req_put_rsrc_nodes(req);
1113
io_put_task(req);
1114
1115
node = req->comp_list.next;
1116
io_req_add_to_cache(req, ctx);
1117
} while (node);
1118
}
1119
1120
void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1121
__must_hold(&ctx->uring_lock)
1122
{
1123
struct io_submit_state *state = &ctx->submit_state;
1124
struct io_wq_work_node *node;
1125
1126
__io_cq_lock(ctx);
1127
__wq_list_for_each(node, &state->compl_reqs) {
1128
struct io_kiocb *req = container_of(node, struct io_kiocb,
1129
comp_list);
1130
1131
/*
1132
* Requests marked with REQUEUE should not post a CQE, they
1133
* will go through the io-wq retry machinery and post one
1134
* later.
1135
*/
1136
if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1137
unlikely(!io_fill_cqe_req(ctx, req))) {
1138
if (ctx->lockless_cq)
1139
io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1140
else
1141
io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1142
}
1143
}
1144
__io_cq_unlock_post(ctx);
1145
1146
if (!wq_list_empty(&state->compl_reqs)) {
1147
io_free_batch_list(ctx, state->compl_reqs.first);
1148
INIT_WQ_LIST(&state->compl_reqs);
1149
}
1150
1151
if (unlikely(ctx->drain_active))
1152
io_queue_deferred(ctx);
1153
1154
ctx->submit_state.cq_flush = false;
1155
}
1156
1157
/*
1158
* We can't just wait for polled events to come to us, we have to actively
1159
* find and complete them.
1160
*/
1161
__cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1162
{
1163
if (!(ctx->flags & IORING_SETUP_IOPOLL))
1164
return;
1165
1166
mutex_lock(&ctx->uring_lock);
1167
while (!list_empty(&ctx->iopoll_list)) {
1168
/* let it sleep and repeat later if can't complete a request */
1169
if (io_do_iopoll(ctx, true) == 0)
1170
break;
1171
/*
1172
* Ensure we allow local-to-the-cpu processing to take place,
1173
* in this case we need to ensure that we reap all events.
1174
* Also let task_work, etc. to progress by releasing the mutex
1175
*/
1176
if (need_resched()) {
1177
mutex_unlock(&ctx->uring_lock);
1178
cond_resched();
1179
mutex_lock(&ctx->uring_lock);
1180
}
1181
}
1182
mutex_unlock(&ctx->uring_lock);
1183
1184
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1185
io_move_task_work_from_local(ctx);
1186
}
1187
1188
static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1189
{
1190
unsigned int nr_events = 0;
1191
unsigned long check_cq;
1192
1193
min_events = min(min_events, ctx->cq_entries);
1194
1195
lockdep_assert_held(&ctx->uring_lock);
1196
1197
if (!io_allowed_run_tw(ctx))
1198
return -EEXIST;
1199
1200
check_cq = READ_ONCE(ctx->check_cq);
1201
if (unlikely(check_cq)) {
1202
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1203
__io_cqring_overflow_flush(ctx, false);
1204
/*
1205
* Similarly do not spin if we have not informed the user of any
1206
* dropped CQE.
1207
*/
1208
if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1209
return -EBADR;
1210
}
1211
/*
1212
* Don't enter poll loop if we already have events pending.
1213
* If we do, we can potentially be spinning for commands that
1214
* already triggered a CQE (eg in error).
1215
*/
1216
if (io_cqring_events(ctx))
1217
return 0;
1218
1219
do {
1220
int ret = 0;
1221
1222
/*
1223
* If a submit got punted to a workqueue, we can have the
1224
* application entering polling for a command before it gets
1225
* issued. That app will hold the uring_lock for the duration
1226
* of the poll right here, so we need to take a breather every
1227
* now and then to ensure that the issue has a chance to add
1228
* the poll to the issued list. Otherwise we can spin here
1229
* forever, while the workqueue is stuck trying to acquire the
1230
* very same mutex.
1231
*/
1232
if (list_empty(&ctx->iopoll_list) || io_task_work_pending(ctx)) {
1233
u32 tail = ctx->cached_cq_tail;
1234
1235
(void) io_run_local_work_locked(ctx, min_events);
1236
1237
if (task_work_pending(current) || list_empty(&ctx->iopoll_list)) {
1238
mutex_unlock(&ctx->uring_lock);
1239
io_run_task_work();
1240
mutex_lock(&ctx->uring_lock);
1241
}
1242
/* some requests don't go through iopoll_list */
1243
if (tail != ctx->cached_cq_tail || list_empty(&ctx->iopoll_list))
1244
break;
1245
}
1246
ret = io_do_iopoll(ctx, !min_events);
1247
if (unlikely(ret < 0))
1248
return ret;
1249
1250
if (task_sigpending(current))
1251
return -EINTR;
1252
if (need_resched())
1253
break;
1254
1255
nr_events += ret;
1256
} while (nr_events < min_events);
1257
1258
return 0;
1259
}
1260
1261
void io_req_task_complete(struct io_tw_req tw_req, io_tw_token_t tw)
1262
{
1263
io_req_complete_defer(tw_req.req);
1264
}
1265
1266
/*
1267
* After the iocb has been issued, it's safe to be found on the poll list.
1268
* Adding the kiocb to the list AFTER submission ensures that we don't
1269
* find it from a io_do_iopoll() thread before the issuer is done
1270
* accessing the kiocb cookie.
1271
*/
1272
static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1273
{
1274
struct io_ring_ctx *ctx = req->ctx;
1275
const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1276
1277
/* workqueue context doesn't hold uring_lock, grab it now */
1278
if (unlikely(needs_lock))
1279
mutex_lock(&ctx->uring_lock);
1280
1281
/*
1282
* Track whether we have multiple files in our lists. This will impact
1283
* how we do polling eventually, not spinning if we're on potentially
1284
* different devices.
1285
*/
1286
if (list_empty(&ctx->iopoll_list)) {
1287
ctx->poll_multi_queue = false;
1288
} else if (!ctx->poll_multi_queue) {
1289
struct io_kiocb *list_req;
1290
1291
list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb, iopoll_node);
1292
if (list_req->file != req->file)
1293
ctx->poll_multi_queue = true;
1294
}
1295
1296
list_add_tail(&req->iopoll_node, &ctx->iopoll_list);
1297
1298
if (unlikely(needs_lock)) {
1299
/*
1300
* If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1301
* in sq thread task context or in io worker task context. If
1302
* current task context is sq thread, we don't need to check
1303
* whether should wake up sq thread.
1304
*/
1305
if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1306
wq_has_sleeper(&ctx->sq_data->wait))
1307
wake_up(&ctx->sq_data->wait);
1308
1309
mutex_unlock(&ctx->uring_lock);
1310
}
1311
}
1312
1313
io_req_flags_t io_file_get_flags(struct file *file)
1314
{
1315
io_req_flags_t res = 0;
1316
1317
BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1318
1319
if (S_ISREG(file_inode(file)->i_mode))
1320
res |= REQ_F_ISREG;
1321
if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1322
res |= REQ_F_SUPPORT_NOWAIT;
1323
return res;
1324
}
1325
1326
static __cold void io_drain_req(struct io_kiocb *req)
1327
__must_hold(&ctx->uring_lock)
1328
{
1329
struct io_ring_ctx *ctx = req->ctx;
1330
bool drain = req->flags & IOSQE_IO_DRAIN;
1331
struct io_defer_entry *de;
1332
1333
de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1334
if (!de) {
1335
io_req_defer_failed(req, -ENOMEM);
1336
return;
1337
}
1338
1339
io_prep_async_link(req);
1340
trace_io_uring_defer(req);
1341
de->req = req;
1342
1343
ctx->nr_drained += io_linked_nr(req);
1344
list_add_tail(&de->list, &ctx->defer_list);
1345
io_queue_deferred(ctx);
1346
if (!drain && list_empty(&ctx->defer_list))
1347
ctx->drain_active = false;
1348
}
1349
1350
static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1351
unsigned int issue_flags)
1352
{
1353
if (req->file || !def->needs_file)
1354
return true;
1355
1356
if (req->flags & REQ_F_FIXED_FILE)
1357
req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1358
else
1359
req->file = io_file_get_normal(req, req->cqe.fd);
1360
1361
return !!req->file;
1362
}
1363
1364
#define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1365
1366
static inline int __io_issue_sqe(struct io_kiocb *req,
1367
unsigned int issue_flags,
1368
const struct io_issue_def *def)
1369
{
1370
const struct cred *creds = NULL;
1371
struct io_kiocb *link = NULL;
1372
int ret;
1373
1374
if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1375
if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1376
creds = override_creds(req->creds);
1377
if (req->flags & REQ_F_ARM_LTIMEOUT)
1378
link = __io_prep_linked_timeout(req);
1379
}
1380
1381
if (!def->audit_skip)
1382
audit_uring_entry(req->opcode);
1383
1384
ret = def->issue(req, issue_flags);
1385
1386
if (!def->audit_skip)
1387
audit_uring_exit(!ret, ret);
1388
1389
if (unlikely(creds || link)) {
1390
if (creds)
1391
revert_creds(creds);
1392
if (link)
1393
io_queue_linked_timeout(link);
1394
}
1395
1396
return ret;
1397
}
1398
1399
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1400
{
1401
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1402
int ret;
1403
1404
if (unlikely(!io_assign_file(req, def, issue_flags)))
1405
return -EBADF;
1406
1407
ret = __io_issue_sqe(req, issue_flags, def);
1408
1409
if (ret == IOU_COMPLETE) {
1410
if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1411
io_req_complete_defer(req);
1412
else
1413
io_req_complete_post(req, issue_flags);
1414
1415
return 0;
1416
}
1417
1418
if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1419
ret = 0;
1420
1421
/* If the op doesn't have a file, we're not polling for it */
1422
if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1423
io_iopoll_req_issued(req, issue_flags);
1424
}
1425
return ret;
1426
}
1427
1428
int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1429
{
1430
const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1431
IO_URING_F_MULTISHOT |
1432
IO_URING_F_COMPLETE_DEFER;
1433
int ret;
1434
1435
io_tw_lock(req->ctx, tw);
1436
1437
WARN_ON_ONCE(!req->file);
1438
if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1439
return -EFAULT;
1440
1441
ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1442
1443
WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1444
return ret;
1445
}
1446
1447
struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1448
{
1449
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1450
struct io_kiocb *nxt = NULL;
1451
1452
if (req_ref_put_and_test_atomic(req)) {
1453
if (req->flags & IO_REQ_LINK_FLAGS)
1454
nxt = io_req_find_next(req);
1455
io_free_req(req);
1456
}
1457
return nxt ? &nxt->work : NULL;
1458
}
1459
1460
void io_wq_submit_work(struct io_wq_work *work)
1461
{
1462
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1463
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1464
unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1465
bool needs_poll = false;
1466
int ret = 0, err = -ECANCELED;
1467
1468
/* one will be dropped by io_wq_free_work() after returning to io-wq */
1469
if (!(req->flags & REQ_F_REFCOUNT))
1470
__io_req_set_refcount(req, 2);
1471
else
1472
req_ref_get(req);
1473
1474
/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1475
if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1476
fail:
1477
io_req_task_queue_fail(req, err);
1478
return;
1479
}
1480
if (!io_assign_file(req, def, issue_flags)) {
1481
err = -EBADF;
1482
atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1483
goto fail;
1484
}
1485
1486
/*
1487
* If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1488
* submitter task context. Final request completions are handed to the
1489
* right context, however this is not the case of auxiliary CQEs,
1490
* which is the main mean of operation for multishot requests.
1491
* Don't allow any multishot execution from io-wq. It's more restrictive
1492
* than necessary and also cleaner.
1493
*/
1494
if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1495
err = -EBADFD;
1496
if (!io_file_can_poll(req))
1497
goto fail;
1498
if (req->file->f_flags & O_NONBLOCK ||
1499
req->file->f_mode & FMODE_NOWAIT) {
1500
err = -ECANCELED;
1501
if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1502
goto fail;
1503
return;
1504
} else {
1505
req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1506
}
1507
}
1508
1509
if (req->flags & REQ_F_FORCE_ASYNC) {
1510
bool opcode_poll = def->pollin || def->pollout;
1511
1512
if (opcode_poll && io_file_can_poll(req)) {
1513
needs_poll = true;
1514
issue_flags |= IO_URING_F_NONBLOCK;
1515
}
1516
}
1517
1518
do {
1519
ret = io_issue_sqe(req, issue_flags);
1520
if (ret != -EAGAIN)
1521
break;
1522
1523
/*
1524
* If REQ_F_NOWAIT is set, then don't wait or retry with
1525
* poll. -EAGAIN is final for that case.
1526
*/
1527
if (req->flags & REQ_F_NOWAIT)
1528
break;
1529
1530
/*
1531
* We can get EAGAIN for iopolled IO even though we're
1532
* forcing a sync submission from here, since we can't
1533
* wait for request slots on the block side.
1534
*/
1535
if (!needs_poll) {
1536
if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1537
break;
1538
if (io_wq_worker_stopped())
1539
break;
1540
cond_resched();
1541
continue;
1542
}
1543
1544
if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1545
return;
1546
/* aborted or ready, in either case retry blocking */
1547
needs_poll = false;
1548
issue_flags &= ~IO_URING_F_NONBLOCK;
1549
} while (1);
1550
1551
/* avoid locking problems by failing it from a clean context */
1552
if (ret)
1553
io_req_task_queue_fail(req, ret);
1554
}
1555
1556
inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1557
unsigned int issue_flags)
1558
{
1559
struct io_ring_ctx *ctx = req->ctx;
1560
struct io_rsrc_node *node;
1561
struct file *file = NULL;
1562
1563
io_ring_submit_lock(ctx, issue_flags);
1564
node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1565
if (node) {
1566
node->refs++;
1567
req->file_node = node;
1568
req->flags |= io_slot_flags(node);
1569
file = io_slot_file(node);
1570
}
1571
io_ring_submit_unlock(ctx, issue_flags);
1572
return file;
1573
}
1574
1575
struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1576
{
1577
struct file *file = fget(fd);
1578
1579
trace_io_uring_file_get(req, fd);
1580
1581
/* we don't allow fixed io_uring files */
1582
if (file && io_is_uring_fops(file))
1583
io_req_track_inflight(req);
1584
return file;
1585
}
1586
1587
static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
1588
{
1589
const struct io_cold_def *def = &io_cold_defs[req->opcode];
1590
1591
if (req->flags & REQ_F_SQE_COPIED)
1592
return 0;
1593
req->flags |= REQ_F_SQE_COPIED;
1594
if (!def->sqe_copy)
1595
return 0;
1596
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
1597
return -EFAULT;
1598
def->sqe_copy(req);
1599
return 0;
1600
}
1601
1602
static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
1603
__must_hold(&req->ctx->uring_lock)
1604
{
1605
if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1606
fail:
1607
io_req_defer_failed(req, ret);
1608
return;
1609
}
1610
1611
ret = io_req_sqe_copy(req, issue_flags);
1612
if (unlikely(ret))
1613
goto fail;
1614
1615
switch (io_arm_poll_handler(req, 0)) {
1616
case IO_APOLL_READY:
1617
io_req_task_queue(req);
1618
break;
1619
case IO_APOLL_ABORTED:
1620
io_queue_iowq(req);
1621
break;
1622
case IO_APOLL_OK:
1623
break;
1624
}
1625
}
1626
1627
static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
1628
__must_hold(&req->ctx->uring_lock)
1629
{
1630
unsigned int issue_flags = IO_URING_F_NONBLOCK |
1631
IO_URING_F_COMPLETE_DEFER | extra_flags;
1632
int ret;
1633
1634
ret = io_issue_sqe(req, issue_flags);
1635
1636
/*
1637
* We async punt it if the file wasn't marked NOWAIT, or if the file
1638
* doesn't support non-blocking read/write attempts
1639
*/
1640
if (unlikely(ret))
1641
io_queue_async(req, issue_flags, ret);
1642
}
1643
1644
static void io_queue_sqe_fallback(struct io_kiocb *req)
1645
__must_hold(&req->ctx->uring_lock)
1646
{
1647
if (unlikely(req->flags & REQ_F_FAIL)) {
1648
/*
1649
* We don't submit, fail them all, for that replace hardlinks
1650
* with normal links. Extra REQ_F_LINK is tolerated.
1651
*/
1652
req->flags &= ~REQ_F_HARDLINK;
1653
req->flags |= REQ_F_LINK;
1654
io_req_defer_failed(req, req->cqe.res);
1655
} else {
1656
/* can't fail with IO_URING_F_INLINE */
1657
io_req_sqe_copy(req, IO_URING_F_INLINE);
1658
if (unlikely(req->ctx->drain_active))
1659
io_drain_req(req);
1660
else
1661
io_queue_iowq(req);
1662
}
1663
}
1664
1665
/*
1666
* Check SQE restrictions (opcode and flags).
1667
*
1668
* Returns 'true' if SQE is allowed, 'false' otherwise.
1669
*/
1670
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1671
struct io_kiocb *req,
1672
unsigned int sqe_flags)
1673
{
1674
if (!ctx->op_restricted)
1675
return true;
1676
if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1677
return false;
1678
1679
if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1680
ctx->restrictions.sqe_flags_required)
1681
return false;
1682
1683
if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1684
ctx->restrictions.sqe_flags_required))
1685
return false;
1686
1687
return true;
1688
}
1689
1690
static void io_init_drain(struct io_ring_ctx *ctx)
1691
{
1692
struct io_kiocb *head = ctx->submit_state.link.head;
1693
1694
ctx->drain_active = true;
1695
if (head) {
1696
/*
1697
* If we need to drain a request in the middle of a link, drain
1698
* the head request and the next request/link after the current
1699
* link. Considering sequential execution of links,
1700
* REQ_F_IO_DRAIN will be maintained for every request of our
1701
* link.
1702
*/
1703
head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1704
ctx->drain_next = true;
1705
}
1706
}
1707
1708
static __cold int io_init_fail_req(struct io_kiocb *req, int err)
1709
{
1710
/* ensure per-opcode data is cleared if we fail before prep */
1711
memset(&req->cmd.data, 0, sizeof(req->cmd.data));
1712
return err;
1713
}
1714
1715
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1716
const struct io_uring_sqe *sqe, unsigned int *left)
1717
__must_hold(&ctx->uring_lock)
1718
{
1719
const struct io_issue_def *def;
1720
unsigned int sqe_flags;
1721
int personality;
1722
u8 opcode;
1723
1724
req->ctx = ctx;
1725
req->opcode = opcode = READ_ONCE(sqe->opcode);
1726
/* same numerical values with corresponding REQ_F_*, safe to copy */
1727
sqe_flags = READ_ONCE(sqe->flags);
1728
req->flags = (__force io_req_flags_t) sqe_flags;
1729
req->cqe.user_data = READ_ONCE(sqe->user_data);
1730
req->file = NULL;
1731
req->tctx = current->io_uring;
1732
req->cancel_seq_set = false;
1733
req->async_data = NULL;
1734
1735
if (unlikely(opcode >= IORING_OP_LAST)) {
1736
req->opcode = 0;
1737
return io_init_fail_req(req, -EINVAL);
1738
}
1739
opcode = array_index_nospec(opcode, IORING_OP_LAST);
1740
1741
def = &io_issue_defs[opcode];
1742
if (def->is_128 && !(ctx->flags & IORING_SETUP_SQE128)) {
1743
/*
1744
* A 128b op on a non-128b SQ requires mixed SQE support as
1745
* well as 2 contiguous entries.
1746
*/
1747
if (!(ctx->flags & IORING_SETUP_SQE_MIXED) || *left < 2 ||
1748
!(ctx->cached_sq_head & (ctx->sq_entries - 1)))
1749
return io_init_fail_req(req, -EINVAL);
1750
/*
1751
* A 128b operation on a mixed SQ uses two entries, so we have
1752
* to increment the head and cached refs, and decrement what's
1753
* left.
1754
*/
1755
current->io_uring->cached_refs++;
1756
ctx->cached_sq_head++;
1757
(*left)--;
1758
}
1759
1760
if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
1761
/* enforce forwards compatibility on users */
1762
if (sqe_flags & ~SQE_VALID_FLAGS)
1763
return io_init_fail_req(req, -EINVAL);
1764
if (sqe_flags & IOSQE_BUFFER_SELECT) {
1765
if (!def->buffer_select)
1766
return io_init_fail_req(req, -EOPNOTSUPP);
1767
req->buf_index = READ_ONCE(sqe->buf_group);
1768
}
1769
if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
1770
ctx->drain_disabled = true;
1771
if (sqe_flags & IOSQE_IO_DRAIN) {
1772
if (ctx->drain_disabled)
1773
return io_init_fail_req(req, -EOPNOTSUPP);
1774
io_init_drain(ctx);
1775
}
1776
}
1777
if (unlikely(ctx->op_restricted || ctx->drain_active || ctx->drain_next)) {
1778
if (!io_check_restriction(ctx, req, sqe_flags))
1779
return io_init_fail_req(req, -EACCES);
1780
/* knock it to the slow queue path, will be drained there */
1781
if (ctx->drain_active)
1782
req->flags |= REQ_F_FORCE_ASYNC;
1783
/* if there is no link, we're at "next" request and need to drain */
1784
if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
1785
ctx->drain_next = false;
1786
ctx->drain_active = true;
1787
req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1788
}
1789
}
1790
1791
if (!def->ioprio && sqe->ioprio)
1792
return io_init_fail_req(req, -EINVAL);
1793
if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
1794
return io_init_fail_req(req, -EINVAL);
1795
1796
if (def->needs_file) {
1797
struct io_submit_state *state = &ctx->submit_state;
1798
1799
req->cqe.fd = READ_ONCE(sqe->fd);
1800
1801
/*
1802
* Plug now if we have more than 2 IO left after this, and the
1803
* target is potentially a read/write to block based storage.
1804
*/
1805
if (state->need_plug && def->plug) {
1806
state->plug_started = true;
1807
state->need_plug = false;
1808
blk_start_plug_nr_ios(&state->plug, state->submit_nr);
1809
}
1810
}
1811
1812
personality = READ_ONCE(sqe->personality);
1813
if (personality) {
1814
int ret;
1815
1816
req->creds = xa_load(&ctx->personalities, personality);
1817
if (!req->creds)
1818
return io_init_fail_req(req, -EINVAL);
1819
get_cred(req->creds);
1820
ret = security_uring_override_creds(req->creds);
1821
if (ret) {
1822
put_cred(req->creds);
1823
return io_init_fail_req(req, ret);
1824
}
1825
req->flags |= REQ_F_CREDS;
1826
}
1827
1828
return def->prep(req, sqe);
1829
}
1830
1831
static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
1832
struct io_kiocb *req, int ret)
1833
{
1834
struct io_ring_ctx *ctx = req->ctx;
1835
struct io_submit_link *link = &ctx->submit_state.link;
1836
struct io_kiocb *head = link->head;
1837
1838
trace_io_uring_req_failed(sqe, req, ret);
1839
1840
/*
1841
* Avoid breaking links in the middle as it renders links with SQPOLL
1842
* unusable. Instead of failing eagerly, continue assembling the link if
1843
* applicable and mark the head with REQ_F_FAIL. The link flushing code
1844
* should find the flag and handle the rest.
1845
*/
1846
req_fail_link_node(req, ret);
1847
if (head && !(head->flags & REQ_F_FAIL))
1848
req_fail_link_node(head, -ECANCELED);
1849
1850
if (!(req->flags & IO_REQ_LINK_FLAGS)) {
1851
if (head) {
1852
link->last->link = req;
1853
link->head = NULL;
1854
req = head;
1855
}
1856
io_queue_sqe_fallback(req);
1857
return ret;
1858
}
1859
1860
if (head)
1861
link->last->link = req;
1862
else
1863
link->head = req;
1864
link->last = req;
1865
return 0;
1866
}
1867
1868
static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1869
const struct io_uring_sqe *sqe, unsigned int *left)
1870
__must_hold(&ctx->uring_lock)
1871
{
1872
struct io_submit_link *link = &ctx->submit_state.link;
1873
int ret;
1874
1875
ret = io_init_req(ctx, req, sqe, left);
1876
if (unlikely(ret))
1877
return io_submit_fail_init(sqe, req, ret);
1878
1879
if (unlikely(ctx->bpf_filters)) {
1880
ret = io_uring_run_bpf_filters(ctx->bpf_filters, req);
1881
if (ret)
1882
return io_submit_fail_init(sqe, req, ret);
1883
}
1884
1885
trace_io_uring_submit_req(req);
1886
1887
/*
1888
* If we already have a head request, queue this one for async
1889
* submittal once the head completes. If we don't have a head but
1890
* IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
1891
* submitted sync once the chain is complete. If none of those
1892
* conditions are true (normal request), then just queue it.
1893
*/
1894
if (unlikely(link->head)) {
1895
trace_io_uring_link(req, link->last);
1896
io_req_sqe_copy(req, IO_URING_F_INLINE);
1897
link->last->link = req;
1898
link->last = req;
1899
1900
if (req->flags & IO_REQ_LINK_FLAGS)
1901
return 0;
1902
/* last request of the link, flush it */
1903
req = link->head;
1904
link->head = NULL;
1905
if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
1906
goto fallback;
1907
1908
} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
1909
REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
1910
if (req->flags & IO_REQ_LINK_FLAGS) {
1911
link->head = req;
1912
link->last = req;
1913
} else {
1914
fallback:
1915
io_queue_sqe_fallback(req);
1916
}
1917
return 0;
1918
}
1919
1920
io_queue_sqe(req, IO_URING_F_INLINE);
1921
return 0;
1922
}
1923
1924
/*
1925
* Batched submission is done, ensure local IO is flushed out.
1926
*/
1927
static void io_submit_state_end(struct io_ring_ctx *ctx)
1928
{
1929
struct io_submit_state *state = &ctx->submit_state;
1930
1931
if (unlikely(state->link.head))
1932
io_queue_sqe_fallback(state->link.head);
1933
/* flush only after queuing links as they can generate completions */
1934
io_submit_flush_completions(ctx);
1935
if (state->plug_started)
1936
blk_finish_plug(&state->plug);
1937
}
1938
1939
/*
1940
* Start submission side cache.
1941
*/
1942
static void io_submit_state_start(struct io_submit_state *state,
1943
unsigned int max_ios)
1944
{
1945
state->plug_started = false;
1946
state->need_plug = max_ios > 2;
1947
state->submit_nr = max_ios;
1948
/* set only head, no need to init link_last in advance */
1949
state->link.head = NULL;
1950
}
1951
1952
static void io_commit_sqring(struct io_ring_ctx *ctx)
1953
{
1954
struct io_rings *rings = ctx->rings;
1955
1956
if (ctx->flags & IORING_SETUP_SQ_REWIND) {
1957
ctx->cached_sq_head = 0;
1958
} else {
1959
/*
1960
* Ensure any loads from the SQEs are done at this point,
1961
* since once we write the new head, the application could
1962
* write new data to them.
1963
*/
1964
smp_store_release(&rings->sq.head, ctx->cached_sq_head);
1965
}
1966
}
1967
1968
/*
1969
* Fetch an sqe, if one is available. Note this returns a pointer to memory
1970
* that is mapped by userspace. This means that care needs to be taken to
1971
* ensure that reads are stable, as we cannot rely on userspace always
1972
* being a good citizen. If members of the sqe are validated and then later
1973
* used, it's important that those reads are done through READ_ONCE() to
1974
* prevent a re-load down the line.
1975
*/
1976
static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
1977
{
1978
unsigned mask = ctx->sq_entries - 1;
1979
unsigned head = ctx->cached_sq_head++ & mask;
1980
1981
if (static_branch_unlikely(&io_key_has_sqarray) &&
1982
(!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
1983
head = READ_ONCE(ctx->sq_array[head]);
1984
if (unlikely(head >= ctx->sq_entries)) {
1985
WRITE_ONCE(ctx->rings->sq_dropped,
1986
READ_ONCE(ctx->rings->sq_dropped) + 1);
1987
return false;
1988
}
1989
head = array_index_nospec(head, ctx->sq_entries);
1990
}
1991
1992
/*
1993
* The cached sq head (or cq tail) serves two purposes:
1994
*
1995
* 1) allows us to batch the cost of updating the user visible
1996
* head updates.
1997
* 2) allows the kernel side to track the head on its own, even
1998
* though the application is the one updating it.
1999
*/
2000
2001
/* double index for 128-byte SQEs, twice as long */
2002
if (ctx->flags & IORING_SETUP_SQE128)
2003
head <<= 1;
2004
*sqe = &ctx->sq_sqes[head];
2005
return true;
2006
}
2007
2008
int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2009
__must_hold(&ctx->uring_lock)
2010
{
2011
unsigned int entries;
2012
unsigned int left;
2013
int ret;
2014
2015
if (ctx->flags & IORING_SETUP_SQ_REWIND)
2016
entries = ctx->sq_entries;
2017
else
2018
entries = io_sqring_entries(ctx);
2019
2020
entries = min(nr, entries);
2021
if (unlikely(!entries))
2022
return 0;
2023
2024
ret = left = entries;
2025
io_get_task_refs(left);
2026
io_submit_state_start(&ctx->submit_state, left);
2027
2028
do {
2029
const struct io_uring_sqe *sqe;
2030
struct io_kiocb *req;
2031
2032
if (unlikely(!io_alloc_req(ctx, &req)))
2033
break;
2034
if (unlikely(!io_get_sqe(ctx, &sqe))) {
2035
io_req_add_to_cache(req, ctx);
2036
break;
2037
}
2038
2039
/*
2040
* Continue submitting even for sqe failure if the
2041
* ring was setup with IORING_SETUP_SUBMIT_ALL
2042
*/
2043
if (unlikely(io_submit_sqe(ctx, req, sqe, &left)) &&
2044
!(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2045
left--;
2046
break;
2047
}
2048
} while (--left);
2049
2050
if (unlikely(left)) {
2051
ret -= left;
2052
/* try again if it submitted nothing and can't allocate a req */
2053
if (!ret && io_req_cache_empty(ctx))
2054
ret = -EAGAIN;
2055
current->io_uring->cached_refs += left;
2056
}
2057
2058
io_submit_state_end(ctx);
2059
/* Commit SQ ring head once we've consumed and submitted all SQEs */
2060
io_commit_sqring(ctx);
2061
return ret;
2062
}
2063
2064
static void io_rings_free(struct io_ring_ctx *ctx)
2065
{
2066
io_free_region(ctx->user, &ctx->sq_region);
2067
io_free_region(ctx->user, &ctx->ring_region);
2068
ctx->rings = NULL;
2069
ctx->sq_sqes = NULL;
2070
}
2071
2072
static int rings_size(unsigned int flags, unsigned int sq_entries,
2073
unsigned int cq_entries, struct io_rings_layout *rl)
2074
{
2075
struct io_rings *rings;
2076
size_t sqe_size;
2077
size_t off;
2078
2079
if (flags & IORING_SETUP_CQE_MIXED) {
2080
if (cq_entries < 2)
2081
return -EOVERFLOW;
2082
}
2083
if (flags & IORING_SETUP_SQE_MIXED) {
2084
if (sq_entries < 2)
2085
return -EOVERFLOW;
2086
}
2087
2088
rl->sq_array_offset = SIZE_MAX;
2089
2090
sqe_size = sizeof(struct io_uring_sqe);
2091
if (flags & IORING_SETUP_SQE128)
2092
sqe_size *= 2;
2093
2094
rl->sq_size = array_size(sqe_size, sq_entries);
2095
if (rl->sq_size == SIZE_MAX)
2096
return -EOVERFLOW;
2097
2098
off = struct_size(rings, cqes, cq_entries);
2099
if (flags & IORING_SETUP_CQE32)
2100
off = size_mul(off, 2);
2101
if (off == SIZE_MAX)
2102
return -EOVERFLOW;
2103
2104
#ifdef CONFIG_SMP
2105
off = ALIGN(off, SMP_CACHE_BYTES);
2106
if (off == 0)
2107
return -EOVERFLOW;
2108
#endif
2109
2110
if (!(flags & IORING_SETUP_NO_SQARRAY)) {
2111
size_t sq_array_size;
2112
2113
rl->sq_array_offset = off;
2114
2115
sq_array_size = array_size(sizeof(u32), sq_entries);
2116
off = size_add(off, sq_array_size);
2117
if (off == SIZE_MAX)
2118
return -EOVERFLOW;
2119
}
2120
2121
rl->rings_size = off;
2122
return 0;
2123
}
2124
2125
static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2126
{
2127
struct io_kiocb *req;
2128
int nr = 0;
2129
2130
while (!io_req_cache_empty(ctx)) {
2131
req = io_extract_req(ctx);
2132
io_poison_req(req);
2133
kmem_cache_free(req_cachep, req);
2134
nr++;
2135
}
2136
if (nr) {
2137
ctx->nr_req_allocated -= nr;
2138
percpu_ref_put_many(&ctx->refs, nr);
2139
}
2140
}
2141
2142
static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2143
{
2144
guard(mutex)(&ctx->uring_lock);
2145
__io_req_caches_free(ctx);
2146
}
2147
2148
static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2149
{
2150
io_sq_thread_finish(ctx);
2151
2152
mutex_lock(&ctx->uring_lock);
2153
io_sqe_buffers_unregister(ctx);
2154
io_sqe_files_unregister(ctx);
2155
io_unregister_zcrx_ifqs(ctx);
2156
io_cqring_overflow_kill(ctx);
2157
io_eventfd_unregister(ctx);
2158
io_free_alloc_caches(ctx);
2159
io_destroy_buffers(ctx);
2160
io_free_region(ctx->user, &ctx->param_region);
2161
mutex_unlock(&ctx->uring_lock);
2162
if (ctx->sq_creds)
2163
put_cred(ctx->sq_creds);
2164
if (ctx->submitter_task)
2165
put_task_struct(ctx->submitter_task);
2166
2167
WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2168
2169
if (ctx->mm_account) {
2170
mmdrop(ctx->mm_account);
2171
ctx->mm_account = NULL;
2172
}
2173
io_rings_free(ctx);
2174
2175
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2176
static_branch_dec(&io_key_has_sqarray);
2177
2178
percpu_ref_exit(&ctx->refs);
2179
free_uid(ctx->user);
2180
io_req_caches_free(ctx);
2181
2182
if (ctx->restrictions.bpf_filters) {
2183
WARN_ON_ONCE(ctx->bpf_filters !=
2184
ctx->restrictions.bpf_filters->filters);
2185
} else {
2186
WARN_ON_ONCE(ctx->bpf_filters);
2187
}
2188
io_put_bpf_filters(&ctx->restrictions);
2189
2190
WARN_ON_ONCE(ctx->nr_req_allocated);
2191
2192
if (ctx->hash_map)
2193
io_wq_put_hash(ctx->hash_map);
2194
io_napi_free(ctx);
2195
kvfree(ctx->cancel_table.hbs);
2196
xa_destroy(&ctx->io_bl_xa);
2197
kfree(ctx);
2198
}
2199
2200
static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2201
{
2202
struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2203
poll_wq_task_work);
2204
2205
mutex_lock(&ctx->uring_lock);
2206
ctx->poll_activated = true;
2207
mutex_unlock(&ctx->uring_lock);
2208
2209
/*
2210
* Wake ups for some events between start of polling and activation
2211
* might've been lost due to loose synchronisation.
2212
*/
2213
wake_up_all(&ctx->poll_wq);
2214
percpu_ref_put(&ctx->refs);
2215
}
2216
2217
__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2218
{
2219
spin_lock(&ctx->completion_lock);
2220
/* already activated or in progress */
2221
if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2222
goto out;
2223
if (WARN_ON_ONCE(!ctx->task_complete))
2224
goto out;
2225
if (!ctx->submitter_task)
2226
goto out;
2227
/*
2228
* with ->submitter_task only the submitter task completes requests, we
2229
* only need to sync with it, which is done by injecting a tw
2230
*/
2231
init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2232
percpu_ref_get(&ctx->refs);
2233
if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2234
percpu_ref_put(&ctx->refs);
2235
out:
2236
spin_unlock(&ctx->completion_lock);
2237
}
2238
2239
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2240
{
2241
struct io_ring_ctx *ctx = file->private_data;
2242
__poll_t mask = 0;
2243
2244
if (unlikely(!ctx->poll_activated))
2245
io_activate_pollwq(ctx);
2246
/*
2247
* provides mb() which pairs with barrier from wq_has_sleeper
2248
* call in io_commit_cqring
2249
*/
2250
poll_wait(file, &ctx->poll_wq, wait);
2251
2252
if (!io_sqring_full(ctx))
2253
mask |= EPOLLOUT | EPOLLWRNORM;
2254
2255
/*
2256
* Don't flush cqring overflow list here, just do a simple check.
2257
* Otherwise there could possible be ABBA deadlock:
2258
* CPU0 CPU1
2259
* ---- ----
2260
* lock(&ctx->uring_lock);
2261
* lock(&ep->mtx);
2262
* lock(&ctx->uring_lock);
2263
* lock(&ep->mtx);
2264
*
2265
* Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2266
* pushes them to do the flush.
2267
*/
2268
2269
if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2270
mask |= EPOLLIN | EPOLLRDNORM;
2271
2272
return mask;
2273
}
2274
2275
struct io_tctx_exit {
2276
struct callback_head task_work;
2277
struct completion completion;
2278
struct io_ring_ctx *ctx;
2279
};
2280
2281
static __cold void io_tctx_exit_cb(struct callback_head *cb)
2282
{
2283
struct io_uring_task *tctx = current->io_uring;
2284
struct io_tctx_exit *work;
2285
2286
work = container_of(cb, struct io_tctx_exit, task_work);
2287
/*
2288
* When @in_cancel, we're in cancellation and it's racy to remove the
2289
* node. It'll be removed by the end of cancellation, just ignore it.
2290
* tctx can be NULL if the queueing of this task_work raced with
2291
* work cancelation off the exec path.
2292
*/
2293
if (tctx && !atomic_read(&tctx->in_cancel))
2294
io_uring_del_tctx_node((unsigned long)work->ctx);
2295
complete(&work->completion);
2296
}
2297
2298
static __cold void io_ring_exit_work(struct work_struct *work)
2299
{
2300
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2301
unsigned long timeout = jiffies + IO_URING_EXIT_WAIT_MAX;
2302
unsigned long interval = HZ / 20;
2303
struct io_tctx_exit exit;
2304
struct io_tctx_node *node;
2305
int ret;
2306
2307
/*
2308
* If we're doing polled IO and end up having requests being
2309
* submitted async (out-of-line), then completions can come in while
2310
* we're waiting for refs to drop. We need to reap these manually,
2311
* as nobody else will be looking for them.
2312
*/
2313
do {
2314
if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2315
mutex_lock(&ctx->uring_lock);
2316
io_cqring_overflow_kill(ctx);
2317
mutex_unlock(&ctx->uring_lock);
2318
}
2319
2320
/* The SQPOLL thread never reaches this path */
2321
do {
2322
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2323
io_move_task_work_from_local(ctx);
2324
cond_resched();
2325
} while (io_uring_try_cancel_requests(ctx, NULL, true, false));
2326
2327
if (ctx->sq_data) {
2328
struct io_sq_data *sqd = ctx->sq_data;
2329
struct task_struct *tsk;
2330
2331
io_sq_thread_park(sqd);
2332
tsk = sqpoll_task_locked(sqd);
2333
if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2334
io_wq_cancel_cb(tsk->io_uring->io_wq,
2335
io_cancel_ctx_cb, ctx, true);
2336
io_sq_thread_unpark(sqd);
2337
}
2338
2339
io_req_caches_free(ctx);
2340
2341
if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2342
/* there is little hope left, don't run it too often */
2343
interval = HZ * 60;
2344
}
2345
/*
2346
* This is really an uninterruptible wait, as it has to be
2347
* complete. But it's also run from a kworker, which doesn't
2348
* take signals, so it's fine to make it interruptible. This
2349
* avoids scenarios where we knowingly can wait much longer
2350
* on completions, for example if someone does a SIGSTOP on
2351
* a task that needs to finish task_work to make this loop
2352
* complete. That's a synthetic situation that should not
2353
* cause a stuck task backtrace, and hence a potential panic
2354
* on stuck tasks if that is enabled.
2355
*/
2356
} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2357
2358
init_completion(&exit.completion);
2359
init_task_work(&exit.task_work, io_tctx_exit_cb);
2360
exit.ctx = ctx;
2361
2362
mutex_lock(&ctx->uring_lock);
2363
mutex_lock(&ctx->tctx_lock);
2364
while (!list_empty(&ctx->tctx_list)) {
2365
WARN_ON_ONCE(time_after(jiffies, timeout));
2366
2367
node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2368
ctx_node);
2369
/* don't spin on a single task if cancellation failed */
2370
list_rotate_left(&ctx->tctx_list);
2371
ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2372
if (WARN_ON_ONCE(ret))
2373
continue;
2374
2375
mutex_unlock(&ctx->tctx_lock);
2376
mutex_unlock(&ctx->uring_lock);
2377
/*
2378
* See comment above for
2379
* wait_for_completion_interruptible_timeout() on why this
2380
* wait is marked as interruptible.
2381
*/
2382
wait_for_completion_interruptible(&exit.completion);
2383
mutex_lock(&ctx->uring_lock);
2384
mutex_lock(&ctx->tctx_lock);
2385
}
2386
mutex_unlock(&ctx->tctx_lock);
2387
mutex_unlock(&ctx->uring_lock);
2388
spin_lock(&ctx->completion_lock);
2389
spin_unlock(&ctx->completion_lock);
2390
2391
/* pairs with RCU read section in io_req_local_work_add() */
2392
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2393
synchronize_rcu();
2394
2395
io_ring_ctx_free(ctx);
2396
}
2397
2398
static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2399
{
2400
unsigned long index;
2401
struct creds *creds;
2402
2403
mutex_lock(&ctx->uring_lock);
2404
percpu_ref_kill(&ctx->refs);
2405
xa_for_each(&ctx->personalities, index, creds)
2406
io_unregister_personality(ctx, index);
2407
mutex_unlock(&ctx->uring_lock);
2408
2409
flush_delayed_work(&ctx->fallback_work);
2410
2411
INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2412
/*
2413
* Use system_dfl_wq to avoid spawning tons of event kworkers
2414
* if we're exiting a ton of rings at the same time. It just adds
2415
* noise and overhead, there's no discernable change in runtime
2416
* over using system_percpu_wq.
2417
*/
2418
queue_work(iou_wq, &ctx->exit_work);
2419
}
2420
2421
static int io_uring_release(struct inode *inode, struct file *file)
2422
{
2423
struct io_ring_ctx *ctx = file->private_data;
2424
2425
file->private_data = NULL;
2426
io_ring_ctx_wait_and_kill(ctx);
2427
return 0;
2428
}
2429
2430
static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
2431
const struct io_uring_getevents_arg __user *uarg)
2432
{
2433
unsigned long size = sizeof(struct io_uring_reg_wait);
2434
unsigned long offset = (uintptr_t)uarg;
2435
unsigned long end;
2436
2437
if (unlikely(offset % sizeof(long)))
2438
return ERR_PTR(-EFAULT);
2439
2440
/* also protects from NULL ->cq_wait_arg as the size would be 0 */
2441
if (unlikely(check_add_overflow(offset, size, &end) ||
2442
end > ctx->cq_wait_size))
2443
return ERR_PTR(-EFAULT);
2444
2445
offset = array_index_nospec(offset, ctx->cq_wait_size - size);
2446
return ctx->cq_wait_arg + offset;
2447
}
2448
2449
static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
2450
const void __user *argp, size_t argsz)
2451
{
2452
struct io_uring_getevents_arg arg;
2453
2454
if (!(flags & IORING_ENTER_EXT_ARG))
2455
return 0;
2456
if (flags & IORING_ENTER_EXT_ARG_REG)
2457
return -EINVAL;
2458
if (argsz != sizeof(arg))
2459
return -EINVAL;
2460
if (copy_from_user(&arg, argp, sizeof(arg)))
2461
return -EFAULT;
2462
return 0;
2463
}
2464
2465
static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
2466
const void __user *argp, struct ext_arg *ext_arg)
2467
{
2468
const struct io_uring_getevents_arg __user *uarg = argp;
2469
struct io_uring_getevents_arg arg;
2470
2471
ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
2472
2473
/*
2474
* If EXT_ARG isn't set, then we have no timespec and the argp pointer
2475
* is just a pointer to the sigset_t.
2476
*/
2477
if (!(flags & IORING_ENTER_EXT_ARG)) {
2478
ext_arg->sig = (const sigset_t __user *) argp;
2479
return 0;
2480
}
2481
2482
if (flags & IORING_ENTER_EXT_ARG_REG) {
2483
struct io_uring_reg_wait *w;
2484
2485
if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
2486
return -EINVAL;
2487
w = io_get_ext_arg_reg(ctx, argp);
2488
if (IS_ERR(w))
2489
return PTR_ERR(w);
2490
2491
if (w->flags & ~IORING_REG_WAIT_TS)
2492
return -EINVAL;
2493
ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
2494
ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
2495
ext_arg->argsz = READ_ONCE(w->sigmask_sz);
2496
if (w->flags & IORING_REG_WAIT_TS) {
2497
ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
2498
ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
2499
ext_arg->ts_set = true;
2500
}
2501
return 0;
2502
}
2503
2504
/*
2505
* EXT_ARG is set - ensure we agree on the size of it and copy in our
2506
* timespec and sigset_t pointers if good.
2507
*/
2508
if (ext_arg->argsz != sizeof(arg))
2509
return -EINVAL;
2510
#ifdef CONFIG_64BIT
2511
if (!user_access_begin(uarg, sizeof(*uarg)))
2512
return -EFAULT;
2513
unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
2514
unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
2515
unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
2516
unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
2517
user_access_end();
2518
#else
2519
if (copy_from_user(&arg, uarg, sizeof(arg)))
2520
return -EFAULT;
2521
#endif
2522
ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
2523
ext_arg->sig = u64_to_user_ptr(arg.sigmask);
2524
ext_arg->argsz = arg.sigmask_sz;
2525
if (arg.ts) {
2526
if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
2527
return -EFAULT;
2528
ext_arg->ts_set = true;
2529
}
2530
return 0;
2531
#ifdef CONFIG_64BIT
2532
uaccess_end:
2533
user_access_end();
2534
return -EFAULT;
2535
#endif
2536
}
2537
2538
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2539
u32, min_complete, u32, flags, const void __user *, argp,
2540
size_t, argsz)
2541
{
2542
struct io_ring_ctx *ctx;
2543
struct file *file;
2544
long ret;
2545
2546
if (unlikely(flags & ~IORING_ENTER_FLAGS))
2547
return -EINVAL;
2548
2549
/*
2550
* Ring fd has been registered via IORING_REGISTER_RING_FDS, we
2551
* need only dereference our task private array to find it.
2552
*/
2553
if (flags & IORING_ENTER_REGISTERED_RING) {
2554
struct io_uring_task *tctx = current->io_uring;
2555
2556
if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
2557
return -EINVAL;
2558
fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
2559
file = tctx->registered_rings[fd];
2560
if (unlikely(!file))
2561
return -EBADF;
2562
} else {
2563
file = fget(fd);
2564
if (unlikely(!file))
2565
return -EBADF;
2566
ret = -EOPNOTSUPP;
2567
if (unlikely(!io_is_uring_fops(file)))
2568
goto out;
2569
}
2570
2571
ctx = file->private_data;
2572
ret = -EBADFD;
2573
/*
2574
* Keep IORING_SETUP_R_DISABLED check before submitter_task load
2575
* in io_uring_add_tctx_node() -> __io_uring_add_tctx_node_from_submit()
2576
*/
2577
if (unlikely(smp_load_acquire(&ctx->flags) & IORING_SETUP_R_DISABLED))
2578
goto out;
2579
2580
/*
2581
* For SQ polling, the thread will do all submissions and completions.
2582
* Just return the requested submit count, and wake the thread if
2583
* we were asked to.
2584
*/
2585
ret = 0;
2586
if (ctx->flags & IORING_SETUP_SQPOLL) {
2587
if (unlikely(ctx->sq_data->thread == NULL)) {
2588
ret = -EOWNERDEAD;
2589
goto out;
2590
}
2591
if (flags & IORING_ENTER_SQ_WAKEUP)
2592
wake_up(&ctx->sq_data->wait);
2593
if (flags & IORING_ENTER_SQ_WAIT)
2594
io_sqpoll_wait_sq(ctx);
2595
2596
ret = to_submit;
2597
} else if (to_submit) {
2598
ret = io_uring_add_tctx_node(ctx);
2599
if (unlikely(ret))
2600
goto out;
2601
2602
mutex_lock(&ctx->uring_lock);
2603
ret = io_submit_sqes(ctx, to_submit);
2604
if (ret != to_submit) {
2605
mutex_unlock(&ctx->uring_lock);
2606
goto out;
2607
}
2608
if (flags & IORING_ENTER_GETEVENTS) {
2609
if (ctx->syscall_iopoll)
2610
goto iopoll_locked;
2611
/*
2612
* Ignore errors, we'll soon call io_cqring_wait() and
2613
* it should handle ownership problems if any.
2614
*/
2615
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2616
(void)io_run_local_work_locked(ctx, min_complete);
2617
}
2618
mutex_unlock(&ctx->uring_lock);
2619
}
2620
2621
if (flags & IORING_ENTER_GETEVENTS) {
2622
int ret2;
2623
2624
if (ctx->syscall_iopoll) {
2625
/*
2626
* We disallow the app entering submit/complete with
2627
* polling, but we still need to lock the ring to
2628
* prevent racing with polled issue that got punted to
2629
* a workqueue.
2630
*/
2631
mutex_lock(&ctx->uring_lock);
2632
iopoll_locked:
2633
ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
2634
if (likely(!ret2))
2635
ret2 = io_iopoll_check(ctx, min_complete);
2636
mutex_unlock(&ctx->uring_lock);
2637
} else {
2638
struct ext_arg ext_arg = { .argsz = argsz };
2639
2640
ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
2641
if (likely(!ret2))
2642
ret2 = io_cqring_wait(ctx, min_complete, flags,
2643
&ext_arg);
2644
}
2645
2646
if (!ret) {
2647
ret = ret2;
2648
2649
/*
2650
* EBADR indicates that one or more CQE were dropped.
2651
* Once the user has been informed we can clear the bit
2652
* as they are obviously ok with those drops.
2653
*/
2654
if (unlikely(ret2 == -EBADR))
2655
clear_bit(IO_CHECK_CQ_DROPPED_BIT,
2656
&ctx->check_cq);
2657
}
2658
}
2659
out:
2660
if (!(flags & IORING_ENTER_REGISTERED_RING))
2661
fput(file);
2662
return ret;
2663
}
2664
2665
static const struct file_operations io_uring_fops = {
2666
.release = io_uring_release,
2667
.mmap = io_uring_mmap,
2668
.get_unmapped_area = io_uring_get_unmapped_area,
2669
#ifndef CONFIG_MMU
2670
.mmap_capabilities = io_uring_nommu_mmap_capabilities,
2671
#endif
2672
.poll = io_uring_poll,
2673
#ifdef CONFIG_PROC_FS
2674
.show_fdinfo = io_uring_show_fdinfo,
2675
#endif
2676
};
2677
2678
bool io_is_uring_fops(struct file *file)
2679
{
2680
return file->f_op == &io_uring_fops;
2681
}
2682
2683
static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2684
struct io_ctx_config *config)
2685
{
2686
struct io_uring_params *p = &config->p;
2687
struct io_rings_layout *rl = &config->layout;
2688
struct io_uring_region_desc rd;
2689
struct io_rings *rings;
2690
int ret;
2691
2692
/* make sure these are sane, as we already accounted them */
2693
ctx->sq_entries = p->sq_entries;
2694
ctx->cq_entries = p->cq_entries;
2695
2696
memset(&rd, 0, sizeof(rd));
2697
rd.size = PAGE_ALIGN(rl->rings_size);
2698
if (ctx->flags & IORING_SETUP_NO_MMAP) {
2699
rd.user_addr = p->cq_off.user_addr;
2700
rd.flags |= IORING_MEM_REGION_TYPE_USER;
2701
}
2702
ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
2703
if (ret)
2704
return ret;
2705
ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
2706
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2707
ctx->sq_array = (u32 *)((char *)rings + rl->sq_array_offset);
2708
2709
memset(&rd, 0, sizeof(rd));
2710
rd.size = PAGE_ALIGN(rl->sq_size);
2711
if (ctx->flags & IORING_SETUP_NO_MMAP) {
2712
rd.user_addr = p->sq_off.user_addr;
2713
rd.flags |= IORING_MEM_REGION_TYPE_USER;
2714
}
2715
ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
2716
if (ret) {
2717
io_rings_free(ctx);
2718
return ret;
2719
}
2720
ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
2721
2722
memset(rings, 0, sizeof(*rings));
2723
WRITE_ONCE(rings->sq_ring_mask, ctx->sq_entries - 1);
2724
WRITE_ONCE(rings->cq_ring_mask, ctx->cq_entries - 1);
2725
WRITE_ONCE(rings->sq_ring_entries, ctx->sq_entries);
2726
WRITE_ONCE(rings->cq_ring_entries, ctx->cq_entries);
2727
return 0;
2728
}
2729
2730
static int io_uring_install_fd(struct file *file)
2731
{
2732
int fd;
2733
2734
fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2735
if (fd < 0)
2736
return fd;
2737
fd_install(fd, file);
2738
return fd;
2739
}
2740
2741
/*
2742
* Allocate an anonymous fd, this is what constitutes the application
2743
* visible backing of an io_uring instance. The application mmaps this
2744
* fd to gain access to the SQ/CQ ring details.
2745
*/
2746
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
2747
{
2748
/* Create a new inode so that the LSM can block the creation. */
2749
return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
2750
O_RDWR | O_CLOEXEC, NULL);
2751
}
2752
2753
static int io_uring_sanitise_params(struct io_uring_params *p)
2754
{
2755
unsigned flags = p->flags;
2756
2757
if (flags & ~IORING_SETUP_FLAGS)
2758
return -EINVAL;
2759
2760
if (flags & IORING_SETUP_SQ_REWIND) {
2761
if ((flags & IORING_SETUP_SQPOLL) ||
2762
!(flags & IORING_SETUP_NO_SQARRAY))
2763
return -EINVAL;
2764
}
2765
2766
/* There is no way to mmap rings without a real fd */
2767
if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
2768
!(flags & IORING_SETUP_NO_MMAP))
2769
return -EINVAL;
2770
2771
if (flags & IORING_SETUP_SQPOLL) {
2772
/* IPI related flags don't make sense with SQPOLL */
2773
if (flags & (IORING_SETUP_COOP_TASKRUN |
2774
IORING_SETUP_TASKRUN_FLAG |
2775
IORING_SETUP_DEFER_TASKRUN))
2776
return -EINVAL;
2777
}
2778
2779
if (flags & IORING_SETUP_TASKRUN_FLAG) {
2780
if (!(flags & (IORING_SETUP_COOP_TASKRUN |
2781
IORING_SETUP_DEFER_TASKRUN)))
2782
return -EINVAL;
2783
}
2784
2785
/* HYBRID_IOPOLL only valid with IOPOLL */
2786
if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
2787
return -EINVAL;
2788
2789
/*
2790
* For DEFER_TASKRUN we require the completion task to be the same as
2791
* the submission task. This implies that there is only one submitter.
2792
*/
2793
if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
2794
!(flags & IORING_SETUP_SINGLE_ISSUER))
2795
return -EINVAL;
2796
2797
/*
2798
* Nonsensical to ask for CQE32 and mixed CQE support, it's not
2799
* supported to post 16b CQEs on a ring setup with CQE32.
2800
*/
2801
if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
2802
(IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
2803
return -EINVAL;
2804
/*
2805
* Nonsensical to ask for SQE128 and mixed SQE support, it's not
2806
* supported to post 64b SQEs on a ring setup with SQE128.
2807
*/
2808
if ((flags & (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) ==
2809
(IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED))
2810
return -EINVAL;
2811
2812
return 0;
2813
}
2814
2815
static int io_uring_fill_params(struct io_uring_params *p)
2816
{
2817
unsigned entries = p->sq_entries;
2818
2819
if (!entries)
2820
return -EINVAL;
2821
if (entries > IORING_MAX_ENTRIES) {
2822
if (!(p->flags & IORING_SETUP_CLAMP))
2823
return -EINVAL;
2824
entries = IORING_MAX_ENTRIES;
2825
}
2826
2827
/*
2828
* Use twice as many entries for the CQ ring. It's possible for the
2829
* application to drive a higher depth than the size of the SQ ring,
2830
* since the sqes are only used at submission time. This allows for
2831
* some flexibility in overcommitting a bit. If the application has
2832
* set IORING_SETUP_CQSIZE, it will have passed in the desired number
2833
* of CQ ring entries manually.
2834
*/
2835
p->sq_entries = roundup_pow_of_two(entries);
2836
if (p->flags & IORING_SETUP_CQSIZE) {
2837
/*
2838
* If IORING_SETUP_CQSIZE is set, we do the same roundup
2839
* to a power-of-two, if it isn't already. We do NOT impose
2840
* any cq vs sq ring sizing.
2841
*/
2842
if (!p->cq_entries)
2843
return -EINVAL;
2844
if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
2845
if (!(p->flags & IORING_SETUP_CLAMP))
2846
return -EINVAL;
2847
p->cq_entries = IORING_MAX_CQ_ENTRIES;
2848
}
2849
p->cq_entries = roundup_pow_of_two(p->cq_entries);
2850
if (p->cq_entries < p->sq_entries)
2851
return -EINVAL;
2852
} else {
2853
p->cq_entries = 2 * p->sq_entries;
2854
}
2855
2856
return 0;
2857
}
2858
2859
int io_prepare_config(struct io_ctx_config *config)
2860
{
2861
struct io_uring_params *p = &config->p;
2862
int ret;
2863
2864
ret = io_uring_sanitise_params(p);
2865
if (ret)
2866
return ret;
2867
2868
ret = io_uring_fill_params(p);
2869
if (ret)
2870
return ret;
2871
2872
ret = rings_size(p->flags, p->sq_entries, p->cq_entries,
2873
&config->layout);
2874
if (ret)
2875
return ret;
2876
2877
p->sq_off.head = offsetof(struct io_rings, sq.head);
2878
p->sq_off.tail = offsetof(struct io_rings, sq.tail);
2879
p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
2880
p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
2881
p->sq_off.flags = offsetof(struct io_rings, sq_flags);
2882
p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
2883
p->sq_off.resv1 = 0;
2884
if (!(p->flags & IORING_SETUP_NO_MMAP))
2885
p->sq_off.user_addr = 0;
2886
2887
p->cq_off.head = offsetof(struct io_rings, cq.head);
2888
p->cq_off.tail = offsetof(struct io_rings, cq.tail);
2889
p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
2890
p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
2891
p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
2892
p->cq_off.cqes = offsetof(struct io_rings, cqes);
2893
p->cq_off.flags = offsetof(struct io_rings, cq_flags);
2894
p->cq_off.resv1 = 0;
2895
if (!(p->flags & IORING_SETUP_NO_MMAP))
2896
p->cq_off.user_addr = 0;
2897
if (!(p->flags & IORING_SETUP_NO_SQARRAY))
2898
p->sq_off.array = config->layout.sq_array_offset;
2899
2900
return 0;
2901
}
2902
2903
void io_restriction_clone(struct io_restriction *dst, struct io_restriction *src)
2904
{
2905
memcpy(&dst->register_op, &src->register_op, sizeof(dst->register_op));
2906
memcpy(&dst->sqe_op, &src->sqe_op, sizeof(dst->sqe_op));
2907
dst->sqe_flags_allowed = src->sqe_flags_allowed;
2908
dst->sqe_flags_required = src->sqe_flags_required;
2909
dst->op_registered = src->op_registered;
2910
dst->reg_registered = src->reg_registered;
2911
2912
io_bpf_filter_clone(dst, src);
2913
}
2914
2915
static void io_ctx_restriction_clone(struct io_ring_ctx *ctx,
2916
struct io_restriction *src)
2917
{
2918
struct io_restriction *dst = &ctx->restrictions;
2919
2920
io_restriction_clone(dst, src);
2921
if (dst->bpf_filters)
2922
WRITE_ONCE(ctx->bpf_filters, dst->bpf_filters->filters);
2923
if (dst->op_registered)
2924
ctx->op_restricted = 1;
2925
if (dst->reg_registered)
2926
ctx->reg_restricted = 1;
2927
}
2928
2929
static __cold int io_uring_create(struct io_ctx_config *config)
2930
{
2931
struct io_uring_params *p = &config->p;
2932
struct io_ring_ctx *ctx;
2933
struct io_uring_task *tctx;
2934
struct file *file;
2935
int ret;
2936
2937
ret = io_prepare_config(config);
2938
if (ret)
2939
return ret;
2940
2941
ctx = io_ring_ctx_alloc(p);
2942
if (!ctx)
2943
return -ENOMEM;
2944
2945
ctx->clockid = CLOCK_MONOTONIC;
2946
ctx->clock_offset = 0;
2947
2948
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2949
static_branch_inc(&io_key_has_sqarray);
2950
2951
if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2952
!(ctx->flags & IORING_SETUP_IOPOLL) &&
2953
!(ctx->flags & IORING_SETUP_SQPOLL))
2954
ctx->task_complete = true;
2955
2956
if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
2957
ctx->lockless_cq = true;
2958
2959
/*
2960
* lazy poll_wq activation relies on ->task_complete for synchronisation
2961
* purposes, see io_activate_pollwq()
2962
*/
2963
if (!ctx->task_complete)
2964
ctx->poll_activated = true;
2965
2966
/*
2967
* When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
2968
* space applications don't need to do io completion events
2969
* polling again, they can rely on io_sq_thread to do polling
2970
* work, which can reduce cpu usage and uring_lock contention.
2971
*/
2972
if (ctx->flags & IORING_SETUP_IOPOLL &&
2973
!(ctx->flags & IORING_SETUP_SQPOLL))
2974
ctx->syscall_iopoll = 1;
2975
2976
ctx->compat = in_compat_syscall();
2977
if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
2978
ctx->user = get_uid(current_user());
2979
2980
/*
2981
* For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
2982
* COOP_TASKRUN is set, then IPIs are never needed by the app.
2983
*/
2984
if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
2985
ctx->notify_method = TWA_SIGNAL_NO_IPI;
2986
else
2987
ctx->notify_method = TWA_SIGNAL;
2988
2989
/*
2990
* If the current task has restrictions enabled, then copy them to
2991
* our newly created ring and mark it as registered.
2992
*/
2993
if (current->io_uring_restrict)
2994
io_ctx_restriction_clone(ctx, current->io_uring_restrict);
2995
2996
/*
2997
* This is just grabbed for accounting purposes. When a process exits,
2998
* the mm is exited and dropped before the files, hence we need to hang
2999
* on to this mm purely for the purposes of being able to unaccount
3000
* memory (locked/pinned vm). It's not used for anything else.
3001
*/
3002
mmgrab(current->mm);
3003
ctx->mm_account = current->mm;
3004
3005
ret = io_allocate_scq_urings(ctx, config);
3006
if (ret)
3007
goto err;
3008
3009
ret = io_sq_offload_create(ctx, p);
3010
if (ret)
3011
goto err;
3012
3013
p->features = IORING_FEAT_FLAGS;
3014
3015
if (copy_to_user(config->uptr, p, sizeof(*p))) {
3016
ret = -EFAULT;
3017
goto err;
3018
}
3019
3020
if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3021
&& !(ctx->flags & IORING_SETUP_R_DISABLED))
3022
ctx->submitter_task = get_task_struct(current);
3023
3024
file = io_uring_get_file(ctx);
3025
if (IS_ERR(file)) {
3026
ret = PTR_ERR(file);
3027
goto err;
3028
}
3029
3030
ret = __io_uring_add_tctx_node(ctx);
3031
if (ret)
3032
goto err_fput;
3033
tctx = current->io_uring;
3034
3035
/*
3036
* Install ring fd as the very last thing, so we don't risk someone
3037
* having closed it before we finish setup
3038
*/
3039
if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3040
ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3041
else
3042
ret = io_uring_install_fd(file);
3043
if (ret < 0)
3044
goto err_fput;
3045
3046
trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3047
return ret;
3048
err:
3049
io_ring_ctx_wait_and_kill(ctx);
3050
return ret;
3051
err_fput:
3052
fput(file);
3053
return ret;
3054
}
3055
3056
/*
3057
* Sets up an aio uring context, and returns the fd. Applications asks for a
3058
* ring size, we return the actual sq/cq ring sizes (among other things) in the
3059
* params structure passed in.
3060
*/
3061
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3062
{
3063
struct io_ctx_config config;
3064
3065
memset(&config, 0, sizeof(config));
3066
3067
if (copy_from_user(&config.p, params, sizeof(config.p)))
3068
return -EFAULT;
3069
3070
if (!mem_is_zero(&config.p.resv, sizeof(config.p.resv)))
3071
return -EINVAL;
3072
3073
config.p.sq_entries = entries;
3074
config.uptr = params;
3075
return io_uring_create(&config);
3076
}
3077
3078
static inline int io_uring_allowed(void)
3079
{
3080
int disabled = READ_ONCE(sysctl_io_uring_disabled);
3081
kgid_t io_uring_group;
3082
3083
if (disabled == 2)
3084
return -EPERM;
3085
3086
if (disabled == 0 || capable(CAP_SYS_ADMIN))
3087
goto allowed_lsm;
3088
3089
io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3090
if (!gid_valid(io_uring_group))
3091
return -EPERM;
3092
3093
if (!in_group_p(io_uring_group))
3094
return -EPERM;
3095
3096
allowed_lsm:
3097
return security_uring_allowed();
3098
}
3099
3100
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3101
struct io_uring_params __user *, params)
3102
{
3103
int ret;
3104
3105
ret = io_uring_allowed();
3106
if (ret)
3107
return ret;
3108
3109
return io_uring_setup(entries, params);
3110
}
3111
3112
static int __init io_uring_init(void)
3113
{
3114
struct kmem_cache_args kmem_args = {
3115
.useroffset = offsetof(struct io_kiocb, cmd.data),
3116
.usersize = sizeof_field(struct io_kiocb, cmd.data),
3117
.freeptr_offset = offsetof(struct io_kiocb, work),
3118
.use_freeptr_offset = true,
3119
};
3120
3121
#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3122
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3123
BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3124
} while (0)
3125
3126
#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3127
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3128
#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3129
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3130
BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3131
BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3132
BUILD_BUG_SQE_ELEM(1, __u8, flags);
3133
BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3134
BUILD_BUG_SQE_ELEM(4, __s32, fd);
3135
BUILD_BUG_SQE_ELEM(8, __u64, off);
3136
BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3137
BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3138
BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3139
BUILD_BUG_SQE_ELEM(16, __u64, addr);
3140
BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3141
BUILD_BUG_SQE_ELEM(24, __u32, len);
3142
BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3143
BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3144
BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3145
BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3146
BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3147
BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3148
BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3149
BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3150
BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3151
BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3152
BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3153
BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3154
BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3155
BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3156
BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3157
BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3158
BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3159
BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3160
BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3161
BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3162
BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3163
BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3164
BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3165
BUILD_BUG_SQE_ELEM(42, __u16, personality);
3166
BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3167
BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3168
BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3169
BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
3170
BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
3171
BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3172
BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3173
BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3174
BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3175
BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3176
BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3177
3178
BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3179
sizeof(struct io_uring_rsrc_update));
3180
BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3181
sizeof(struct io_uring_rsrc_update2));
3182
3183
/* ->buf_index is u16 */
3184
BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3185
BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3186
offsetof(struct io_uring_buf_ring, tail));
3187
3188
/* should fit into one byte */
3189
BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3190
BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3191
BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3192
3193
BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3194
3195
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3196
3197
/* top 8bits are for internal use */
3198
BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3199
3200
io_uring_optable_init();
3201
3202
/* imu->dir is u8 */
3203
BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3204
3205
/*
3206
* Allow user copy in the per-command field, which starts after the
3207
* file in io_kiocb and until the opcode field. The openat2 handling
3208
* requires copying in user memory into the io_kiocb object in that
3209
* range, and HARDENED_USERCOPY will complain if we haven't
3210
* correctly annotated this range.
3211
*/
3212
req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3213
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3214
SLAB_TYPESAFE_BY_RCU);
3215
3216
iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3217
BUG_ON(!iou_wq);
3218
3219
#ifdef CONFIG_SYSCTL
3220
register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3221
#endif
3222
3223
return 0;
3224
};
3225
__initcall(io_uring_init);
3226
3227