Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/audit.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* audit.c -- Auditing support
3
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4
* System-call specific features have moved to auditsc.c
5
*
6
* Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7
* All Rights Reserved.
8
*
9
* Written by Rickard E. (Rik) Faith <[email protected]>
10
*
11
* Goals: 1) Integrate fully with Security Modules.
12
* 2) Minimal run-time overhead:
13
* a) Minimal when syscall auditing is disabled (audit_enable=0).
14
* b) Small when syscall auditing is enabled and no audit record
15
* is generated (defer as much work as possible to record
16
* generation time):
17
* i) context is allocated,
18
* ii) names from getname are stored without a copy, and
19
* iii) inode information stored from path_lookup.
20
* 3) Ability to disable syscall auditing at boot time (audit=0).
21
* 4) Usable by other parts of the kernel (if audit_log* is called,
22
* then a syscall record will be generated automatically for the
23
* current syscall).
24
* 5) Netlink interface to user-space.
25
* 6) Support low-overhead kernel-based filtering to minimize the
26
* information that must be passed to user-space.
27
*
28
* Audit userspace, documentation, tests, and bug/issue trackers:
29
* https://github.com/linux-audit
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/file.h>
35
#include <linux/init.h>
36
#include <linux/types.h>
37
#include <linux/atomic.h>
38
#include <linux/mm.h>
39
#include <linux/export.h>
40
#include <linux/slab.h>
41
#include <linux/err.h>
42
#include <linux/kthread.h>
43
#include <linux/kernel.h>
44
#include <linux/syscalls.h>
45
#include <linux/spinlock.h>
46
#include <linux/rcupdate.h>
47
#include <linux/mutex.h>
48
#include <linux/gfp.h>
49
#include <linux/pid.h>
50
51
#include <linux/audit.h>
52
53
#include <net/sock.h>
54
#include <net/netlink.h>
55
#include <linux/skbuff.h>
56
#include <linux/security.h>
57
#include <linux/lsm_hooks.h>
58
#include <linux/freezer.h>
59
#include <linux/pid_namespace.h>
60
#include <net/netns/generic.h>
61
62
#include "audit.h"
63
64
/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
65
* (Initialization happens after skb_init is called.) */
66
#define AUDIT_DISABLED -1
67
#define AUDIT_UNINITIALIZED 0
68
#define AUDIT_INITIALIZED 1
69
static int audit_initialized = AUDIT_UNINITIALIZED;
70
71
u32 audit_enabled = AUDIT_OFF;
72
bool audit_ever_enabled = !!AUDIT_OFF;
73
74
EXPORT_SYMBOL_GPL(audit_enabled);
75
76
/* Default state when kernel boots without any parameters. */
77
static u32 audit_default = AUDIT_OFF;
78
79
/* If auditing cannot proceed, audit_failure selects what happens. */
80
static u32 audit_failure = AUDIT_FAIL_PRINTK;
81
82
/* private audit network namespace index */
83
static unsigned int audit_net_id;
84
85
/* Number of modules that provide a security context.
86
List of lsms that provide a security context */
87
static u32 audit_subj_secctx_cnt;
88
static u32 audit_obj_secctx_cnt;
89
static const struct lsm_id *audit_subj_lsms[MAX_LSM_COUNT];
90
static const struct lsm_id *audit_obj_lsms[MAX_LSM_COUNT];
91
92
/**
93
* struct audit_net - audit private network namespace data
94
* @sk: communication socket
95
*/
96
struct audit_net {
97
struct sock *sk;
98
};
99
100
/**
101
* struct auditd_connection - kernel/auditd connection state
102
* @pid: auditd PID
103
* @portid: netlink portid
104
* @net: the associated network namespace
105
* @rcu: RCU head
106
*
107
* Description:
108
* This struct is RCU protected; you must either hold the RCU lock for reading
109
* or the associated spinlock for writing.
110
*/
111
struct auditd_connection {
112
struct pid *pid;
113
u32 portid;
114
struct net *net;
115
struct rcu_head rcu;
116
};
117
static struct auditd_connection __rcu *auditd_conn;
118
static DEFINE_SPINLOCK(auditd_conn_lock);
119
120
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
121
* to that number per second. This prevents DoS attacks, but results in
122
* audit records being dropped. */
123
static u32 audit_rate_limit;
124
125
/* Number of outstanding audit_buffers allowed.
126
* When set to zero, this means unlimited. */
127
static u32 audit_backlog_limit = 64;
128
#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
129
static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
130
131
/* The identity of the user shutting down the audit system. */
132
static kuid_t audit_sig_uid = INVALID_UID;
133
static pid_t audit_sig_pid = -1;
134
static struct lsm_prop audit_sig_lsm;
135
136
/* Records can be lost in several ways:
137
0) [suppressed in audit_alloc]
138
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
139
2) out of memory in audit_log_move [alloc_skb]
140
3) suppressed due to audit_rate_limit
141
4) suppressed due to audit_backlog_limit
142
*/
143
static atomic_t audit_lost = ATOMIC_INIT(0);
144
145
/* Monotonically increasing sum of time the kernel has spent
146
* waiting while the backlog limit is exceeded.
147
*/
148
static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
149
150
/* Hash for inode-based rules */
151
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
152
153
static struct kmem_cache *audit_buffer_cache;
154
155
/* queue msgs to send via kauditd_task */
156
static struct sk_buff_head audit_queue;
157
/* queue msgs due to temporary unicast send problems */
158
static struct sk_buff_head audit_retry_queue;
159
/* queue msgs waiting for new auditd connection */
160
static struct sk_buff_head audit_hold_queue;
161
162
/* queue servicing thread */
163
static struct task_struct *kauditd_task;
164
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
165
166
/* waitqueue for callers who are blocked on the audit backlog */
167
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
168
169
static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
170
.mask = -1,
171
.features = 0,
172
.lock = 0,};
173
174
static char *audit_feature_names[2] = {
175
"only_unset_loginuid",
176
"loginuid_immutable",
177
};
178
179
/**
180
* struct audit_ctl_mutex - serialize requests from userspace
181
* @lock: the mutex used for locking
182
* @owner: the task which owns the lock
183
*
184
* Description:
185
* This is the lock struct used to ensure we only process userspace requests
186
* in an orderly fashion. We can't simply use a mutex/lock here because we
187
* need to track lock ownership so we don't end up blocking the lock owner in
188
* audit_log_start() or similar.
189
*/
190
static struct audit_ctl_mutex {
191
struct mutex lock;
192
void *owner;
193
} audit_cmd_mutex;
194
195
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
196
* audit records. Since printk uses a 1024 byte buffer, this buffer
197
* should be at least that large. */
198
#define AUDIT_BUFSIZ 1024
199
200
/* The audit_buffer is used when formatting an audit record. The caller
201
* locks briefly to get the record off the freelist or to allocate the
202
* buffer, and locks briefly to send the buffer to the netlink layer or
203
* to place it on a transmit queue. Multiple audit_buffers can be in
204
* use simultaneously. */
205
struct audit_buffer {
206
struct sk_buff *skb; /* the skb for audit_log functions */
207
struct sk_buff_head skb_list; /* formatted skbs, ready to send */
208
struct audit_context *ctx; /* NULL or associated context */
209
struct audit_stamp stamp; /* audit stamp for these records */
210
gfp_t gfp_mask;
211
};
212
213
struct audit_reply {
214
__u32 portid;
215
struct net *net;
216
struct sk_buff *skb;
217
};
218
219
/**
220
* auditd_test_task - Check to see if a given task is an audit daemon
221
* @task: the task to check
222
*
223
* Description:
224
* Return 1 if the task is a registered audit daemon, 0 otherwise.
225
*/
226
int auditd_test_task(struct task_struct *task)
227
{
228
int rc;
229
struct auditd_connection *ac;
230
231
rcu_read_lock();
232
ac = rcu_dereference(auditd_conn);
233
rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
234
rcu_read_unlock();
235
236
return rc;
237
}
238
239
/**
240
* audit_ctl_lock - Take the audit control lock
241
*/
242
void audit_ctl_lock(void)
243
{
244
mutex_lock(&audit_cmd_mutex.lock);
245
audit_cmd_mutex.owner = current;
246
}
247
248
/**
249
* audit_ctl_unlock - Drop the audit control lock
250
*/
251
void audit_ctl_unlock(void)
252
{
253
audit_cmd_mutex.owner = NULL;
254
mutex_unlock(&audit_cmd_mutex.lock);
255
}
256
257
/**
258
* audit_ctl_owner_current - Test to see if the current task owns the lock
259
*
260
* Description:
261
* Return true if the current task owns the audit control lock, false if it
262
* doesn't own the lock.
263
*/
264
static bool audit_ctl_owner_current(void)
265
{
266
return (current == audit_cmd_mutex.owner);
267
}
268
269
/**
270
* auditd_pid_vnr - Return the auditd PID relative to the namespace
271
*
272
* Description:
273
* Returns the PID in relation to the namespace, 0 on failure.
274
*/
275
static pid_t auditd_pid_vnr(void)
276
{
277
pid_t pid;
278
const struct auditd_connection *ac;
279
280
rcu_read_lock();
281
ac = rcu_dereference(auditd_conn);
282
if (!ac || !ac->pid)
283
pid = 0;
284
else
285
pid = pid_vnr(ac->pid);
286
rcu_read_unlock();
287
288
return pid;
289
}
290
291
/**
292
* audit_cfg_lsm - Identify a security module as providing a secctx.
293
* @lsmid: LSM identity
294
* @flags: which contexts are provided
295
*
296
* Description:
297
* Increments the count of the security modules providing a secctx.
298
* If the LSM id is already in the list leave it alone.
299
*/
300
void audit_cfg_lsm(const struct lsm_id *lsmid, int flags)
301
{
302
int i;
303
304
if (flags & AUDIT_CFG_LSM_SECCTX_SUBJECT) {
305
for (i = 0 ; i < audit_subj_secctx_cnt; i++)
306
if (audit_subj_lsms[i] == lsmid)
307
return;
308
audit_subj_lsms[audit_subj_secctx_cnt++] = lsmid;
309
}
310
if (flags & AUDIT_CFG_LSM_SECCTX_OBJECT) {
311
for (i = 0 ; i < audit_obj_secctx_cnt; i++)
312
if (audit_obj_lsms[i] == lsmid)
313
return;
314
audit_obj_lsms[audit_obj_secctx_cnt++] = lsmid;
315
}
316
}
317
318
/**
319
* audit_get_sk - Return the audit socket for the given network namespace
320
* @net: the destination network namespace
321
*
322
* Description:
323
* Returns the sock pointer if valid, NULL otherwise. The caller must ensure
324
* that a reference is held for the network namespace while the sock is in use.
325
*/
326
static struct sock *audit_get_sk(const struct net *net)
327
{
328
struct audit_net *aunet;
329
330
if (!net)
331
return NULL;
332
333
aunet = net_generic(net, audit_net_id);
334
return aunet->sk;
335
}
336
337
void audit_panic(const char *message)
338
{
339
switch (audit_failure) {
340
case AUDIT_FAIL_SILENT:
341
break;
342
case AUDIT_FAIL_PRINTK:
343
if (printk_ratelimit())
344
pr_err("%s\n", message);
345
break;
346
case AUDIT_FAIL_PANIC:
347
panic("audit: %s\n", message);
348
break;
349
}
350
}
351
352
static inline int audit_rate_check(void)
353
{
354
static unsigned long last_check = 0;
355
static int messages = 0;
356
static DEFINE_SPINLOCK(lock);
357
unsigned long flags;
358
unsigned long now;
359
int retval = 0;
360
361
if (!audit_rate_limit)
362
return 1;
363
364
spin_lock_irqsave(&lock, flags);
365
if (++messages < audit_rate_limit) {
366
retval = 1;
367
} else {
368
now = jiffies;
369
if (time_after(now, last_check + HZ)) {
370
last_check = now;
371
messages = 0;
372
retval = 1;
373
}
374
}
375
spin_unlock_irqrestore(&lock, flags);
376
377
return retval;
378
}
379
380
/**
381
* audit_log_lost - conditionally log lost audit message event
382
* @message: the message stating reason for lost audit message
383
*
384
* Emit at least 1 message per second, even if audit_rate_check is
385
* throttling.
386
* Always increment the lost messages counter.
387
*/
388
void audit_log_lost(const char *message)
389
{
390
static unsigned long last_msg = 0;
391
static DEFINE_SPINLOCK(lock);
392
unsigned long flags;
393
unsigned long now;
394
int print;
395
396
atomic_inc(&audit_lost);
397
398
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
399
400
if (!print) {
401
spin_lock_irqsave(&lock, flags);
402
now = jiffies;
403
if (time_after(now, last_msg + HZ)) {
404
print = 1;
405
last_msg = now;
406
}
407
spin_unlock_irqrestore(&lock, flags);
408
}
409
410
if (print) {
411
if (printk_ratelimit())
412
pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
413
atomic_read(&audit_lost),
414
audit_rate_limit,
415
audit_backlog_limit);
416
audit_panic(message);
417
}
418
}
419
420
static int audit_log_config_change(char *function_name, u32 new, u32 old,
421
int allow_changes)
422
{
423
struct audit_buffer *ab;
424
int rc = 0;
425
426
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
427
if (unlikely(!ab))
428
return rc;
429
audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
430
audit_log_session_info(ab);
431
rc = audit_log_task_context(ab);
432
if (rc)
433
allow_changes = 0; /* Something weird, deny request */
434
audit_log_format(ab, " res=%d", allow_changes);
435
audit_log_end(ab);
436
return rc;
437
}
438
439
static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
440
{
441
int allow_changes, rc = 0;
442
u32 old = *to_change;
443
444
/* check if we are locked */
445
if (audit_enabled == AUDIT_LOCKED)
446
allow_changes = 0;
447
else
448
allow_changes = 1;
449
450
if (audit_enabled != AUDIT_OFF) {
451
rc = audit_log_config_change(function_name, new, old, allow_changes);
452
if (rc)
453
allow_changes = 0;
454
}
455
456
/* If we are allowed, make the change */
457
if (allow_changes == 1)
458
*to_change = new;
459
/* Not allowed, update reason */
460
else if (rc == 0)
461
rc = -EPERM;
462
return rc;
463
}
464
465
static int audit_set_rate_limit(u32 limit)
466
{
467
return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
468
}
469
470
static int audit_set_backlog_limit(u32 limit)
471
{
472
return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
473
}
474
475
static int audit_set_backlog_wait_time(u32 timeout)
476
{
477
return audit_do_config_change("audit_backlog_wait_time",
478
&audit_backlog_wait_time, timeout);
479
}
480
481
static int audit_set_enabled(u32 state)
482
{
483
int rc;
484
if (state > AUDIT_LOCKED)
485
return -EINVAL;
486
487
rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
488
if (!rc)
489
audit_ever_enabled |= !!state;
490
491
return rc;
492
}
493
494
static int audit_set_failure(u32 state)
495
{
496
if (state != AUDIT_FAIL_SILENT
497
&& state != AUDIT_FAIL_PRINTK
498
&& state != AUDIT_FAIL_PANIC)
499
return -EINVAL;
500
501
return audit_do_config_change("audit_failure", &audit_failure, state);
502
}
503
504
/**
505
* auditd_conn_free - RCU helper to release an auditd connection struct
506
* @rcu: RCU head
507
*
508
* Description:
509
* Drop any references inside the auditd connection tracking struct and free
510
* the memory.
511
*/
512
static void auditd_conn_free(struct rcu_head *rcu)
513
{
514
struct auditd_connection *ac;
515
516
ac = container_of(rcu, struct auditd_connection, rcu);
517
put_pid(ac->pid);
518
put_net(ac->net);
519
kfree(ac);
520
}
521
522
/**
523
* auditd_set - Set/Reset the auditd connection state
524
* @pid: auditd PID
525
* @portid: auditd netlink portid
526
* @net: auditd network namespace pointer
527
* @skb: the netlink command from the audit daemon
528
* @ack: netlink ack flag, cleared if ack'd here
529
*
530
* Description:
531
* This function will obtain and drop network namespace references as
532
* necessary. Returns zero on success, negative values on failure.
533
*/
534
static int auditd_set(struct pid *pid, u32 portid, struct net *net,
535
struct sk_buff *skb, bool *ack)
536
{
537
unsigned long flags;
538
struct auditd_connection *ac_old, *ac_new;
539
struct nlmsghdr *nlh;
540
541
if (!pid || !net)
542
return -EINVAL;
543
544
ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
545
if (!ac_new)
546
return -ENOMEM;
547
ac_new->pid = get_pid(pid);
548
ac_new->portid = portid;
549
ac_new->net = get_net(net);
550
551
/* send the ack now to avoid a race with the queue backlog */
552
if (*ack) {
553
nlh = nlmsg_hdr(skb);
554
netlink_ack(skb, nlh, 0, NULL);
555
*ack = false;
556
}
557
558
spin_lock_irqsave(&auditd_conn_lock, flags);
559
ac_old = rcu_dereference_protected(auditd_conn,
560
lockdep_is_held(&auditd_conn_lock));
561
rcu_assign_pointer(auditd_conn, ac_new);
562
spin_unlock_irqrestore(&auditd_conn_lock, flags);
563
564
if (ac_old)
565
call_rcu(&ac_old->rcu, auditd_conn_free);
566
567
return 0;
568
}
569
570
/**
571
* kauditd_printk_skb - Print the audit record to the ring buffer
572
* @skb: audit record
573
*
574
* Whatever the reason, this packet may not make it to the auditd connection
575
* so write it via printk so the information isn't completely lost.
576
*/
577
static void kauditd_printk_skb(struct sk_buff *skb)
578
{
579
struct nlmsghdr *nlh = nlmsg_hdr(skb);
580
char *data = nlmsg_data(nlh);
581
582
if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
583
pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
584
}
585
586
/**
587
* kauditd_rehold_skb - Handle a audit record send failure in the hold queue
588
* @skb: audit record
589
* @error: error code (unused)
590
*
591
* Description:
592
* This should only be used by the kauditd_thread when it fails to flush the
593
* hold queue.
594
*/
595
static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
596
{
597
/* put the record back in the queue */
598
skb_queue_tail(&audit_hold_queue, skb);
599
}
600
601
/**
602
* kauditd_hold_skb - Queue an audit record, waiting for auditd
603
* @skb: audit record
604
* @error: error code
605
*
606
* Description:
607
* Queue the audit record, waiting for an instance of auditd. When this
608
* function is called we haven't given up yet on sending the record, but things
609
* are not looking good. The first thing we want to do is try to write the
610
* record via printk and then see if we want to try and hold on to the record
611
* and queue it, if we have room. If we want to hold on to the record, but we
612
* don't have room, record a record lost message.
613
*/
614
static void kauditd_hold_skb(struct sk_buff *skb, int error)
615
{
616
/* at this point it is uncertain if we will ever send this to auditd so
617
* try to send the message via printk before we go any further */
618
kauditd_printk_skb(skb);
619
620
/* can we just silently drop the message? */
621
if (!audit_default)
622
goto drop;
623
624
/* the hold queue is only for when the daemon goes away completely,
625
* not -EAGAIN failures; if we are in a -EAGAIN state requeue the
626
* record on the retry queue unless it's full, in which case drop it
627
*/
628
if (error == -EAGAIN) {
629
if (!audit_backlog_limit ||
630
skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
631
skb_queue_tail(&audit_retry_queue, skb);
632
return;
633
}
634
audit_log_lost("kauditd retry queue overflow");
635
goto drop;
636
}
637
638
/* if we have room in the hold queue, queue the message */
639
if (!audit_backlog_limit ||
640
skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
641
skb_queue_tail(&audit_hold_queue, skb);
642
return;
643
}
644
645
/* we have no other options - drop the message */
646
audit_log_lost("kauditd hold queue overflow");
647
drop:
648
kfree_skb(skb);
649
}
650
651
/**
652
* kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
653
* @skb: audit record
654
* @error: error code (unused)
655
*
656
* Description:
657
* Not as serious as kauditd_hold_skb() as we still have a connected auditd,
658
* but for some reason we are having problems sending it audit records so
659
* queue the given record and attempt to resend.
660
*/
661
static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
662
{
663
if (!audit_backlog_limit ||
664
skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
665
skb_queue_tail(&audit_retry_queue, skb);
666
return;
667
}
668
669
/* we have to drop the record, send it via printk as a last effort */
670
kauditd_printk_skb(skb);
671
audit_log_lost("kauditd retry queue overflow");
672
kfree_skb(skb);
673
}
674
675
/**
676
* auditd_reset - Disconnect the auditd connection
677
* @ac: auditd connection state
678
*
679
* Description:
680
* Break the auditd/kauditd connection and move all the queued records into the
681
* hold queue in case auditd reconnects. It is important to note that the @ac
682
* pointer should never be dereferenced inside this function as it may be NULL
683
* or invalid, you can only compare the memory address! If @ac is NULL then
684
* the connection will always be reset.
685
*/
686
static void auditd_reset(const struct auditd_connection *ac)
687
{
688
unsigned long flags;
689
struct sk_buff *skb;
690
struct auditd_connection *ac_old;
691
692
/* if it isn't already broken, break the connection */
693
spin_lock_irqsave(&auditd_conn_lock, flags);
694
ac_old = rcu_dereference_protected(auditd_conn,
695
lockdep_is_held(&auditd_conn_lock));
696
if (ac && ac != ac_old) {
697
/* someone already registered a new auditd connection */
698
spin_unlock_irqrestore(&auditd_conn_lock, flags);
699
return;
700
}
701
rcu_assign_pointer(auditd_conn, NULL);
702
spin_unlock_irqrestore(&auditd_conn_lock, flags);
703
704
if (ac_old)
705
call_rcu(&ac_old->rcu, auditd_conn_free);
706
707
/* flush the retry queue to the hold queue, but don't touch the main
708
* queue since we need to process that normally for multicast */
709
while ((skb = skb_dequeue(&audit_retry_queue)))
710
kauditd_hold_skb(skb, -ECONNREFUSED);
711
}
712
713
/**
714
* auditd_send_unicast_skb - Send a record via unicast to auditd
715
* @skb: audit record
716
*
717
* Description:
718
* Send a skb to the audit daemon, returns positive/zero values on success and
719
* negative values on failure; in all cases the skb will be consumed by this
720
* function. If the send results in -ECONNREFUSED the connection with auditd
721
* will be reset. This function may sleep so callers should not hold any locks
722
* where this would cause a problem.
723
*/
724
static int auditd_send_unicast_skb(struct sk_buff *skb)
725
{
726
int rc;
727
u32 portid;
728
struct net *net;
729
struct sock *sk;
730
struct auditd_connection *ac;
731
732
/* NOTE: we can't call netlink_unicast while in the RCU section so
733
* take a reference to the network namespace and grab local
734
* copies of the namespace, the sock, and the portid; the
735
* namespace and sock aren't going to go away while we hold a
736
* reference and if the portid does become invalid after the RCU
737
* section netlink_unicast() should safely return an error */
738
739
rcu_read_lock();
740
ac = rcu_dereference(auditd_conn);
741
if (!ac) {
742
rcu_read_unlock();
743
kfree_skb(skb);
744
rc = -ECONNREFUSED;
745
goto err;
746
}
747
net = get_net(ac->net);
748
sk = audit_get_sk(net);
749
portid = ac->portid;
750
rcu_read_unlock();
751
752
rc = netlink_unicast(sk, skb, portid, 0);
753
put_net(net);
754
if (rc < 0)
755
goto err;
756
757
return rc;
758
759
err:
760
if (ac && rc == -ECONNREFUSED)
761
auditd_reset(ac);
762
return rc;
763
}
764
765
/**
766
* kauditd_send_queue - Helper for kauditd_thread to flush skb queues
767
* @sk: the sending sock
768
* @portid: the netlink destination
769
* @queue: the skb queue to process
770
* @retry_limit: limit on number of netlink unicast failures
771
* @skb_hook: per-skb hook for additional processing
772
* @err_hook: hook called if the skb fails the netlink unicast send
773
*
774
* Description:
775
* Run through the given queue and attempt to send the audit records to auditd,
776
* returns zero on success, negative values on failure. It is up to the caller
777
* to ensure that the @sk is valid for the duration of this function.
778
*
779
*/
780
static int kauditd_send_queue(struct sock *sk, u32 portid,
781
struct sk_buff_head *queue,
782
unsigned int retry_limit,
783
void (*skb_hook)(struct sk_buff *skb),
784
void (*err_hook)(struct sk_buff *skb, int error))
785
{
786
int rc = 0;
787
struct sk_buff *skb = NULL;
788
struct sk_buff *skb_tail;
789
unsigned int failed = 0;
790
791
/* NOTE: kauditd_thread takes care of all our locking, we just use
792
* the netlink info passed to us (e.g. sk and portid) */
793
794
skb_tail = skb_peek_tail(queue);
795
while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
796
/* call the skb_hook for each skb we touch */
797
if (skb_hook)
798
(*skb_hook)(skb);
799
800
/* can we send to anyone via unicast? */
801
if (!sk) {
802
if (err_hook)
803
(*err_hook)(skb, -ECONNREFUSED);
804
continue;
805
}
806
807
retry:
808
/* grab an extra skb reference in case of error */
809
skb_get(skb);
810
rc = netlink_unicast(sk, skb, portid, 0);
811
if (rc < 0) {
812
/* send failed - try a few times unless fatal error */
813
if (++failed >= retry_limit ||
814
rc == -ECONNREFUSED || rc == -EPERM) {
815
sk = NULL;
816
if (err_hook)
817
(*err_hook)(skb, rc);
818
if (rc == -EAGAIN)
819
rc = 0;
820
/* continue to drain the queue */
821
continue;
822
} else
823
goto retry;
824
} else {
825
/* skb sent - drop the extra reference and continue */
826
consume_skb(skb);
827
failed = 0;
828
}
829
}
830
831
return (rc >= 0 ? 0 : rc);
832
}
833
834
/*
835
* kauditd_send_multicast_skb - Send a record to any multicast listeners
836
* @skb: audit record
837
*
838
* Description:
839
* Write a multicast message to anyone listening in the initial network
840
* namespace. This function doesn't consume an skb as might be expected since
841
* it has to copy it anyways.
842
*/
843
static void kauditd_send_multicast_skb(struct sk_buff *skb)
844
{
845
struct sk_buff *copy;
846
struct sock *sock = audit_get_sk(&init_net);
847
struct nlmsghdr *nlh;
848
849
/* NOTE: we are not taking an additional reference for init_net since
850
* we don't have to worry about it going away */
851
852
if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
853
return;
854
855
/*
856
* The seemingly wasteful skb_copy() rather than bumping the refcount
857
* using skb_get() is necessary because non-standard mods are made to
858
* the skb by the original kaudit unicast socket send routine. The
859
* existing auditd daemon assumes this breakage. Fixing this would
860
* require co-ordinating a change in the established protocol between
861
* the kaudit kernel subsystem and the auditd userspace code. There is
862
* no reason for new multicast clients to continue with this
863
* non-compliance.
864
*/
865
copy = skb_copy(skb, GFP_KERNEL);
866
if (!copy)
867
return;
868
nlh = nlmsg_hdr(copy);
869
nlh->nlmsg_len = skb->len;
870
871
nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
872
}
873
874
/**
875
* kauditd_thread - Worker thread to send audit records to userspace
876
* @dummy: unused
877
*/
878
static int kauditd_thread(void *dummy)
879
{
880
int rc;
881
u32 portid = 0;
882
struct net *net = NULL;
883
struct sock *sk = NULL;
884
struct auditd_connection *ac;
885
886
#define UNICAST_RETRIES 5
887
888
set_freezable();
889
while (!kthread_should_stop()) {
890
/* NOTE: see the lock comments in auditd_send_unicast_skb() */
891
rcu_read_lock();
892
ac = rcu_dereference(auditd_conn);
893
if (!ac) {
894
rcu_read_unlock();
895
goto main_queue;
896
}
897
net = get_net(ac->net);
898
sk = audit_get_sk(net);
899
portid = ac->portid;
900
rcu_read_unlock();
901
902
/* attempt to flush the hold queue */
903
rc = kauditd_send_queue(sk, portid,
904
&audit_hold_queue, UNICAST_RETRIES,
905
NULL, kauditd_rehold_skb);
906
if (rc < 0) {
907
sk = NULL;
908
auditd_reset(ac);
909
goto main_queue;
910
}
911
912
/* attempt to flush the retry queue */
913
rc = kauditd_send_queue(sk, portid,
914
&audit_retry_queue, UNICAST_RETRIES,
915
NULL, kauditd_hold_skb);
916
if (rc < 0) {
917
sk = NULL;
918
auditd_reset(ac);
919
goto main_queue;
920
}
921
922
main_queue:
923
/* process the main queue - do the multicast send and attempt
924
* unicast, dump failed record sends to the retry queue; if
925
* sk == NULL due to previous failures we will just do the
926
* multicast send and move the record to the hold queue */
927
rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
928
kauditd_send_multicast_skb,
929
(sk ?
930
kauditd_retry_skb : kauditd_hold_skb));
931
if (ac && rc < 0)
932
auditd_reset(ac);
933
sk = NULL;
934
935
/* drop our netns reference, no auditd sends past this line */
936
if (net) {
937
put_net(net);
938
net = NULL;
939
}
940
941
/* we have processed all the queues so wake everyone */
942
wake_up(&audit_backlog_wait);
943
944
/* NOTE: we want to wake up if there is anything on the queue,
945
* regardless of if an auditd is connected, as we need to
946
* do the multicast send and rotate records from the
947
* main queue to the retry/hold queues */
948
wait_event_freezable(kauditd_wait,
949
(skb_queue_len(&audit_queue) ? 1 : 0));
950
}
951
952
return 0;
953
}
954
955
int audit_send_list_thread(void *_dest)
956
{
957
struct audit_netlink_list *dest = _dest;
958
struct sk_buff *skb;
959
struct sock *sk = audit_get_sk(dest->net);
960
961
/* wait for parent to finish and send an ACK */
962
audit_ctl_lock();
963
audit_ctl_unlock();
964
965
while ((skb = __skb_dequeue(&dest->q)) != NULL)
966
netlink_unicast(sk, skb, dest->portid, 0);
967
968
put_net(dest->net);
969
kfree(dest);
970
971
return 0;
972
}
973
974
struct sk_buff *audit_make_reply(int seq, int type, int done,
975
int multi, const void *payload, int size)
976
{
977
struct sk_buff *skb;
978
struct nlmsghdr *nlh;
979
void *data;
980
int flags = multi ? NLM_F_MULTI : 0;
981
int t = done ? NLMSG_DONE : type;
982
983
skb = nlmsg_new(size, GFP_KERNEL);
984
if (!skb)
985
return NULL;
986
987
nlh = nlmsg_put(skb, 0, seq, t, size, flags);
988
if (!nlh)
989
goto out_kfree_skb;
990
data = nlmsg_data(nlh);
991
memcpy(data, payload, size);
992
return skb;
993
994
out_kfree_skb:
995
kfree_skb(skb);
996
return NULL;
997
}
998
999
static void audit_free_reply(struct audit_reply *reply)
1000
{
1001
if (!reply)
1002
return;
1003
1004
kfree_skb(reply->skb);
1005
if (reply->net)
1006
put_net(reply->net);
1007
kfree(reply);
1008
}
1009
1010
static int audit_send_reply_thread(void *arg)
1011
{
1012
struct audit_reply *reply = (struct audit_reply *)arg;
1013
1014
audit_ctl_lock();
1015
audit_ctl_unlock();
1016
1017
/* Ignore failure. It'll only happen if the sender goes away,
1018
because our timeout is set to infinite. */
1019
netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
1020
reply->skb = NULL;
1021
audit_free_reply(reply);
1022
return 0;
1023
}
1024
1025
/**
1026
* audit_send_reply - send an audit reply message via netlink
1027
* @request_skb: skb of request we are replying to (used to target the reply)
1028
* @seq: sequence number
1029
* @type: audit message type
1030
* @done: done (last) flag
1031
* @multi: multi-part message flag
1032
* @payload: payload data
1033
* @size: payload size
1034
*
1035
* Allocates a skb, builds the netlink message, and sends it to the port id.
1036
*/
1037
static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1038
int multi, const void *payload, int size)
1039
{
1040
struct task_struct *tsk;
1041
struct audit_reply *reply;
1042
1043
reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1044
if (!reply)
1045
return;
1046
1047
reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1048
if (!reply->skb)
1049
goto err;
1050
reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1051
reply->portid = NETLINK_CB(request_skb).portid;
1052
1053
tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1054
if (IS_ERR(tsk))
1055
goto err;
1056
1057
return;
1058
1059
err:
1060
audit_free_reply(reply);
1061
}
1062
1063
/*
1064
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1065
* control messages.
1066
*/
1067
static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1068
{
1069
int err = 0;
1070
1071
/* Only support initial user namespace for now. */
1072
/*
1073
* We return ECONNREFUSED because it tricks userspace into thinking
1074
* that audit was not configured into the kernel. Lots of users
1075
* configure their PAM stack (because that's what the distro does)
1076
* to reject login if unable to send messages to audit. If we return
1077
* ECONNREFUSED the PAM stack thinks the kernel does not have audit
1078
* configured in and will let login proceed. If we return EPERM
1079
* userspace will reject all logins. This should be removed when we
1080
* support non init namespaces!!
1081
*/
1082
if (current_user_ns() != &init_user_ns)
1083
return -ECONNREFUSED;
1084
1085
switch (msg_type) {
1086
case AUDIT_LIST:
1087
case AUDIT_ADD:
1088
case AUDIT_DEL:
1089
return -EOPNOTSUPP;
1090
case AUDIT_GET:
1091
case AUDIT_SET:
1092
case AUDIT_GET_FEATURE:
1093
case AUDIT_SET_FEATURE:
1094
case AUDIT_LIST_RULES:
1095
case AUDIT_ADD_RULE:
1096
case AUDIT_DEL_RULE:
1097
case AUDIT_SIGNAL_INFO:
1098
case AUDIT_TTY_GET:
1099
case AUDIT_TTY_SET:
1100
case AUDIT_TRIM:
1101
case AUDIT_MAKE_EQUIV:
1102
/* Only support auditd and auditctl in initial pid namespace
1103
* for now. */
1104
if (task_active_pid_ns(current) != &init_pid_ns)
1105
return -EPERM;
1106
1107
if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1108
err = -EPERM;
1109
break;
1110
case AUDIT_USER:
1111
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1112
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1113
if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1114
err = -EPERM;
1115
break;
1116
default: /* bad msg */
1117
err = -EINVAL;
1118
}
1119
1120
return err;
1121
}
1122
1123
static void audit_log_common_recv_msg(struct audit_context *context,
1124
struct audit_buffer **ab, u16 msg_type)
1125
{
1126
uid_t uid = from_kuid(&init_user_ns, current_uid());
1127
pid_t pid = task_tgid_nr(current);
1128
1129
if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1130
*ab = NULL;
1131
return;
1132
}
1133
1134
*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1135
if (unlikely(!*ab))
1136
return;
1137
audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1138
audit_log_session_info(*ab);
1139
audit_log_task_context(*ab);
1140
}
1141
1142
static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1143
u16 msg_type)
1144
{
1145
audit_log_common_recv_msg(NULL, ab, msg_type);
1146
}
1147
1148
static int is_audit_feature_set(int i)
1149
{
1150
return af.features & AUDIT_FEATURE_TO_MASK(i);
1151
}
1152
1153
static int audit_get_feature(struct sk_buff *skb)
1154
{
1155
u32 seq;
1156
1157
seq = nlmsg_hdr(skb)->nlmsg_seq;
1158
1159
audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1160
1161
return 0;
1162
}
1163
1164
static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1165
u32 old_lock, u32 new_lock, int res)
1166
{
1167
struct audit_buffer *ab;
1168
1169
if (audit_enabled == AUDIT_OFF)
1170
return;
1171
1172
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1173
if (!ab)
1174
return;
1175
audit_log_task_info(ab);
1176
audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1177
audit_feature_names[which], !!old_feature, !!new_feature,
1178
!!old_lock, !!new_lock, res);
1179
audit_log_end(ab);
1180
}
1181
1182
static int audit_set_feature(struct audit_features *uaf)
1183
{
1184
int i;
1185
1186
BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1187
1188
/* if there is ever a version 2 we should handle that here */
1189
1190
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1191
u32 feature = AUDIT_FEATURE_TO_MASK(i);
1192
u32 old_feature, new_feature, old_lock, new_lock;
1193
1194
/* if we are not changing this feature, move along */
1195
if (!(feature & uaf->mask))
1196
continue;
1197
1198
old_feature = af.features & feature;
1199
new_feature = uaf->features & feature;
1200
new_lock = (uaf->lock | af.lock) & feature;
1201
old_lock = af.lock & feature;
1202
1203
/* are we changing a locked feature? */
1204
if (old_lock && (new_feature != old_feature)) {
1205
audit_log_feature_change(i, old_feature, new_feature,
1206
old_lock, new_lock, 0);
1207
return -EPERM;
1208
}
1209
}
1210
/* nothing invalid, do the changes */
1211
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1212
u32 feature = AUDIT_FEATURE_TO_MASK(i);
1213
u32 old_feature, new_feature, old_lock, new_lock;
1214
1215
/* if we are not changing this feature, move along */
1216
if (!(feature & uaf->mask))
1217
continue;
1218
1219
old_feature = af.features & feature;
1220
new_feature = uaf->features & feature;
1221
old_lock = af.lock & feature;
1222
new_lock = (uaf->lock | af.lock) & feature;
1223
1224
if (new_feature != old_feature)
1225
audit_log_feature_change(i, old_feature, new_feature,
1226
old_lock, new_lock, 1);
1227
1228
if (new_feature)
1229
af.features |= feature;
1230
else
1231
af.features &= ~feature;
1232
af.lock |= new_lock;
1233
}
1234
1235
return 0;
1236
}
1237
1238
static int audit_replace(struct pid *pid)
1239
{
1240
pid_t pvnr;
1241
struct sk_buff *skb;
1242
1243
pvnr = pid_vnr(pid);
1244
skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1245
if (!skb)
1246
return -ENOMEM;
1247
return auditd_send_unicast_skb(skb);
1248
}
1249
1250
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1251
bool *ack)
1252
{
1253
u32 seq;
1254
void *data;
1255
int data_len;
1256
int err;
1257
struct audit_buffer *ab;
1258
u16 msg_type = nlh->nlmsg_type;
1259
struct audit_sig_info *sig_data;
1260
struct lsm_context lsmctx = { NULL, 0, 0 };
1261
1262
err = audit_netlink_ok(skb, msg_type);
1263
if (err)
1264
return err;
1265
1266
seq = nlh->nlmsg_seq;
1267
data = nlmsg_data(nlh);
1268
data_len = nlmsg_len(nlh);
1269
1270
switch (msg_type) {
1271
case AUDIT_GET: {
1272
struct audit_status s;
1273
memset(&s, 0, sizeof(s));
1274
s.enabled = audit_enabled;
1275
s.failure = audit_failure;
1276
/* NOTE: use pid_vnr() so the PID is relative to the current
1277
* namespace */
1278
s.pid = auditd_pid_vnr();
1279
s.rate_limit = audit_rate_limit;
1280
s.backlog_limit = audit_backlog_limit;
1281
s.lost = atomic_read(&audit_lost);
1282
s.backlog = skb_queue_len(&audit_queue);
1283
s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1284
s.backlog_wait_time = audit_backlog_wait_time;
1285
s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1286
audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1287
break;
1288
}
1289
case AUDIT_SET: {
1290
struct audit_status s;
1291
memset(&s, 0, sizeof(s));
1292
/* guard against past and future API changes */
1293
memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1294
if (s.mask & AUDIT_STATUS_ENABLED) {
1295
err = audit_set_enabled(s.enabled);
1296
if (err < 0)
1297
return err;
1298
}
1299
if (s.mask & AUDIT_STATUS_FAILURE) {
1300
err = audit_set_failure(s.failure);
1301
if (err < 0)
1302
return err;
1303
}
1304
if (s.mask & AUDIT_STATUS_PID) {
1305
/* NOTE: we are using the vnr PID functions below
1306
* because the s.pid value is relative to the
1307
* namespace of the caller; at present this
1308
* doesn't matter much since you can really only
1309
* run auditd from the initial pid namespace, but
1310
* something to keep in mind if this changes */
1311
pid_t new_pid = s.pid;
1312
pid_t auditd_pid;
1313
struct pid *req_pid = task_tgid(current);
1314
1315
/* Sanity check - PID values must match. Setting
1316
* pid to 0 is how auditd ends auditing. */
1317
if (new_pid && (new_pid != pid_vnr(req_pid)))
1318
return -EINVAL;
1319
1320
/* test the auditd connection */
1321
audit_replace(req_pid);
1322
1323
auditd_pid = auditd_pid_vnr();
1324
if (auditd_pid) {
1325
/* replacing a healthy auditd is not allowed */
1326
if (new_pid) {
1327
audit_log_config_change("audit_pid",
1328
new_pid, auditd_pid, 0);
1329
return -EEXIST;
1330
}
1331
/* only current auditd can unregister itself */
1332
if (pid_vnr(req_pid) != auditd_pid) {
1333
audit_log_config_change("audit_pid",
1334
new_pid, auditd_pid, 0);
1335
return -EACCES;
1336
}
1337
}
1338
1339
if (new_pid) {
1340
/* register a new auditd connection */
1341
err = auditd_set(req_pid,
1342
NETLINK_CB(skb).portid,
1343
sock_net(NETLINK_CB(skb).sk),
1344
skb, ack);
1345
if (audit_enabled != AUDIT_OFF)
1346
audit_log_config_change("audit_pid",
1347
new_pid,
1348
auditd_pid,
1349
err ? 0 : 1);
1350
if (err)
1351
return err;
1352
1353
/* try to process any backlog */
1354
wake_up_interruptible(&kauditd_wait);
1355
} else {
1356
if (audit_enabled != AUDIT_OFF)
1357
audit_log_config_change("audit_pid",
1358
new_pid,
1359
auditd_pid, 1);
1360
1361
/* unregister the auditd connection */
1362
auditd_reset(NULL);
1363
}
1364
}
1365
if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1366
err = audit_set_rate_limit(s.rate_limit);
1367
if (err < 0)
1368
return err;
1369
}
1370
if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1371
err = audit_set_backlog_limit(s.backlog_limit);
1372
if (err < 0)
1373
return err;
1374
}
1375
if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1376
if (sizeof(s) > (size_t)nlh->nlmsg_len)
1377
return -EINVAL;
1378
if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1379
return -EINVAL;
1380
err = audit_set_backlog_wait_time(s.backlog_wait_time);
1381
if (err < 0)
1382
return err;
1383
}
1384
if (s.mask == AUDIT_STATUS_LOST) {
1385
u32 lost = atomic_xchg(&audit_lost, 0);
1386
1387
audit_log_config_change("lost", 0, lost, 1);
1388
return lost;
1389
}
1390
if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1391
u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1392
1393
audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1394
return actual;
1395
}
1396
break;
1397
}
1398
case AUDIT_GET_FEATURE:
1399
err = audit_get_feature(skb);
1400
if (err)
1401
return err;
1402
break;
1403
case AUDIT_SET_FEATURE:
1404
if (data_len < sizeof(struct audit_features))
1405
return -EINVAL;
1406
err = audit_set_feature(data);
1407
if (err)
1408
return err;
1409
break;
1410
case AUDIT_USER:
1411
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1412
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1413
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1414
return 0;
1415
/* exit early if there isn't at least one character to print */
1416
if (data_len < 2)
1417
return -EINVAL;
1418
1419
err = audit_filter(msg_type, AUDIT_FILTER_USER);
1420
if (err == 1) { /* match or error */
1421
char *str = data;
1422
1423
err = 0;
1424
if (msg_type == AUDIT_USER_TTY) {
1425
err = tty_audit_push();
1426
if (err)
1427
break;
1428
}
1429
audit_log_user_recv_msg(&ab, msg_type);
1430
if (msg_type != AUDIT_USER_TTY) {
1431
/* ensure NULL termination */
1432
str[data_len - 1] = '\0';
1433
audit_log_format(ab, " msg='%.*s'",
1434
AUDIT_MESSAGE_TEXT_MAX,
1435
str);
1436
} else {
1437
audit_log_format(ab, " data=");
1438
if (str[data_len - 1] == '\0')
1439
data_len--;
1440
audit_log_n_untrustedstring(ab, str, data_len);
1441
}
1442
audit_log_end(ab);
1443
}
1444
break;
1445
case AUDIT_ADD_RULE:
1446
case AUDIT_DEL_RULE:
1447
if (data_len < sizeof(struct audit_rule_data))
1448
return -EINVAL;
1449
if (audit_enabled == AUDIT_LOCKED) {
1450
audit_log_common_recv_msg(audit_context(), &ab,
1451
AUDIT_CONFIG_CHANGE);
1452
audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1453
msg_type == AUDIT_ADD_RULE ?
1454
"add_rule" : "remove_rule",
1455
audit_enabled);
1456
audit_log_end(ab);
1457
return -EPERM;
1458
}
1459
err = audit_rule_change(msg_type, seq, data, data_len);
1460
break;
1461
case AUDIT_LIST_RULES:
1462
err = audit_list_rules_send(skb, seq);
1463
break;
1464
case AUDIT_TRIM:
1465
audit_trim_trees();
1466
audit_log_common_recv_msg(audit_context(), &ab,
1467
AUDIT_CONFIG_CHANGE);
1468
audit_log_format(ab, " op=trim res=1");
1469
audit_log_end(ab);
1470
break;
1471
case AUDIT_MAKE_EQUIV: {
1472
void *bufp = data;
1473
u32 sizes[2];
1474
size_t msglen = data_len;
1475
char *old, *new;
1476
1477
err = -EINVAL;
1478
if (msglen < 2 * sizeof(u32))
1479
break;
1480
memcpy(sizes, bufp, 2 * sizeof(u32));
1481
bufp += 2 * sizeof(u32);
1482
msglen -= 2 * sizeof(u32);
1483
old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1484
if (IS_ERR(old)) {
1485
err = PTR_ERR(old);
1486
break;
1487
}
1488
new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1489
if (IS_ERR(new)) {
1490
err = PTR_ERR(new);
1491
kfree(old);
1492
break;
1493
}
1494
/* OK, here comes... */
1495
err = audit_tag_tree(old, new);
1496
1497
audit_log_common_recv_msg(audit_context(), &ab,
1498
AUDIT_CONFIG_CHANGE);
1499
audit_log_format(ab, " op=make_equiv old=");
1500
audit_log_untrustedstring(ab, old);
1501
audit_log_format(ab, " new=");
1502
audit_log_untrustedstring(ab, new);
1503
audit_log_format(ab, " res=%d", !err);
1504
audit_log_end(ab);
1505
kfree(old);
1506
kfree(new);
1507
break;
1508
}
1509
case AUDIT_SIGNAL_INFO:
1510
if (lsmprop_is_set(&audit_sig_lsm)) {
1511
err = security_lsmprop_to_secctx(&audit_sig_lsm,
1512
&lsmctx, LSM_ID_UNDEF);
1513
if (err < 0)
1514
return err;
1515
}
1516
sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len),
1517
GFP_KERNEL);
1518
if (!sig_data) {
1519
if (lsmprop_is_set(&audit_sig_lsm))
1520
security_release_secctx(&lsmctx);
1521
return -ENOMEM;
1522
}
1523
sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1524
sig_data->pid = audit_sig_pid;
1525
if (lsmprop_is_set(&audit_sig_lsm)) {
1526
memcpy(sig_data->ctx, lsmctx.context, lsmctx.len);
1527
security_release_secctx(&lsmctx);
1528
}
1529
audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1530
sig_data, struct_size(sig_data, ctx,
1531
lsmctx.len));
1532
kfree(sig_data);
1533
break;
1534
case AUDIT_TTY_GET: {
1535
struct audit_tty_status s;
1536
unsigned int t;
1537
1538
t = READ_ONCE(current->signal->audit_tty);
1539
s.enabled = t & AUDIT_TTY_ENABLE;
1540
s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1541
1542
audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1543
break;
1544
}
1545
case AUDIT_TTY_SET: {
1546
struct audit_tty_status s, old;
1547
struct audit_buffer *ab;
1548
unsigned int t;
1549
1550
memset(&s, 0, sizeof(s));
1551
/* guard against past and future API changes */
1552
memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1553
/* check if new data is valid */
1554
if ((s.enabled != 0 && s.enabled != 1) ||
1555
(s.log_passwd != 0 && s.log_passwd != 1))
1556
err = -EINVAL;
1557
1558
if (err)
1559
t = READ_ONCE(current->signal->audit_tty);
1560
else {
1561
t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1562
t = xchg(&current->signal->audit_tty, t);
1563
}
1564
old.enabled = t & AUDIT_TTY_ENABLE;
1565
old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1566
1567
audit_log_common_recv_msg(audit_context(), &ab,
1568
AUDIT_CONFIG_CHANGE);
1569
audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1570
" old-log_passwd=%d new-log_passwd=%d res=%d",
1571
old.enabled, s.enabled, old.log_passwd,
1572
s.log_passwd, !err);
1573
audit_log_end(ab);
1574
break;
1575
}
1576
default:
1577
err = -EINVAL;
1578
break;
1579
}
1580
1581
return err < 0 ? err : 0;
1582
}
1583
1584
/**
1585
* audit_receive - receive messages from a netlink control socket
1586
* @skb: the message buffer
1587
*
1588
* Parse the provided skb and deal with any messages that may be present,
1589
* malformed skbs are discarded.
1590
*/
1591
static void audit_receive(struct sk_buff *skb)
1592
{
1593
struct nlmsghdr *nlh;
1594
bool ack;
1595
/*
1596
* len MUST be signed for nlmsg_next to be able to dec it below 0
1597
* if the nlmsg_len was not aligned
1598
*/
1599
int len;
1600
int err;
1601
1602
nlh = nlmsg_hdr(skb);
1603
len = skb->len;
1604
1605
audit_ctl_lock();
1606
while (nlmsg_ok(nlh, len)) {
1607
ack = nlh->nlmsg_flags & NLM_F_ACK;
1608
err = audit_receive_msg(skb, nlh, &ack);
1609
1610
/* send an ack if the user asked for one and audit_receive_msg
1611
* didn't already do it, or if there was an error. */
1612
if (ack || err)
1613
netlink_ack(skb, nlh, err, NULL);
1614
1615
nlh = nlmsg_next(nlh, &len);
1616
}
1617
audit_ctl_unlock();
1618
1619
/* can't block with the ctrl lock, so penalize the sender now */
1620
if (audit_backlog_limit &&
1621
(skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1622
DECLARE_WAITQUEUE(wait, current);
1623
1624
/* wake kauditd to try and flush the queue */
1625
wake_up_interruptible(&kauditd_wait);
1626
1627
add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1628
set_current_state(TASK_UNINTERRUPTIBLE);
1629
schedule_timeout(audit_backlog_wait_time);
1630
remove_wait_queue(&audit_backlog_wait, &wait);
1631
}
1632
}
1633
1634
/* Log information about who is connecting to the audit multicast socket */
1635
static void audit_log_multicast(int group, const char *op, int err)
1636
{
1637
const struct cred *cred;
1638
struct tty_struct *tty;
1639
char comm[sizeof(current->comm)];
1640
struct audit_buffer *ab;
1641
1642
if (!audit_enabled)
1643
return;
1644
1645
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1646
if (!ab)
1647
return;
1648
1649
cred = current_cred();
1650
tty = audit_get_tty();
1651
audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1652
task_tgid_nr(current),
1653
from_kuid(&init_user_ns, cred->uid),
1654
from_kuid(&init_user_ns, audit_get_loginuid(current)),
1655
tty ? tty_name(tty) : "(none)",
1656
audit_get_sessionid(current));
1657
audit_put_tty(tty);
1658
audit_log_task_context(ab); /* subj= */
1659
audit_log_format(ab, " comm=");
1660
audit_log_untrustedstring(ab, get_task_comm(comm, current));
1661
audit_log_d_path_exe(ab, current->mm); /* exe= */
1662
audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1663
audit_log_end(ab);
1664
}
1665
1666
/* Run custom bind function on netlink socket group connect or bind requests. */
1667
static int audit_multicast_bind(struct net *net, int group)
1668
{
1669
int err = 0;
1670
1671
if (!capable(CAP_AUDIT_READ))
1672
err = -EPERM;
1673
audit_log_multicast(group, "connect", err);
1674
return err;
1675
}
1676
1677
static void audit_multicast_unbind(struct net *net, int group)
1678
{
1679
audit_log_multicast(group, "disconnect", 0);
1680
}
1681
1682
static int __net_init audit_net_init(struct net *net)
1683
{
1684
struct netlink_kernel_cfg cfg = {
1685
.input = audit_receive,
1686
.bind = audit_multicast_bind,
1687
.unbind = audit_multicast_unbind,
1688
.flags = NL_CFG_F_NONROOT_RECV,
1689
.groups = AUDIT_NLGRP_MAX,
1690
};
1691
1692
struct audit_net *aunet = net_generic(net, audit_net_id);
1693
1694
aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1695
if (aunet->sk == NULL) {
1696
audit_panic("cannot initialize netlink socket in namespace");
1697
return -ENOMEM;
1698
}
1699
/* limit the timeout in case auditd is blocked/stopped */
1700
aunet->sk->sk_sndtimeo = HZ / 10;
1701
1702
return 0;
1703
}
1704
1705
static void __net_exit audit_net_exit(struct net *net)
1706
{
1707
struct audit_net *aunet = net_generic(net, audit_net_id);
1708
1709
/* NOTE: you would think that we would want to check the auditd
1710
* connection and potentially reset it here if it lives in this
1711
* namespace, but since the auditd connection tracking struct holds a
1712
* reference to this namespace (see auditd_set()) we are only ever
1713
* going to get here after that connection has been released */
1714
1715
netlink_kernel_release(aunet->sk);
1716
}
1717
1718
static struct pernet_operations audit_net_ops __net_initdata = {
1719
.init = audit_net_init,
1720
.exit = audit_net_exit,
1721
.id = &audit_net_id,
1722
.size = sizeof(struct audit_net),
1723
};
1724
1725
/* Initialize audit support at boot time. */
1726
static int __init audit_init(void)
1727
{
1728
int i;
1729
1730
if (audit_initialized == AUDIT_DISABLED)
1731
return 0;
1732
1733
audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1734
1735
skb_queue_head_init(&audit_queue);
1736
skb_queue_head_init(&audit_retry_queue);
1737
skb_queue_head_init(&audit_hold_queue);
1738
1739
for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1740
INIT_LIST_HEAD(&audit_inode_hash[i]);
1741
1742
mutex_init(&audit_cmd_mutex.lock);
1743
audit_cmd_mutex.owner = NULL;
1744
1745
pr_info("initializing netlink subsys (%s)\n",
1746
str_enabled_disabled(audit_default));
1747
register_pernet_subsys(&audit_net_ops);
1748
1749
audit_initialized = AUDIT_INITIALIZED;
1750
1751
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1752
if (IS_ERR(kauditd_task)) {
1753
int err = PTR_ERR(kauditd_task);
1754
panic("audit: failed to start the kauditd thread (%d)\n", err);
1755
}
1756
1757
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1758
"state=initialized audit_enabled=%u res=1",
1759
audit_enabled);
1760
1761
return 0;
1762
}
1763
postcore_initcall(audit_init);
1764
1765
/*
1766
* Process kernel command-line parameter at boot time.
1767
* audit={0|off} or audit={1|on}.
1768
*/
1769
static int __init audit_enable(char *str)
1770
{
1771
if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1772
audit_default = AUDIT_OFF;
1773
else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1774
audit_default = AUDIT_ON;
1775
else {
1776
pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1777
audit_default = AUDIT_ON;
1778
}
1779
1780
if (audit_default == AUDIT_OFF)
1781
audit_initialized = AUDIT_DISABLED;
1782
if (audit_set_enabled(audit_default))
1783
pr_err("audit: error setting audit state (%d)\n",
1784
audit_default);
1785
1786
pr_info("%s\n", audit_default ?
1787
"enabled (after initialization)" : "disabled (until reboot)");
1788
1789
return 1;
1790
}
1791
__setup("audit=", audit_enable);
1792
1793
/* Process kernel command-line parameter at boot time.
1794
* audit_backlog_limit=<n> */
1795
static int __init audit_backlog_limit_set(char *str)
1796
{
1797
u32 audit_backlog_limit_arg;
1798
1799
pr_info("audit_backlog_limit: ");
1800
if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1801
pr_cont("using default of %u, unable to parse %s\n",
1802
audit_backlog_limit, str);
1803
return 1;
1804
}
1805
1806
audit_backlog_limit = audit_backlog_limit_arg;
1807
pr_cont("%d\n", audit_backlog_limit);
1808
1809
return 1;
1810
}
1811
__setup("audit_backlog_limit=", audit_backlog_limit_set);
1812
1813
static void audit_buffer_free(struct audit_buffer *ab)
1814
{
1815
struct sk_buff *skb;
1816
1817
if (!ab)
1818
return;
1819
1820
while ((skb = skb_dequeue(&ab->skb_list)))
1821
kfree_skb(skb);
1822
kmem_cache_free(audit_buffer_cache, ab);
1823
}
1824
1825
static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1826
gfp_t gfp_mask, int type)
1827
{
1828
struct audit_buffer *ab;
1829
1830
ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1831
if (!ab)
1832
return NULL;
1833
1834
skb_queue_head_init(&ab->skb_list);
1835
1836
ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1837
if (!ab->skb)
1838
goto err;
1839
1840
skb_queue_tail(&ab->skb_list, ab->skb);
1841
1842
if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1843
goto err;
1844
1845
ab->ctx = ctx;
1846
ab->gfp_mask = gfp_mask;
1847
1848
return ab;
1849
1850
err:
1851
audit_buffer_free(ab);
1852
return NULL;
1853
}
1854
1855
/**
1856
* audit_serial - compute a serial number for the audit record
1857
*
1858
* Compute a serial number for the audit record. Audit records are
1859
* written to user-space as soon as they are generated, so a complete
1860
* audit record may be written in several pieces. The timestamp of the
1861
* record and this serial number are used by the user-space tools to
1862
* determine which pieces belong to the same audit record. The
1863
* (timestamp,serial) tuple is unique for each syscall and is live from
1864
* syscall entry to syscall exit.
1865
*
1866
* NOTE: Another possibility is to store the formatted records off the
1867
* audit context (for those records that have a context), and emit them
1868
* all at syscall exit. However, this could delay the reporting of
1869
* significant errors until syscall exit (or never, if the system
1870
* halts).
1871
*/
1872
unsigned int audit_serial(void)
1873
{
1874
static atomic_t serial = ATOMIC_INIT(0);
1875
1876
return atomic_inc_return(&serial);
1877
}
1878
1879
static inline void audit_get_stamp(struct audit_context *ctx,
1880
struct audit_stamp *stamp)
1881
{
1882
if (!ctx || !auditsc_get_stamp(ctx, stamp)) {
1883
ktime_get_coarse_real_ts64(&stamp->ctime);
1884
stamp->serial = audit_serial();
1885
}
1886
}
1887
1888
/**
1889
* audit_log_start - obtain an audit buffer
1890
* @ctx: audit_context (may be NULL)
1891
* @gfp_mask: type of allocation
1892
* @type: audit message type
1893
*
1894
* Returns audit_buffer pointer on success or NULL on error.
1895
*
1896
* Obtain an audit buffer. This routine does locking to obtain the
1897
* audit buffer, but then no locking is required for calls to
1898
* audit_log_*format. If the task (ctx) is a task that is currently in a
1899
* syscall, then the syscall is marked as auditable and an audit record
1900
* will be written at syscall exit. If there is no associated task, then
1901
* task context (ctx) should be NULL.
1902
*/
1903
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1904
int type)
1905
{
1906
struct audit_buffer *ab;
1907
1908
if (audit_initialized != AUDIT_INITIALIZED)
1909
return NULL;
1910
1911
if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1912
return NULL;
1913
1914
/* NOTE: don't ever fail/sleep on these two conditions:
1915
* 1. auditd generated record - since we need auditd to drain the
1916
* queue; also, when we are checking for auditd, compare PIDs using
1917
* task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1918
* using a PID anchored in the caller's namespace
1919
* 2. generator holding the audit_cmd_mutex - we don't want to block
1920
* while holding the mutex, although we do penalize the sender
1921
* later in audit_receive() when it is safe to block
1922
*/
1923
if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1924
long stime = audit_backlog_wait_time;
1925
1926
while (audit_backlog_limit &&
1927
(skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1928
/* wake kauditd to try and flush the queue */
1929
wake_up_interruptible(&kauditd_wait);
1930
1931
/* sleep if we are allowed and we haven't exhausted our
1932
* backlog wait limit */
1933
if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1934
long rtime = stime;
1935
1936
DECLARE_WAITQUEUE(wait, current);
1937
1938
add_wait_queue_exclusive(&audit_backlog_wait,
1939
&wait);
1940
set_current_state(TASK_UNINTERRUPTIBLE);
1941
stime = schedule_timeout(rtime);
1942
atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1943
remove_wait_queue(&audit_backlog_wait, &wait);
1944
} else {
1945
if (audit_rate_check() && printk_ratelimit())
1946
pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1947
skb_queue_len(&audit_queue),
1948
audit_backlog_limit);
1949
audit_log_lost("backlog limit exceeded");
1950
return NULL;
1951
}
1952
}
1953
}
1954
1955
ab = audit_buffer_alloc(ctx, gfp_mask, type);
1956
if (!ab) {
1957
audit_log_lost("out of memory in audit_log_start");
1958
return NULL;
1959
}
1960
1961
audit_get_stamp(ab->ctx, &ab->stamp);
1962
/* cancel dummy context to enable supporting records */
1963
if (ctx)
1964
ctx->dummy = 0;
1965
audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1966
(unsigned long long)ab->stamp.ctime.tv_sec,
1967
ab->stamp.ctime.tv_nsec/1000000,
1968
ab->stamp.serial);
1969
1970
return ab;
1971
}
1972
1973
/**
1974
* audit_expand - expand skb in the audit buffer
1975
* @ab: audit_buffer
1976
* @extra: space to add at tail of the skb
1977
*
1978
* Returns 0 (no space) on failed expansion, or available space if
1979
* successful.
1980
*/
1981
static inline int audit_expand(struct audit_buffer *ab, int extra)
1982
{
1983
struct sk_buff *skb = ab->skb;
1984
int oldtail = skb_tailroom(skb);
1985
int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1986
int newtail = skb_tailroom(skb);
1987
1988
if (ret < 0) {
1989
audit_log_lost("out of memory in audit_expand");
1990
return 0;
1991
}
1992
1993
skb->truesize += newtail - oldtail;
1994
return newtail;
1995
}
1996
1997
/*
1998
* Format an audit message into the audit buffer. If there isn't enough
1999
* room in the audit buffer, more room will be allocated and vsnprint
2000
* will be called a second time. Currently, we assume that a printk
2001
* can't format message larger than 1024 bytes, so we don't either.
2002
*/
2003
static __printf(2, 0)
2004
void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args)
2005
{
2006
int len, avail;
2007
struct sk_buff *skb;
2008
va_list args2;
2009
2010
if (!ab)
2011
return;
2012
2013
BUG_ON(!ab->skb);
2014
skb = ab->skb;
2015
avail = skb_tailroom(skb);
2016
if (avail == 0) {
2017
avail = audit_expand(ab, AUDIT_BUFSIZ);
2018
if (!avail)
2019
goto out;
2020
}
2021
va_copy(args2, args);
2022
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
2023
if (len >= avail) {
2024
/* The printk buffer is 1024 bytes long, so if we get
2025
* here and AUDIT_BUFSIZ is at least 1024, then we can
2026
* log everything that printk could have logged. */
2027
avail = audit_expand(ab,
2028
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
2029
if (!avail)
2030
goto out_va_end;
2031
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
2032
}
2033
if (len > 0)
2034
skb_put(skb, len);
2035
out_va_end:
2036
va_end(args2);
2037
out:
2038
return;
2039
}
2040
2041
/**
2042
* audit_log_format - format a message into the audit buffer.
2043
* @ab: audit_buffer
2044
* @fmt: format string
2045
* @...: optional parameters matching @fmt string
2046
*
2047
* All the work is done in audit_log_vformat.
2048
*/
2049
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2050
{
2051
va_list args;
2052
2053
if (!ab)
2054
return;
2055
va_start(args, fmt);
2056
audit_log_vformat(ab, fmt, args);
2057
va_end(args);
2058
}
2059
2060
/**
2061
* audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2062
* @ab: the audit_buffer
2063
* @buf: buffer to convert to hex
2064
* @len: length of @buf to be converted
2065
*
2066
* No return value; failure to expand is silently ignored.
2067
*
2068
* This function will take the passed buf and convert it into a string of
2069
* ascii hex digits. The new string is placed onto the skb.
2070
*/
2071
void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2072
size_t len)
2073
{
2074
int i, avail, new_len;
2075
unsigned char *ptr;
2076
struct sk_buff *skb;
2077
2078
if (!ab)
2079
return;
2080
2081
BUG_ON(!ab->skb);
2082
skb = ab->skb;
2083
avail = skb_tailroom(skb);
2084
new_len = len<<1;
2085
if (new_len >= avail) {
2086
/* Round the buffer request up to the next multiple */
2087
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2088
avail = audit_expand(ab, new_len);
2089
if (!avail)
2090
return;
2091
}
2092
2093
ptr = skb_tail_pointer(skb);
2094
for (i = 0; i < len; i++)
2095
ptr = hex_byte_pack_upper(ptr, buf[i]);
2096
*ptr = 0;
2097
skb_put(skb, len << 1); /* new string is twice the old string */
2098
}
2099
2100
/*
2101
* Format a string of no more than slen characters into the audit buffer,
2102
* enclosed in quote marks.
2103
*/
2104
void audit_log_n_string(struct audit_buffer *ab, const char *string,
2105
size_t slen)
2106
{
2107
int avail, new_len;
2108
unsigned char *ptr;
2109
struct sk_buff *skb;
2110
2111
if (!ab)
2112
return;
2113
2114
BUG_ON(!ab->skb);
2115
skb = ab->skb;
2116
avail = skb_tailroom(skb);
2117
new_len = slen + 3; /* enclosing quotes + null terminator */
2118
if (new_len > avail) {
2119
avail = audit_expand(ab, new_len);
2120
if (!avail)
2121
return;
2122
}
2123
ptr = skb_tail_pointer(skb);
2124
*ptr++ = '"';
2125
memcpy(ptr, string, slen);
2126
ptr += slen;
2127
*ptr++ = '"';
2128
*ptr = 0;
2129
skb_put(skb, slen + 2); /* don't include null terminator */
2130
}
2131
2132
/**
2133
* audit_string_contains_control - does a string need to be logged in hex
2134
* @string: string to be checked
2135
* @len: max length of the string to check
2136
*/
2137
bool audit_string_contains_control(const char *string, size_t len)
2138
{
2139
const unsigned char *p;
2140
for (p = string; p < (const unsigned char *)string + len; p++) {
2141
if (*p == '"' || *p < 0x21 || *p > 0x7e)
2142
return true;
2143
}
2144
return false;
2145
}
2146
2147
/**
2148
* audit_log_n_untrustedstring - log a string that may contain random characters
2149
* @ab: audit_buffer
2150
* @string: string to be logged
2151
* @len: length of string (not including trailing null)
2152
*
2153
* This code will escape a string that is passed to it if the string
2154
* contains a control character, unprintable character, double quote mark,
2155
* or a space. Unescaped strings will start and end with a double quote mark.
2156
* Strings that are escaped are printed in hex (2 digits per char).
2157
*
2158
* The caller specifies the number of characters in the string to log, which may
2159
* or may not be the entire string.
2160
*/
2161
void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2162
size_t len)
2163
{
2164
if (audit_string_contains_control(string, len))
2165
audit_log_n_hex(ab, string, len);
2166
else
2167
audit_log_n_string(ab, string, len);
2168
}
2169
2170
/**
2171
* audit_log_untrustedstring - log a string that may contain random characters
2172
* @ab: audit_buffer
2173
* @string: string to be logged
2174
*
2175
* Same as audit_log_n_untrustedstring(), except that strlen is used to
2176
* determine string length.
2177
*/
2178
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2179
{
2180
audit_log_n_untrustedstring(ab, string, strlen(string));
2181
}
2182
2183
/* This is a helper-function to print the escaped d_path */
2184
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2185
const struct path *path)
2186
{
2187
char *p, *pathname;
2188
2189
if (prefix)
2190
audit_log_format(ab, "%s", prefix);
2191
2192
/* We will allow 11 spaces for ' (deleted)' to be appended */
2193
pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2194
if (!pathname) {
2195
audit_log_format(ab, "\"<no_memory>\"");
2196
return;
2197
}
2198
p = d_path(path, pathname, PATH_MAX+11);
2199
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2200
/* FIXME: can we save some information here? */
2201
audit_log_format(ab, "\"<too_long>\"");
2202
} else
2203
audit_log_untrustedstring(ab, p);
2204
kfree(pathname);
2205
}
2206
2207
void audit_log_session_info(struct audit_buffer *ab)
2208
{
2209
unsigned int sessionid = audit_get_sessionid(current);
2210
uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2211
2212
audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2213
}
2214
2215
void audit_log_key(struct audit_buffer *ab, char *key)
2216
{
2217
audit_log_format(ab, " key=");
2218
if (key)
2219
audit_log_untrustedstring(ab, key);
2220
else
2221
audit_log_format(ab, "(null)");
2222
}
2223
2224
/**
2225
* audit_buffer_aux_new - Add an aux record buffer to the skb list
2226
* @ab: audit_buffer
2227
* @type: message type
2228
*
2229
* Aux records are allocated and added to the skb list of
2230
* the "main" record. The ab->skb is reset to point to the
2231
* aux record on its creation. When the aux record in complete
2232
* ab->skb has to be reset to point to the "main" record.
2233
* This allows the audit_log_ functions to be ignorant of
2234
* which kind of record it is logging to. It also avoids adding
2235
* special data for aux records.
2236
*
2237
* On success ab->skb will point to the new aux record.
2238
* Returns 0 on success, -ENOMEM should allocation fail.
2239
*/
2240
static int audit_buffer_aux_new(struct audit_buffer *ab, int type)
2241
{
2242
WARN_ON(ab->skb != skb_peek(&ab->skb_list));
2243
2244
ab->skb = nlmsg_new(AUDIT_BUFSIZ, ab->gfp_mask);
2245
if (!ab->skb)
2246
goto err;
2247
if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
2248
goto err;
2249
skb_queue_tail(&ab->skb_list, ab->skb);
2250
2251
audit_log_format(ab, "audit(%llu.%03lu:%u): ",
2252
(unsigned long long)ab->stamp.ctime.tv_sec,
2253
ab->stamp.ctime.tv_nsec/1000000,
2254
ab->stamp.serial);
2255
2256
return 0;
2257
2258
err:
2259
kfree_skb(ab->skb);
2260
ab->skb = skb_peek(&ab->skb_list);
2261
return -ENOMEM;
2262
}
2263
2264
/**
2265
* audit_buffer_aux_end - Switch back to the "main" record from an aux record
2266
* @ab: audit_buffer
2267
*
2268
* Restores the "main" audit record to ab->skb.
2269
*/
2270
static void audit_buffer_aux_end(struct audit_buffer *ab)
2271
{
2272
ab->skb = skb_peek(&ab->skb_list);
2273
}
2274
2275
/**
2276
* audit_log_subj_ctx - Add LSM subject information
2277
* @ab: audit_buffer
2278
* @prop: LSM subject properties.
2279
*
2280
* Add a subj= field and, if necessary, a AUDIT_MAC_TASK_CONTEXTS record.
2281
*/
2282
int audit_log_subj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2283
{
2284
struct lsm_context ctx;
2285
char *space = "";
2286
int error;
2287
int i;
2288
2289
security_current_getlsmprop_subj(prop);
2290
if (!lsmprop_is_set(prop))
2291
return 0;
2292
2293
if (audit_subj_secctx_cnt < 2) {
2294
error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2295
if (error < 0) {
2296
if (error != -EINVAL)
2297
goto error_path;
2298
return 0;
2299
}
2300
audit_log_format(ab, " subj=%s", ctx.context);
2301
security_release_secctx(&ctx);
2302
return 0;
2303
}
2304
/* Multiple LSMs provide contexts. Include an aux record. */
2305
audit_log_format(ab, " subj=?");
2306
error = audit_buffer_aux_new(ab, AUDIT_MAC_TASK_CONTEXTS);
2307
if (error)
2308
goto error_path;
2309
2310
for (i = 0; i < audit_subj_secctx_cnt; i++) {
2311
error = security_lsmprop_to_secctx(prop, &ctx,
2312
audit_subj_lsms[i]->id);
2313
if (error < 0) {
2314
/*
2315
* Don't print anything. An LSM like BPF could
2316
* claim to support contexts, but only do so under
2317
* certain conditions.
2318
*/
2319
if (error == -EOPNOTSUPP)
2320
continue;
2321
if (error != -EINVAL)
2322
audit_panic("error in audit_log_subj_ctx");
2323
} else {
2324
audit_log_format(ab, "%ssubj_%s=%s", space,
2325
audit_subj_lsms[i]->name, ctx.context);
2326
space = " ";
2327
security_release_secctx(&ctx);
2328
}
2329
}
2330
audit_buffer_aux_end(ab);
2331
return 0;
2332
2333
error_path:
2334
audit_panic("error in audit_log_subj_ctx");
2335
return error;
2336
}
2337
EXPORT_SYMBOL(audit_log_subj_ctx);
2338
2339
int audit_log_task_context(struct audit_buffer *ab)
2340
{
2341
struct lsm_prop prop;
2342
2343
security_current_getlsmprop_subj(&prop);
2344
return audit_log_subj_ctx(ab, &prop);
2345
}
2346
EXPORT_SYMBOL(audit_log_task_context);
2347
2348
int audit_log_obj_ctx(struct audit_buffer *ab, struct lsm_prop *prop)
2349
{
2350
int i;
2351
int rc;
2352
int error = 0;
2353
char *space = "";
2354
struct lsm_context ctx;
2355
2356
if (audit_obj_secctx_cnt < 2) {
2357
error = security_lsmprop_to_secctx(prop, &ctx, LSM_ID_UNDEF);
2358
if (error < 0) {
2359
if (error != -EINVAL)
2360
goto error_path;
2361
return error;
2362
}
2363
audit_log_format(ab, " obj=%s", ctx.context);
2364
security_release_secctx(&ctx);
2365
return 0;
2366
}
2367
audit_log_format(ab, " obj=?");
2368
error = audit_buffer_aux_new(ab, AUDIT_MAC_OBJ_CONTEXTS);
2369
if (error)
2370
goto error_path;
2371
2372
for (i = 0; i < audit_obj_secctx_cnt; i++) {
2373
rc = security_lsmprop_to_secctx(prop, &ctx,
2374
audit_obj_lsms[i]->id);
2375
if (rc < 0) {
2376
audit_log_format(ab, "%sobj_%s=?", space,
2377
audit_obj_lsms[i]->name);
2378
if (rc != -EINVAL)
2379
audit_panic("error in audit_log_obj_ctx");
2380
error = rc;
2381
} else {
2382
audit_log_format(ab, "%sobj_%s=%s", space,
2383
audit_obj_lsms[i]->name, ctx.context);
2384
security_release_secctx(&ctx);
2385
}
2386
space = " ";
2387
}
2388
2389
audit_buffer_aux_end(ab);
2390
return error;
2391
2392
error_path:
2393
audit_panic("error in audit_log_obj_ctx");
2394
return error;
2395
}
2396
2397
void audit_log_d_path_exe(struct audit_buffer *ab,
2398
struct mm_struct *mm)
2399
{
2400
struct file *exe_file;
2401
2402
if (!mm)
2403
goto out_null;
2404
2405
exe_file = get_mm_exe_file(mm);
2406
if (!exe_file)
2407
goto out_null;
2408
2409
audit_log_d_path(ab, " exe=", &exe_file->f_path);
2410
fput(exe_file);
2411
return;
2412
out_null:
2413
audit_log_format(ab, " exe=(null)");
2414
}
2415
2416
struct tty_struct *audit_get_tty(void)
2417
{
2418
struct tty_struct *tty = NULL;
2419
unsigned long flags;
2420
2421
spin_lock_irqsave(&current->sighand->siglock, flags);
2422
if (current->signal)
2423
tty = tty_kref_get(current->signal->tty);
2424
spin_unlock_irqrestore(&current->sighand->siglock, flags);
2425
return tty;
2426
}
2427
2428
void audit_put_tty(struct tty_struct *tty)
2429
{
2430
tty_kref_put(tty);
2431
}
2432
2433
void audit_log_task_info(struct audit_buffer *ab)
2434
{
2435
const struct cred *cred;
2436
char comm[sizeof(current->comm)];
2437
struct tty_struct *tty;
2438
2439
if (!ab)
2440
return;
2441
2442
cred = current_cred();
2443
tty = audit_get_tty();
2444
audit_log_format(ab,
2445
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
2446
" euid=%u suid=%u fsuid=%u"
2447
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2448
task_ppid_nr(current),
2449
task_tgid_nr(current),
2450
from_kuid(&init_user_ns, audit_get_loginuid(current)),
2451
from_kuid(&init_user_ns, cred->uid),
2452
from_kgid(&init_user_ns, cred->gid),
2453
from_kuid(&init_user_ns, cred->euid),
2454
from_kuid(&init_user_ns, cred->suid),
2455
from_kuid(&init_user_ns, cred->fsuid),
2456
from_kgid(&init_user_ns, cred->egid),
2457
from_kgid(&init_user_ns, cred->sgid),
2458
from_kgid(&init_user_ns, cred->fsgid),
2459
tty ? tty_name(tty) : "(none)",
2460
audit_get_sessionid(current));
2461
audit_put_tty(tty);
2462
audit_log_format(ab, " comm=");
2463
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2464
audit_log_d_path_exe(ab, current->mm);
2465
audit_log_task_context(ab);
2466
}
2467
EXPORT_SYMBOL(audit_log_task_info);
2468
2469
/**
2470
* audit_log_path_denied - report a path restriction denial
2471
* @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2472
* @operation: specific operation name
2473
*/
2474
void audit_log_path_denied(int type, const char *operation)
2475
{
2476
struct audit_buffer *ab;
2477
2478
if (!audit_enabled)
2479
return;
2480
2481
/* Generate log with subject, operation, outcome. */
2482
ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2483
if (!ab)
2484
return;
2485
audit_log_format(ab, "op=%s", operation);
2486
audit_log_task_info(ab);
2487
audit_log_format(ab, " res=0");
2488
audit_log_end(ab);
2489
}
2490
2491
/* global counter which is incremented every time something logs in */
2492
static atomic_t session_id = ATOMIC_INIT(0);
2493
2494
static int audit_set_loginuid_perm(kuid_t loginuid)
2495
{
2496
/* if we are unset, we don't need privs */
2497
if (!audit_loginuid_set(current))
2498
return 0;
2499
/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2500
if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2501
return -EPERM;
2502
/* it is set, you need permission */
2503
if (!capable(CAP_AUDIT_CONTROL))
2504
return -EPERM;
2505
/* reject if this is not an unset and we don't allow that */
2506
if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2507
&& uid_valid(loginuid))
2508
return -EPERM;
2509
return 0;
2510
}
2511
2512
static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2513
unsigned int oldsessionid,
2514
unsigned int sessionid, int rc)
2515
{
2516
struct audit_buffer *ab;
2517
uid_t uid, oldloginuid, loginuid;
2518
struct tty_struct *tty;
2519
2520
if (!audit_enabled)
2521
return;
2522
2523
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2524
if (!ab)
2525
return;
2526
2527
uid = from_kuid(&init_user_ns, task_uid(current));
2528
oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2529
loginuid = from_kuid(&init_user_ns, kloginuid);
2530
tty = audit_get_tty();
2531
2532
audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2533
audit_log_task_context(ab);
2534
audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2535
oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2536
oldsessionid, sessionid, !rc);
2537
audit_put_tty(tty);
2538
audit_log_end(ab);
2539
}
2540
2541
/**
2542
* audit_set_loginuid - set current task's loginuid
2543
* @loginuid: loginuid value
2544
*
2545
* Returns 0.
2546
*
2547
* Called (set) from fs/proc/base.c::proc_loginuid_write().
2548
*/
2549
int audit_set_loginuid(kuid_t loginuid)
2550
{
2551
unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2552
kuid_t oldloginuid;
2553
int rc;
2554
2555
oldloginuid = audit_get_loginuid(current);
2556
oldsessionid = audit_get_sessionid(current);
2557
2558
rc = audit_set_loginuid_perm(loginuid);
2559
if (rc)
2560
goto out;
2561
2562
/* are we setting or clearing? */
2563
if (uid_valid(loginuid)) {
2564
sessionid = (unsigned int)atomic_inc_return(&session_id);
2565
if (unlikely(sessionid == AUDIT_SID_UNSET))
2566
sessionid = (unsigned int)atomic_inc_return(&session_id);
2567
}
2568
2569
current->sessionid = sessionid;
2570
current->loginuid = loginuid;
2571
out:
2572
audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2573
return rc;
2574
}
2575
2576
/**
2577
* audit_signal_info - record signal info for shutting down audit subsystem
2578
* @sig: signal value
2579
* @t: task being signaled
2580
*
2581
* If the audit subsystem is being terminated, record the task (pid)
2582
* and uid that is doing that.
2583
*/
2584
int audit_signal_info(int sig, struct task_struct *t)
2585
{
2586
kuid_t uid = current_uid(), auid;
2587
2588
if (auditd_test_task(t) &&
2589
(sig == SIGTERM || sig == SIGHUP ||
2590
sig == SIGUSR1 || sig == SIGUSR2)) {
2591
audit_sig_pid = task_tgid_nr(current);
2592
auid = audit_get_loginuid(current);
2593
if (uid_valid(auid))
2594
audit_sig_uid = auid;
2595
else
2596
audit_sig_uid = uid;
2597
security_current_getlsmprop_subj(&audit_sig_lsm);
2598
}
2599
2600
return audit_signal_info_syscall(t);
2601
}
2602
2603
/**
2604
* __audit_log_end - enqueue one audit record
2605
* @skb: the buffer to send
2606
*/
2607
static void __audit_log_end(struct sk_buff *skb)
2608
{
2609
struct nlmsghdr *nlh;
2610
2611
if (audit_rate_check()) {
2612
/* setup the netlink header, see the comments in
2613
* kauditd_send_multicast_skb() for length quirks */
2614
nlh = nlmsg_hdr(skb);
2615
nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2616
2617
/* queue the netlink packet */
2618
skb_queue_tail(&audit_queue, skb);
2619
} else {
2620
audit_log_lost("rate limit exceeded");
2621
kfree_skb(skb);
2622
}
2623
}
2624
2625
/**
2626
* audit_log_end - end one audit record
2627
* @ab: the audit_buffer
2628
*
2629
* We can not do a netlink send inside an irq context because it blocks (last
2630
* arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2631
* queue and a kthread is scheduled to remove them from the queue outside the
2632
* irq context. May be called in any context.
2633
*/
2634
void audit_log_end(struct audit_buffer *ab)
2635
{
2636
struct sk_buff *skb;
2637
2638
if (!ab)
2639
return;
2640
2641
while ((skb = skb_dequeue(&ab->skb_list)))
2642
__audit_log_end(skb);
2643
2644
/* poke the kauditd thread */
2645
wake_up_interruptible(&kauditd_wait);
2646
2647
audit_buffer_free(ab);
2648
}
2649
2650
/**
2651
* audit_log - Log an audit record
2652
* @ctx: audit context
2653
* @gfp_mask: type of allocation
2654
* @type: audit message type
2655
* @fmt: format string to use
2656
* @...: variable parameters matching the format string
2657
*
2658
* This is a convenience function that calls audit_log_start,
2659
* audit_log_vformat, and audit_log_end. It may be called
2660
* in any context.
2661
*/
2662
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2663
const char *fmt, ...)
2664
{
2665
struct audit_buffer *ab;
2666
va_list args;
2667
2668
ab = audit_log_start(ctx, gfp_mask, type);
2669
if (ab) {
2670
va_start(args, fmt);
2671
audit_log_vformat(ab, fmt, args);
2672
va_end(args);
2673
audit_log_end(ab);
2674
}
2675
}
2676
2677
EXPORT_SYMBOL(audit_log_start);
2678
EXPORT_SYMBOL(audit_log_end);
2679
EXPORT_SYMBOL(audit_log_format);
2680
EXPORT_SYMBOL(audit_log);
2681
2682