Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/io_uring/io_uring.c
29266 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Shared application/kernel submission and completion ring pairs, for
4
* supporting fast/efficient IO.
5
*
6
* A note on the read/write ordering memory barriers that are matched between
7
* the application and kernel side.
8
*
9
* After the application reads the CQ ring tail, it must use an
10
* appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11
* before writing the tail (using smp_load_acquire to read the tail will
12
* do). It also needs a smp_mb() before updating CQ head (ordering the
13
* entry load(s) with the head store), pairing with an implicit barrier
14
* through a control-dependency in io_get_cqe (smp_store_release to
15
* store head will do). Failure to do so could lead to reading invalid
16
* CQ entries.
17
*
18
* Likewise, the application must use an appropriate smp_wmb() before
19
* writing the SQ tail (ordering SQ entry stores with the tail store),
20
* which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21
* to store the tail will do). And it needs a barrier ordering the SQ
22
* head load before writing new SQ entries (smp_load_acquire to read
23
* head will do).
24
*
25
* When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26
* needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27
* updating the SQ tail; a full memory barrier smp_mb() is needed
28
* between.
29
*
30
* Also see the examples in the liburing library:
31
*
32
* git://git.kernel.dk/liburing
33
*
34
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35
* from data shared between the kernel and application. This is done both
36
* for ordering purposes, but also to ensure that once a value is loaded from
37
* data that the application could potentially modify, it remains stable.
38
*
39
* Copyright (C) 2018-2019 Jens Axboe
40
* Copyright (c) 2018-2019 Christoph Hellwig
41
*/
42
#include <linux/kernel.h>
43
#include <linux/init.h>
44
#include <linux/errno.h>
45
#include <linux/syscalls.h>
46
#include <net/compat.h>
47
#include <linux/refcount.h>
48
#include <linux/uio.h>
49
#include <linux/bits.h>
50
51
#include <linux/sched/signal.h>
52
#include <linux/fs.h>
53
#include <linux/file.h>
54
#include <linux/mm.h>
55
#include <linux/mman.h>
56
#include <linux/percpu.h>
57
#include <linux/slab.h>
58
#include <linux/bvec.h>
59
#include <linux/net.h>
60
#include <net/sock.h>
61
#include <linux/anon_inodes.h>
62
#include <linux/sched/mm.h>
63
#include <linux/uaccess.h>
64
#include <linux/nospec.h>
65
#include <linux/fsnotify.h>
66
#include <linux/fadvise.h>
67
#include <linux/task_work.h>
68
#include <linux/io_uring.h>
69
#include <linux/io_uring/cmd.h>
70
#include <linux/audit.h>
71
#include <linux/security.h>
72
#include <linux/jump_label.h>
73
#include <asm/shmparam.h>
74
75
#define CREATE_TRACE_POINTS
76
#include <trace/events/io_uring.h>
77
78
#include <uapi/linux/io_uring.h>
79
80
#include "io-wq.h"
81
82
#include "filetable.h"
83
#include "io_uring.h"
84
#include "opdef.h"
85
#include "refs.h"
86
#include "tctx.h"
87
#include "register.h"
88
#include "sqpoll.h"
89
#include "fdinfo.h"
90
#include "kbuf.h"
91
#include "rsrc.h"
92
#include "cancel.h"
93
#include "net.h"
94
#include "notif.h"
95
#include "waitid.h"
96
#include "futex.h"
97
#include "napi.h"
98
#include "uring_cmd.h"
99
#include "msg_ring.h"
100
#include "memmap.h"
101
#include "zcrx.h"
102
103
#include "timeout.h"
104
#include "poll.h"
105
#include "rw.h"
106
#include "alloc_cache.h"
107
#include "eventfd.h"
108
109
#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
110
IOSQE_IO_HARDLINK | IOSQE_ASYNC)
111
112
#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
113
114
#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
115
REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
116
117
#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
118
REQ_F_REISSUE | REQ_F_POLLED | \
119
IO_REQ_CLEAN_FLAGS)
120
121
#define IO_TCTX_REFS_CACHE_NR (1U << 10)
122
123
#define IO_COMPL_BATCH 32
124
#define IO_REQ_ALLOC_BATCH 8
125
#define IO_LOCAL_TW_DEFAULT_MAX 20
126
127
struct io_defer_entry {
128
struct list_head list;
129
struct io_kiocb *req;
130
};
131
132
/* requests with any of those set should undergo io_disarm_next() */
133
#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134
135
/*
136
* No waiters. It's larger than any valid value of the tw counter
137
* so that tests against ->cq_wait_nr would fail and skip wake_up().
138
*/
139
#define IO_CQ_WAKE_INIT (-1U)
140
/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141
#define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
142
143
static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144
struct io_uring_task *tctx,
145
bool cancel_all,
146
bool is_sqpoll_thread);
147
148
static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
149
static void __io_req_caches_free(struct io_ring_ctx *ctx);
150
151
static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
152
153
struct kmem_cache *req_cachep;
154
static struct workqueue_struct *iou_wq __ro_after_init;
155
156
static int __read_mostly sysctl_io_uring_disabled;
157
static int __read_mostly sysctl_io_uring_group = -1;
158
159
#ifdef CONFIG_SYSCTL
160
static const struct ctl_table kernel_io_uring_disabled_table[] = {
161
{
162
.procname = "io_uring_disabled",
163
.data = &sysctl_io_uring_disabled,
164
.maxlen = sizeof(sysctl_io_uring_disabled),
165
.mode = 0644,
166
.proc_handler = proc_dointvec_minmax,
167
.extra1 = SYSCTL_ZERO,
168
.extra2 = SYSCTL_TWO,
169
},
170
{
171
.procname = "io_uring_group",
172
.data = &sysctl_io_uring_group,
173
.maxlen = sizeof(gid_t),
174
.mode = 0644,
175
.proc_handler = proc_dointvec,
176
},
177
};
178
#endif
179
180
static void io_poison_cached_req(struct io_kiocb *req)
181
{
182
req->ctx = IO_URING_PTR_POISON;
183
req->tctx = IO_URING_PTR_POISON;
184
req->file = IO_URING_PTR_POISON;
185
req->creds = IO_URING_PTR_POISON;
186
req->io_task_work.func = IO_URING_PTR_POISON;
187
req->apoll = IO_URING_PTR_POISON;
188
}
189
190
static void io_poison_req(struct io_kiocb *req)
191
{
192
io_poison_cached_req(req);
193
req->async_data = IO_URING_PTR_POISON;
194
req->kbuf = IO_URING_PTR_POISON;
195
req->comp_list.next = IO_URING_PTR_POISON;
196
req->file_node = IO_URING_PTR_POISON;
197
req->link = IO_URING_PTR_POISON;
198
}
199
200
static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
201
{
202
return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203
}
204
205
static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
206
{
207
return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208
}
209
210
static bool io_match_linked(struct io_kiocb *head)
211
{
212
struct io_kiocb *req;
213
214
io_for_each_link(req, head) {
215
if (req->flags & REQ_F_INFLIGHT)
216
return true;
217
}
218
return false;
219
}
220
221
/*
222
* As io_match_task() but protected against racing with linked timeouts.
223
* User must not hold timeout_lock.
224
*/
225
bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
226
bool cancel_all)
227
{
228
bool matched;
229
230
if (tctx && head->tctx != tctx)
231
return false;
232
if (cancel_all)
233
return true;
234
235
if (head->flags & REQ_F_LINK_TIMEOUT) {
236
struct io_ring_ctx *ctx = head->ctx;
237
238
/* protect against races with linked timeouts */
239
raw_spin_lock_irq(&ctx->timeout_lock);
240
matched = io_match_linked(head);
241
raw_spin_unlock_irq(&ctx->timeout_lock);
242
} else {
243
matched = io_match_linked(head);
244
}
245
return matched;
246
}
247
248
static inline void req_fail_link_node(struct io_kiocb *req, int res)
249
{
250
req_set_fail(req);
251
io_req_set_res(req, res, 0);
252
}
253
254
static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
255
{
256
if (IS_ENABLED(CONFIG_KASAN))
257
io_poison_cached_req(req);
258
wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
259
}
260
261
static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
262
{
263
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
264
265
complete(&ctx->ref_comp);
266
}
267
268
static __cold void io_fallback_req_func(struct work_struct *work)
269
{
270
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
271
fallback_work.work);
272
struct llist_node *node = llist_del_all(&ctx->fallback_llist);
273
struct io_kiocb *req, *tmp;
274
struct io_tw_state ts = {};
275
276
percpu_ref_get(&ctx->refs);
277
mutex_lock(&ctx->uring_lock);
278
llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
279
req->io_task_work.func(req, ts);
280
io_submit_flush_completions(ctx);
281
mutex_unlock(&ctx->uring_lock);
282
percpu_ref_put(&ctx->refs);
283
}
284
285
static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
286
{
287
unsigned int hash_buckets;
288
int i;
289
290
do {
291
hash_buckets = 1U << bits;
292
table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
293
GFP_KERNEL_ACCOUNT);
294
if (table->hbs)
295
break;
296
if (bits == 1)
297
return -ENOMEM;
298
bits--;
299
} while (1);
300
301
table->hash_bits = bits;
302
for (i = 0; i < hash_buckets; i++)
303
INIT_HLIST_HEAD(&table->hbs[i].list);
304
return 0;
305
}
306
307
static void io_free_alloc_caches(struct io_ring_ctx *ctx)
308
{
309
io_alloc_cache_free(&ctx->apoll_cache, kfree);
310
io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
311
io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
312
io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
313
io_futex_cache_free(ctx);
314
io_rsrc_cache_free(ctx);
315
}
316
317
static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
318
{
319
struct io_ring_ctx *ctx;
320
int hash_bits;
321
bool ret;
322
323
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
324
if (!ctx)
325
return NULL;
326
327
xa_init(&ctx->io_bl_xa);
328
329
/*
330
* Use 5 bits less than the max cq entries, that should give us around
331
* 32 entries per hash list if totally full and uniformly spread, but
332
* don't keep too many buckets to not overconsume memory.
333
*/
334
hash_bits = ilog2(p->cq_entries) - 5;
335
hash_bits = clamp(hash_bits, 1, 8);
336
if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
337
goto err;
338
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
339
0, GFP_KERNEL))
340
goto err;
341
342
ctx->flags = p->flags;
343
ctx->hybrid_poll_time = LLONG_MAX;
344
atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
345
init_waitqueue_head(&ctx->sqo_sq_wait);
346
INIT_LIST_HEAD(&ctx->sqd_list);
347
INIT_LIST_HEAD(&ctx->cq_overflow_list);
348
ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
349
sizeof(struct async_poll), 0);
350
ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
351
sizeof(struct io_async_msghdr),
352
offsetof(struct io_async_msghdr, clear));
353
ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
354
sizeof(struct io_async_rw),
355
offsetof(struct io_async_rw, clear));
356
ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
357
sizeof(struct io_async_cmd),
358
sizeof(struct io_async_cmd));
359
ret |= io_futex_cache_init(ctx);
360
ret |= io_rsrc_cache_init(ctx);
361
if (ret)
362
goto free_ref;
363
init_completion(&ctx->ref_comp);
364
xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
365
mutex_init(&ctx->uring_lock);
366
init_waitqueue_head(&ctx->cq_wait);
367
init_waitqueue_head(&ctx->poll_wq);
368
spin_lock_init(&ctx->completion_lock);
369
raw_spin_lock_init(&ctx->timeout_lock);
370
INIT_WQ_LIST(&ctx->iopoll_list);
371
INIT_LIST_HEAD(&ctx->defer_list);
372
INIT_LIST_HEAD(&ctx->timeout_list);
373
INIT_LIST_HEAD(&ctx->ltimeout_list);
374
init_llist_head(&ctx->work_llist);
375
INIT_LIST_HEAD(&ctx->tctx_list);
376
ctx->submit_state.free_list.next = NULL;
377
INIT_HLIST_HEAD(&ctx->waitid_list);
378
xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
379
#ifdef CONFIG_FUTEX
380
INIT_HLIST_HEAD(&ctx->futex_list);
381
#endif
382
INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
383
INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
384
INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
385
io_napi_init(ctx);
386
mutex_init(&ctx->mmap_lock);
387
388
return ctx;
389
390
free_ref:
391
percpu_ref_exit(&ctx->refs);
392
err:
393
io_free_alloc_caches(ctx);
394
kvfree(ctx->cancel_table.hbs);
395
xa_destroy(&ctx->io_bl_xa);
396
kfree(ctx);
397
return NULL;
398
}
399
400
static void io_clean_op(struct io_kiocb *req)
401
{
402
if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
403
io_kbuf_drop_legacy(req);
404
405
if (req->flags & REQ_F_NEED_CLEANUP) {
406
const struct io_cold_def *def = &io_cold_defs[req->opcode];
407
408
if (def->cleanup)
409
def->cleanup(req);
410
}
411
if (req->flags & REQ_F_INFLIGHT)
412
atomic_dec(&req->tctx->inflight_tracked);
413
if (req->flags & REQ_F_CREDS)
414
put_cred(req->creds);
415
if (req->flags & REQ_F_ASYNC_DATA) {
416
kfree(req->async_data);
417
req->async_data = NULL;
418
}
419
req->flags &= ~IO_REQ_CLEAN_FLAGS;
420
}
421
422
/*
423
* Mark the request as inflight, so that file cancelation will find it.
424
* Can be used if the file is an io_uring instance, or if the request itself
425
* relies on ->mm being alive for the duration of the request.
426
*/
427
inline void io_req_track_inflight(struct io_kiocb *req)
428
{
429
if (!(req->flags & REQ_F_INFLIGHT)) {
430
req->flags |= REQ_F_INFLIGHT;
431
atomic_inc(&req->tctx->inflight_tracked);
432
}
433
}
434
435
static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
436
{
437
if (WARN_ON_ONCE(!req->link))
438
return NULL;
439
440
req->flags &= ~REQ_F_ARM_LTIMEOUT;
441
req->flags |= REQ_F_LINK_TIMEOUT;
442
443
/* linked timeouts should have two refs once prep'ed */
444
io_req_set_refcount(req);
445
__io_req_set_refcount(req->link, 2);
446
return req->link;
447
}
448
449
static void io_prep_async_work(struct io_kiocb *req)
450
{
451
const struct io_issue_def *def = &io_issue_defs[req->opcode];
452
struct io_ring_ctx *ctx = req->ctx;
453
454
if (!(req->flags & REQ_F_CREDS)) {
455
req->flags |= REQ_F_CREDS;
456
req->creds = get_current_cred();
457
}
458
459
req->work.list.next = NULL;
460
atomic_set(&req->work.flags, 0);
461
if (req->flags & REQ_F_FORCE_ASYNC)
462
atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
463
464
if (req->file && !(req->flags & REQ_F_FIXED_FILE))
465
req->flags |= io_file_get_flags(req->file);
466
467
if (req->file && (req->flags & REQ_F_ISREG)) {
468
bool should_hash = def->hash_reg_file;
469
470
/* don't serialize this request if the fs doesn't need it */
471
if (should_hash && (req->file->f_flags & O_DIRECT) &&
472
(req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
473
should_hash = false;
474
if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
475
io_wq_hash_work(&req->work, file_inode(req->file));
476
} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
477
if (def->unbound_nonreg_file)
478
atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
479
}
480
}
481
482
static void io_prep_async_link(struct io_kiocb *req)
483
{
484
struct io_kiocb *cur;
485
486
if (req->flags & REQ_F_LINK_TIMEOUT) {
487
struct io_ring_ctx *ctx = req->ctx;
488
489
raw_spin_lock_irq(&ctx->timeout_lock);
490
io_for_each_link(cur, req)
491
io_prep_async_work(cur);
492
raw_spin_unlock_irq(&ctx->timeout_lock);
493
} else {
494
io_for_each_link(cur, req)
495
io_prep_async_work(cur);
496
}
497
}
498
499
static void io_queue_iowq(struct io_kiocb *req)
500
{
501
struct io_uring_task *tctx = req->tctx;
502
503
BUG_ON(!tctx);
504
505
if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
506
io_req_task_queue_fail(req, -ECANCELED);
507
return;
508
}
509
510
/* init ->work of the whole link before punting */
511
io_prep_async_link(req);
512
513
/*
514
* Not expected to happen, but if we do have a bug where this _can_
515
* happen, catch it here and ensure the request is marked as
516
* canceled. That will make io-wq go through the usual work cancel
517
* procedure rather than attempt to run this request (or create a new
518
* worker for it).
519
*/
520
if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
521
atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
522
523
trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
524
io_wq_enqueue(tctx->io_wq, &req->work);
525
}
526
527
static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
528
{
529
io_queue_iowq(req);
530
}
531
532
void io_req_queue_iowq(struct io_kiocb *req)
533
{
534
req->io_task_work.func = io_req_queue_iowq_tw;
535
io_req_task_work_add(req);
536
}
537
538
static unsigned io_linked_nr(struct io_kiocb *req)
539
{
540
struct io_kiocb *tmp;
541
unsigned nr = 0;
542
543
io_for_each_link(tmp, req)
544
nr++;
545
return nr;
546
}
547
548
static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
549
{
550
bool drain_seen = false, first = true;
551
552
lockdep_assert_held(&ctx->uring_lock);
553
__io_req_caches_free(ctx);
554
555
while (!list_empty(&ctx->defer_list)) {
556
struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
557
struct io_defer_entry, list);
558
559
drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
560
if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
561
return;
562
563
list_del_init(&de->list);
564
ctx->nr_drained -= io_linked_nr(de->req);
565
io_req_task_queue(de->req);
566
kfree(de);
567
first = false;
568
}
569
}
570
571
void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
572
{
573
if (ctx->poll_activated)
574
io_poll_wq_wake(ctx);
575
if (ctx->off_timeout_used)
576
io_flush_timeouts(ctx);
577
if (ctx->has_evfd)
578
io_eventfd_signal(ctx, true);
579
}
580
581
static inline void __io_cq_lock(struct io_ring_ctx *ctx)
582
{
583
if (!ctx->lockless_cq)
584
spin_lock(&ctx->completion_lock);
585
}
586
587
static inline void io_cq_lock(struct io_ring_ctx *ctx)
588
__acquires(ctx->completion_lock)
589
{
590
spin_lock(&ctx->completion_lock);
591
}
592
593
static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
594
{
595
io_commit_cqring(ctx);
596
if (!ctx->task_complete) {
597
if (!ctx->lockless_cq)
598
spin_unlock(&ctx->completion_lock);
599
/* IOPOLL rings only need to wake up if it's also SQPOLL */
600
if (!ctx->syscall_iopoll)
601
io_cqring_wake(ctx);
602
}
603
io_commit_cqring_flush(ctx);
604
}
605
606
static void io_cq_unlock_post(struct io_ring_ctx *ctx)
607
__releases(ctx->completion_lock)
608
{
609
io_commit_cqring(ctx);
610
spin_unlock(&ctx->completion_lock);
611
io_cqring_wake(ctx);
612
io_commit_cqring_flush(ctx);
613
}
614
615
static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
616
{
617
lockdep_assert_held(&ctx->uring_lock);
618
619
/* don't abort if we're dying, entries must get freed */
620
if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
621
return;
622
623
io_cq_lock(ctx);
624
while (!list_empty(&ctx->cq_overflow_list)) {
625
size_t cqe_size = sizeof(struct io_uring_cqe);
626
struct io_uring_cqe *cqe;
627
struct io_overflow_cqe *ocqe;
628
bool is_cqe32 = false;
629
630
ocqe = list_first_entry(&ctx->cq_overflow_list,
631
struct io_overflow_cqe, list);
632
if (ocqe->cqe.flags & IORING_CQE_F_32 ||
633
ctx->flags & IORING_SETUP_CQE32) {
634
is_cqe32 = true;
635
cqe_size <<= 1;
636
}
637
638
if (!dying) {
639
if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32))
640
break;
641
memcpy(cqe, &ocqe->cqe, cqe_size);
642
}
643
list_del(&ocqe->list);
644
kfree(ocqe);
645
646
/*
647
* For silly syzbot cases that deliberately overflow by huge
648
* amounts, check if we need to resched and drop and
649
* reacquire the locks if so. Nothing real would ever hit this.
650
* Ideally we'd have a non-posting unlock for this, but hard
651
* to care for a non-real case.
652
*/
653
if (need_resched()) {
654
ctx->cqe_sentinel = ctx->cqe_cached;
655
io_cq_unlock_post(ctx);
656
mutex_unlock(&ctx->uring_lock);
657
cond_resched();
658
mutex_lock(&ctx->uring_lock);
659
io_cq_lock(ctx);
660
}
661
}
662
663
if (list_empty(&ctx->cq_overflow_list)) {
664
clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
665
atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
666
}
667
io_cq_unlock_post(ctx);
668
}
669
670
static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
671
{
672
if (ctx->rings)
673
__io_cqring_overflow_flush(ctx, true);
674
}
675
676
static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
677
{
678
mutex_lock(&ctx->uring_lock);
679
__io_cqring_overflow_flush(ctx, false);
680
mutex_unlock(&ctx->uring_lock);
681
}
682
683
/* must to be called somewhat shortly after putting a request */
684
static inline void io_put_task(struct io_kiocb *req)
685
{
686
struct io_uring_task *tctx = req->tctx;
687
688
if (likely(tctx->task == current)) {
689
tctx->cached_refs++;
690
} else {
691
percpu_counter_sub(&tctx->inflight, 1);
692
if (unlikely(atomic_read(&tctx->in_cancel)))
693
wake_up(&tctx->wait);
694
put_task_struct(tctx->task);
695
}
696
}
697
698
void io_task_refs_refill(struct io_uring_task *tctx)
699
{
700
unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
701
702
percpu_counter_add(&tctx->inflight, refill);
703
refcount_add(refill, &current->usage);
704
tctx->cached_refs += refill;
705
}
706
707
static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
708
{
709
struct io_uring_task *tctx = task->io_uring;
710
unsigned int refs = tctx->cached_refs;
711
712
if (refs) {
713
tctx->cached_refs = 0;
714
percpu_counter_sub(&tctx->inflight, refs);
715
put_task_struct_many(task, refs);
716
}
717
}
718
719
static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
720
struct io_overflow_cqe *ocqe)
721
{
722
lockdep_assert_held(&ctx->completion_lock);
723
724
if (!ocqe) {
725
struct io_rings *r = ctx->rings;
726
727
/*
728
* If we're in ring overflow flush mode, or in task cancel mode,
729
* or cannot allocate an overflow entry, then we need to drop it
730
* on the floor.
731
*/
732
WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
733
set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
734
return false;
735
}
736
if (list_empty(&ctx->cq_overflow_list)) {
737
set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
738
atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
739
740
}
741
list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
742
return true;
743
}
744
745
static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
746
struct io_cqe *cqe,
747
struct io_big_cqe *big_cqe, gfp_t gfp)
748
{
749
struct io_overflow_cqe *ocqe;
750
size_t ocq_size = sizeof(struct io_overflow_cqe);
751
bool is_cqe32 = false;
752
753
if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) {
754
is_cqe32 = true;
755
ocq_size += sizeof(struct io_uring_cqe);
756
}
757
758
ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
759
trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
760
if (ocqe) {
761
ocqe->cqe.user_data = cqe->user_data;
762
ocqe->cqe.res = cqe->res;
763
ocqe->cqe.flags = cqe->flags;
764
if (is_cqe32 && big_cqe) {
765
ocqe->cqe.big_cqe[0] = big_cqe->extra1;
766
ocqe->cqe.big_cqe[1] = big_cqe->extra2;
767
}
768
}
769
if (big_cqe)
770
big_cqe->extra1 = big_cqe->extra2 = 0;
771
return ocqe;
772
}
773
774
/*
775
* Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE
776
* because the ring is a single 16b entry away from wrapping.
777
*/
778
static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off)
779
{
780
if (__io_cqring_events(ctx) < ctx->cq_entries) {
781
struct io_uring_cqe *cqe = &ctx->rings->cqes[off];
782
783
cqe->user_data = 0;
784
cqe->res = 0;
785
cqe->flags = IORING_CQE_F_SKIP;
786
ctx->cached_cq_tail++;
787
return true;
788
}
789
return false;
790
}
791
792
/*
793
* writes to the cq entry need to come after reading head; the
794
* control dependency is enough as we're using WRITE_ONCE to
795
* fill the cq entry
796
*/
797
bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32)
798
{
799
struct io_rings *rings = ctx->rings;
800
unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
801
unsigned int free, queued, len;
802
803
/*
804
* Posting into the CQ when there are pending overflowed CQEs may break
805
* ordering guarantees, which will affect links, F_MORE users and more.
806
* Force overflow the completion.
807
*/
808
if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
809
return false;
810
811
/*
812
* Post dummy CQE if a 32b CQE is needed and there's only room for a
813
* 16b CQE before the ring wraps.
814
*/
815
if (cqe32 && off + 1 == ctx->cq_entries) {
816
if (!io_fill_nop_cqe(ctx, off))
817
return false;
818
off = 0;
819
}
820
821
/* userspace may cheat modifying the tail, be safe and do min */
822
queued = min(__io_cqring_events(ctx), ctx->cq_entries);
823
free = ctx->cq_entries - queued;
824
/* we need a contiguous range, limit based on the current array offset */
825
len = min(free, ctx->cq_entries - off);
826
if (len < (cqe32 + 1))
827
return false;
828
829
if (ctx->flags & IORING_SETUP_CQE32) {
830
off <<= 1;
831
len <<= 1;
832
}
833
834
ctx->cqe_cached = &rings->cqes[off];
835
ctx->cqe_sentinel = ctx->cqe_cached + len;
836
return true;
837
}
838
839
static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
840
struct io_uring_cqe src_cqe[2])
841
{
842
struct io_uring_cqe *cqe;
843
844
if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))))
845
return false;
846
if (unlikely(!io_get_cqe(ctx, &cqe, true)))
847
return false;
848
849
memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
850
trace_io_uring_complete(ctx, NULL, cqe);
851
return true;
852
}
853
854
static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
855
u32 cflags)
856
{
857
bool cqe32 = cflags & IORING_CQE_F_32;
858
struct io_uring_cqe *cqe;
859
860
if (likely(io_get_cqe(ctx, &cqe, cqe32))) {
861
WRITE_ONCE(cqe->user_data, user_data);
862
WRITE_ONCE(cqe->res, res);
863
WRITE_ONCE(cqe->flags, cflags);
864
865
if (cqe32) {
866
WRITE_ONCE(cqe->big_cqe[0], 0);
867
WRITE_ONCE(cqe->big_cqe[1], 0);
868
}
869
870
trace_io_uring_complete(ctx, NULL, cqe);
871
return true;
872
}
873
return false;
874
}
875
876
static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
877
{
878
return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
879
}
880
881
static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
882
struct io_big_cqe *big_cqe)
883
{
884
struct io_overflow_cqe *ocqe;
885
886
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
887
spin_lock(&ctx->completion_lock);
888
io_cqring_add_overflow(ctx, ocqe);
889
spin_unlock(&ctx->completion_lock);
890
}
891
892
static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
893
struct io_cqe *cqe,
894
struct io_big_cqe *big_cqe)
895
{
896
struct io_overflow_cqe *ocqe;
897
898
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
899
return io_cqring_add_overflow(ctx, ocqe);
900
}
901
902
bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
903
{
904
bool filled;
905
906
io_cq_lock(ctx);
907
filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
908
if (unlikely(!filled)) {
909
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
910
911
filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
912
}
913
io_cq_unlock_post(ctx);
914
return filled;
915
}
916
917
/*
918
* Must be called from inline task_work so we now a flush will happen later,
919
* and obviously with ctx->uring_lock held (tw always has that).
920
*/
921
void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
922
{
923
lockdep_assert_held(&ctx->uring_lock);
924
lockdep_assert(ctx->lockless_cq);
925
926
if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
927
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
928
929
io_cqe_overflow(ctx, &cqe, NULL);
930
}
931
ctx->submit_state.cq_flush = true;
932
}
933
934
/*
935
* A helper for multishot requests posting additional CQEs.
936
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
937
*/
938
bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
939
{
940
struct io_ring_ctx *ctx = req->ctx;
941
bool posted;
942
943
/*
944
* If multishot has already posted deferred completions, ensure that
945
* those are flushed first before posting this one. If not, CQEs
946
* could get reordered.
947
*/
948
if (!wq_list_empty(&ctx->submit_state.compl_reqs))
949
__io_submit_flush_completions(ctx);
950
951
lockdep_assert(!io_wq_current_is_worker());
952
lockdep_assert_held(&ctx->uring_lock);
953
954
if (!ctx->lockless_cq) {
955
spin_lock(&ctx->completion_lock);
956
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
957
spin_unlock(&ctx->completion_lock);
958
} else {
959
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
960
}
961
962
ctx->submit_state.cq_flush = true;
963
return posted;
964
}
965
966
/*
967
* A helper for multishot requests posting additional CQEs.
968
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
969
*/
970
bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
971
{
972
struct io_ring_ctx *ctx = req->ctx;
973
bool posted;
974
975
lockdep_assert(!io_wq_current_is_worker());
976
lockdep_assert_held(&ctx->uring_lock);
977
978
cqe[0].user_data = req->cqe.user_data;
979
if (!ctx->lockless_cq) {
980
spin_lock(&ctx->completion_lock);
981
posted = io_fill_cqe_aux32(ctx, cqe);
982
spin_unlock(&ctx->completion_lock);
983
} else {
984
posted = io_fill_cqe_aux32(ctx, cqe);
985
}
986
987
ctx->submit_state.cq_flush = true;
988
return posted;
989
}
990
991
static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
992
{
993
struct io_ring_ctx *ctx = req->ctx;
994
bool completed = true;
995
996
/*
997
* All execution paths but io-wq use the deferred completions by
998
* passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
999
*/
1000
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
1001
return;
1002
1003
/*
1004
* Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
1005
* the submitter task context, IOPOLL protects with uring_lock.
1006
*/
1007
if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
1008
defer_complete:
1009
req->io_task_work.func = io_req_task_complete;
1010
io_req_task_work_add(req);
1011
return;
1012
}
1013
1014
io_cq_lock(ctx);
1015
if (!(req->flags & REQ_F_CQE_SKIP))
1016
completed = io_fill_cqe_req(ctx, req);
1017
io_cq_unlock_post(ctx);
1018
1019
if (!completed)
1020
goto defer_complete;
1021
1022
/*
1023
* We don't free the request here because we know it's called from
1024
* io-wq only, which holds a reference, so it cannot be the last put.
1025
*/
1026
req_ref_put(req);
1027
}
1028
1029
void io_req_defer_failed(struct io_kiocb *req, s32 res)
1030
__must_hold(&ctx->uring_lock)
1031
{
1032
const struct io_cold_def *def = &io_cold_defs[req->opcode];
1033
1034
lockdep_assert_held(&req->ctx->uring_lock);
1035
1036
req_set_fail(req);
1037
io_req_set_res(req, res, io_put_kbuf(req, res, NULL));
1038
if (def->fail)
1039
def->fail(req);
1040
io_req_complete_defer(req);
1041
}
1042
1043
/*
1044
* A request might get retired back into the request caches even before opcode
1045
* handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1046
* Because of that, io_alloc_req() should be called only under ->uring_lock
1047
* and with extra caution to not get a request that is still worked on.
1048
*/
1049
__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1050
__must_hold(&ctx->uring_lock)
1051
{
1052
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
1053
void *reqs[IO_REQ_ALLOC_BATCH];
1054
int ret;
1055
1056
ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1057
1058
/*
1059
* Bulk alloc is all-or-nothing. If we fail to get a batch,
1060
* retry single alloc to be on the safe side.
1061
*/
1062
if (unlikely(ret <= 0)) {
1063
reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1064
if (!reqs[0])
1065
return false;
1066
ret = 1;
1067
}
1068
1069
percpu_ref_get_many(&ctx->refs, ret);
1070
ctx->nr_req_allocated += ret;
1071
1072
while (ret--) {
1073
struct io_kiocb *req = reqs[ret];
1074
1075
io_req_add_to_cache(req, ctx);
1076
}
1077
return true;
1078
}
1079
1080
__cold void io_free_req(struct io_kiocb *req)
1081
{
1082
/* refs were already put, restore them for io_req_task_complete() */
1083
req->flags &= ~REQ_F_REFCOUNT;
1084
/* we only want to free it, don't post CQEs */
1085
req->flags |= REQ_F_CQE_SKIP;
1086
req->io_task_work.func = io_req_task_complete;
1087
io_req_task_work_add(req);
1088
}
1089
1090
static void __io_req_find_next_prep(struct io_kiocb *req)
1091
{
1092
struct io_ring_ctx *ctx = req->ctx;
1093
1094
spin_lock(&ctx->completion_lock);
1095
io_disarm_next(req);
1096
spin_unlock(&ctx->completion_lock);
1097
}
1098
1099
static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1100
{
1101
struct io_kiocb *nxt;
1102
1103
/*
1104
* If LINK is set, we have dependent requests in this chain. If we
1105
* didn't fail this request, queue the first one up, moving any other
1106
* dependencies to the next request. In case of failure, fail the rest
1107
* of the chain.
1108
*/
1109
if (unlikely(req->flags & IO_DISARM_MASK))
1110
__io_req_find_next_prep(req);
1111
nxt = req->link;
1112
req->link = NULL;
1113
return nxt;
1114
}
1115
1116
static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1117
{
1118
if (!ctx)
1119
return;
1120
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1121
atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1122
1123
io_submit_flush_completions(ctx);
1124
mutex_unlock(&ctx->uring_lock);
1125
percpu_ref_put(&ctx->refs);
1126
}
1127
1128
/*
1129
* Run queued task_work, returning the number of entries processed in *count.
1130
* If more entries than max_entries are available, stop processing once this
1131
* is reached and return the rest of the list.
1132
*/
1133
struct llist_node *io_handle_tw_list(struct llist_node *node,
1134
unsigned int *count,
1135
unsigned int max_entries)
1136
{
1137
struct io_ring_ctx *ctx = NULL;
1138
struct io_tw_state ts = { };
1139
1140
do {
1141
struct llist_node *next = node->next;
1142
struct io_kiocb *req = container_of(node, struct io_kiocb,
1143
io_task_work.node);
1144
1145
if (req->ctx != ctx) {
1146
ctx_flush_and_put(ctx, ts);
1147
ctx = req->ctx;
1148
mutex_lock(&ctx->uring_lock);
1149
percpu_ref_get(&ctx->refs);
1150
}
1151
INDIRECT_CALL_2(req->io_task_work.func,
1152
io_poll_task_func, io_req_rw_complete,
1153
req, ts);
1154
node = next;
1155
(*count)++;
1156
if (unlikely(need_resched())) {
1157
ctx_flush_and_put(ctx, ts);
1158
ctx = NULL;
1159
cond_resched();
1160
}
1161
} while (node && *count < max_entries);
1162
1163
ctx_flush_and_put(ctx, ts);
1164
return node;
1165
}
1166
1167
static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1168
{
1169
struct io_ring_ctx *last_ctx = NULL;
1170
struct io_kiocb *req;
1171
1172
while (node) {
1173
req = container_of(node, struct io_kiocb, io_task_work.node);
1174
node = node->next;
1175
if (last_ctx != req->ctx) {
1176
if (last_ctx) {
1177
if (sync)
1178
flush_delayed_work(&last_ctx->fallback_work);
1179
percpu_ref_put(&last_ctx->refs);
1180
}
1181
last_ctx = req->ctx;
1182
percpu_ref_get(&last_ctx->refs);
1183
}
1184
if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1185
schedule_delayed_work(&last_ctx->fallback_work, 1);
1186
}
1187
1188
if (last_ctx) {
1189
if (sync)
1190
flush_delayed_work(&last_ctx->fallback_work);
1191
percpu_ref_put(&last_ctx->refs);
1192
}
1193
}
1194
1195
static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1196
{
1197
struct llist_node *node = llist_del_all(&tctx->task_list);
1198
1199
__io_fallback_tw(node, sync);
1200
}
1201
1202
struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1203
unsigned int max_entries,
1204
unsigned int *count)
1205
{
1206
struct llist_node *node;
1207
1208
if (unlikely(current->flags & PF_EXITING)) {
1209
io_fallback_tw(tctx, true);
1210
return NULL;
1211
}
1212
1213
node = llist_del_all(&tctx->task_list);
1214
if (node) {
1215
node = llist_reverse_order(node);
1216
node = io_handle_tw_list(node, count, max_entries);
1217
}
1218
1219
/* relaxed read is enough as only the task itself sets ->in_cancel */
1220
if (unlikely(atomic_read(&tctx->in_cancel)))
1221
io_uring_drop_tctx_refs(current);
1222
1223
trace_io_uring_task_work_run(tctx, *count);
1224
return node;
1225
}
1226
1227
void tctx_task_work(struct callback_head *cb)
1228
{
1229
struct io_uring_task *tctx;
1230
struct llist_node *ret;
1231
unsigned int count = 0;
1232
1233
tctx = container_of(cb, struct io_uring_task, task_work);
1234
ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1235
/* can't happen */
1236
WARN_ON_ONCE(ret);
1237
}
1238
1239
static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1240
{
1241
struct io_ring_ctx *ctx = req->ctx;
1242
unsigned nr_wait, nr_tw, nr_tw_prev;
1243
struct llist_node *head;
1244
1245
/* See comment above IO_CQ_WAKE_INIT */
1246
BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1247
1248
/*
1249
* We don't know how many reuqests is there in the link and whether
1250
* they can even be queued lazily, fall back to non-lazy.
1251
*/
1252
if (req->flags & IO_REQ_LINK_FLAGS)
1253
flags &= ~IOU_F_TWQ_LAZY_WAKE;
1254
1255
guard(rcu)();
1256
1257
head = READ_ONCE(ctx->work_llist.first);
1258
do {
1259
nr_tw_prev = 0;
1260
if (head) {
1261
struct io_kiocb *first_req = container_of(head,
1262
struct io_kiocb,
1263
io_task_work.node);
1264
/*
1265
* Might be executed at any moment, rely on
1266
* SLAB_TYPESAFE_BY_RCU to keep it alive.
1267
*/
1268
nr_tw_prev = READ_ONCE(first_req->nr_tw);
1269
}
1270
1271
/*
1272
* Theoretically, it can overflow, but that's fine as one of
1273
* previous adds should've tried to wake the task.
1274
*/
1275
nr_tw = nr_tw_prev + 1;
1276
if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1277
nr_tw = IO_CQ_WAKE_FORCE;
1278
1279
req->nr_tw = nr_tw;
1280
req->io_task_work.node.next = head;
1281
} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1282
&req->io_task_work.node));
1283
1284
/*
1285
* cmpxchg implies a full barrier, which pairs with the barrier
1286
* in set_current_state() on the io_cqring_wait() side. It's used
1287
* to ensure that either we see updated ->cq_wait_nr, or waiters
1288
* going to sleep will observe the work added to the list, which
1289
* is similar to the wait/wawke task state sync.
1290
*/
1291
1292
if (!head) {
1293
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1294
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1295
if (ctx->has_evfd)
1296
io_eventfd_signal(ctx, false);
1297
}
1298
1299
nr_wait = atomic_read(&ctx->cq_wait_nr);
1300
/* not enough or no one is waiting */
1301
if (nr_tw < nr_wait)
1302
return;
1303
/* the previous add has already woken it up */
1304
if (nr_tw_prev >= nr_wait)
1305
return;
1306
wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1307
}
1308
1309
static void io_req_normal_work_add(struct io_kiocb *req)
1310
{
1311
struct io_uring_task *tctx = req->tctx;
1312
struct io_ring_ctx *ctx = req->ctx;
1313
1314
/* task_work already pending, we're done */
1315
if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1316
return;
1317
1318
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1319
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1320
1321
/* SQPOLL doesn't need the task_work added, it'll run it itself */
1322
if (ctx->flags & IORING_SETUP_SQPOLL) {
1323
__set_notify_signal(tctx->task);
1324
return;
1325
}
1326
1327
if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1328
return;
1329
1330
io_fallback_tw(tctx, false);
1331
}
1332
1333
void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1334
{
1335
if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1336
io_req_local_work_add(req, flags);
1337
else
1338
io_req_normal_work_add(req);
1339
}
1340
1341
void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1342
{
1343
if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1344
return;
1345
__io_req_task_work_add(req, flags);
1346
}
1347
1348
static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1349
{
1350
struct llist_node *node = llist_del_all(&ctx->work_llist);
1351
1352
__io_fallback_tw(node, false);
1353
node = llist_del_all(&ctx->retry_llist);
1354
__io_fallback_tw(node, false);
1355
}
1356
1357
static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1358
int min_events)
1359
{
1360
if (!io_local_work_pending(ctx))
1361
return false;
1362
if (events < min_events)
1363
return true;
1364
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1365
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1366
return false;
1367
}
1368
1369
static int __io_run_local_work_loop(struct llist_node **node,
1370
io_tw_token_t tw,
1371
int events)
1372
{
1373
int ret = 0;
1374
1375
while (*node) {
1376
struct llist_node *next = (*node)->next;
1377
struct io_kiocb *req = container_of(*node, struct io_kiocb,
1378
io_task_work.node);
1379
INDIRECT_CALL_2(req->io_task_work.func,
1380
io_poll_task_func, io_req_rw_complete,
1381
req, tw);
1382
*node = next;
1383
if (++ret >= events)
1384
break;
1385
}
1386
1387
return ret;
1388
}
1389
1390
static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1391
int min_events, int max_events)
1392
{
1393
struct llist_node *node;
1394
unsigned int loops = 0;
1395
int ret = 0;
1396
1397
if (WARN_ON_ONCE(ctx->submitter_task != current))
1398
return -EEXIST;
1399
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1400
atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1401
again:
1402
min_events -= ret;
1403
ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1404
if (ctx->retry_llist.first)
1405
goto retry_done;
1406
1407
/*
1408
* llists are in reverse order, flip it back the right way before
1409
* running the pending items.
1410
*/
1411
node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1412
ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1413
ctx->retry_llist.first = node;
1414
loops++;
1415
1416
if (io_run_local_work_continue(ctx, ret, min_events))
1417
goto again;
1418
retry_done:
1419
io_submit_flush_completions(ctx);
1420
if (io_run_local_work_continue(ctx, ret, min_events))
1421
goto again;
1422
1423
trace_io_uring_local_work_run(ctx, ret, loops);
1424
return ret;
1425
}
1426
1427
static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1428
int min_events)
1429
{
1430
struct io_tw_state ts = {};
1431
1432
if (!io_local_work_pending(ctx))
1433
return 0;
1434
return __io_run_local_work(ctx, ts, min_events,
1435
max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1436
}
1437
1438
static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1439
int max_events)
1440
{
1441
struct io_tw_state ts = {};
1442
int ret;
1443
1444
mutex_lock(&ctx->uring_lock);
1445
ret = __io_run_local_work(ctx, ts, min_events, max_events);
1446
mutex_unlock(&ctx->uring_lock);
1447
return ret;
1448
}
1449
1450
static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1451
{
1452
io_tw_lock(req->ctx, tw);
1453
io_req_defer_failed(req, req->cqe.res);
1454
}
1455
1456
void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1457
{
1458
struct io_ring_ctx *ctx = req->ctx;
1459
1460
io_tw_lock(ctx, tw);
1461
if (unlikely(io_should_terminate_tw(ctx)))
1462
io_req_defer_failed(req, -EFAULT);
1463
else if (req->flags & REQ_F_FORCE_ASYNC)
1464
io_queue_iowq(req);
1465
else
1466
io_queue_sqe(req, 0);
1467
}
1468
1469
void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1470
{
1471
io_req_set_res(req, ret, 0);
1472
req->io_task_work.func = io_req_task_cancel;
1473
io_req_task_work_add(req);
1474
}
1475
1476
void io_req_task_queue(struct io_kiocb *req)
1477
{
1478
req->io_task_work.func = io_req_task_submit;
1479
io_req_task_work_add(req);
1480
}
1481
1482
void io_queue_next(struct io_kiocb *req)
1483
{
1484
struct io_kiocb *nxt = io_req_find_next(req);
1485
1486
if (nxt)
1487
io_req_task_queue(nxt);
1488
}
1489
1490
static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1491
{
1492
if (req->file_node) {
1493
io_put_rsrc_node(req->ctx, req->file_node);
1494
req->file_node = NULL;
1495
}
1496
if (req->flags & REQ_F_BUF_NODE)
1497
io_put_rsrc_node(req->ctx, req->buf_node);
1498
}
1499
1500
static void io_free_batch_list(struct io_ring_ctx *ctx,
1501
struct io_wq_work_node *node)
1502
__must_hold(&ctx->uring_lock)
1503
{
1504
do {
1505
struct io_kiocb *req = container_of(node, struct io_kiocb,
1506
comp_list);
1507
1508
if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1509
if (req->flags & REQ_F_REISSUE) {
1510
node = req->comp_list.next;
1511
req->flags &= ~REQ_F_REISSUE;
1512
io_queue_iowq(req);
1513
continue;
1514
}
1515
if (req->flags & REQ_F_REFCOUNT) {
1516
node = req->comp_list.next;
1517
if (!req_ref_put_and_test(req))
1518
continue;
1519
}
1520
if ((req->flags & REQ_F_POLLED) && req->apoll) {
1521
struct async_poll *apoll = req->apoll;
1522
1523
if (apoll->double_poll)
1524
kfree(apoll->double_poll);
1525
io_cache_free(&ctx->apoll_cache, apoll);
1526
req->flags &= ~REQ_F_POLLED;
1527
}
1528
if (req->flags & IO_REQ_LINK_FLAGS)
1529
io_queue_next(req);
1530
if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1531
io_clean_op(req);
1532
}
1533
io_put_file(req);
1534
io_req_put_rsrc_nodes(req);
1535
io_put_task(req);
1536
1537
node = req->comp_list.next;
1538
io_req_add_to_cache(req, ctx);
1539
} while (node);
1540
}
1541
1542
void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1543
__must_hold(&ctx->uring_lock)
1544
{
1545
struct io_submit_state *state = &ctx->submit_state;
1546
struct io_wq_work_node *node;
1547
1548
__io_cq_lock(ctx);
1549
__wq_list_for_each(node, &state->compl_reqs) {
1550
struct io_kiocb *req = container_of(node, struct io_kiocb,
1551
comp_list);
1552
1553
/*
1554
* Requests marked with REQUEUE should not post a CQE, they
1555
* will go through the io-wq retry machinery and post one
1556
* later.
1557
*/
1558
if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1559
unlikely(!io_fill_cqe_req(ctx, req))) {
1560
if (ctx->lockless_cq)
1561
io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1562
else
1563
io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1564
}
1565
}
1566
__io_cq_unlock_post(ctx);
1567
1568
if (!wq_list_empty(&state->compl_reqs)) {
1569
io_free_batch_list(ctx, state->compl_reqs.first);
1570
INIT_WQ_LIST(&state->compl_reqs);
1571
}
1572
1573
if (unlikely(ctx->drain_active))
1574
io_queue_deferred(ctx);
1575
1576
ctx->submit_state.cq_flush = false;
1577
}
1578
1579
static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1580
{
1581
/* See comment at the top of this file */
1582
smp_rmb();
1583
return __io_cqring_events(ctx);
1584
}
1585
1586
/*
1587
* We can't just wait for polled events to come to us, we have to actively
1588
* find and complete them.
1589
*/
1590
static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1591
{
1592
if (!(ctx->flags & IORING_SETUP_IOPOLL))
1593
return;
1594
1595
mutex_lock(&ctx->uring_lock);
1596
while (!wq_list_empty(&ctx->iopoll_list)) {
1597
/* let it sleep and repeat later if can't complete a request */
1598
if (io_do_iopoll(ctx, true) == 0)
1599
break;
1600
/*
1601
* Ensure we allow local-to-the-cpu processing to take place,
1602
* in this case we need to ensure that we reap all events.
1603
* Also let task_work, etc. to progress by releasing the mutex
1604
*/
1605
if (need_resched()) {
1606
mutex_unlock(&ctx->uring_lock);
1607
cond_resched();
1608
mutex_lock(&ctx->uring_lock);
1609
}
1610
}
1611
mutex_unlock(&ctx->uring_lock);
1612
1613
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1614
io_move_task_work_from_local(ctx);
1615
}
1616
1617
static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1618
{
1619
unsigned int nr_events = 0;
1620
unsigned long check_cq;
1621
1622
min_events = min(min_events, ctx->cq_entries);
1623
1624
lockdep_assert_held(&ctx->uring_lock);
1625
1626
if (!io_allowed_run_tw(ctx))
1627
return -EEXIST;
1628
1629
check_cq = READ_ONCE(ctx->check_cq);
1630
if (unlikely(check_cq)) {
1631
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632
__io_cqring_overflow_flush(ctx, false);
1633
/*
1634
* Similarly do not spin if we have not informed the user of any
1635
* dropped CQE.
1636
*/
1637
if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1638
return -EBADR;
1639
}
1640
/*
1641
* Don't enter poll loop if we already have events pending.
1642
* If we do, we can potentially be spinning for commands that
1643
* already triggered a CQE (eg in error).
1644
*/
1645
if (io_cqring_events(ctx))
1646
return 0;
1647
1648
do {
1649
int ret = 0;
1650
1651
/*
1652
* If a submit got punted to a workqueue, we can have the
1653
* application entering polling for a command before it gets
1654
* issued. That app will hold the uring_lock for the duration
1655
* of the poll right here, so we need to take a breather every
1656
* now and then to ensure that the issue has a chance to add
1657
* the poll to the issued list. Otherwise we can spin here
1658
* forever, while the workqueue is stuck trying to acquire the
1659
* very same mutex.
1660
*/
1661
if (wq_list_empty(&ctx->iopoll_list) ||
1662
io_task_work_pending(ctx)) {
1663
u32 tail = ctx->cached_cq_tail;
1664
1665
(void) io_run_local_work_locked(ctx, min_events);
1666
1667
if (task_work_pending(current) ||
1668
wq_list_empty(&ctx->iopoll_list)) {
1669
mutex_unlock(&ctx->uring_lock);
1670
io_run_task_work();
1671
mutex_lock(&ctx->uring_lock);
1672
}
1673
/* some requests don't go through iopoll_list */
1674
if (tail != ctx->cached_cq_tail ||
1675
wq_list_empty(&ctx->iopoll_list))
1676
break;
1677
}
1678
ret = io_do_iopoll(ctx, !min_events);
1679
if (unlikely(ret < 0))
1680
return ret;
1681
1682
if (task_sigpending(current))
1683
return -EINTR;
1684
if (need_resched())
1685
break;
1686
1687
nr_events += ret;
1688
} while (nr_events < min_events);
1689
1690
return 0;
1691
}
1692
1693
void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1694
{
1695
io_req_complete_defer(req);
1696
}
1697
1698
/*
1699
* After the iocb has been issued, it's safe to be found on the poll list.
1700
* Adding the kiocb to the list AFTER submission ensures that we don't
1701
* find it from a io_do_iopoll() thread before the issuer is done
1702
* accessing the kiocb cookie.
1703
*/
1704
static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1705
{
1706
struct io_ring_ctx *ctx = req->ctx;
1707
const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1708
1709
/* workqueue context doesn't hold uring_lock, grab it now */
1710
if (unlikely(needs_lock))
1711
mutex_lock(&ctx->uring_lock);
1712
1713
/*
1714
* Track whether we have multiple files in our lists. This will impact
1715
* how we do polling eventually, not spinning if we're on potentially
1716
* different devices.
1717
*/
1718
if (wq_list_empty(&ctx->iopoll_list)) {
1719
ctx->poll_multi_queue = false;
1720
} else if (!ctx->poll_multi_queue) {
1721
struct io_kiocb *list_req;
1722
1723
list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1724
comp_list);
1725
if (list_req->file != req->file)
1726
ctx->poll_multi_queue = true;
1727
}
1728
1729
/*
1730
* For fast devices, IO may have already completed. If it has, add
1731
* it to the front so we find it first.
1732
*/
1733
if (READ_ONCE(req->iopoll_completed))
1734
wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1735
else
1736
wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1737
1738
if (unlikely(needs_lock)) {
1739
/*
1740
* If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1741
* in sq thread task context or in io worker task context. If
1742
* current task context is sq thread, we don't need to check
1743
* whether should wake up sq thread.
1744
*/
1745
if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1746
wq_has_sleeper(&ctx->sq_data->wait))
1747
wake_up(&ctx->sq_data->wait);
1748
1749
mutex_unlock(&ctx->uring_lock);
1750
}
1751
}
1752
1753
io_req_flags_t io_file_get_flags(struct file *file)
1754
{
1755
io_req_flags_t res = 0;
1756
1757
BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1758
1759
if (S_ISREG(file_inode(file)->i_mode))
1760
res |= REQ_F_ISREG;
1761
if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1762
res |= REQ_F_SUPPORT_NOWAIT;
1763
return res;
1764
}
1765
1766
static __cold void io_drain_req(struct io_kiocb *req)
1767
__must_hold(&ctx->uring_lock)
1768
{
1769
struct io_ring_ctx *ctx = req->ctx;
1770
bool drain = req->flags & IOSQE_IO_DRAIN;
1771
struct io_defer_entry *de;
1772
1773
de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1774
if (!de) {
1775
io_req_defer_failed(req, -ENOMEM);
1776
return;
1777
}
1778
1779
io_prep_async_link(req);
1780
trace_io_uring_defer(req);
1781
de->req = req;
1782
1783
ctx->nr_drained += io_linked_nr(req);
1784
list_add_tail(&de->list, &ctx->defer_list);
1785
io_queue_deferred(ctx);
1786
if (!drain && list_empty(&ctx->defer_list))
1787
ctx->drain_active = false;
1788
}
1789
1790
static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1791
unsigned int issue_flags)
1792
{
1793
if (req->file || !def->needs_file)
1794
return true;
1795
1796
if (req->flags & REQ_F_FIXED_FILE)
1797
req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1798
else
1799
req->file = io_file_get_normal(req, req->cqe.fd);
1800
1801
return !!req->file;
1802
}
1803
1804
#define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1805
1806
static inline int __io_issue_sqe(struct io_kiocb *req,
1807
unsigned int issue_flags,
1808
const struct io_issue_def *def)
1809
{
1810
const struct cred *creds = NULL;
1811
struct io_kiocb *link = NULL;
1812
int ret;
1813
1814
if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1815
if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1816
creds = override_creds(req->creds);
1817
if (req->flags & REQ_F_ARM_LTIMEOUT)
1818
link = __io_prep_linked_timeout(req);
1819
}
1820
1821
if (!def->audit_skip)
1822
audit_uring_entry(req->opcode);
1823
1824
ret = def->issue(req, issue_flags);
1825
1826
if (!def->audit_skip)
1827
audit_uring_exit(!ret, ret);
1828
1829
if (unlikely(creds || link)) {
1830
if (creds)
1831
revert_creds(creds);
1832
if (link)
1833
io_queue_linked_timeout(link);
1834
}
1835
1836
return ret;
1837
}
1838
1839
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1840
{
1841
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1842
int ret;
1843
1844
if (unlikely(!io_assign_file(req, def, issue_flags)))
1845
return -EBADF;
1846
1847
ret = __io_issue_sqe(req, issue_flags, def);
1848
1849
if (ret == IOU_COMPLETE) {
1850
if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1851
io_req_complete_defer(req);
1852
else
1853
io_req_complete_post(req, issue_flags);
1854
1855
return 0;
1856
}
1857
1858
if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1859
ret = 0;
1860
1861
/* If the op doesn't have a file, we're not polling for it */
1862
if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1863
io_iopoll_req_issued(req, issue_flags);
1864
}
1865
return ret;
1866
}
1867
1868
int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1869
{
1870
const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1871
IO_URING_F_MULTISHOT |
1872
IO_URING_F_COMPLETE_DEFER;
1873
int ret;
1874
1875
io_tw_lock(req->ctx, tw);
1876
1877
WARN_ON_ONCE(!req->file);
1878
if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1879
return -EFAULT;
1880
1881
ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1882
1883
WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1884
return ret;
1885
}
1886
1887
struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1888
{
1889
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1890
struct io_kiocb *nxt = NULL;
1891
1892
if (req_ref_put_and_test_atomic(req)) {
1893
if (req->flags & IO_REQ_LINK_FLAGS)
1894
nxt = io_req_find_next(req);
1895
io_free_req(req);
1896
}
1897
return nxt ? &nxt->work : NULL;
1898
}
1899
1900
void io_wq_submit_work(struct io_wq_work *work)
1901
{
1902
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1903
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1904
unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1905
bool needs_poll = false;
1906
int ret = 0, err = -ECANCELED;
1907
1908
/* one will be dropped by io_wq_free_work() after returning to io-wq */
1909
if (!(req->flags & REQ_F_REFCOUNT))
1910
__io_req_set_refcount(req, 2);
1911
else
1912
req_ref_get(req);
1913
1914
/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1915
if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1916
fail:
1917
io_req_task_queue_fail(req, err);
1918
return;
1919
}
1920
if (!io_assign_file(req, def, issue_flags)) {
1921
err = -EBADF;
1922
atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1923
goto fail;
1924
}
1925
1926
/*
1927
* If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1928
* submitter task context. Final request completions are handed to the
1929
* right context, however this is not the case of auxiliary CQEs,
1930
* which is the main mean of operation for multishot requests.
1931
* Don't allow any multishot execution from io-wq. It's more restrictive
1932
* than necessary and also cleaner.
1933
*/
1934
if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1935
err = -EBADFD;
1936
if (!io_file_can_poll(req))
1937
goto fail;
1938
if (req->file->f_flags & O_NONBLOCK ||
1939
req->file->f_mode & FMODE_NOWAIT) {
1940
err = -ECANCELED;
1941
if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1942
goto fail;
1943
return;
1944
} else {
1945
req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1946
}
1947
}
1948
1949
if (req->flags & REQ_F_FORCE_ASYNC) {
1950
bool opcode_poll = def->pollin || def->pollout;
1951
1952
if (opcode_poll && io_file_can_poll(req)) {
1953
needs_poll = true;
1954
issue_flags |= IO_URING_F_NONBLOCK;
1955
}
1956
}
1957
1958
do {
1959
ret = io_issue_sqe(req, issue_flags);
1960
if (ret != -EAGAIN)
1961
break;
1962
1963
/*
1964
* If REQ_F_NOWAIT is set, then don't wait or retry with
1965
* poll. -EAGAIN is final for that case.
1966
*/
1967
if (req->flags & REQ_F_NOWAIT)
1968
break;
1969
1970
/*
1971
* We can get EAGAIN for iopolled IO even though we're
1972
* forcing a sync submission from here, since we can't
1973
* wait for request slots on the block side.
1974
*/
1975
if (!needs_poll) {
1976
if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1977
break;
1978
if (io_wq_worker_stopped())
1979
break;
1980
cond_resched();
1981
continue;
1982
}
1983
1984
if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1985
return;
1986
/* aborted or ready, in either case retry blocking */
1987
needs_poll = false;
1988
issue_flags &= ~IO_URING_F_NONBLOCK;
1989
} while (1);
1990
1991
/* avoid locking problems by failing it from a clean context */
1992
if (ret)
1993
io_req_task_queue_fail(req, ret);
1994
}
1995
1996
inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1997
unsigned int issue_flags)
1998
{
1999
struct io_ring_ctx *ctx = req->ctx;
2000
struct io_rsrc_node *node;
2001
struct file *file = NULL;
2002
2003
io_ring_submit_lock(ctx, issue_flags);
2004
node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
2005
if (node) {
2006
node->refs++;
2007
req->file_node = node;
2008
req->flags |= io_slot_flags(node);
2009
file = io_slot_file(node);
2010
}
2011
io_ring_submit_unlock(ctx, issue_flags);
2012
return file;
2013
}
2014
2015
struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2016
{
2017
struct file *file = fget(fd);
2018
2019
trace_io_uring_file_get(req, fd);
2020
2021
/* we don't allow fixed io_uring files */
2022
if (file && io_is_uring_fops(file))
2023
io_req_track_inflight(req);
2024
return file;
2025
}
2026
2027
static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
2028
{
2029
const struct io_cold_def *def = &io_cold_defs[req->opcode];
2030
2031
if (req->flags & REQ_F_SQE_COPIED)
2032
return 0;
2033
req->flags |= REQ_F_SQE_COPIED;
2034
if (!def->sqe_copy)
2035
return 0;
2036
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
2037
return -EFAULT;
2038
def->sqe_copy(req);
2039
return 0;
2040
}
2041
2042
static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
2043
__must_hold(&req->ctx->uring_lock)
2044
{
2045
if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2046
fail:
2047
io_req_defer_failed(req, ret);
2048
return;
2049
}
2050
2051
ret = io_req_sqe_copy(req, issue_flags);
2052
if (unlikely(ret))
2053
goto fail;
2054
2055
switch (io_arm_poll_handler(req, 0)) {
2056
case IO_APOLL_READY:
2057
io_req_task_queue(req);
2058
break;
2059
case IO_APOLL_ABORTED:
2060
io_queue_iowq(req);
2061
break;
2062
case IO_APOLL_OK:
2063
break;
2064
}
2065
}
2066
2067
static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
2068
__must_hold(&req->ctx->uring_lock)
2069
{
2070
unsigned int issue_flags = IO_URING_F_NONBLOCK |
2071
IO_URING_F_COMPLETE_DEFER | extra_flags;
2072
int ret;
2073
2074
ret = io_issue_sqe(req, issue_flags);
2075
2076
/*
2077
* We async punt it if the file wasn't marked NOWAIT, or if the file
2078
* doesn't support non-blocking read/write attempts
2079
*/
2080
if (unlikely(ret))
2081
io_queue_async(req, issue_flags, ret);
2082
}
2083
2084
static void io_queue_sqe_fallback(struct io_kiocb *req)
2085
__must_hold(&req->ctx->uring_lock)
2086
{
2087
if (unlikely(req->flags & REQ_F_FAIL)) {
2088
/*
2089
* We don't submit, fail them all, for that replace hardlinks
2090
* with normal links. Extra REQ_F_LINK is tolerated.
2091
*/
2092
req->flags &= ~REQ_F_HARDLINK;
2093
req->flags |= REQ_F_LINK;
2094
io_req_defer_failed(req, req->cqe.res);
2095
} else {
2096
/* can't fail with IO_URING_F_INLINE */
2097
io_req_sqe_copy(req, IO_URING_F_INLINE);
2098
if (unlikely(req->ctx->drain_active))
2099
io_drain_req(req);
2100
else
2101
io_queue_iowq(req);
2102
}
2103
}
2104
2105
/*
2106
* Check SQE restrictions (opcode and flags).
2107
*
2108
* Returns 'true' if SQE is allowed, 'false' otherwise.
2109
*/
2110
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2111
struct io_kiocb *req,
2112
unsigned int sqe_flags)
2113
{
2114
if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2115
return false;
2116
2117
if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2118
ctx->restrictions.sqe_flags_required)
2119
return false;
2120
2121
if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2122
ctx->restrictions.sqe_flags_required))
2123
return false;
2124
2125
return true;
2126
}
2127
2128
static void io_init_drain(struct io_ring_ctx *ctx)
2129
{
2130
struct io_kiocb *head = ctx->submit_state.link.head;
2131
2132
ctx->drain_active = true;
2133
if (head) {
2134
/*
2135
* If we need to drain a request in the middle of a link, drain
2136
* the head request and the next request/link after the current
2137
* link. Considering sequential execution of links,
2138
* REQ_F_IO_DRAIN will be maintained for every request of our
2139
* link.
2140
*/
2141
head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2142
ctx->drain_next = true;
2143
}
2144
}
2145
2146
static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2147
{
2148
/* ensure per-opcode data is cleared if we fail before prep */
2149
memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2150
return err;
2151
}
2152
2153
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2154
const struct io_uring_sqe *sqe)
2155
__must_hold(&ctx->uring_lock)
2156
{
2157
const struct io_issue_def *def;
2158
unsigned int sqe_flags;
2159
int personality;
2160
u8 opcode;
2161
2162
req->ctx = ctx;
2163
req->opcode = opcode = READ_ONCE(sqe->opcode);
2164
/* same numerical values with corresponding REQ_F_*, safe to copy */
2165
sqe_flags = READ_ONCE(sqe->flags);
2166
req->flags = (__force io_req_flags_t) sqe_flags;
2167
req->cqe.user_data = READ_ONCE(sqe->user_data);
2168
req->file = NULL;
2169
req->tctx = current->io_uring;
2170
req->cancel_seq_set = false;
2171
req->async_data = NULL;
2172
2173
if (unlikely(opcode >= IORING_OP_LAST)) {
2174
req->opcode = 0;
2175
return io_init_fail_req(req, -EINVAL);
2176
}
2177
opcode = array_index_nospec(opcode, IORING_OP_LAST);
2178
2179
def = &io_issue_defs[opcode];
2180
if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2181
/* enforce forwards compatibility on users */
2182
if (sqe_flags & ~SQE_VALID_FLAGS)
2183
return io_init_fail_req(req, -EINVAL);
2184
if (sqe_flags & IOSQE_BUFFER_SELECT) {
2185
if (!def->buffer_select)
2186
return io_init_fail_req(req, -EOPNOTSUPP);
2187
req->buf_index = READ_ONCE(sqe->buf_group);
2188
}
2189
if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2190
ctx->drain_disabled = true;
2191
if (sqe_flags & IOSQE_IO_DRAIN) {
2192
if (ctx->drain_disabled)
2193
return io_init_fail_req(req, -EOPNOTSUPP);
2194
io_init_drain(ctx);
2195
}
2196
}
2197
if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2198
if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2199
return io_init_fail_req(req, -EACCES);
2200
/* knock it to the slow queue path, will be drained there */
2201
if (ctx->drain_active)
2202
req->flags |= REQ_F_FORCE_ASYNC;
2203
/* if there is no link, we're at "next" request and need to drain */
2204
if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2205
ctx->drain_next = false;
2206
ctx->drain_active = true;
2207
req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2208
}
2209
}
2210
2211
if (!def->ioprio && sqe->ioprio)
2212
return io_init_fail_req(req, -EINVAL);
2213
if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2214
return io_init_fail_req(req, -EINVAL);
2215
2216
if (def->needs_file) {
2217
struct io_submit_state *state = &ctx->submit_state;
2218
2219
req->cqe.fd = READ_ONCE(sqe->fd);
2220
2221
/*
2222
* Plug now if we have more than 2 IO left after this, and the
2223
* target is potentially a read/write to block based storage.
2224
*/
2225
if (state->need_plug && def->plug) {
2226
state->plug_started = true;
2227
state->need_plug = false;
2228
blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2229
}
2230
}
2231
2232
personality = READ_ONCE(sqe->personality);
2233
if (personality) {
2234
int ret;
2235
2236
req->creds = xa_load(&ctx->personalities, personality);
2237
if (!req->creds)
2238
return io_init_fail_req(req, -EINVAL);
2239
get_cred(req->creds);
2240
ret = security_uring_override_creds(req->creds);
2241
if (ret) {
2242
put_cred(req->creds);
2243
return io_init_fail_req(req, ret);
2244
}
2245
req->flags |= REQ_F_CREDS;
2246
}
2247
2248
return def->prep(req, sqe);
2249
}
2250
2251
static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2252
struct io_kiocb *req, int ret)
2253
{
2254
struct io_ring_ctx *ctx = req->ctx;
2255
struct io_submit_link *link = &ctx->submit_state.link;
2256
struct io_kiocb *head = link->head;
2257
2258
trace_io_uring_req_failed(sqe, req, ret);
2259
2260
/*
2261
* Avoid breaking links in the middle as it renders links with SQPOLL
2262
* unusable. Instead of failing eagerly, continue assembling the link if
2263
* applicable and mark the head with REQ_F_FAIL. The link flushing code
2264
* should find the flag and handle the rest.
2265
*/
2266
req_fail_link_node(req, ret);
2267
if (head && !(head->flags & REQ_F_FAIL))
2268
req_fail_link_node(head, -ECANCELED);
2269
2270
if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2271
if (head) {
2272
link->last->link = req;
2273
link->head = NULL;
2274
req = head;
2275
}
2276
io_queue_sqe_fallback(req);
2277
return ret;
2278
}
2279
2280
if (head)
2281
link->last->link = req;
2282
else
2283
link->head = req;
2284
link->last = req;
2285
return 0;
2286
}
2287
2288
static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2289
const struct io_uring_sqe *sqe)
2290
__must_hold(&ctx->uring_lock)
2291
{
2292
struct io_submit_link *link = &ctx->submit_state.link;
2293
int ret;
2294
2295
ret = io_init_req(ctx, req, sqe);
2296
if (unlikely(ret))
2297
return io_submit_fail_init(sqe, req, ret);
2298
2299
trace_io_uring_submit_req(req);
2300
2301
/*
2302
* If we already have a head request, queue this one for async
2303
* submittal once the head completes. If we don't have a head but
2304
* IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2305
* submitted sync once the chain is complete. If none of those
2306
* conditions are true (normal request), then just queue it.
2307
*/
2308
if (unlikely(link->head)) {
2309
trace_io_uring_link(req, link->last);
2310
io_req_sqe_copy(req, IO_URING_F_INLINE);
2311
link->last->link = req;
2312
link->last = req;
2313
2314
if (req->flags & IO_REQ_LINK_FLAGS)
2315
return 0;
2316
/* last request of the link, flush it */
2317
req = link->head;
2318
link->head = NULL;
2319
if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2320
goto fallback;
2321
2322
} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2323
REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2324
if (req->flags & IO_REQ_LINK_FLAGS) {
2325
link->head = req;
2326
link->last = req;
2327
} else {
2328
fallback:
2329
io_queue_sqe_fallback(req);
2330
}
2331
return 0;
2332
}
2333
2334
io_queue_sqe(req, IO_URING_F_INLINE);
2335
return 0;
2336
}
2337
2338
/*
2339
* Batched submission is done, ensure local IO is flushed out.
2340
*/
2341
static void io_submit_state_end(struct io_ring_ctx *ctx)
2342
{
2343
struct io_submit_state *state = &ctx->submit_state;
2344
2345
if (unlikely(state->link.head))
2346
io_queue_sqe_fallback(state->link.head);
2347
/* flush only after queuing links as they can generate completions */
2348
io_submit_flush_completions(ctx);
2349
if (state->plug_started)
2350
blk_finish_plug(&state->plug);
2351
}
2352
2353
/*
2354
* Start submission side cache.
2355
*/
2356
static void io_submit_state_start(struct io_submit_state *state,
2357
unsigned int max_ios)
2358
{
2359
state->plug_started = false;
2360
state->need_plug = max_ios > 2;
2361
state->submit_nr = max_ios;
2362
/* set only head, no need to init link_last in advance */
2363
state->link.head = NULL;
2364
}
2365
2366
static void io_commit_sqring(struct io_ring_ctx *ctx)
2367
{
2368
struct io_rings *rings = ctx->rings;
2369
2370
/*
2371
* Ensure any loads from the SQEs are done at this point,
2372
* since once we write the new head, the application could
2373
* write new data to them.
2374
*/
2375
smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2376
}
2377
2378
/*
2379
* Fetch an sqe, if one is available. Note this returns a pointer to memory
2380
* that is mapped by userspace. This means that care needs to be taken to
2381
* ensure that reads are stable, as we cannot rely on userspace always
2382
* being a good citizen. If members of the sqe are validated and then later
2383
* used, it's important that those reads are done through READ_ONCE() to
2384
* prevent a re-load down the line.
2385
*/
2386
static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2387
{
2388
unsigned mask = ctx->sq_entries - 1;
2389
unsigned head = ctx->cached_sq_head++ & mask;
2390
2391
if (static_branch_unlikely(&io_key_has_sqarray) &&
2392
(!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2393
head = READ_ONCE(ctx->sq_array[head]);
2394
if (unlikely(head >= ctx->sq_entries)) {
2395
WRITE_ONCE(ctx->rings->sq_dropped,
2396
READ_ONCE(ctx->rings->sq_dropped) + 1);
2397
return false;
2398
}
2399
head = array_index_nospec(head, ctx->sq_entries);
2400
}
2401
2402
/*
2403
* The cached sq head (or cq tail) serves two purposes:
2404
*
2405
* 1) allows us to batch the cost of updating the user visible
2406
* head updates.
2407
* 2) allows the kernel side to track the head on its own, even
2408
* though the application is the one updating it.
2409
*/
2410
2411
/* double index for 128-byte SQEs, twice as long */
2412
if (ctx->flags & IORING_SETUP_SQE128)
2413
head <<= 1;
2414
*sqe = &ctx->sq_sqes[head];
2415
return true;
2416
}
2417
2418
int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2419
__must_hold(&ctx->uring_lock)
2420
{
2421
unsigned int entries = io_sqring_entries(ctx);
2422
unsigned int left;
2423
int ret;
2424
2425
if (unlikely(!entries))
2426
return 0;
2427
/* make sure SQ entry isn't read before tail */
2428
ret = left = min(nr, entries);
2429
io_get_task_refs(left);
2430
io_submit_state_start(&ctx->submit_state, left);
2431
2432
do {
2433
const struct io_uring_sqe *sqe;
2434
struct io_kiocb *req;
2435
2436
if (unlikely(!io_alloc_req(ctx, &req)))
2437
break;
2438
if (unlikely(!io_get_sqe(ctx, &sqe))) {
2439
io_req_add_to_cache(req, ctx);
2440
break;
2441
}
2442
2443
/*
2444
* Continue submitting even for sqe failure if the
2445
* ring was setup with IORING_SETUP_SUBMIT_ALL
2446
*/
2447
if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2448
!(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2449
left--;
2450
break;
2451
}
2452
} while (--left);
2453
2454
if (unlikely(left)) {
2455
ret -= left;
2456
/* try again if it submitted nothing and can't allocate a req */
2457
if (!ret && io_req_cache_empty(ctx))
2458
ret = -EAGAIN;
2459
current->io_uring->cached_refs += left;
2460
}
2461
2462
io_submit_state_end(ctx);
2463
/* Commit SQ ring head once we've consumed and submitted all SQEs */
2464
io_commit_sqring(ctx);
2465
return ret;
2466
}
2467
2468
static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2469
int wake_flags, void *key)
2470
{
2471
struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2472
2473
/*
2474
* Cannot safely flush overflowed CQEs from here, ensure we wake up
2475
* the task, and the next invocation will do it.
2476
*/
2477
if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2478
return autoremove_wake_function(curr, mode, wake_flags, key);
2479
return -1;
2480
}
2481
2482
int io_run_task_work_sig(struct io_ring_ctx *ctx)
2483
{
2484
if (io_local_work_pending(ctx)) {
2485
__set_current_state(TASK_RUNNING);
2486
if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2487
return 0;
2488
}
2489
if (io_run_task_work() > 0)
2490
return 0;
2491
if (task_sigpending(current))
2492
return -EINTR;
2493
return 0;
2494
}
2495
2496
static bool current_pending_io(void)
2497
{
2498
struct io_uring_task *tctx = current->io_uring;
2499
2500
if (!tctx)
2501
return false;
2502
return percpu_counter_read_positive(&tctx->inflight);
2503
}
2504
2505
static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2506
{
2507
struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2508
2509
WRITE_ONCE(iowq->hit_timeout, 1);
2510
iowq->min_timeout = 0;
2511
wake_up_process(iowq->wq.private);
2512
return HRTIMER_NORESTART;
2513
}
2514
2515
/*
2516
* Doing min_timeout portion. If we saw any timeouts, events, or have work,
2517
* wake up. If not, and we have a normal timeout, switch to that and keep
2518
* sleeping.
2519
*/
2520
static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2521
{
2522
struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2523
struct io_ring_ctx *ctx = iowq->ctx;
2524
2525
/* no general timeout, or shorter (or equal), we are done */
2526
if (iowq->timeout == KTIME_MAX ||
2527
ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2528
goto out_wake;
2529
/* work we may need to run, wake function will see if we need to wake */
2530
if (io_has_work(ctx))
2531
goto out_wake;
2532
/* got events since we started waiting, min timeout is done */
2533
if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2534
goto out_wake;
2535
/* if we have any events and min timeout expired, we're done */
2536
if (io_cqring_events(ctx))
2537
goto out_wake;
2538
2539
/*
2540
* If using deferred task_work running and application is waiting on
2541
* more than one request, ensure we reset it now where we are switching
2542
* to normal sleeps. Any request completion post min_wait should wake
2543
* the task and return.
2544
*/
2545
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2546
atomic_set(&ctx->cq_wait_nr, 1);
2547
smp_mb();
2548
if (!llist_empty(&ctx->work_llist))
2549
goto out_wake;
2550
}
2551
2552
hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2553
hrtimer_set_expires(timer, iowq->timeout);
2554
return HRTIMER_RESTART;
2555
out_wake:
2556
return io_cqring_timer_wakeup(timer);
2557
}
2558
2559
static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2560
clockid_t clock_id, ktime_t start_time)
2561
{
2562
ktime_t timeout;
2563
2564
if (iowq->min_timeout) {
2565
timeout = ktime_add_ns(iowq->min_timeout, start_time);
2566
hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2567
HRTIMER_MODE_ABS);
2568
} else {
2569
timeout = iowq->timeout;
2570
hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2571
HRTIMER_MODE_ABS);
2572
}
2573
2574
hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2575
hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2576
2577
if (!READ_ONCE(iowq->hit_timeout))
2578
schedule();
2579
2580
hrtimer_cancel(&iowq->t);
2581
destroy_hrtimer_on_stack(&iowq->t);
2582
__set_current_state(TASK_RUNNING);
2583
2584
return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2585
}
2586
2587
struct ext_arg {
2588
size_t argsz;
2589
struct timespec64 ts;
2590
const sigset_t __user *sig;
2591
ktime_t min_time;
2592
bool ts_set;
2593
bool iowait;
2594
};
2595
2596
static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2597
struct io_wait_queue *iowq,
2598
struct ext_arg *ext_arg,
2599
ktime_t start_time)
2600
{
2601
int ret = 0;
2602
2603
/*
2604
* Mark us as being in io_wait if we have pending requests, so cpufreq
2605
* can take into account that the task is waiting for IO - turns out
2606
* to be important for low QD IO.
2607
*/
2608
if (ext_arg->iowait && current_pending_io())
2609
current->in_iowait = 1;
2610
if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2611
ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2612
else
2613
schedule();
2614
current->in_iowait = 0;
2615
return ret;
2616
}
2617
2618
/* If this returns > 0, the caller should retry */
2619
static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2620
struct io_wait_queue *iowq,
2621
struct ext_arg *ext_arg,
2622
ktime_t start_time)
2623
{
2624
if (unlikely(READ_ONCE(ctx->check_cq)))
2625
return 1;
2626
if (unlikely(io_local_work_pending(ctx)))
2627
return 1;
2628
if (unlikely(task_work_pending(current)))
2629
return 1;
2630
if (unlikely(task_sigpending(current)))
2631
return -EINTR;
2632
if (unlikely(io_should_wake(iowq)))
2633
return 0;
2634
2635
return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2636
}
2637
2638
/*
2639
* Wait until events become available, if we don't already have some. The
2640
* application must reap them itself, as they reside on the shared cq ring.
2641
*/
2642
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2643
struct ext_arg *ext_arg)
2644
{
2645
struct io_wait_queue iowq;
2646
struct io_rings *rings = ctx->rings;
2647
ktime_t start_time;
2648
int ret;
2649
2650
min_events = min_t(int, min_events, ctx->cq_entries);
2651
2652
if (!io_allowed_run_tw(ctx))
2653
return -EEXIST;
2654
if (io_local_work_pending(ctx))
2655
io_run_local_work(ctx, min_events,
2656
max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2657
io_run_task_work();
2658
2659
if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2660
io_cqring_do_overflow_flush(ctx);
2661
if (__io_cqring_events_user(ctx) >= min_events)
2662
return 0;
2663
2664
init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2665
iowq.wq.private = current;
2666
INIT_LIST_HEAD(&iowq.wq.entry);
2667
iowq.ctx = ctx;
2668
iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2669
iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2670
iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2671
iowq.hit_timeout = 0;
2672
iowq.min_timeout = ext_arg->min_time;
2673
iowq.timeout = KTIME_MAX;
2674
start_time = io_get_time(ctx);
2675
2676
if (ext_arg->ts_set) {
2677
iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2678
if (!(flags & IORING_ENTER_ABS_TIMER))
2679
iowq.timeout = ktime_add(iowq.timeout, start_time);
2680
}
2681
2682
if (ext_arg->sig) {
2683
#ifdef CONFIG_COMPAT
2684
if (in_compat_syscall())
2685
ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2686
ext_arg->argsz);
2687
else
2688
#endif
2689
ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2690
2691
if (ret)
2692
return ret;
2693
}
2694
2695
io_napi_busy_loop(ctx, &iowq);
2696
2697
trace_io_uring_cqring_wait(ctx, min_events);
2698
do {
2699
unsigned long check_cq;
2700
int nr_wait;
2701
2702
/* if min timeout has been hit, don't reset wait count */
2703
if (!iowq.hit_timeout)
2704
nr_wait = (int) iowq.cq_tail -
2705
READ_ONCE(ctx->rings->cq.tail);
2706
else
2707
nr_wait = 1;
2708
2709
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2710
atomic_set(&ctx->cq_wait_nr, nr_wait);
2711
set_current_state(TASK_INTERRUPTIBLE);
2712
} else {
2713
prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2714
TASK_INTERRUPTIBLE);
2715
}
2716
2717
ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2718
__set_current_state(TASK_RUNNING);
2719
atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2720
2721
/*
2722
* Run task_work after scheduling and before io_should_wake().
2723
* If we got woken because of task_work being processed, run it
2724
* now rather than let the caller do another wait loop.
2725
*/
2726
if (io_local_work_pending(ctx))
2727
io_run_local_work(ctx, nr_wait, nr_wait);
2728
io_run_task_work();
2729
2730
/*
2731
* Non-local task_work will be run on exit to userspace, but
2732
* if we're using DEFER_TASKRUN, then we could have waited
2733
* with a timeout for a number of requests. If the timeout
2734
* hits, we could have some requests ready to process. Ensure
2735
* this break is _after_ we have run task_work, to avoid
2736
* deferring running potentially pending requests until the
2737
* next time we wait for events.
2738
*/
2739
if (ret < 0)
2740
break;
2741
2742
check_cq = READ_ONCE(ctx->check_cq);
2743
if (unlikely(check_cq)) {
2744
/* let the caller flush overflows, retry */
2745
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2746
io_cqring_do_overflow_flush(ctx);
2747
if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2748
ret = -EBADR;
2749
break;
2750
}
2751
}
2752
2753
if (io_should_wake(&iowq)) {
2754
ret = 0;
2755
break;
2756
}
2757
cond_resched();
2758
} while (1);
2759
2760
if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2761
finish_wait(&ctx->cq_wait, &iowq.wq);
2762
restore_saved_sigmask_unless(ret == -EINTR);
2763
2764
return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2765
}
2766
2767
static void io_rings_free(struct io_ring_ctx *ctx)
2768
{
2769
io_free_region(ctx, &ctx->sq_region);
2770
io_free_region(ctx, &ctx->ring_region);
2771
ctx->rings = NULL;
2772
ctx->sq_sqes = NULL;
2773
}
2774
2775
unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2776
unsigned int cq_entries, size_t *sq_offset)
2777
{
2778
struct io_rings *rings;
2779
size_t off, sq_array_size;
2780
2781
off = struct_size(rings, cqes, cq_entries);
2782
if (off == SIZE_MAX)
2783
return SIZE_MAX;
2784
if (flags & IORING_SETUP_CQE32) {
2785
if (check_shl_overflow(off, 1, &off))
2786
return SIZE_MAX;
2787
}
2788
if (flags & IORING_SETUP_CQE_MIXED) {
2789
if (cq_entries < 2)
2790
return SIZE_MAX;
2791
}
2792
2793
#ifdef CONFIG_SMP
2794
off = ALIGN(off, SMP_CACHE_BYTES);
2795
if (off == 0)
2796
return SIZE_MAX;
2797
#endif
2798
2799
if (flags & IORING_SETUP_NO_SQARRAY) {
2800
*sq_offset = SIZE_MAX;
2801
return off;
2802
}
2803
2804
*sq_offset = off;
2805
2806
sq_array_size = array_size(sizeof(u32), sq_entries);
2807
if (sq_array_size == SIZE_MAX)
2808
return SIZE_MAX;
2809
2810
if (check_add_overflow(off, sq_array_size, &off))
2811
return SIZE_MAX;
2812
2813
return off;
2814
}
2815
2816
static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2817
{
2818
struct io_kiocb *req;
2819
int nr = 0;
2820
2821
while (!io_req_cache_empty(ctx)) {
2822
req = io_extract_req(ctx);
2823
io_poison_req(req);
2824
kmem_cache_free(req_cachep, req);
2825
nr++;
2826
}
2827
if (nr) {
2828
ctx->nr_req_allocated -= nr;
2829
percpu_ref_put_many(&ctx->refs, nr);
2830
}
2831
}
2832
2833
static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2834
{
2835
guard(mutex)(&ctx->uring_lock);
2836
__io_req_caches_free(ctx);
2837
}
2838
2839
static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2840
{
2841
io_sq_thread_finish(ctx);
2842
2843
mutex_lock(&ctx->uring_lock);
2844
io_sqe_buffers_unregister(ctx);
2845
io_sqe_files_unregister(ctx);
2846
io_unregister_zcrx_ifqs(ctx);
2847
io_cqring_overflow_kill(ctx);
2848
io_eventfd_unregister(ctx);
2849
io_free_alloc_caches(ctx);
2850
io_destroy_buffers(ctx);
2851
io_free_region(ctx, &ctx->param_region);
2852
mutex_unlock(&ctx->uring_lock);
2853
if (ctx->sq_creds)
2854
put_cred(ctx->sq_creds);
2855
if (ctx->submitter_task)
2856
put_task_struct(ctx->submitter_task);
2857
2858
WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2859
2860
if (ctx->mm_account) {
2861
mmdrop(ctx->mm_account);
2862
ctx->mm_account = NULL;
2863
}
2864
io_rings_free(ctx);
2865
2866
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2867
static_branch_dec(&io_key_has_sqarray);
2868
2869
percpu_ref_exit(&ctx->refs);
2870
free_uid(ctx->user);
2871
io_req_caches_free(ctx);
2872
2873
WARN_ON_ONCE(ctx->nr_req_allocated);
2874
2875
if (ctx->hash_map)
2876
io_wq_put_hash(ctx->hash_map);
2877
io_napi_free(ctx);
2878
kvfree(ctx->cancel_table.hbs);
2879
xa_destroy(&ctx->io_bl_xa);
2880
kfree(ctx);
2881
}
2882
2883
static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2884
{
2885
struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2886
poll_wq_task_work);
2887
2888
mutex_lock(&ctx->uring_lock);
2889
ctx->poll_activated = true;
2890
mutex_unlock(&ctx->uring_lock);
2891
2892
/*
2893
* Wake ups for some events between start of polling and activation
2894
* might've been lost due to loose synchronisation.
2895
*/
2896
wake_up_all(&ctx->poll_wq);
2897
percpu_ref_put(&ctx->refs);
2898
}
2899
2900
__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2901
{
2902
spin_lock(&ctx->completion_lock);
2903
/* already activated or in progress */
2904
if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2905
goto out;
2906
if (WARN_ON_ONCE(!ctx->task_complete))
2907
goto out;
2908
if (!ctx->submitter_task)
2909
goto out;
2910
/*
2911
* with ->submitter_task only the submitter task completes requests, we
2912
* only need to sync with it, which is done by injecting a tw
2913
*/
2914
init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2915
percpu_ref_get(&ctx->refs);
2916
if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2917
percpu_ref_put(&ctx->refs);
2918
out:
2919
spin_unlock(&ctx->completion_lock);
2920
}
2921
2922
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2923
{
2924
struct io_ring_ctx *ctx = file->private_data;
2925
__poll_t mask = 0;
2926
2927
if (unlikely(!ctx->poll_activated))
2928
io_activate_pollwq(ctx);
2929
/*
2930
* provides mb() which pairs with barrier from wq_has_sleeper
2931
* call in io_commit_cqring
2932
*/
2933
poll_wait(file, &ctx->poll_wq, wait);
2934
2935
if (!io_sqring_full(ctx))
2936
mask |= EPOLLOUT | EPOLLWRNORM;
2937
2938
/*
2939
* Don't flush cqring overflow list here, just do a simple check.
2940
* Otherwise there could possible be ABBA deadlock:
2941
* CPU0 CPU1
2942
* ---- ----
2943
* lock(&ctx->uring_lock);
2944
* lock(&ep->mtx);
2945
* lock(&ctx->uring_lock);
2946
* lock(&ep->mtx);
2947
*
2948
* Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2949
* pushes them to do the flush.
2950
*/
2951
2952
if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2953
mask |= EPOLLIN | EPOLLRDNORM;
2954
2955
return mask;
2956
}
2957
2958
struct io_tctx_exit {
2959
struct callback_head task_work;
2960
struct completion completion;
2961
struct io_ring_ctx *ctx;
2962
};
2963
2964
static __cold void io_tctx_exit_cb(struct callback_head *cb)
2965
{
2966
struct io_uring_task *tctx = current->io_uring;
2967
struct io_tctx_exit *work;
2968
2969
work = container_of(cb, struct io_tctx_exit, task_work);
2970
/*
2971
* When @in_cancel, we're in cancellation and it's racy to remove the
2972
* node. It'll be removed by the end of cancellation, just ignore it.
2973
* tctx can be NULL if the queueing of this task_work raced with
2974
* work cancelation off the exec path.
2975
*/
2976
if (tctx && !atomic_read(&tctx->in_cancel))
2977
io_uring_del_tctx_node((unsigned long)work->ctx);
2978
complete(&work->completion);
2979
}
2980
2981
static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2982
{
2983
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2984
2985
return req->ctx == data;
2986
}
2987
2988
static __cold void io_ring_exit_work(struct work_struct *work)
2989
{
2990
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2991
unsigned long timeout = jiffies + HZ * 60 * 5;
2992
unsigned long interval = HZ / 20;
2993
struct io_tctx_exit exit;
2994
struct io_tctx_node *node;
2995
int ret;
2996
2997
/*
2998
* If we're doing polled IO and end up having requests being
2999
* submitted async (out-of-line), then completions can come in while
3000
* we're waiting for refs to drop. We need to reap these manually,
3001
* as nobody else will be looking for them.
3002
*/
3003
do {
3004
if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3005
mutex_lock(&ctx->uring_lock);
3006
io_cqring_overflow_kill(ctx);
3007
mutex_unlock(&ctx->uring_lock);
3008
}
3009
if (!xa_empty(&ctx->zcrx_ctxs)) {
3010
mutex_lock(&ctx->uring_lock);
3011
io_shutdown_zcrx_ifqs(ctx);
3012
mutex_unlock(&ctx->uring_lock);
3013
}
3014
3015
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3016
io_move_task_work_from_local(ctx);
3017
3018
/* The SQPOLL thread never reaches this path */
3019
while (io_uring_try_cancel_requests(ctx, NULL, true, false))
3020
cond_resched();
3021
3022
if (ctx->sq_data) {
3023
struct io_sq_data *sqd = ctx->sq_data;
3024
struct task_struct *tsk;
3025
3026
io_sq_thread_park(sqd);
3027
tsk = sqpoll_task_locked(sqd);
3028
if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3029
io_wq_cancel_cb(tsk->io_uring->io_wq,
3030
io_cancel_ctx_cb, ctx, true);
3031
io_sq_thread_unpark(sqd);
3032
}
3033
3034
io_req_caches_free(ctx);
3035
3036
if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3037
/* there is little hope left, don't run it too often */
3038
interval = HZ * 60;
3039
}
3040
/*
3041
* This is really an uninterruptible wait, as it has to be
3042
* complete. But it's also run from a kworker, which doesn't
3043
* take signals, so it's fine to make it interruptible. This
3044
* avoids scenarios where we knowingly can wait much longer
3045
* on completions, for example if someone does a SIGSTOP on
3046
* a task that needs to finish task_work to make this loop
3047
* complete. That's a synthetic situation that should not
3048
* cause a stuck task backtrace, and hence a potential panic
3049
* on stuck tasks if that is enabled.
3050
*/
3051
} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3052
3053
init_completion(&exit.completion);
3054
init_task_work(&exit.task_work, io_tctx_exit_cb);
3055
exit.ctx = ctx;
3056
3057
mutex_lock(&ctx->uring_lock);
3058
while (!list_empty(&ctx->tctx_list)) {
3059
WARN_ON_ONCE(time_after(jiffies, timeout));
3060
3061
node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3062
ctx_node);
3063
/* don't spin on a single task if cancellation failed */
3064
list_rotate_left(&ctx->tctx_list);
3065
ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3066
if (WARN_ON_ONCE(ret))
3067
continue;
3068
3069
mutex_unlock(&ctx->uring_lock);
3070
/*
3071
* See comment above for
3072
* wait_for_completion_interruptible_timeout() on why this
3073
* wait is marked as interruptible.
3074
*/
3075
wait_for_completion_interruptible(&exit.completion);
3076
mutex_lock(&ctx->uring_lock);
3077
}
3078
mutex_unlock(&ctx->uring_lock);
3079
spin_lock(&ctx->completion_lock);
3080
spin_unlock(&ctx->completion_lock);
3081
3082
/* pairs with RCU read section in io_req_local_work_add() */
3083
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3084
synchronize_rcu();
3085
3086
io_ring_ctx_free(ctx);
3087
}
3088
3089
static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3090
{
3091
unsigned long index;
3092
struct creds *creds;
3093
3094
mutex_lock(&ctx->uring_lock);
3095
percpu_ref_kill(&ctx->refs);
3096
xa_for_each(&ctx->personalities, index, creds)
3097
io_unregister_personality(ctx, index);
3098
mutex_unlock(&ctx->uring_lock);
3099
3100
flush_delayed_work(&ctx->fallback_work);
3101
3102
INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3103
/*
3104
* Use system_dfl_wq to avoid spawning tons of event kworkers
3105
* if we're exiting a ton of rings at the same time. It just adds
3106
* noise and overhead, there's no discernable change in runtime
3107
* over using system_percpu_wq.
3108
*/
3109
queue_work(iou_wq, &ctx->exit_work);
3110
}
3111
3112
static int io_uring_release(struct inode *inode, struct file *file)
3113
{
3114
struct io_ring_ctx *ctx = file->private_data;
3115
3116
file->private_data = NULL;
3117
io_ring_ctx_wait_and_kill(ctx);
3118
return 0;
3119
}
3120
3121
struct io_task_cancel {
3122
struct io_uring_task *tctx;
3123
bool all;
3124
};
3125
3126
static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3127
{
3128
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3129
struct io_task_cancel *cancel = data;
3130
3131
return io_match_task_safe(req, cancel->tctx, cancel->all);
3132
}
3133
3134
static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3135
struct io_uring_task *tctx,
3136
bool cancel_all)
3137
{
3138
struct io_defer_entry *de;
3139
LIST_HEAD(list);
3140
3141
list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3142
if (io_match_task_safe(de->req, tctx, cancel_all)) {
3143
list_cut_position(&list, &ctx->defer_list, &de->list);
3144
break;
3145
}
3146
}
3147
if (list_empty(&list))
3148
return false;
3149
3150
while (!list_empty(&list)) {
3151
de = list_first_entry(&list, struct io_defer_entry, list);
3152
list_del_init(&de->list);
3153
ctx->nr_drained -= io_linked_nr(de->req);
3154
io_req_task_queue_fail(de->req, -ECANCELED);
3155
kfree(de);
3156
}
3157
return true;
3158
}
3159
3160
static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3161
{
3162
struct io_tctx_node *node;
3163
enum io_wq_cancel cret;
3164
bool ret = false;
3165
3166
mutex_lock(&ctx->uring_lock);
3167
list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3168
struct io_uring_task *tctx = node->task->io_uring;
3169
3170
/*
3171
* io_wq will stay alive while we hold uring_lock, because it's
3172
* killed after ctx nodes, which requires to take the lock.
3173
*/
3174
if (!tctx || !tctx->io_wq)
3175
continue;
3176
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3177
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3178
}
3179
mutex_unlock(&ctx->uring_lock);
3180
3181
return ret;
3182
}
3183
3184
static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3185
struct io_uring_task *tctx,
3186
bool cancel_all,
3187
bool is_sqpoll_thread)
3188
{
3189
struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3190
enum io_wq_cancel cret;
3191
bool ret = false;
3192
3193
/* set it so io_req_local_work_add() would wake us up */
3194
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3195
atomic_set(&ctx->cq_wait_nr, 1);
3196
smp_mb();
3197
}
3198
3199
/* failed during ring init, it couldn't have issued any requests */
3200
if (!ctx->rings)
3201
return false;
3202
3203
if (!tctx) {
3204
ret |= io_uring_try_cancel_iowq(ctx);
3205
} else if (tctx->io_wq) {
3206
/*
3207
* Cancels requests of all rings, not only @ctx, but
3208
* it's fine as the task is in exit/exec.
3209
*/
3210
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3211
&cancel, true);
3212
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3213
}
3214
3215
/* SQPOLL thread does its own polling */
3216
if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3217
is_sqpoll_thread) {
3218
while (!wq_list_empty(&ctx->iopoll_list)) {
3219
io_iopoll_try_reap_events(ctx);
3220
ret = true;
3221
cond_resched();
3222
}
3223
}
3224
3225
if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3226
io_allowed_defer_tw_run(ctx))
3227
ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3228
mutex_lock(&ctx->uring_lock);
3229
ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3230
ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3231
ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3232
ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3233
ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3234
mutex_unlock(&ctx->uring_lock);
3235
ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3236
if (tctx)
3237
ret |= io_run_task_work() > 0;
3238
else
3239
ret |= flush_delayed_work(&ctx->fallback_work);
3240
return ret;
3241
}
3242
3243
static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3244
{
3245
if (tracked)
3246
return atomic_read(&tctx->inflight_tracked);
3247
return percpu_counter_sum(&tctx->inflight);
3248
}
3249
3250
/*
3251
* Find any io_uring ctx that this task has registered or done IO on, and cancel
3252
* requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3253
*/
3254
__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3255
{
3256
struct io_uring_task *tctx = current->io_uring;
3257
struct io_ring_ctx *ctx;
3258
struct io_tctx_node *node;
3259
unsigned long index;
3260
s64 inflight;
3261
DEFINE_WAIT(wait);
3262
3263
WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3264
3265
if (!current->io_uring)
3266
return;
3267
if (tctx->io_wq)
3268
io_wq_exit_start(tctx->io_wq);
3269
3270
atomic_inc(&tctx->in_cancel);
3271
do {
3272
bool loop = false;
3273
3274
io_uring_drop_tctx_refs(current);
3275
if (!tctx_inflight(tctx, !cancel_all))
3276
break;
3277
3278
/* read completions before cancelations */
3279
inflight = tctx_inflight(tctx, false);
3280
if (!inflight)
3281
break;
3282
3283
if (!sqd) {
3284
xa_for_each(&tctx->xa, index, node) {
3285
/* sqpoll task will cancel all its requests */
3286
if (node->ctx->sq_data)
3287
continue;
3288
loop |= io_uring_try_cancel_requests(node->ctx,
3289
current->io_uring,
3290
cancel_all,
3291
false);
3292
}
3293
} else {
3294
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3295
loop |= io_uring_try_cancel_requests(ctx,
3296
current->io_uring,
3297
cancel_all,
3298
true);
3299
}
3300
3301
if (loop) {
3302
cond_resched();
3303
continue;
3304
}
3305
3306
prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3307
io_run_task_work();
3308
io_uring_drop_tctx_refs(current);
3309
xa_for_each(&tctx->xa, index, node) {
3310
if (io_local_work_pending(node->ctx)) {
3311
WARN_ON_ONCE(node->ctx->submitter_task &&
3312
node->ctx->submitter_task != current);
3313
goto end_wait;
3314
}
3315
}
3316
/*
3317
* If we've seen completions, retry without waiting. This
3318
* avoids a race where a completion comes in before we did
3319
* prepare_to_wait().
3320
*/
3321
if (inflight == tctx_inflight(tctx, !cancel_all))
3322
schedule();
3323
end_wait:
3324
finish_wait(&tctx->wait, &wait);
3325
} while (1);
3326
3327
io_uring_clean_tctx(tctx);
3328
if (cancel_all) {
3329
/*
3330
* We shouldn't run task_works after cancel, so just leave
3331
* ->in_cancel set for normal exit.
3332
*/
3333
atomic_dec(&tctx->in_cancel);
3334
/* for exec all current's requests should be gone, kill tctx */
3335
__io_uring_free(current);
3336
}
3337
}
3338
3339
void __io_uring_cancel(bool cancel_all)
3340
{
3341
io_uring_unreg_ringfd();
3342
io_uring_cancel_generic(cancel_all, NULL);
3343
}
3344
3345
static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3346
const struct io_uring_getevents_arg __user *uarg)
3347
{
3348
unsigned long size = sizeof(struct io_uring_reg_wait);
3349
unsigned long offset = (uintptr_t)uarg;
3350
unsigned long end;
3351
3352
if (unlikely(offset % sizeof(long)))
3353
return ERR_PTR(-EFAULT);
3354
3355
/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3356
if (unlikely(check_add_overflow(offset, size, &end) ||
3357
end > ctx->cq_wait_size))
3358
return ERR_PTR(-EFAULT);
3359
3360
offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3361
return ctx->cq_wait_arg + offset;
3362
}
3363
3364
static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3365
const void __user *argp, size_t argsz)
3366
{
3367
struct io_uring_getevents_arg arg;
3368
3369
if (!(flags & IORING_ENTER_EXT_ARG))
3370
return 0;
3371
if (flags & IORING_ENTER_EXT_ARG_REG)
3372
return -EINVAL;
3373
if (argsz != sizeof(arg))
3374
return -EINVAL;
3375
if (copy_from_user(&arg, argp, sizeof(arg)))
3376
return -EFAULT;
3377
return 0;
3378
}
3379
3380
static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3381
const void __user *argp, struct ext_arg *ext_arg)
3382
{
3383
const struct io_uring_getevents_arg __user *uarg = argp;
3384
struct io_uring_getevents_arg arg;
3385
3386
ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3387
3388
/*
3389
* If EXT_ARG isn't set, then we have no timespec and the argp pointer
3390
* is just a pointer to the sigset_t.
3391
*/
3392
if (!(flags & IORING_ENTER_EXT_ARG)) {
3393
ext_arg->sig = (const sigset_t __user *) argp;
3394
return 0;
3395
}
3396
3397
if (flags & IORING_ENTER_EXT_ARG_REG) {
3398
struct io_uring_reg_wait *w;
3399
3400
if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3401
return -EINVAL;
3402
w = io_get_ext_arg_reg(ctx, argp);
3403
if (IS_ERR(w))
3404
return PTR_ERR(w);
3405
3406
if (w->flags & ~IORING_REG_WAIT_TS)
3407
return -EINVAL;
3408
ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3409
ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3410
ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3411
if (w->flags & IORING_REG_WAIT_TS) {
3412
ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3413
ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3414
ext_arg->ts_set = true;
3415
}
3416
return 0;
3417
}
3418
3419
/*
3420
* EXT_ARG is set - ensure we agree on the size of it and copy in our
3421
* timespec and sigset_t pointers if good.
3422
*/
3423
if (ext_arg->argsz != sizeof(arg))
3424
return -EINVAL;
3425
#ifdef CONFIG_64BIT
3426
if (!user_access_begin(uarg, sizeof(*uarg)))
3427
return -EFAULT;
3428
unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3429
unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3430
unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3431
unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3432
user_access_end();
3433
#else
3434
if (copy_from_user(&arg, uarg, sizeof(arg)))
3435
return -EFAULT;
3436
#endif
3437
ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3438
ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3439
ext_arg->argsz = arg.sigmask_sz;
3440
if (arg.ts) {
3441
if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3442
return -EFAULT;
3443
ext_arg->ts_set = true;
3444
}
3445
return 0;
3446
#ifdef CONFIG_64BIT
3447
uaccess_end:
3448
user_access_end();
3449
return -EFAULT;
3450
#endif
3451
}
3452
3453
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3454
u32, min_complete, u32, flags, const void __user *, argp,
3455
size_t, argsz)
3456
{
3457
struct io_ring_ctx *ctx;
3458
struct file *file;
3459
long ret;
3460
3461
if (unlikely(flags & ~IORING_ENTER_FLAGS))
3462
return -EINVAL;
3463
3464
/*
3465
* Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3466
* need only dereference our task private array to find it.
3467
*/
3468
if (flags & IORING_ENTER_REGISTERED_RING) {
3469
struct io_uring_task *tctx = current->io_uring;
3470
3471
if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3472
return -EINVAL;
3473
fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3474
file = tctx->registered_rings[fd];
3475
if (unlikely(!file))
3476
return -EBADF;
3477
} else {
3478
file = fget(fd);
3479
if (unlikely(!file))
3480
return -EBADF;
3481
ret = -EOPNOTSUPP;
3482
if (unlikely(!io_is_uring_fops(file)))
3483
goto out;
3484
}
3485
3486
ctx = file->private_data;
3487
ret = -EBADFD;
3488
if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3489
goto out;
3490
3491
/*
3492
* For SQ polling, the thread will do all submissions and completions.
3493
* Just return the requested submit count, and wake the thread if
3494
* we were asked to.
3495
*/
3496
ret = 0;
3497
if (ctx->flags & IORING_SETUP_SQPOLL) {
3498
if (unlikely(ctx->sq_data->thread == NULL)) {
3499
ret = -EOWNERDEAD;
3500
goto out;
3501
}
3502
if (flags & IORING_ENTER_SQ_WAKEUP)
3503
wake_up(&ctx->sq_data->wait);
3504
if (flags & IORING_ENTER_SQ_WAIT)
3505
io_sqpoll_wait_sq(ctx);
3506
3507
ret = to_submit;
3508
} else if (to_submit) {
3509
ret = io_uring_add_tctx_node(ctx);
3510
if (unlikely(ret))
3511
goto out;
3512
3513
mutex_lock(&ctx->uring_lock);
3514
ret = io_submit_sqes(ctx, to_submit);
3515
if (ret != to_submit) {
3516
mutex_unlock(&ctx->uring_lock);
3517
goto out;
3518
}
3519
if (flags & IORING_ENTER_GETEVENTS) {
3520
if (ctx->syscall_iopoll)
3521
goto iopoll_locked;
3522
/*
3523
* Ignore errors, we'll soon call io_cqring_wait() and
3524
* it should handle ownership problems if any.
3525
*/
3526
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3527
(void)io_run_local_work_locked(ctx, min_complete);
3528
}
3529
mutex_unlock(&ctx->uring_lock);
3530
}
3531
3532
if (flags & IORING_ENTER_GETEVENTS) {
3533
int ret2;
3534
3535
if (ctx->syscall_iopoll) {
3536
/*
3537
* We disallow the app entering submit/complete with
3538
* polling, but we still need to lock the ring to
3539
* prevent racing with polled issue that got punted to
3540
* a workqueue.
3541
*/
3542
mutex_lock(&ctx->uring_lock);
3543
iopoll_locked:
3544
ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3545
if (likely(!ret2))
3546
ret2 = io_iopoll_check(ctx, min_complete);
3547
mutex_unlock(&ctx->uring_lock);
3548
} else {
3549
struct ext_arg ext_arg = { .argsz = argsz };
3550
3551
ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3552
if (likely(!ret2))
3553
ret2 = io_cqring_wait(ctx, min_complete, flags,
3554
&ext_arg);
3555
}
3556
3557
if (!ret) {
3558
ret = ret2;
3559
3560
/*
3561
* EBADR indicates that one or more CQE were dropped.
3562
* Once the user has been informed we can clear the bit
3563
* as they are obviously ok with those drops.
3564
*/
3565
if (unlikely(ret2 == -EBADR))
3566
clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3567
&ctx->check_cq);
3568
}
3569
}
3570
out:
3571
if (!(flags & IORING_ENTER_REGISTERED_RING))
3572
fput(file);
3573
return ret;
3574
}
3575
3576
static const struct file_operations io_uring_fops = {
3577
.release = io_uring_release,
3578
.mmap = io_uring_mmap,
3579
.get_unmapped_area = io_uring_get_unmapped_area,
3580
#ifndef CONFIG_MMU
3581
.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3582
#endif
3583
.poll = io_uring_poll,
3584
#ifdef CONFIG_PROC_FS
3585
.show_fdinfo = io_uring_show_fdinfo,
3586
#endif
3587
};
3588
3589
bool io_is_uring_fops(struct file *file)
3590
{
3591
return file->f_op == &io_uring_fops;
3592
}
3593
3594
static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3595
struct io_uring_params *p)
3596
{
3597
struct io_uring_region_desc rd;
3598
struct io_rings *rings;
3599
size_t size, sq_array_offset;
3600
int ret;
3601
3602
/* make sure these are sane, as we already accounted them */
3603
ctx->sq_entries = p->sq_entries;
3604
ctx->cq_entries = p->cq_entries;
3605
3606
size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3607
&sq_array_offset);
3608
if (size == SIZE_MAX)
3609
return -EOVERFLOW;
3610
3611
memset(&rd, 0, sizeof(rd));
3612
rd.size = PAGE_ALIGN(size);
3613
if (ctx->flags & IORING_SETUP_NO_MMAP) {
3614
rd.user_addr = p->cq_off.user_addr;
3615
rd.flags |= IORING_MEM_REGION_TYPE_USER;
3616
}
3617
ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3618
if (ret)
3619
return ret;
3620
ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3621
3622
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3623
ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3624
rings->sq_ring_mask = p->sq_entries - 1;
3625
rings->cq_ring_mask = p->cq_entries - 1;
3626
rings->sq_ring_entries = p->sq_entries;
3627
rings->cq_ring_entries = p->cq_entries;
3628
3629
if (p->flags & IORING_SETUP_SQE128)
3630
size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3631
else
3632
size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3633
if (size == SIZE_MAX) {
3634
io_rings_free(ctx);
3635
return -EOVERFLOW;
3636
}
3637
3638
memset(&rd, 0, sizeof(rd));
3639
rd.size = PAGE_ALIGN(size);
3640
if (ctx->flags & IORING_SETUP_NO_MMAP) {
3641
rd.user_addr = p->sq_off.user_addr;
3642
rd.flags |= IORING_MEM_REGION_TYPE_USER;
3643
}
3644
ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3645
if (ret) {
3646
io_rings_free(ctx);
3647
return ret;
3648
}
3649
ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3650
return 0;
3651
}
3652
3653
static int io_uring_install_fd(struct file *file)
3654
{
3655
int fd;
3656
3657
fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3658
if (fd < 0)
3659
return fd;
3660
fd_install(fd, file);
3661
return fd;
3662
}
3663
3664
/*
3665
* Allocate an anonymous fd, this is what constitutes the application
3666
* visible backing of an io_uring instance. The application mmaps this
3667
* fd to gain access to the SQ/CQ ring details.
3668
*/
3669
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3670
{
3671
/* Create a new inode so that the LSM can block the creation. */
3672
return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3673
O_RDWR | O_CLOEXEC, NULL);
3674
}
3675
3676
static int io_uring_sanitise_params(struct io_uring_params *p)
3677
{
3678
unsigned flags = p->flags;
3679
3680
/* There is no way to mmap rings without a real fd */
3681
if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3682
!(flags & IORING_SETUP_NO_MMAP))
3683
return -EINVAL;
3684
3685
if (flags & IORING_SETUP_SQPOLL) {
3686
/* IPI related flags don't make sense with SQPOLL */
3687
if (flags & (IORING_SETUP_COOP_TASKRUN |
3688
IORING_SETUP_TASKRUN_FLAG |
3689
IORING_SETUP_DEFER_TASKRUN))
3690
return -EINVAL;
3691
}
3692
3693
if (flags & IORING_SETUP_TASKRUN_FLAG) {
3694
if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3695
IORING_SETUP_DEFER_TASKRUN)))
3696
return -EINVAL;
3697
}
3698
3699
/* HYBRID_IOPOLL only valid with IOPOLL */
3700
if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3701
return -EINVAL;
3702
3703
/*
3704
* For DEFER_TASKRUN we require the completion task to be the same as
3705
* the submission task. This implies that there is only one submitter.
3706
*/
3707
if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3708
!(flags & IORING_SETUP_SINGLE_ISSUER))
3709
return -EINVAL;
3710
3711
/*
3712
* Nonsensical to ask for CQE32 and mixed CQE support, it's not
3713
* supported to post 16b CQEs on a ring setup with CQE32.
3714
*/
3715
if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) ==
3716
(IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED))
3717
return -EINVAL;
3718
3719
return 0;
3720
}
3721
3722
int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3723
{
3724
if (!entries)
3725
return -EINVAL;
3726
if (entries > IORING_MAX_ENTRIES) {
3727
if (!(p->flags & IORING_SETUP_CLAMP))
3728
return -EINVAL;
3729
entries = IORING_MAX_ENTRIES;
3730
}
3731
3732
/*
3733
* Use twice as many entries for the CQ ring. It's possible for the
3734
* application to drive a higher depth than the size of the SQ ring,
3735
* since the sqes are only used at submission time. This allows for
3736
* some flexibility in overcommitting a bit. If the application has
3737
* set IORING_SETUP_CQSIZE, it will have passed in the desired number
3738
* of CQ ring entries manually.
3739
*/
3740
p->sq_entries = roundup_pow_of_two(entries);
3741
if (p->flags & IORING_SETUP_CQSIZE) {
3742
/*
3743
* If IORING_SETUP_CQSIZE is set, we do the same roundup
3744
* to a power-of-two, if it isn't already. We do NOT impose
3745
* any cq vs sq ring sizing.
3746
*/
3747
if (!p->cq_entries)
3748
return -EINVAL;
3749
if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3750
if (!(p->flags & IORING_SETUP_CLAMP))
3751
return -EINVAL;
3752
p->cq_entries = IORING_MAX_CQ_ENTRIES;
3753
}
3754
p->cq_entries = roundup_pow_of_two(p->cq_entries);
3755
if (p->cq_entries < p->sq_entries)
3756
return -EINVAL;
3757
} else {
3758
p->cq_entries = 2 * p->sq_entries;
3759
}
3760
3761
p->sq_off.head = offsetof(struct io_rings, sq.head);
3762
p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3763
p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3764
p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3765
p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3766
p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3767
p->sq_off.resv1 = 0;
3768
if (!(p->flags & IORING_SETUP_NO_MMAP))
3769
p->sq_off.user_addr = 0;
3770
3771
p->cq_off.head = offsetof(struct io_rings, cq.head);
3772
p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3773
p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3774
p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3775
p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3776
p->cq_off.cqes = offsetof(struct io_rings, cqes);
3777
p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3778
p->cq_off.resv1 = 0;
3779
if (!(p->flags & IORING_SETUP_NO_MMAP))
3780
p->cq_off.user_addr = 0;
3781
3782
return 0;
3783
}
3784
3785
static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3786
struct io_uring_params __user *params)
3787
{
3788
struct io_ring_ctx *ctx;
3789
struct io_uring_task *tctx;
3790
struct file *file;
3791
int ret;
3792
3793
ret = io_uring_sanitise_params(p);
3794
if (ret)
3795
return ret;
3796
3797
ret = io_uring_fill_params(entries, p);
3798
if (unlikely(ret))
3799
return ret;
3800
3801
ctx = io_ring_ctx_alloc(p);
3802
if (!ctx)
3803
return -ENOMEM;
3804
3805
ctx->clockid = CLOCK_MONOTONIC;
3806
ctx->clock_offset = 0;
3807
3808
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3809
static_branch_inc(&io_key_has_sqarray);
3810
3811
if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3812
!(ctx->flags & IORING_SETUP_IOPOLL) &&
3813
!(ctx->flags & IORING_SETUP_SQPOLL))
3814
ctx->task_complete = true;
3815
3816
if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3817
ctx->lockless_cq = true;
3818
3819
/*
3820
* lazy poll_wq activation relies on ->task_complete for synchronisation
3821
* purposes, see io_activate_pollwq()
3822
*/
3823
if (!ctx->task_complete)
3824
ctx->poll_activated = true;
3825
3826
/*
3827
* When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3828
* space applications don't need to do io completion events
3829
* polling again, they can rely on io_sq_thread to do polling
3830
* work, which can reduce cpu usage and uring_lock contention.
3831
*/
3832
if (ctx->flags & IORING_SETUP_IOPOLL &&
3833
!(ctx->flags & IORING_SETUP_SQPOLL))
3834
ctx->syscall_iopoll = 1;
3835
3836
ctx->compat = in_compat_syscall();
3837
if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3838
ctx->user = get_uid(current_user());
3839
3840
/*
3841
* For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3842
* COOP_TASKRUN is set, then IPIs are never needed by the app.
3843
*/
3844
if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3845
ctx->notify_method = TWA_SIGNAL_NO_IPI;
3846
else
3847
ctx->notify_method = TWA_SIGNAL;
3848
3849
/*
3850
* This is just grabbed for accounting purposes. When a process exits,
3851
* the mm is exited and dropped before the files, hence we need to hang
3852
* on to this mm purely for the purposes of being able to unaccount
3853
* memory (locked/pinned vm). It's not used for anything else.
3854
*/
3855
mmgrab(current->mm);
3856
ctx->mm_account = current->mm;
3857
3858
ret = io_allocate_scq_urings(ctx, p);
3859
if (ret)
3860
goto err;
3861
3862
if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3863
p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3864
3865
ret = io_sq_offload_create(ctx, p);
3866
if (ret)
3867
goto err;
3868
3869
p->features = IORING_FEAT_FLAGS;
3870
3871
if (copy_to_user(params, p, sizeof(*p))) {
3872
ret = -EFAULT;
3873
goto err;
3874
}
3875
3876
if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3877
&& !(ctx->flags & IORING_SETUP_R_DISABLED)) {
3878
/*
3879
* Unlike io_register_enable_rings(), don't need WRITE_ONCE()
3880
* since ctx isn't yet accessible from other tasks
3881
*/
3882
ctx->submitter_task = get_task_struct(current);
3883
}
3884
3885
file = io_uring_get_file(ctx);
3886
if (IS_ERR(file)) {
3887
ret = PTR_ERR(file);
3888
goto err;
3889
}
3890
3891
ret = __io_uring_add_tctx_node(ctx);
3892
if (ret)
3893
goto err_fput;
3894
tctx = current->io_uring;
3895
3896
/*
3897
* Install ring fd as the very last thing, so we don't risk someone
3898
* having closed it before we finish setup
3899
*/
3900
if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3901
ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3902
else
3903
ret = io_uring_install_fd(file);
3904
if (ret < 0)
3905
goto err_fput;
3906
3907
trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3908
return ret;
3909
err:
3910
io_ring_ctx_wait_and_kill(ctx);
3911
return ret;
3912
err_fput:
3913
fput(file);
3914
return ret;
3915
}
3916
3917
/*
3918
* Sets up an aio uring context, and returns the fd. Applications asks for a
3919
* ring size, we return the actual sq/cq ring sizes (among other things) in the
3920
* params structure passed in.
3921
*/
3922
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3923
{
3924
struct io_uring_params p;
3925
int i;
3926
3927
if (copy_from_user(&p, params, sizeof(p)))
3928
return -EFAULT;
3929
for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3930
if (p.resv[i])
3931
return -EINVAL;
3932
}
3933
3934
if (p.flags & ~IORING_SETUP_FLAGS)
3935
return -EINVAL;
3936
return io_uring_create(entries, &p, params);
3937
}
3938
3939
static inline int io_uring_allowed(void)
3940
{
3941
int disabled = READ_ONCE(sysctl_io_uring_disabled);
3942
kgid_t io_uring_group;
3943
3944
if (disabled == 2)
3945
return -EPERM;
3946
3947
if (disabled == 0 || capable(CAP_SYS_ADMIN))
3948
goto allowed_lsm;
3949
3950
io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3951
if (!gid_valid(io_uring_group))
3952
return -EPERM;
3953
3954
if (!in_group_p(io_uring_group))
3955
return -EPERM;
3956
3957
allowed_lsm:
3958
return security_uring_allowed();
3959
}
3960
3961
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3962
struct io_uring_params __user *, params)
3963
{
3964
int ret;
3965
3966
ret = io_uring_allowed();
3967
if (ret)
3968
return ret;
3969
3970
return io_uring_setup(entries, params);
3971
}
3972
3973
static int __init io_uring_init(void)
3974
{
3975
struct kmem_cache_args kmem_args = {
3976
.useroffset = offsetof(struct io_kiocb, cmd.data),
3977
.usersize = sizeof_field(struct io_kiocb, cmd.data),
3978
.freeptr_offset = offsetof(struct io_kiocb, work),
3979
.use_freeptr_offset = true,
3980
};
3981
3982
#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3983
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3984
BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3985
} while (0)
3986
3987
#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3988
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3989
#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3990
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3991
BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3992
BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3993
BUILD_BUG_SQE_ELEM(1, __u8, flags);
3994
BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3995
BUILD_BUG_SQE_ELEM(4, __s32, fd);
3996
BUILD_BUG_SQE_ELEM(8, __u64, off);
3997
BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3998
BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3999
BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4000
BUILD_BUG_SQE_ELEM(16, __u64, addr);
4001
BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4002
BUILD_BUG_SQE_ELEM(24, __u32, len);
4003
BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4004
BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4005
BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4006
BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4007
BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4008
BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4009
BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4010
BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4011
BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4012
BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4013
BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4014
BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4015
BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4016
BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4017
BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4018
BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4019
BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4020
BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4021
BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4022
BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4023
BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4024
BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4025
BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4026
BUILD_BUG_SQE_ELEM(42, __u16, personality);
4027
BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4028
BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4029
BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4030
BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
4031
BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
4032
BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4033
BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4034
BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4035
BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
4036
BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
4037
BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4038
4039
BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4040
sizeof(struct io_uring_rsrc_update));
4041
BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4042
sizeof(struct io_uring_rsrc_update2));
4043
4044
/* ->buf_index is u16 */
4045
BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4046
BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4047
offsetof(struct io_uring_buf_ring, tail));
4048
4049
/* should fit into one byte */
4050
BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4051
BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4052
BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4053
4054
BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
4055
4056
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4057
4058
/* top 8bits are for internal use */
4059
BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4060
4061
io_uring_optable_init();
4062
4063
/* imu->dir is u8 */
4064
BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
4065
4066
/*
4067
* Allow user copy in the per-command field, which starts after the
4068
* file in io_kiocb and until the opcode field. The openat2 handling
4069
* requires copying in user memory into the io_kiocb object in that
4070
* range, and HARDENED_USERCOPY will complain if we haven't
4071
* correctly annotated this range.
4072
*/
4073
req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
4074
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
4075
SLAB_TYPESAFE_BY_RCU);
4076
4077
iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4078
BUG_ON(!iou_wq);
4079
4080
#ifdef CONFIG_SYSCTL
4081
register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4082
#endif
4083
4084
return 0;
4085
};
4086
__initcall(io_uring_init);
4087
4088