Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/auditsc.c
29264 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* auditsc.c -- System-call auditing support
3
* Handles all system-call specific auditing features.
4
*
5
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6
* Copyright 2005 Hewlett-Packard Development Company, L.P.
7
* Copyright (C) 2005, 2006 IBM Corporation
8
* All Rights Reserved.
9
*
10
* Written by Rickard E. (Rik) Faith <[email protected]>
11
*
12
* Many of the ideas implemented here are from Stephen C. Tweedie,
13
* especially the idea of avoiding a copy by using getname.
14
*
15
* The method for actual interception of syscall entry and exit (not in
16
* this file -- see entry.S) is based on a GPL'd patch written by
17
* [email protected] and Copyright 2003 SuSE Linux AG.
18
*
19
* POSIX message queue support added by George Wilson <[email protected]>,
20
* 2006.
21
*
22
* The support of additional filter rules compares (>, <, >=, <=) was
23
* added by Dustin Kirkland <[email protected]>, 2005.
24
*
25
* Modified by Amy Griffis <[email protected]> to collect additional
26
* filesystem information.
27
*
28
* Subject and object context labeling support added by <[email protected]>
29
* and <[email protected]> for LSPP certification compliance.
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/init.h>
35
#include <asm/types.h>
36
#include <linux/atomic.h>
37
#include <linux/fs.h>
38
#include <linux/namei.h>
39
#include <linux/mm.h>
40
#include <linux/export.h>
41
#include <linux/slab.h>
42
#include <linux/mount.h>
43
#include <linux/socket.h>
44
#include <linux/mqueue.h>
45
#include <linux/audit.h>
46
#include <linux/personality.h>
47
#include <linux/time.h>
48
#include <linux/netlink.h>
49
#include <linux/compiler.h>
50
#include <asm/unistd.h>
51
#include <linux/security.h>
52
#include <linux/list.h>
53
#include <linux/binfmts.h>
54
#include <linux/highmem.h>
55
#include <linux/syscalls.h>
56
#include <asm/syscall.h>
57
#include <linux/capability.h>
58
#include <linux/fs_struct.h>
59
#include <linux/compat.h>
60
#include <linux/ctype.h>
61
#include <linux/string.h>
62
#include <linux/uaccess.h>
63
#include <linux/fsnotify_backend.h>
64
#include <uapi/linux/limits.h>
65
#include <uapi/linux/netfilter/nf_tables.h>
66
#include <uapi/linux/openat2.h> // struct open_how
67
#include <uapi/linux/fanotify.h>
68
69
#include "audit.h"
70
71
/* flags stating the success for a syscall */
72
#define AUDITSC_INVALID 0
73
#define AUDITSC_SUCCESS 1
74
#define AUDITSC_FAILURE 2
75
76
/* no execve audit message should be longer than this (userspace limits),
77
* see the note near the top of audit_log_execve_info() about this value */
78
#define MAX_EXECVE_AUDIT_LEN 7500
79
80
/* max length to print of cmdline/proctitle value during audit */
81
#define MAX_PROCTITLE_AUDIT_LEN 128
82
83
/* number of audit rules */
84
int audit_n_rules;
85
86
/* determines whether we collect data for signals sent */
87
int audit_signals;
88
89
struct audit_aux_data {
90
struct audit_aux_data *next;
91
int type;
92
};
93
94
/* Number of target pids per aux struct. */
95
#define AUDIT_AUX_PIDS 16
96
97
struct audit_aux_data_pids {
98
struct audit_aux_data d;
99
pid_t target_pid[AUDIT_AUX_PIDS];
100
kuid_t target_auid[AUDIT_AUX_PIDS];
101
kuid_t target_uid[AUDIT_AUX_PIDS];
102
unsigned int target_sessionid[AUDIT_AUX_PIDS];
103
struct lsm_prop target_ref[AUDIT_AUX_PIDS];
104
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105
int pid_count;
106
};
107
108
struct audit_aux_data_bprm_fcaps {
109
struct audit_aux_data d;
110
struct audit_cap_data fcap;
111
unsigned int fcap_ver;
112
struct audit_cap_data old_pcap;
113
struct audit_cap_data new_pcap;
114
};
115
116
struct audit_tree_refs {
117
struct audit_tree_refs *next;
118
struct audit_chunk *c[31];
119
};
120
121
struct audit_nfcfgop_tab {
122
enum audit_nfcfgop op;
123
const char *s;
124
};
125
126
static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127
{ AUDIT_XT_OP_REGISTER, "xt_register" },
128
{ AUDIT_XT_OP_REPLACE, "xt_replace" },
129
{ AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130
{ AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131
{ AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132
{ AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133
{ AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134
{ AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135
{ AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136
{ AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137
{ AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138
{ AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139
{ AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140
{ AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141
{ AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142
{ AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143
{ AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144
{ AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145
{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146
{ AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147
{ AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148
{ AUDIT_NFT_OP_INVALID, "nft_invalid" },
149
};
150
151
static int audit_match_perm(struct audit_context *ctx, int mask)
152
{
153
unsigned n;
154
155
if (unlikely(!ctx))
156
return 0;
157
n = ctx->major;
158
159
switch (audit_classify_syscall(ctx->arch, n)) {
160
case AUDITSC_NATIVE:
161
if ((mask & AUDIT_PERM_WRITE) &&
162
audit_match_class(AUDIT_CLASS_WRITE, n))
163
return 1;
164
if ((mask & AUDIT_PERM_READ) &&
165
audit_match_class(AUDIT_CLASS_READ, n))
166
return 1;
167
if ((mask & AUDIT_PERM_ATTR) &&
168
audit_match_class(AUDIT_CLASS_CHATTR, n))
169
return 1;
170
return 0;
171
case AUDITSC_COMPAT: /* 32bit on biarch */
172
if ((mask & AUDIT_PERM_WRITE) &&
173
audit_match_class(AUDIT_CLASS_WRITE_32, n))
174
return 1;
175
if ((mask & AUDIT_PERM_READ) &&
176
audit_match_class(AUDIT_CLASS_READ_32, n))
177
return 1;
178
if ((mask & AUDIT_PERM_ATTR) &&
179
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180
return 1;
181
return 0;
182
case AUDITSC_OPEN:
183
return mask & ACC_MODE(ctx->argv[1]);
184
case AUDITSC_OPENAT:
185
return mask & ACC_MODE(ctx->argv[2]);
186
case AUDITSC_SOCKETCALL:
187
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188
case AUDITSC_EXECVE:
189
return mask & AUDIT_PERM_EXEC;
190
case AUDITSC_OPENAT2:
191
return mask & ACC_MODE((u32)ctx->openat2.flags);
192
default:
193
return 0;
194
}
195
}
196
197
static int audit_match_filetype(struct audit_context *ctx, int val)
198
{
199
struct audit_names *n;
200
umode_t mode = (umode_t)val;
201
202
if (unlikely(!ctx))
203
return 0;
204
205
list_for_each_entry(n, &ctx->names_list, list) {
206
if ((n->ino != AUDIT_INO_UNSET) &&
207
((n->mode & S_IFMT) == mode))
208
return 1;
209
}
210
211
return 0;
212
}
213
214
/*
215
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216
* ->first_trees points to its beginning, ->trees - to the current end of data.
217
* ->tree_count is the number of free entries in array pointed to by ->trees.
218
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220
* it's going to remain 1-element for almost any setup) until we free context itself.
221
* References in it _are_ dropped - at the same time we free/drop aux stuff.
222
*/
223
224
static void audit_set_auditable(struct audit_context *ctx)
225
{
226
if (!ctx->prio) {
227
ctx->prio = 1;
228
ctx->current_state = AUDIT_STATE_RECORD;
229
}
230
}
231
232
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233
{
234
struct audit_tree_refs *p = ctx->trees;
235
int left = ctx->tree_count;
236
237
if (likely(left)) {
238
p->c[--left] = chunk;
239
ctx->tree_count = left;
240
return 1;
241
}
242
if (!p)
243
return 0;
244
p = p->next;
245
if (p) {
246
p->c[30] = chunk;
247
ctx->trees = p;
248
ctx->tree_count = 30;
249
return 1;
250
}
251
return 0;
252
}
253
254
static int grow_tree_refs(struct audit_context *ctx)
255
{
256
struct audit_tree_refs *p = ctx->trees;
257
258
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259
if (!ctx->trees) {
260
ctx->trees = p;
261
return 0;
262
}
263
if (p)
264
p->next = ctx->trees;
265
else
266
ctx->first_trees = ctx->trees;
267
ctx->tree_count = 31;
268
return 1;
269
}
270
271
static void unroll_tree_refs(struct audit_context *ctx,
272
struct audit_tree_refs *p, int count)
273
{
274
struct audit_tree_refs *q;
275
int n;
276
277
if (!p) {
278
/* we started with empty chain */
279
p = ctx->first_trees;
280
count = 31;
281
/* if the very first allocation has failed, nothing to do */
282
if (!p)
283
return;
284
}
285
n = count;
286
for (q = p; q != ctx->trees; q = q->next, n = 31) {
287
while (n--) {
288
audit_put_chunk(q->c[n]);
289
q->c[n] = NULL;
290
}
291
}
292
while (n-- > ctx->tree_count) {
293
audit_put_chunk(q->c[n]);
294
q->c[n] = NULL;
295
}
296
ctx->trees = p;
297
ctx->tree_count = count;
298
}
299
300
static void free_tree_refs(struct audit_context *ctx)
301
{
302
struct audit_tree_refs *p, *q;
303
304
for (p = ctx->first_trees; p; p = q) {
305
q = p->next;
306
kfree(p);
307
}
308
}
309
310
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311
{
312
struct audit_tree_refs *p;
313
int n;
314
315
if (!tree)
316
return 0;
317
/* full ones */
318
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319
for (n = 0; n < 31; n++)
320
if (audit_tree_match(p->c[n], tree))
321
return 1;
322
}
323
/* partial */
324
if (p) {
325
for (n = ctx->tree_count; n < 31; n++)
326
if (audit_tree_match(p->c[n], tree))
327
return 1;
328
}
329
return 0;
330
}
331
332
static int audit_compare_uid(kuid_t uid,
333
struct audit_names *name,
334
struct audit_field *f,
335
struct audit_context *ctx)
336
{
337
struct audit_names *n;
338
int rc;
339
340
if (name) {
341
rc = audit_uid_comparator(uid, f->op, name->uid);
342
if (rc)
343
return rc;
344
}
345
346
if (ctx) {
347
list_for_each_entry(n, &ctx->names_list, list) {
348
rc = audit_uid_comparator(uid, f->op, n->uid);
349
if (rc)
350
return rc;
351
}
352
}
353
return 0;
354
}
355
356
static int audit_compare_gid(kgid_t gid,
357
struct audit_names *name,
358
struct audit_field *f,
359
struct audit_context *ctx)
360
{
361
struct audit_names *n;
362
int rc;
363
364
if (name) {
365
rc = audit_gid_comparator(gid, f->op, name->gid);
366
if (rc)
367
return rc;
368
}
369
370
if (ctx) {
371
list_for_each_entry(n, &ctx->names_list, list) {
372
rc = audit_gid_comparator(gid, f->op, n->gid);
373
if (rc)
374
return rc;
375
}
376
}
377
return 0;
378
}
379
380
static int audit_field_compare(struct task_struct *tsk,
381
const struct cred *cred,
382
struct audit_field *f,
383
struct audit_context *ctx,
384
struct audit_names *name)
385
{
386
switch (f->val) {
387
/* process to file object comparisons */
388
case AUDIT_COMPARE_UID_TO_OBJ_UID:
389
return audit_compare_uid(cred->uid, name, f, ctx);
390
case AUDIT_COMPARE_GID_TO_OBJ_GID:
391
return audit_compare_gid(cred->gid, name, f, ctx);
392
case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393
return audit_compare_uid(cred->euid, name, f, ctx);
394
case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395
return audit_compare_gid(cred->egid, name, f, ctx);
396
case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397
return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398
case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399
return audit_compare_uid(cred->suid, name, f, ctx);
400
case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401
return audit_compare_gid(cred->sgid, name, f, ctx);
402
case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403
return audit_compare_uid(cred->fsuid, name, f, ctx);
404
case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405
return audit_compare_gid(cred->fsgid, name, f, ctx);
406
/* uid comparisons */
407
case AUDIT_COMPARE_UID_TO_AUID:
408
return audit_uid_comparator(cred->uid, f->op,
409
audit_get_loginuid(tsk));
410
case AUDIT_COMPARE_UID_TO_EUID:
411
return audit_uid_comparator(cred->uid, f->op, cred->euid);
412
case AUDIT_COMPARE_UID_TO_SUID:
413
return audit_uid_comparator(cred->uid, f->op, cred->suid);
414
case AUDIT_COMPARE_UID_TO_FSUID:
415
return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416
/* auid comparisons */
417
case AUDIT_COMPARE_AUID_TO_EUID:
418
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419
cred->euid);
420
case AUDIT_COMPARE_AUID_TO_SUID:
421
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422
cred->suid);
423
case AUDIT_COMPARE_AUID_TO_FSUID:
424
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425
cred->fsuid);
426
/* euid comparisons */
427
case AUDIT_COMPARE_EUID_TO_SUID:
428
return audit_uid_comparator(cred->euid, f->op, cred->suid);
429
case AUDIT_COMPARE_EUID_TO_FSUID:
430
return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431
/* suid comparisons */
432
case AUDIT_COMPARE_SUID_TO_FSUID:
433
return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434
/* gid comparisons */
435
case AUDIT_COMPARE_GID_TO_EGID:
436
return audit_gid_comparator(cred->gid, f->op, cred->egid);
437
case AUDIT_COMPARE_GID_TO_SGID:
438
return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439
case AUDIT_COMPARE_GID_TO_FSGID:
440
return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441
/* egid comparisons */
442
case AUDIT_COMPARE_EGID_TO_SGID:
443
return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444
case AUDIT_COMPARE_EGID_TO_FSGID:
445
return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446
/* sgid comparison */
447
case AUDIT_COMPARE_SGID_TO_FSGID:
448
return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449
default:
450
WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
451
return 0;
452
}
453
return 0;
454
}
455
456
/* Determine if any context name data matches a rule's watch data */
457
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
458
* otherwise.
459
*
460
* If task_creation is true, this is an explicit indication that we are
461
* filtering a task rule at task creation time. This and tsk == current are
462
* the only situations where tsk->cred may be accessed without an rcu read lock.
463
*/
464
static int audit_filter_rules(struct task_struct *tsk,
465
struct audit_krule *rule,
466
struct audit_context *ctx,
467
struct audit_names *name,
468
enum audit_state *state,
469
bool task_creation)
470
{
471
const struct cred *cred;
472
int i, need_sid = 1;
473
struct lsm_prop prop = { };
474
unsigned int sessionid;
475
476
if (ctx && rule->prio <= ctx->prio)
477
return 0;
478
479
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481
for (i = 0; i < rule->field_count; i++) {
482
struct audit_field *f = &rule->fields[i];
483
struct audit_names *n;
484
int result = 0;
485
pid_t pid;
486
487
switch (f->type) {
488
case AUDIT_PID:
489
pid = task_tgid_nr(tsk);
490
result = audit_comparator(pid, f->op, f->val);
491
break;
492
case AUDIT_PPID:
493
if (ctx) {
494
if (!ctx->ppid)
495
ctx->ppid = task_ppid_nr(tsk);
496
result = audit_comparator(ctx->ppid, f->op, f->val);
497
}
498
break;
499
case AUDIT_EXE:
500
result = audit_exe_compare(tsk, rule->exe);
501
if (f->op == Audit_not_equal)
502
result = !result;
503
break;
504
case AUDIT_UID:
505
result = audit_uid_comparator(cred->uid, f->op, f->uid);
506
break;
507
case AUDIT_EUID:
508
result = audit_uid_comparator(cred->euid, f->op, f->uid);
509
break;
510
case AUDIT_SUID:
511
result = audit_uid_comparator(cred->suid, f->op, f->uid);
512
break;
513
case AUDIT_FSUID:
514
result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515
break;
516
case AUDIT_GID:
517
result = audit_gid_comparator(cred->gid, f->op, f->gid);
518
if (f->op == Audit_equal) {
519
if (!result)
520
result = groups_search(cred->group_info, f->gid);
521
} else if (f->op == Audit_not_equal) {
522
if (result)
523
result = !groups_search(cred->group_info, f->gid);
524
}
525
break;
526
case AUDIT_EGID:
527
result = audit_gid_comparator(cred->egid, f->op, f->gid);
528
if (f->op == Audit_equal) {
529
if (!result)
530
result = groups_search(cred->group_info, f->gid);
531
} else if (f->op == Audit_not_equal) {
532
if (result)
533
result = !groups_search(cred->group_info, f->gid);
534
}
535
break;
536
case AUDIT_SGID:
537
result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538
break;
539
case AUDIT_FSGID:
540
result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541
break;
542
case AUDIT_SESSIONID:
543
sessionid = audit_get_sessionid(tsk);
544
result = audit_comparator(sessionid, f->op, f->val);
545
break;
546
case AUDIT_PERS:
547
result = audit_comparator(tsk->personality, f->op, f->val);
548
break;
549
case AUDIT_ARCH:
550
if (ctx)
551
result = audit_comparator(ctx->arch, f->op, f->val);
552
break;
553
554
case AUDIT_EXIT:
555
if (ctx && ctx->return_valid != AUDITSC_INVALID)
556
result = audit_comparator(ctx->return_code, f->op, f->val);
557
break;
558
case AUDIT_SUCCESS:
559
if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560
if (f->val)
561
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562
else
563
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564
}
565
break;
566
case AUDIT_DEVMAJOR:
567
if (name) {
568
if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569
audit_comparator(MAJOR(name->rdev), f->op, f->val))
570
++result;
571
} else if (ctx) {
572
list_for_each_entry(n, &ctx->names_list, list) {
573
if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574
audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575
++result;
576
break;
577
}
578
}
579
}
580
break;
581
case AUDIT_DEVMINOR:
582
if (name) {
583
if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584
audit_comparator(MINOR(name->rdev), f->op, f->val))
585
++result;
586
} else if (ctx) {
587
list_for_each_entry(n, &ctx->names_list, list) {
588
if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589
audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590
++result;
591
break;
592
}
593
}
594
}
595
break;
596
case AUDIT_INODE:
597
if (name)
598
result = audit_comparator(name->ino, f->op, f->val);
599
else if (ctx) {
600
list_for_each_entry(n, &ctx->names_list, list) {
601
if (audit_comparator(n->ino, f->op, f->val)) {
602
++result;
603
break;
604
}
605
}
606
}
607
break;
608
case AUDIT_OBJ_UID:
609
if (name) {
610
result = audit_uid_comparator(name->uid, f->op, f->uid);
611
} else if (ctx) {
612
list_for_each_entry(n, &ctx->names_list, list) {
613
if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614
++result;
615
break;
616
}
617
}
618
}
619
break;
620
case AUDIT_OBJ_GID:
621
if (name) {
622
result = audit_gid_comparator(name->gid, f->op, f->gid);
623
} else if (ctx) {
624
list_for_each_entry(n, &ctx->names_list, list) {
625
if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626
++result;
627
break;
628
}
629
}
630
}
631
break;
632
case AUDIT_WATCH:
633
if (name) {
634
result = audit_watch_compare(rule->watch,
635
name->ino,
636
name->dev);
637
if (f->op == Audit_not_equal)
638
result = !result;
639
}
640
break;
641
case AUDIT_DIR:
642
if (ctx) {
643
result = match_tree_refs(ctx, rule->tree);
644
if (f->op == Audit_not_equal)
645
result = !result;
646
}
647
break;
648
case AUDIT_LOGINUID:
649
result = audit_uid_comparator(audit_get_loginuid(tsk),
650
f->op, f->uid);
651
break;
652
case AUDIT_LOGINUID_SET:
653
result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654
break;
655
case AUDIT_SADDR_FAM:
656
if (ctx && ctx->sockaddr)
657
result = audit_comparator(ctx->sockaddr->ss_family,
658
f->op, f->val);
659
break;
660
case AUDIT_SUBJ_USER:
661
case AUDIT_SUBJ_ROLE:
662
case AUDIT_SUBJ_TYPE:
663
case AUDIT_SUBJ_SEN:
664
case AUDIT_SUBJ_CLR:
665
/* NOTE: this may return negative values indicating
666
a temporary error. We simply treat this as a
667
match for now to avoid losing information that
668
may be wanted. An error message will also be
669
logged upon error */
670
if (f->lsm_rule) {
671
if (need_sid) {
672
/* @tsk should always be equal to
673
* @current with the exception of
674
* fork()/copy_process() in which case
675
* the new @tsk creds are still a dup
676
* of @current's creds so we can still
677
* use
678
* security_current_getlsmprop_subj()
679
* here even though it always refs
680
* @current's creds
681
*/
682
security_current_getlsmprop_subj(&prop);
683
need_sid = 0;
684
}
685
result = security_audit_rule_match(&prop,
686
f->type,
687
f->op,
688
f->lsm_rule);
689
}
690
break;
691
case AUDIT_OBJ_USER:
692
case AUDIT_OBJ_ROLE:
693
case AUDIT_OBJ_TYPE:
694
case AUDIT_OBJ_LEV_LOW:
695
case AUDIT_OBJ_LEV_HIGH:
696
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697
also applies here */
698
if (f->lsm_rule) {
699
/* Find files that match */
700
if (name) {
701
result = security_audit_rule_match(
702
&name->oprop,
703
f->type,
704
f->op,
705
f->lsm_rule);
706
} else if (ctx) {
707
list_for_each_entry(n, &ctx->names_list, list) {
708
if (security_audit_rule_match(
709
&n->oprop,
710
f->type,
711
f->op,
712
f->lsm_rule)) {
713
++result;
714
break;
715
}
716
}
717
}
718
/* Find ipc objects that match */
719
if (!ctx || ctx->type != AUDIT_IPC)
720
break;
721
if (security_audit_rule_match(&ctx->ipc.oprop,
722
f->type, f->op,
723
f->lsm_rule))
724
++result;
725
}
726
break;
727
case AUDIT_ARG0:
728
case AUDIT_ARG1:
729
case AUDIT_ARG2:
730
case AUDIT_ARG3:
731
if (ctx)
732
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
733
break;
734
case AUDIT_FILTERKEY:
735
/* ignore this field for filtering */
736
result = 1;
737
break;
738
case AUDIT_PERM:
739
result = audit_match_perm(ctx, f->val);
740
if (f->op == Audit_not_equal)
741
result = !result;
742
break;
743
case AUDIT_FILETYPE:
744
result = audit_match_filetype(ctx, f->val);
745
if (f->op == Audit_not_equal)
746
result = !result;
747
break;
748
case AUDIT_FIELD_COMPARE:
749
result = audit_field_compare(tsk, cred, f, ctx, name);
750
break;
751
}
752
if (!result)
753
return 0;
754
}
755
756
if (ctx) {
757
if (rule->filterkey) {
758
kfree(ctx->filterkey);
759
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
760
}
761
ctx->prio = rule->prio;
762
}
763
switch (rule->action) {
764
case AUDIT_NEVER:
765
*state = AUDIT_STATE_DISABLED;
766
break;
767
case AUDIT_ALWAYS:
768
*state = AUDIT_STATE_RECORD;
769
break;
770
}
771
return 1;
772
}
773
774
/* At process creation time, we can determine if system-call auditing is
775
* completely disabled for this task. Since we only have the task
776
* structure at this point, we can only check uid and gid.
777
*/
778
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
779
{
780
struct audit_entry *e;
781
enum audit_state state;
782
783
rcu_read_lock();
784
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786
&state, true)) {
787
if (state == AUDIT_STATE_RECORD)
788
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789
rcu_read_unlock();
790
return state;
791
}
792
}
793
rcu_read_unlock();
794
return AUDIT_STATE_BUILD;
795
}
796
797
static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
798
{
799
int word, bit;
800
801
if (val > 0xffffffff)
802
return false;
803
804
word = AUDIT_WORD(val);
805
if (word >= AUDIT_BITMASK_SIZE)
806
return false;
807
808
bit = AUDIT_BIT(val);
809
810
return rule->mask[word] & bit;
811
}
812
813
/**
814
* __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815
* @tsk: associated task
816
* @ctx: audit context
817
* @list: audit filter list
818
* @name: audit_name (can be NULL)
819
* @op: current syscall/uring_op
820
*
821
* Run the udit filters specified in @list against @tsk using @ctx,
822
* @name, and @op, as necessary; the caller is responsible for ensuring
823
* that the call is made while the RCU read lock is held. The @name
824
* parameter can be NULL, but all others must be specified.
825
* Returns 1/true if the filter finds a match, 0/false if none are found.
826
*/
827
static int __audit_filter_op(struct task_struct *tsk,
828
struct audit_context *ctx,
829
struct list_head *list,
830
struct audit_names *name,
831
unsigned long op)
832
{
833
struct audit_entry *e;
834
enum audit_state state;
835
836
list_for_each_entry_rcu(e, list, list) {
837
if (audit_in_mask(&e->rule, op) &&
838
audit_filter_rules(tsk, &e->rule, ctx, name,
839
&state, false)) {
840
ctx->current_state = state;
841
return 1;
842
}
843
}
844
return 0;
845
}
846
847
/**
848
* audit_filter_uring - apply filters to an io_uring operation
849
* @tsk: associated task
850
* @ctx: audit context
851
*/
852
static void audit_filter_uring(struct task_struct *tsk,
853
struct audit_context *ctx)
854
{
855
if (auditd_test_task(tsk))
856
return;
857
858
rcu_read_lock();
859
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860
NULL, ctx->uring_op);
861
rcu_read_unlock();
862
}
863
864
/* At syscall exit time, this filter is called if the audit_state is
865
* not low enough that auditing cannot take place, but is also not
866
* high enough that we already know we have to write an audit record
867
* (i.e., the state is AUDIT_STATE_BUILD).
868
*/
869
static void audit_filter_syscall(struct task_struct *tsk,
870
struct audit_context *ctx)
871
{
872
if (auditd_test_task(tsk))
873
return;
874
875
rcu_read_lock();
876
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877
NULL, ctx->major);
878
rcu_read_unlock();
879
}
880
881
/*
882
* Given an audit_name check the inode hash table to see if they match.
883
* Called holding the rcu read lock to protect the use of audit_inode_hash
884
*/
885
static int audit_filter_inode_name(struct task_struct *tsk,
886
struct audit_names *n,
887
struct audit_context *ctx)
888
{
889
int h = audit_hash_ino((u32)n->ino);
890
struct list_head *list = &audit_inode_hash[h];
891
892
return __audit_filter_op(tsk, ctx, list, n, ctx->major);
893
}
894
895
/* At syscall exit time, this filter is called if any audit_names have been
896
* collected during syscall processing. We only check rules in sublists at hash
897
* buckets applicable to the inode numbers in audit_names.
898
* Regarding audit_state, same rules apply as for audit_filter_syscall().
899
*/
900
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
901
{
902
struct audit_names *n;
903
904
if (auditd_test_task(tsk))
905
return;
906
907
rcu_read_lock();
908
909
list_for_each_entry(n, &ctx->names_list, list) {
910
if (audit_filter_inode_name(tsk, n, ctx))
911
break;
912
}
913
rcu_read_unlock();
914
}
915
916
static inline void audit_proctitle_free(struct audit_context *context)
917
{
918
kfree(context->proctitle.value);
919
context->proctitle.value = NULL;
920
context->proctitle.len = 0;
921
}
922
923
static inline void audit_free_module(struct audit_context *context)
924
{
925
if (context->type == AUDIT_KERN_MODULE) {
926
kfree(context->module.name);
927
context->module.name = NULL;
928
}
929
}
930
static inline void audit_free_names(struct audit_context *context)
931
{
932
struct audit_names *n, *next;
933
934
list_for_each_entry_safe(n, next, &context->names_list, list) {
935
list_del(&n->list);
936
if (n->name)
937
putname(n->name);
938
if (n->should_free)
939
kfree(n);
940
}
941
context->name_count = 0;
942
path_put(&context->pwd);
943
context->pwd.dentry = NULL;
944
context->pwd.mnt = NULL;
945
}
946
947
static inline void audit_free_aux(struct audit_context *context)
948
{
949
struct audit_aux_data *aux;
950
951
while ((aux = context->aux)) {
952
context->aux = aux->next;
953
kfree(aux);
954
}
955
context->aux = NULL;
956
while ((aux = context->aux_pids)) {
957
context->aux_pids = aux->next;
958
kfree(aux);
959
}
960
context->aux_pids = NULL;
961
}
962
963
/**
964
* audit_reset_context - reset a audit_context structure
965
* @ctx: the audit_context to reset
966
*
967
* All fields in the audit_context will be reset to an initial state, all
968
* references held by fields will be dropped, and private memory will be
969
* released. When this function returns the audit_context will be suitable
970
* for reuse, so long as the passed context is not NULL or a dummy context.
971
*/
972
static void audit_reset_context(struct audit_context *ctx)
973
{
974
if (!ctx)
975
return;
976
977
/* if ctx is non-null, reset the "ctx->context" regardless */
978
ctx->context = AUDIT_CTX_UNUSED;
979
if (ctx->dummy)
980
return;
981
982
/*
983
* NOTE: It shouldn't matter in what order we release the fields, so
984
* release them in the order in which they appear in the struct;
985
* this gives us some hope of quickly making sure we are
986
* resetting the audit_context properly.
987
*
988
* Other things worth mentioning:
989
* - we don't reset "dummy"
990
* - we don't reset "state", we do reset "current_state"
991
* - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992
* - much of this is likely overkill, but play it safe for now
993
* - we really need to work on improving the audit_context struct
994
*/
995
996
ctx->current_state = ctx->state;
997
ctx->stamp.serial = 0;
998
ctx->stamp.ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
999
ctx->major = 0;
1000
ctx->uring_op = 0;
1001
memset(ctx->argv, 0, sizeof(ctx->argv));
1002
ctx->return_code = 0;
1003
ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004
ctx->return_valid = AUDITSC_INVALID;
1005
audit_free_names(ctx);
1006
if (ctx->state != AUDIT_STATE_RECORD) {
1007
kfree(ctx->filterkey);
1008
ctx->filterkey = NULL;
1009
}
1010
audit_free_aux(ctx);
1011
kfree(ctx->sockaddr);
1012
ctx->sockaddr = NULL;
1013
ctx->sockaddr_len = 0;
1014
ctx->ppid = 0;
1015
ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016
ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017
ctx->personality = 0;
1018
ctx->arch = 0;
1019
ctx->target_pid = 0;
1020
ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021
ctx->target_sessionid = 0;
1022
lsmprop_init(&ctx->target_ref);
1023
ctx->target_comm[0] = '\0';
1024
unroll_tree_refs(ctx, NULL, 0);
1025
WARN_ON(!list_empty(&ctx->killed_trees));
1026
audit_free_module(ctx);
1027
ctx->fds[0] = -1;
1028
ctx->type = 0; /* reset last for audit_free_*() */
1029
}
1030
1031
static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032
{
1033
struct audit_context *context;
1034
1035
context = kzalloc(sizeof(*context), GFP_KERNEL);
1036
if (!context)
1037
return NULL;
1038
context->context = AUDIT_CTX_UNUSED;
1039
context->state = state;
1040
context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041
INIT_LIST_HEAD(&context->killed_trees);
1042
INIT_LIST_HEAD(&context->names_list);
1043
context->fds[0] = -1;
1044
context->return_valid = AUDITSC_INVALID;
1045
return context;
1046
}
1047
1048
/**
1049
* audit_alloc - allocate an audit context block for a task
1050
* @tsk: task
1051
*
1052
* Filter on the task information and allocate a per-task audit context
1053
* if necessary. Doing so turns on system call auditing for the
1054
* specified task. This is called from copy_process, so no lock is
1055
* needed.
1056
*/
1057
int audit_alloc(struct task_struct *tsk)
1058
{
1059
struct audit_context *context;
1060
enum audit_state state;
1061
char *key = NULL;
1062
1063
if (likely(!audit_ever_enabled))
1064
return 0;
1065
1066
state = audit_filter_task(tsk, &key);
1067
if (state == AUDIT_STATE_DISABLED) {
1068
clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069
return 0;
1070
}
1071
1072
context = audit_alloc_context(state);
1073
if (!context) {
1074
kfree(key);
1075
audit_log_lost("out of memory in audit_alloc");
1076
return -ENOMEM;
1077
}
1078
context->filterkey = key;
1079
1080
audit_set_context(tsk, context);
1081
set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082
return 0;
1083
}
1084
1085
static inline void audit_free_context(struct audit_context *context)
1086
{
1087
/* resetting is extra work, but it is likely just noise */
1088
audit_reset_context(context);
1089
audit_proctitle_free(context);
1090
free_tree_refs(context);
1091
kfree(context->filterkey);
1092
kfree(context);
1093
}
1094
1095
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096
kuid_t auid, kuid_t uid,
1097
unsigned int sessionid, struct lsm_prop *prop,
1098
char *comm)
1099
{
1100
struct audit_buffer *ab;
1101
int rc = 0;
1102
1103
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1104
if (!ab)
1105
return rc;
1106
1107
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1108
from_kuid(&init_user_ns, auid),
1109
from_kuid(&init_user_ns, uid), sessionid);
1110
if (lsmprop_is_set(prop) && audit_log_obj_ctx(ab, prop))
1111
rc = 1;
1112
1113
audit_log_format(ab, " ocomm=");
1114
audit_log_untrustedstring(ab, comm);
1115
audit_log_end(ab);
1116
1117
return rc;
1118
}
1119
1120
static void audit_log_execve_info(struct audit_context *context,
1121
struct audit_buffer **ab)
1122
{
1123
long len_max;
1124
long len_rem;
1125
long len_full;
1126
long len_buf;
1127
long len_abuf = 0;
1128
long len_tmp;
1129
bool require_data;
1130
bool encode;
1131
unsigned int iter;
1132
unsigned int arg;
1133
char *buf_head;
1134
char *buf;
1135
const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137
/* NOTE: this buffer needs to be large enough to hold all the non-arg
1138
* data we put in the audit record for this argument (see the
1139
* code below) ... at this point in time 96 is plenty */
1140
char abuf[96];
1141
1142
/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143
* current value of 7500 is not as important as the fact that it
1144
* is less than 8k, a setting of 7500 gives us plenty of wiggle
1145
* room if we go over a little bit in the logging below */
1146
WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147
len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149
/* scratch buffer to hold the userspace args */
1150
buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151
if (!buf_head) {
1152
audit_panic("out of memory for argv string");
1153
return;
1154
}
1155
buf = buf_head;
1156
1157
audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159
len_rem = len_max;
1160
len_buf = 0;
1161
len_full = 0;
1162
require_data = true;
1163
encode = false;
1164
iter = 0;
1165
arg = 0;
1166
do {
1167
/* NOTE: we don't ever want to trust this value for anything
1168
* serious, but the audit record format insists we
1169
* provide an argument length for really long arguments,
1170
* e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171
* to use strncpy_from_user() to obtain this value for
1172
* recording in the log, although we don't use it
1173
* anywhere here to avoid a double-fetch problem */
1174
if (len_full == 0)
1175
len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177
/* read more data from userspace */
1178
if (require_data) {
1179
/* can we make more room in the buffer? */
1180
if (buf != buf_head) {
1181
memmove(buf_head, buf, len_buf);
1182
buf = buf_head;
1183
}
1184
1185
/* fetch as much as we can of the argument */
1186
len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187
len_max - len_buf);
1188
if (len_tmp == -EFAULT) {
1189
/* unable to copy from userspace */
1190
send_sig(SIGKILL, current, 0);
1191
goto out;
1192
} else if (len_tmp == (len_max - len_buf)) {
1193
/* buffer is not large enough */
1194
require_data = true;
1195
/* NOTE: if we are going to span multiple
1196
* buffers force the encoding so we stand
1197
* a chance at a sane len_full value and
1198
* consistent record encoding */
1199
encode = true;
1200
len_full = len_full * 2;
1201
p += len_tmp;
1202
} else {
1203
require_data = false;
1204
if (!encode)
1205
encode = audit_string_contains_control(
1206
buf, len_tmp);
1207
/* try to use a trusted value for len_full */
1208
if (len_full < len_max)
1209
len_full = (encode ?
1210
len_tmp * 2 : len_tmp);
1211
p += len_tmp + 1;
1212
}
1213
len_buf += len_tmp;
1214
buf_head[len_buf] = '\0';
1215
1216
/* length of the buffer in the audit record? */
1217
len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218
}
1219
1220
/* write as much as we can to the audit log */
1221
if (len_buf >= 0) {
1222
/* NOTE: some magic numbers here - basically if we
1223
* can't fit a reasonable amount of data into the
1224
* existing audit buffer, flush it and start with
1225
* a new buffer */
1226
if ((sizeof(abuf) + 8) > len_rem) {
1227
len_rem = len_max;
1228
audit_log_end(*ab);
1229
*ab = audit_log_start(context,
1230
GFP_KERNEL, AUDIT_EXECVE);
1231
if (!*ab)
1232
goto out;
1233
}
1234
1235
/* create the non-arg portion of the arg record */
1236
len_tmp = 0;
1237
if (require_data || (iter > 0) ||
1238
((len_abuf + sizeof(abuf)) > len_rem)) {
1239
if (iter == 0) {
1240
len_tmp += snprintf(&abuf[len_tmp],
1241
sizeof(abuf) - len_tmp,
1242
" a%d_len=%lu",
1243
arg, len_full);
1244
}
1245
len_tmp += snprintf(&abuf[len_tmp],
1246
sizeof(abuf) - len_tmp,
1247
" a%d[%d]=", arg, iter++);
1248
} else
1249
len_tmp += snprintf(&abuf[len_tmp],
1250
sizeof(abuf) - len_tmp,
1251
" a%d=", arg);
1252
WARN_ON(len_tmp >= sizeof(abuf));
1253
abuf[sizeof(abuf) - 1] = '\0';
1254
1255
/* log the arg in the audit record */
1256
audit_log_format(*ab, "%s", abuf);
1257
len_rem -= len_tmp;
1258
len_tmp = len_buf;
1259
if (encode) {
1260
if (len_abuf > len_rem)
1261
len_tmp = len_rem / 2; /* encoding */
1262
audit_log_n_hex(*ab, buf, len_tmp);
1263
len_rem -= len_tmp * 2;
1264
len_abuf -= len_tmp * 2;
1265
} else {
1266
if (len_abuf > len_rem)
1267
len_tmp = len_rem - 2; /* quotes */
1268
audit_log_n_string(*ab, buf, len_tmp);
1269
len_rem -= len_tmp + 2;
1270
/* don't subtract the "2" because we still need
1271
* to add quotes to the remaining string */
1272
len_abuf -= len_tmp;
1273
}
1274
len_buf -= len_tmp;
1275
buf += len_tmp;
1276
}
1277
1278
/* ready to move to the next argument? */
1279
if ((len_buf == 0) && !require_data) {
1280
arg++;
1281
iter = 0;
1282
len_full = 0;
1283
require_data = true;
1284
encode = false;
1285
}
1286
} while (arg < context->execve.argc);
1287
1288
/* NOTE: the caller handles the final audit_log_end() call */
1289
1290
out:
1291
kfree(buf_head);
1292
}
1293
1294
static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295
kernel_cap_t *cap)
1296
{
1297
if (cap_isclear(*cap)) {
1298
audit_log_format(ab, " %s=0", prefix);
1299
return;
1300
}
1301
audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1302
}
1303
1304
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1305
{
1306
if (name->fcap_ver == -1) {
1307
audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1308
return;
1309
}
1310
audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1311
audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1312
audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1313
name->fcap.fE, name->fcap_ver,
1314
from_kuid(&init_user_ns, name->fcap.rootid));
1315
}
1316
1317
static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1318
{
1319
const struct audit_ntp_data *ntp = &context->time.ntp_data;
1320
const struct timespec64 *tk = &context->time.tk_injoffset;
1321
static const char * const ntp_name[] = {
1322
"offset",
1323
"freq",
1324
"status",
1325
"tai",
1326
"tick",
1327
"adjust",
1328
};
1329
int type;
1330
1331
if (context->type == AUDIT_TIME_ADJNTPVAL) {
1332
for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1333
if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1334
if (!*ab) {
1335
*ab = audit_log_start(context,
1336
GFP_KERNEL,
1337
AUDIT_TIME_ADJNTPVAL);
1338
if (!*ab)
1339
return;
1340
}
1341
audit_log_format(*ab, "op=%s old=%lli new=%lli",
1342
ntp_name[type],
1343
ntp->vals[type].oldval,
1344
ntp->vals[type].newval);
1345
audit_log_end(*ab);
1346
*ab = NULL;
1347
}
1348
}
1349
}
1350
if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1351
if (!*ab) {
1352
*ab = audit_log_start(context, GFP_KERNEL,
1353
AUDIT_TIME_INJOFFSET);
1354
if (!*ab)
1355
return;
1356
}
1357
audit_log_format(*ab, "sec=%lli nsec=%li",
1358
(long long)tk->tv_sec, tk->tv_nsec);
1359
audit_log_end(*ab);
1360
*ab = NULL;
1361
}
1362
}
1363
1364
static void show_special(struct audit_context *context, int *call_panic)
1365
{
1366
struct audit_buffer *ab;
1367
int i;
1368
1369
ab = audit_log_start(context, GFP_KERNEL, context->type);
1370
if (!ab)
1371
return;
1372
1373
switch (context->type) {
1374
case AUDIT_SOCKETCALL: {
1375
int nargs = context->socketcall.nargs;
1376
1377
audit_log_format(ab, "nargs=%d", nargs);
1378
for (i = 0; i < nargs; i++)
1379
audit_log_format(ab, " a%d=%lx", i,
1380
context->socketcall.args[i]);
1381
break; }
1382
case AUDIT_IPC:
1383
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1384
from_kuid(&init_user_ns, context->ipc.uid),
1385
from_kgid(&init_user_ns, context->ipc.gid),
1386
context->ipc.mode);
1387
if (lsmprop_is_set(&context->ipc.oprop)) {
1388
if (audit_log_obj_ctx(ab, &context->ipc.oprop))
1389
*call_panic = 1;
1390
}
1391
if (context->ipc.has_perm) {
1392
audit_log_end(ab);
1393
ab = audit_log_start(context, GFP_KERNEL,
1394
AUDIT_IPC_SET_PERM);
1395
if (unlikely(!ab))
1396
return;
1397
audit_log_format(ab,
1398
"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1399
context->ipc.qbytes,
1400
context->ipc.perm_uid,
1401
context->ipc.perm_gid,
1402
context->ipc.perm_mode);
1403
}
1404
break;
1405
case AUDIT_MQ_OPEN:
1406
audit_log_format(ab,
1407
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1408
"mq_msgsize=%ld mq_curmsgs=%ld",
1409
context->mq_open.oflag, context->mq_open.mode,
1410
context->mq_open.attr.mq_flags,
1411
context->mq_open.attr.mq_maxmsg,
1412
context->mq_open.attr.mq_msgsize,
1413
context->mq_open.attr.mq_curmsgs);
1414
break;
1415
case AUDIT_MQ_SENDRECV:
1416
audit_log_format(ab,
1417
"mqdes=%d msg_len=%zd msg_prio=%u "
1418
"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1419
context->mq_sendrecv.mqdes,
1420
context->mq_sendrecv.msg_len,
1421
context->mq_sendrecv.msg_prio,
1422
(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1423
context->mq_sendrecv.abs_timeout.tv_nsec);
1424
break;
1425
case AUDIT_MQ_NOTIFY:
1426
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1427
context->mq_notify.mqdes,
1428
context->mq_notify.sigev_signo);
1429
break;
1430
case AUDIT_MQ_GETSETATTR: {
1431
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1432
1433
audit_log_format(ab,
1434
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1435
"mq_curmsgs=%ld ",
1436
context->mq_getsetattr.mqdes,
1437
attr->mq_flags, attr->mq_maxmsg,
1438
attr->mq_msgsize, attr->mq_curmsgs);
1439
break; }
1440
case AUDIT_CAPSET:
1441
audit_log_format(ab, "pid=%d", context->capset.pid);
1442
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1443
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1444
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1445
audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1446
break;
1447
case AUDIT_MMAP:
1448
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1449
context->mmap.flags);
1450
break;
1451
case AUDIT_OPENAT2:
1452
audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1453
context->openat2.flags,
1454
context->openat2.mode,
1455
context->openat2.resolve);
1456
break;
1457
case AUDIT_EXECVE:
1458
audit_log_execve_info(context, &ab);
1459
break;
1460
case AUDIT_KERN_MODULE:
1461
audit_log_format(ab, "name=");
1462
if (context->module.name) {
1463
audit_log_untrustedstring(ab, context->module.name);
1464
} else
1465
audit_log_format(ab, "(null)");
1466
1467
break;
1468
case AUDIT_TIME_ADJNTPVAL:
1469
case AUDIT_TIME_INJOFFSET:
1470
/* this call deviates from the rest, eating the buffer */
1471
audit_log_time(context, &ab);
1472
break;
1473
}
1474
audit_log_end(ab);
1475
}
1476
1477
static inline int audit_proctitle_rtrim(char *proctitle, int len)
1478
{
1479
char *end = proctitle + len - 1;
1480
1481
while (end > proctitle && !isprint(*end))
1482
end--;
1483
1484
/* catch the case where proctitle is only 1 non-print character */
1485
len = end - proctitle + 1;
1486
len -= isprint(proctitle[len-1]) == 0;
1487
return len;
1488
}
1489
1490
/*
1491
* audit_log_name - produce AUDIT_PATH record from struct audit_names
1492
* @context: audit_context for the task
1493
* @n: audit_names structure with reportable details
1494
* @path: optional path to report instead of audit_names->name
1495
* @record_num: record number to report when handling a list of names
1496
* @call_panic: optional pointer to int that will be updated if secid fails
1497
*/
1498
static void audit_log_name(struct audit_context *context, struct audit_names *n,
1499
const struct path *path, int record_num, int *call_panic)
1500
{
1501
struct audit_buffer *ab;
1502
1503
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1504
if (!ab)
1505
return;
1506
1507
audit_log_format(ab, "item=%d", record_num);
1508
1509
if (path)
1510
audit_log_d_path(ab, " name=", path);
1511
else if (n->name) {
1512
switch (n->name_len) {
1513
case AUDIT_NAME_FULL:
1514
/* log the full path */
1515
audit_log_format(ab, " name=");
1516
audit_log_untrustedstring(ab, n->name->name);
1517
break;
1518
case 0:
1519
/* name was specified as a relative path and the
1520
* directory component is the cwd
1521
*/
1522
if (context->pwd.dentry && context->pwd.mnt)
1523
audit_log_d_path(ab, " name=", &context->pwd);
1524
else
1525
audit_log_format(ab, " name=(null)");
1526
break;
1527
default:
1528
/* log the name's directory component */
1529
audit_log_format(ab, " name=");
1530
audit_log_n_untrustedstring(ab, n->name->name,
1531
n->name_len);
1532
}
1533
} else
1534
audit_log_format(ab, " name=(null)");
1535
1536
if (n->ino != AUDIT_INO_UNSET)
1537
audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1538
n->ino,
1539
MAJOR(n->dev),
1540
MINOR(n->dev),
1541
n->mode,
1542
from_kuid(&init_user_ns, n->uid),
1543
from_kgid(&init_user_ns, n->gid),
1544
MAJOR(n->rdev),
1545
MINOR(n->rdev));
1546
if (lsmprop_is_set(&n->oprop) &&
1547
audit_log_obj_ctx(ab, &n->oprop))
1548
*call_panic = 2;
1549
1550
/* log the audit_names record type */
1551
switch (n->type) {
1552
case AUDIT_TYPE_NORMAL:
1553
audit_log_format(ab, " nametype=NORMAL");
1554
break;
1555
case AUDIT_TYPE_PARENT:
1556
audit_log_format(ab, " nametype=PARENT");
1557
break;
1558
case AUDIT_TYPE_CHILD_DELETE:
1559
audit_log_format(ab, " nametype=DELETE");
1560
break;
1561
case AUDIT_TYPE_CHILD_CREATE:
1562
audit_log_format(ab, " nametype=CREATE");
1563
break;
1564
default:
1565
audit_log_format(ab, " nametype=UNKNOWN");
1566
break;
1567
}
1568
1569
audit_log_fcaps(ab, n);
1570
audit_log_end(ab);
1571
}
1572
1573
static void audit_log_proctitle(void)
1574
{
1575
int res;
1576
char *buf;
1577
char *msg = "(null)";
1578
int len = strlen(msg);
1579
struct audit_context *context = audit_context();
1580
struct audit_buffer *ab;
1581
1582
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1583
if (!ab)
1584
return; /* audit_panic or being filtered */
1585
1586
audit_log_format(ab, "proctitle=");
1587
1588
/* Not cached */
1589
if (!context->proctitle.value) {
1590
buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1591
if (!buf)
1592
goto out;
1593
/* Historically called this from procfs naming */
1594
res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1595
if (res == 0) {
1596
kfree(buf);
1597
goto out;
1598
}
1599
res = audit_proctitle_rtrim(buf, res);
1600
if (res == 0) {
1601
kfree(buf);
1602
goto out;
1603
}
1604
context->proctitle.value = buf;
1605
context->proctitle.len = res;
1606
}
1607
msg = context->proctitle.value;
1608
len = context->proctitle.len;
1609
out:
1610
audit_log_n_untrustedstring(ab, msg, len);
1611
audit_log_end(ab);
1612
}
1613
1614
/**
1615
* audit_log_uring - generate a AUDIT_URINGOP record
1616
* @ctx: the audit context
1617
*/
1618
static void audit_log_uring(struct audit_context *ctx)
1619
{
1620
struct audit_buffer *ab;
1621
const struct cred *cred;
1622
1623
ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1624
if (!ab)
1625
return;
1626
cred = current_cred();
1627
audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1628
if (ctx->return_valid != AUDITSC_INVALID)
1629
audit_log_format(ab, " success=%s exit=%ld",
1630
str_yes_no(ctx->return_valid ==
1631
AUDITSC_SUCCESS),
1632
ctx->return_code);
1633
audit_log_format(ab,
1634
" items=%d"
1635
" ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1636
" fsuid=%u egid=%u sgid=%u fsgid=%u",
1637
ctx->name_count,
1638
task_ppid_nr(current), task_tgid_nr(current),
1639
from_kuid(&init_user_ns, cred->uid),
1640
from_kgid(&init_user_ns, cred->gid),
1641
from_kuid(&init_user_ns, cred->euid),
1642
from_kuid(&init_user_ns, cred->suid),
1643
from_kuid(&init_user_ns, cred->fsuid),
1644
from_kgid(&init_user_ns, cred->egid),
1645
from_kgid(&init_user_ns, cred->sgid),
1646
from_kgid(&init_user_ns, cred->fsgid));
1647
audit_log_task_context(ab);
1648
audit_log_key(ab, ctx->filterkey);
1649
audit_log_end(ab);
1650
}
1651
1652
static void audit_log_exit(void)
1653
{
1654
int i, call_panic = 0;
1655
struct audit_context *context = audit_context();
1656
struct audit_buffer *ab;
1657
struct audit_aux_data *aux;
1658
struct audit_names *n;
1659
1660
context->personality = current->personality;
1661
1662
switch (context->context) {
1663
case AUDIT_CTX_SYSCALL:
1664
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1665
if (!ab)
1666
return;
1667
audit_log_format(ab, "arch=%x syscall=%d",
1668
context->arch, context->major);
1669
if (context->personality != PER_LINUX)
1670
audit_log_format(ab, " per=%lx", context->personality);
1671
if (context->return_valid != AUDITSC_INVALID)
1672
audit_log_format(ab, " success=%s exit=%ld",
1673
str_yes_no(context->return_valid ==
1674
AUDITSC_SUCCESS),
1675
context->return_code);
1676
audit_log_format(ab,
1677
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1678
context->argv[0],
1679
context->argv[1],
1680
context->argv[2],
1681
context->argv[3],
1682
context->name_count);
1683
audit_log_task_info(ab);
1684
audit_log_key(ab, context->filterkey);
1685
audit_log_end(ab);
1686
break;
1687
case AUDIT_CTX_URING:
1688
audit_log_uring(context);
1689
break;
1690
default:
1691
BUG();
1692
break;
1693
}
1694
1695
for (aux = context->aux; aux; aux = aux->next) {
1696
1697
ab = audit_log_start(context, GFP_KERNEL, aux->type);
1698
if (!ab)
1699
continue; /* audit_panic has been called */
1700
1701
switch (aux->type) {
1702
1703
case AUDIT_BPRM_FCAPS: {
1704
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1705
1706
audit_log_format(ab, "fver=%x", axs->fcap_ver);
1707
audit_log_cap(ab, "fp", &axs->fcap.permitted);
1708
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1709
audit_log_format(ab, " fe=%d", axs->fcap.fE);
1710
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1711
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1712
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1713
audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1714
audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1715
audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1716
audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1717
audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1718
audit_log_format(ab, " frootid=%d",
1719
from_kuid(&init_user_ns,
1720
axs->fcap.rootid));
1721
break; }
1722
1723
}
1724
audit_log_end(ab);
1725
}
1726
1727
if (context->type)
1728
show_special(context, &call_panic);
1729
1730
if (context->fds[0] >= 0) {
1731
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1732
if (ab) {
1733
audit_log_format(ab, "fd0=%d fd1=%d",
1734
context->fds[0], context->fds[1]);
1735
audit_log_end(ab);
1736
}
1737
}
1738
1739
if (context->sockaddr_len) {
1740
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1741
if (ab) {
1742
audit_log_format(ab, "saddr=");
1743
audit_log_n_hex(ab, (void *)context->sockaddr,
1744
context->sockaddr_len);
1745
audit_log_end(ab);
1746
}
1747
}
1748
1749
for (aux = context->aux_pids; aux; aux = aux->next) {
1750
struct audit_aux_data_pids *axs = (void *)aux;
1751
1752
for (i = 0; i < axs->pid_count; i++)
1753
if (audit_log_pid_context(context, axs->target_pid[i],
1754
axs->target_auid[i],
1755
axs->target_uid[i],
1756
axs->target_sessionid[i],
1757
&axs->target_ref[i],
1758
axs->target_comm[i]))
1759
call_panic = 1;
1760
}
1761
1762
if (context->target_pid &&
1763
audit_log_pid_context(context, context->target_pid,
1764
context->target_auid, context->target_uid,
1765
context->target_sessionid,
1766
&context->target_ref,
1767
context->target_comm))
1768
call_panic = 1;
1769
1770
if (context->pwd.dentry && context->pwd.mnt) {
1771
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1772
if (ab) {
1773
audit_log_d_path(ab, "cwd=", &context->pwd);
1774
audit_log_end(ab);
1775
}
1776
}
1777
1778
i = 0;
1779
list_for_each_entry(n, &context->names_list, list) {
1780
if (n->hidden)
1781
continue;
1782
audit_log_name(context, n, NULL, i++, &call_panic);
1783
}
1784
1785
if (context->context == AUDIT_CTX_SYSCALL)
1786
audit_log_proctitle();
1787
1788
/* Send end of event record to help user space know we are finished */
1789
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1790
if (ab)
1791
audit_log_end(ab);
1792
if (call_panic)
1793
audit_panic("error in audit_log_exit()");
1794
}
1795
1796
/**
1797
* __audit_free - free a per-task audit context
1798
* @tsk: task whose audit context block to free
1799
*
1800
* Called from copy_process, do_exit, and the io_uring code
1801
*/
1802
void __audit_free(struct task_struct *tsk)
1803
{
1804
struct audit_context *context = tsk->audit_context;
1805
1806
if (!context)
1807
return;
1808
1809
/* this may generate CONFIG_CHANGE records */
1810
if (!list_empty(&context->killed_trees))
1811
audit_kill_trees(context);
1812
1813
/* We are called either by do_exit() or the fork() error handling code;
1814
* in the former case tsk == current and in the latter tsk is a
1815
* random task_struct that doesn't have any meaningful data we
1816
* need to log via audit_log_exit().
1817
*/
1818
if (tsk == current && !context->dummy) {
1819
context->return_valid = AUDITSC_INVALID;
1820
context->return_code = 0;
1821
if (context->context == AUDIT_CTX_SYSCALL) {
1822
audit_filter_syscall(tsk, context);
1823
audit_filter_inodes(tsk, context);
1824
if (context->current_state == AUDIT_STATE_RECORD)
1825
audit_log_exit();
1826
} else if (context->context == AUDIT_CTX_URING) {
1827
/* TODO: verify this case is real and valid */
1828
audit_filter_uring(tsk, context);
1829
audit_filter_inodes(tsk, context);
1830
if (context->current_state == AUDIT_STATE_RECORD)
1831
audit_log_uring(context);
1832
}
1833
}
1834
1835
audit_set_context(tsk, NULL);
1836
audit_free_context(context);
1837
}
1838
1839
/**
1840
* audit_return_fixup - fixup the return codes in the audit_context
1841
* @ctx: the audit_context
1842
* @success: true/false value to indicate if the operation succeeded or not
1843
* @code: operation return code
1844
*
1845
* We need to fixup the return code in the audit logs if the actual return
1846
* codes are later going to be fixed by the arch specific signal handlers.
1847
*/
1848
static void audit_return_fixup(struct audit_context *ctx,
1849
int success, long code)
1850
{
1851
/*
1852
* This is actually a test for:
1853
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1854
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1855
*
1856
* but is faster than a bunch of ||
1857
*/
1858
if (unlikely(code <= -ERESTARTSYS) &&
1859
(code >= -ERESTART_RESTARTBLOCK) &&
1860
(code != -ENOIOCTLCMD))
1861
ctx->return_code = -EINTR;
1862
else
1863
ctx->return_code = code;
1864
ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1865
}
1866
1867
/**
1868
* __audit_uring_entry - prepare the kernel task's audit context for io_uring
1869
* @op: the io_uring opcode
1870
*
1871
* This is similar to audit_syscall_entry() but is intended for use by io_uring
1872
* operations. This function should only ever be called from
1873
* audit_uring_entry() as we rely on the audit context checking present in that
1874
* function.
1875
*/
1876
void __audit_uring_entry(u8 op)
1877
{
1878
struct audit_context *ctx = audit_context();
1879
1880
if (ctx->state == AUDIT_STATE_DISABLED)
1881
return;
1882
1883
/*
1884
* NOTE: It's possible that we can be called from the process' context
1885
* before it returns to userspace, and before audit_syscall_exit()
1886
* is called. In this case there is not much to do, just record
1887
* the io_uring details and return.
1888
*/
1889
ctx->uring_op = op;
1890
if (ctx->context == AUDIT_CTX_SYSCALL)
1891
return;
1892
1893
ctx->dummy = !audit_n_rules;
1894
if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1895
ctx->prio = 0;
1896
1897
ctx->context = AUDIT_CTX_URING;
1898
ctx->current_state = ctx->state;
1899
ktime_get_coarse_real_ts64(&ctx->stamp.ctime);
1900
}
1901
1902
/**
1903
* __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1904
* @success: true/false value to indicate if the operation succeeded or not
1905
* @code: operation return code
1906
*
1907
* This is similar to audit_syscall_exit() but is intended for use by io_uring
1908
* operations. This function should only ever be called from
1909
* audit_uring_exit() as we rely on the audit context checking present in that
1910
* function.
1911
*/
1912
void __audit_uring_exit(int success, long code)
1913
{
1914
struct audit_context *ctx = audit_context();
1915
1916
if (ctx->dummy) {
1917
if (ctx->context != AUDIT_CTX_URING)
1918
return;
1919
goto out;
1920
}
1921
1922
audit_return_fixup(ctx, success, code);
1923
if (ctx->context == AUDIT_CTX_SYSCALL) {
1924
/*
1925
* NOTE: See the note in __audit_uring_entry() about the case
1926
* where we may be called from process context before we
1927
* return to userspace via audit_syscall_exit(). In this
1928
* case we simply emit a URINGOP record and bail, the
1929
* normal syscall exit handling will take care of
1930
* everything else.
1931
* It is also worth mentioning that when we are called,
1932
* the current process creds may differ from the creds
1933
* used during the normal syscall processing; keep that
1934
* in mind if/when we move the record generation code.
1935
*/
1936
1937
/*
1938
* We need to filter on the syscall info here to decide if we
1939
* should emit a URINGOP record. I know it seems odd but this
1940
* solves the problem where users have a filter to block *all*
1941
* syscall records in the "exit" filter; we want to preserve
1942
* the behavior here.
1943
*/
1944
audit_filter_syscall(current, ctx);
1945
if (ctx->current_state != AUDIT_STATE_RECORD)
1946
audit_filter_uring(current, ctx);
1947
audit_filter_inodes(current, ctx);
1948
if (ctx->current_state != AUDIT_STATE_RECORD)
1949
return;
1950
1951
audit_log_uring(ctx);
1952
return;
1953
}
1954
1955
/* this may generate CONFIG_CHANGE records */
1956
if (!list_empty(&ctx->killed_trees))
1957
audit_kill_trees(ctx);
1958
1959
/* run through both filters to ensure we set the filterkey properly */
1960
audit_filter_uring(current, ctx);
1961
audit_filter_inodes(current, ctx);
1962
if (ctx->current_state != AUDIT_STATE_RECORD)
1963
goto out;
1964
audit_log_exit();
1965
1966
out:
1967
audit_reset_context(ctx);
1968
}
1969
1970
/**
1971
* __audit_syscall_entry - fill in an audit record at syscall entry
1972
* @major: major syscall type (function)
1973
* @a1: additional syscall register 1
1974
* @a2: additional syscall register 2
1975
* @a3: additional syscall register 3
1976
* @a4: additional syscall register 4
1977
*
1978
* Fill in audit context at syscall entry. This only happens if the
1979
* audit context was created when the task was created and the state or
1980
* filters demand the audit context be built. If the state from the
1981
* per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1982
* then the record will be written at syscall exit time (otherwise, it
1983
* will only be written if another part of the kernel requests that it
1984
* be written).
1985
*/
1986
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1987
unsigned long a3, unsigned long a4)
1988
{
1989
struct audit_context *context = audit_context();
1990
enum audit_state state;
1991
1992
if (!audit_enabled || !context)
1993
return;
1994
1995
WARN_ON(context->context != AUDIT_CTX_UNUSED);
1996
WARN_ON(context->name_count);
1997
if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
1998
audit_panic("unrecoverable error in audit_syscall_entry()");
1999
return;
2000
}
2001
2002
state = context->state;
2003
if (state == AUDIT_STATE_DISABLED)
2004
return;
2005
2006
context->dummy = !audit_n_rules;
2007
if (!context->dummy && state == AUDIT_STATE_BUILD) {
2008
context->prio = 0;
2009
if (auditd_test_task(current))
2010
return;
2011
}
2012
2013
context->arch = syscall_get_arch(current);
2014
context->major = major;
2015
context->argv[0] = a1;
2016
context->argv[1] = a2;
2017
context->argv[2] = a3;
2018
context->argv[3] = a4;
2019
context->context = AUDIT_CTX_SYSCALL;
2020
context->current_state = state;
2021
ktime_get_coarse_real_ts64(&context->stamp.ctime);
2022
}
2023
2024
/**
2025
* __audit_syscall_exit - deallocate audit context after a system call
2026
* @success: success value of the syscall
2027
* @return_code: return value of the syscall
2028
*
2029
* Tear down after system call. If the audit context has been marked as
2030
* auditable (either because of the AUDIT_STATE_RECORD state from
2031
* filtering, or because some other part of the kernel wrote an audit
2032
* message), then write out the syscall information. In call cases,
2033
* free the names stored from getname().
2034
*/
2035
void __audit_syscall_exit(int success, long return_code)
2036
{
2037
struct audit_context *context = audit_context();
2038
2039
if (!context || context->dummy ||
2040
context->context != AUDIT_CTX_SYSCALL)
2041
goto out;
2042
2043
/* this may generate CONFIG_CHANGE records */
2044
if (!list_empty(&context->killed_trees))
2045
audit_kill_trees(context);
2046
2047
audit_return_fixup(context, success, return_code);
2048
/* run through both filters to ensure we set the filterkey properly */
2049
audit_filter_syscall(current, context);
2050
audit_filter_inodes(current, context);
2051
if (context->current_state != AUDIT_STATE_RECORD)
2052
goto out;
2053
2054
audit_log_exit();
2055
2056
out:
2057
audit_reset_context(context);
2058
}
2059
2060
static inline void handle_one(const struct inode *inode)
2061
{
2062
struct audit_context *context;
2063
struct audit_tree_refs *p;
2064
struct audit_chunk *chunk;
2065
int count;
2066
2067
if (likely(!inode->i_fsnotify_marks))
2068
return;
2069
context = audit_context();
2070
p = context->trees;
2071
count = context->tree_count;
2072
rcu_read_lock();
2073
chunk = audit_tree_lookup(inode);
2074
rcu_read_unlock();
2075
if (!chunk)
2076
return;
2077
if (likely(put_tree_ref(context, chunk)))
2078
return;
2079
if (unlikely(!grow_tree_refs(context))) {
2080
pr_warn("out of memory, audit has lost a tree reference\n");
2081
audit_set_auditable(context);
2082
audit_put_chunk(chunk);
2083
unroll_tree_refs(context, p, count);
2084
return;
2085
}
2086
put_tree_ref(context, chunk);
2087
}
2088
2089
static void handle_path(const struct dentry *dentry)
2090
{
2091
struct audit_context *context;
2092
struct audit_tree_refs *p;
2093
const struct dentry *d, *parent;
2094
struct audit_chunk *drop;
2095
unsigned long seq;
2096
int count;
2097
2098
context = audit_context();
2099
p = context->trees;
2100
count = context->tree_count;
2101
retry:
2102
drop = NULL;
2103
d = dentry;
2104
rcu_read_lock();
2105
seq = read_seqbegin(&rename_lock);
2106
for (;;) {
2107
struct inode *inode = d_backing_inode(d);
2108
2109
if (inode && unlikely(inode->i_fsnotify_marks)) {
2110
struct audit_chunk *chunk;
2111
2112
chunk = audit_tree_lookup(inode);
2113
if (chunk) {
2114
if (unlikely(!put_tree_ref(context, chunk))) {
2115
drop = chunk;
2116
break;
2117
}
2118
}
2119
}
2120
parent = d->d_parent;
2121
if (parent == d)
2122
break;
2123
d = parent;
2124
}
2125
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2126
rcu_read_unlock();
2127
if (!drop) {
2128
/* just a race with rename */
2129
unroll_tree_refs(context, p, count);
2130
goto retry;
2131
}
2132
audit_put_chunk(drop);
2133
if (grow_tree_refs(context)) {
2134
/* OK, got more space */
2135
unroll_tree_refs(context, p, count);
2136
goto retry;
2137
}
2138
/* too bad */
2139
pr_warn("out of memory, audit has lost a tree reference\n");
2140
unroll_tree_refs(context, p, count);
2141
audit_set_auditable(context);
2142
return;
2143
}
2144
rcu_read_unlock();
2145
}
2146
2147
static struct audit_names *audit_alloc_name(struct audit_context *context,
2148
unsigned char type)
2149
{
2150
struct audit_names *aname;
2151
2152
if (context->name_count < AUDIT_NAMES) {
2153
aname = &context->preallocated_names[context->name_count];
2154
memset(aname, 0, sizeof(*aname));
2155
} else {
2156
aname = kzalloc(sizeof(*aname), GFP_NOFS);
2157
if (!aname)
2158
return NULL;
2159
aname->should_free = true;
2160
}
2161
2162
aname->ino = AUDIT_INO_UNSET;
2163
aname->type = type;
2164
list_add_tail(&aname->list, &context->names_list);
2165
2166
context->name_count++;
2167
if (!context->pwd.dentry)
2168
get_fs_pwd(current->fs, &context->pwd);
2169
return aname;
2170
}
2171
2172
/**
2173
* __audit_reusename - fill out filename with info from existing entry
2174
* @uptr: userland ptr to pathname
2175
*
2176
* Search the audit_names list for the current audit context. If there is an
2177
* existing entry with a matching "uptr" then return the filename
2178
* associated with that audit_name. If not, return NULL.
2179
*/
2180
struct filename *
2181
__audit_reusename(const __user char *uptr)
2182
{
2183
struct audit_context *context = audit_context();
2184
struct audit_names *n;
2185
2186
list_for_each_entry(n, &context->names_list, list) {
2187
if (!n->name)
2188
continue;
2189
if (n->name->uptr == uptr)
2190
return refname(n->name);
2191
}
2192
return NULL;
2193
}
2194
2195
/**
2196
* __audit_getname - add a name to the list
2197
* @name: name to add
2198
*
2199
* Add a name to the list of audit names for this context.
2200
* Called from fs/namei.c:getname().
2201
*/
2202
void __audit_getname(struct filename *name)
2203
{
2204
struct audit_context *context = audit_context();
2205
struct audit_names *n;
2206
2207
if (context->context == AUDIT_CTX_UNUSED)
2208
return;
2209
2210
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2211
if (!n)
2212
return;
2213
2214
n->name = name;
2215
n->name_len = AUDIT_NAME_FULL;
2216
name->aname = n;
2217
refname(name);
2218
}
2219
2220
static inline int audit_copy_fcaps(struct audit_names *name,
2221
const struct dentry *dentry)
2222
{
2223
struct cpu_vfs_cap_data caps;
2224
int rc;
2225
2226
if (!dentry)
2227
return 0;
2228
2229
rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2230
if (rc)
2231
return rc;
2232
2233
name->fcap.permitted = caps.permitted;
2234
name->fcap.inheritable = caps.inheritable;
2235
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2236
name->fcap.rootid = caps.rootid;
2237
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2238
VFS_CAP_REVISION_SHIFT;
2239
2240
return 0;
2241
}
2242
2243
/* Copy inode data into an audit_names. */
2244
static void audit_copy_inode(struct audit_names *name,
2245
const struct dentry *dentry,
2246
struct inode *inode, unsigned int flags)
2247
{
2248
name->ino = inode->i_ino;
2249
name->dev = inode->i_sb->s_dev;
2250
name->mode = inode->i_mode;
2251
name->uid = inode->i_uid;
2252
name->gid = inode->i_gid;
2253
name->rdev = inode->i_rdev;
2254
security_inode_getlsmprop(inode, &name->oprop);
2255
if (flags & AUDIT_INODE_NOEVAL) {
2256
name->fcap_ver = -1;
2257
return;
2258
}
2259
audit_copy_fcaps(name, dentry);
2260
}
2261
2262
/**
2263
* __audit_inode - store the inode and device from a lookup
2264
* @name: name being audited
2265
* @dentry: dentry being audited
2266
* @flags: attributes for this particular entry
2267
*/
2268
void __audit_inode(struct filename *name, const struct dentry *dentry,
2269
unsigned int flags)
2270
{
2271
struct audit_context *context = audit_context();
2272
struct inode *inode = d_backing_inode(dentry);
2273
struct audit_names *n;
2274
bool parent = flags & AUDIT_INODE_PARENT;
2275
struct audit_entry *e;
2276
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2277
int i;
2278
2279
if (context->context == AUDIT_CTX_UNUSED)
2280
return;
2281
2282
rcu_read_lock();
2283
list_for_each_entry_rcu(e, list, list) {
2284
for (i = 0; i < e->rule.field_count; i++) {
2285
struct audit_field *f = &e->rule.fields[i];
2286
2287
if (f->type == AUDIT_FSTYPE
2288
&& audit_comparator(inode->i_sb->s_magic,
2289
f->op, f->val)
2290
&& e->rule.action == AUDIT_NEVER) {
2291
rcu_read_unlock();
2292
return;
2293
}
2294
}
2295
}
2296
rcu_read_unlock();
2297
2298
if (!name)
2299
goto out_alloc;
2300
2301
/*
2302
* If we have a pointer to an audit_names entry already, then we can
2303
* just use it directly if the type is correct.
2304
*/
2305
n = name->aname;
2306
if (n) {
2307
if (parent) {
2308
if (n->type == AUDIT_TYPE_PARENT ||
2309
n->type == AUDIT_TYPE_UNKNOWN)
2310
goto out;
2311
} else {
2312
if (n->type != AUDIT_TYPE_PARENT)
2313
goto out;
2314
}
2315
}
2316
2317
list_for_each_entry_reverse(n, &context->names_list, list) {
2318
if (n->ino) {
2319
/* valid inode number, use that for the comparison */
2320
if (n->ino != inode->i_ino ||
2321
n->dev != inode->i_sb->s_dev)
2322
continue;
2323
} else if (n->name) {
2324
/* inode number has not been set, check the name */
2325
if (strcmp(n->name->name, name->name))
2326
continue;
2327
} else
2328
/* no inode and no name (?!) ... this is odd ... */
2329
continue;
2330
2331
/* match the correct record type */
2332
if (parent) {
2333
if (n->type == AUDIT_TYPE_PARENT ||
2334
n->type == AUDIT_TYPE_UNKNOWN)
2335
goto out;
2336
} else {
2337
if (n->type != AUDIT_TYPE_PARENT)
2338
goto out;
2339
}
2340
}
2341
2342
out_alloc:
2343
/* unable to find an entry with both a matching name and type */
2344
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2345
if (!n)
2346
return;
2347
if (name) {
2348
n->name = name;
2349
refname(name);
2350
}
2351
2352
out:
2353
if (parent) {
2354
n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2355
n->type = AUDIT_TYPE_PARENT;
2356
if (flags & AUDIT_INODE_HIDDEN)
2357
n->hidden = true;
2358
} else {
2359
n->name_len = AUDIT_NAME_FULL;
2360
n->type = AUDIT_TYPE_NORMAL;
2361
}
2362
handle_path(dentry);
2363
audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2364
}
2365
2366
void __audit_file(const struct file *file)
2367
{
2368
__audit_inode(NULL, file->f_path.dentry, 0);
2369
}
2370
2371
/**
2372
* __audit_inode_child - collect inode info for created/removed objects
2373
* @parent: inode of dentry parent
2374
* @dentry: dentry being audited
2375
* @type: AUDIT_TYPE_* value that we're looking for
2376
*
2377
* For syscalls that create or remove filesystem objects, audit_inode
2378
* can only collect information for the filesystem object's parent.
2379
* This call updates the audit context with the child's information.
2380
* Syscalls that create a new filesystem object must be hooked after
2381
* the object is created. Syscalls that remove a filesystem object
2382
* must be hooked prior, in order to capture the target inode during
2383
* unsuccessful attempts.
2384
*/
2385
void __audit_inode_child(struct inode *parent,
2386
const struct dentry *dentry,
2387
const unsigned char type)
2388
{
2389
struct audit_context *context = audit_context();
2390
struct inode *inode = d_backing_inode(dentry);
2391
const struct qstr *dname = &dentry->d_name;
2392
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2393
struct audit_entry *e;
2394
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2395
int i;
2396
2397
if (context->context == AUDIT_CTX_UNUSED)
2398
return;
2399
2400
rcu_read_lock();
2401
list_for_each_entry_rcu(e, list, list) {
2402
for (i = 0; i < e->rule.field_count; i++) {
2403
struct audit_field *f = &e->rule.fields[i];
2404
2405
if (f->type == AUDIT_FSTYPE
2406
&& audit_comparator(parent->i_sb->s_magic,
2407
f->op, f->val)
2408
&& e->rule.action == AUDIT_NEVER) {
2409
rcu_read_unlock();
2410
return;
2411
}
2412
}
2413
}
2414
rcu_read_unlock();
2415
2416
if (inode)
2417
handle_one(inode);
2418
2419
/* look for a parent entry first */
2420
list_for_each_entry(n, &context->names_list, list) {
2421
if (!n->name ||
2422
(n->type != AUDIT_TYPE_PARENT &&
2423
n->type != AUDIT_TYPE_UNKNOWN))
2424
continue;
2425
2426
if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2427
!audit_compare_dname_path(dname,
2428
n->name->name, n->name_len)) {
2429
if (n->type == AUDIT_TYPE_UNKNOWN)
2430
n->type = AUDIT_TYPE_PARENT;
2431
found_parent = n;
2432
break;
2433
}
2434
}
2435
2436
cond_resched();
2437
2438
/* is there a matching child entry? */
2439
list_for_each_entry(n, &context->names_list, list) {
2440
/* can only match entries that have a name */
2441
if (!n->name ||
2442
(n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2443
continue;
2444
2445
if (!strcmp(dname->name, n->name->name) ||
2446
!audit_compare_dname_path(dname, n->name->name,
2447
found_parent ?
2448
found_parent->name_len :
2449
AUDIT_NAME_FULL)) {
2450
if (n->type == AUDIT_TYPE_UNKNOWN)
2451
n->type = type;
2452
found_child = n;
2453
break;
2454
}
2455
}
2456
2457
if (!found_parent) {
2458
/* create a new, "anonymous" parent record */
2459
n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2460
if (!n)
2461
return;
2462
audit_copy_inode(n, NULL, parent, 0);
2463
}
2464
2465
if (!found_child) {
2466
found_child = audit_alloc_name(context, type);
2467
if (!found_child)
2468
return;
2469
2470
/* Re-use the name belonging to the slot for a matching parent
2471
* directory. All names for this context are relinquished in
2472
* audit_free_names() */
2473
if (found_parent) {
2474
found_child->name = found_parent->name;
2475
found_child->name_len = AUDIT_NAME_FULL;
2476
refname(found_child->name);
2477
}
2478
}
2479
2480
if (inode)
2481
audit_copy_inode(found_child, dentry, inode, 0);
2482
else
2483
found_child->ino = AUDIT_INO_UNSET;
2484
}
2485
EXPORT_SYMBOL_GPL(__audit_inode_child);
2486
2487
/**
2488
* auditsc_get_stamp - get local copies of audit_context values
2489
* @ctx: audit_context for the task
2490
* @stamp: timestamp to record
2491
*
2492
* Also sets the context as auditable.
2493
*/
2494
int auditsc_get_stamp(struct audit_context *ctx, struct audit_stamp *stamp)
2495
{
2496
if (ctx->context == AUDIT_CTX_UNUSED)
2497
return 0;
2498
if (!ctx->stamp.serial)
2499
ctx->stamp.serial = audit_serial();
2500
*stamp = ctx->stamp;
2501
if (!ctx->prio) {
2502
ctx->prio = 1;
2503
ctx->current_state = AUDIT_STATE_RECORD;
2504
}
2505
return 1;
2506
}
2507
2508
/**
2509
* __audit_mq_open - record audit data for a POSIX MQ open
2510
* @oflag: open flag
2511
* @mode: mode bits
2512
* @attr: queue attributes
2513
*
2514
*/
2515
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2516
{
2517
struct audit_context *context = audit_context();
2518
2519
if (attr)
2520
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2521
else
2522
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2523
2524
context->mq_open.oflag = oflag;
2525
context->mq_open.mode = mode;
2526
2527
context->type = AUDIT_MQ_OPEN;
2528
}
2529
2530
/**
2531
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2532
* @mqdes: MQ descriptor
2533
* @msg_len: Message length
2534
* @msg_prio: Message priority
2535
* @abs_timeout: Message timeout in absolute time
2536
*
2537
*/
2538
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2539
const struct timespec64 *abs_timeout)
2540
{
2541
struct audit_context *context = audit_context();
2542
struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2543
2544
if (abs_timeout)
2545
memcpy(p, abs_timeout, sizeof(*p));
2546
else
2547
memset(p, 0, sizeof(*p));
2548
2549
context->mq_sendrecv.mqdes = mqdes;
2550
context->mq_sendrecv.msg_len = msg_len;
2551
context->mq_sendrecv.msg_prio = msg_prio;
2552
2553
context->type = AUDIT_MQ_SENDRECV;
2554
}
2555
2556
/**
2557
* __audit_mq_notify - record audit data for a POSIX MQ notify
2558
* @mqdes: MQ descriptor
2559
* @notification: Notification event
2560
*
2561
*/
2562
2563
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2564
{
2565
struct audit_context *context = audit_context();
2566
2567
if (notification)
2568
context->mq_notify.sigev_signo = notification->sigev_signo;
2569
else
2570
context->mq_notify.sigev_signo = 0;
2571
2572
context->mq_notify.mqdes = mqdes;
2573
context->type = AUDIT_MQ_NOTIFY;
2574
}
2575
2576
/**
2577
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2578
* @mqdes: MQ descriptor
2579
* @mqstat: MQ flags
2580
*
2581
*/
2582
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2583
{
2584
struct audit_context *context = audit_context();
2585
2586
context->mq_getsetattr.mqdes = mqdes;
2587
context->mq_getsetattr.mqstat = *mqstat;
2588
context->type = AUDIT_MQ_GETSETATTR;
2589
}
2590
2591
/**
2592
* __audit_ipc_obj - record audit data for ipc object
2593
* @ipcp: ipc permissions
2594
*
2595
*/
2596
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2597
{
2598
struct audit_context *context = audit_context();
2599
2600
context->ipc.uid = ipcp->uid;
2601
context->ipc.gid = ipcp->gid;
2602
context->ipc.mode = ipcp->mode;
2603
context->ipc.has_perm = 0;
2604
security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2605
context->type = AUDIT_IPC;
2606
}
2607
2608
/**
2609
* __audit_ipc_set_perm - record audit data for new ipc permissions
2610
* @qbytes: msgq bytes
2611
* @uid: msgq user id
2612
* @gid: msgq group id
2613
* @mode: msgq mode (permissions)
2614
*
2615
* Called only after audit_ipc_obj().
2616
*/
2617
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2618
{
2619
struct audit_context *context = audit_context();
2620
2621
context->ipc.qbytes = qbytes;
2622
context->ipc.perm_uid = uid;
2623
context->ipc.perm_gid = gid;
2624
context->ipc.perm_mode = mode;
2625
context->ipc.has_perm = 1;
2626
}
2627
2628
void __audit_bprm(struct linux_binprm *bprm)
2629
{
2630
struct audit_context *context = audit_context();
2631
2632
context->type = AUDIT_EXECVE;
2633
context->execve.argc = bprm->argc;
2634
}
2635
2636
2637
/**
2638
* __audit_socketcall - record audit data for sys_socketcall
2639
* @nargs: number of args, which should not be more than AUDITSC_ARGS.
2640
* @args: args array
2641
*
2642
*/
2643
int __audit_socketcall(int nargs, unsigned long *args)
2644
{
2645
struct audit_context *context = audit_context();
2646
2647
if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2648
return -EINVAL;
2649
context->type = AUDIT_SOCKETCALL;
2650
context->socketcall.nargs = nargs;
2651
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2652
return 0;
2653
}
2654
2655
/**
2656
* __audit_fd_pair - record audit data for pipe and socketpair
2657
* @fd1: the first file descriptor
2658
* @fd2: the second file descriptor
2659
*
2660
*/
2661
void __audit_fd_pair(int fd1, int fd2)
2662
{
2663
struct audit_context *context = audit_context();
2664
2665
context->fds[0] = fd1;
2666
context->fds[1] = fd2;
2667
}
2668
2669
/**
2670
* __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2671
* @len: data length in user space
2672
* @a: data address in kernel space
2673
*
2674
* Returns 0 for success or NULL context or < 0 on error.
2675
*/
2676
int __audit_sockaddr(int len, void *a)
2677
{
2678
struct audit_context *context = audit_context();
2679
2680
if (!context->sockaddr) {
2681
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2682
2683
if (!p)
2684
return -ENOMEM;
2685
context->sockaddr = p;
2686
}
2687
2688
context->sockaddr_len = len;
2689
memcpy(context->sockaddr, a, len);
2690
return 0;
2691
}
2692
2693
void __audit_ptrace(struct task_struct *t)
2694
{
2695
struct audit_context *context = audit_context();
2696
2697
context->target_pid = task_tgid_nr(t);
2698
context->target_auid = audit_get_loginuid(t);
2699
context->target_uid = task_uid(t);
2700
context->target_sessionid = audit_get_sessionid(t);
2701
strscpy(context->target_comm, t->comm);
2702
security_task_getlsmprop_obj(t, &context->target_ref);
2703
}
2704
2705
/**
2706
* audit_signal_info_syscall - record signal info for syscalls
2707
* @t: task being signaled
2708
*
2709
* If the audit subsystem is being terminated, record the task (pid)
2710
* and uid that is doing that.
2711
*/
2712
int audit_signal_info_syscall(struct task_struct *t)
2713
{
2714
struct audit_aux_data_pids *axp;
2715
struct audit_context *ctx = audit_context();
2716
kuid_t t_uid = task_uid(t);
2717
2718
if (!audit_signals || audit_dummy_context())
2719
return 0;
2720
2721
/* optimize the common case by putting first signal recipient directly
2722
* in audit_context */
2723
if (!ctx->target_pid) {
2724
ctx->target_pid = task_tgid_nr(t);
2725
ctx->target_auid = audit_get_loginuid(t);
2726
ctx->target_uid = t_uid;
2727
ctx->target_sessionid = audit_get_sessionid(t);
2728
strscpy(ctx->target_comm, t->comm);
2729
security_task_getlsmprop_obj(t, &ctx->target_ref);
2730
return 0;
2731
}
2732
2733
axp = (void *)ctx->aux_pids;
2734
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2735
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2736
if (!axp)
2737
return -ENOMEM;
2738
2739
axp->d.type = AUDIT_OBJ_PID;
2740
axp->d.next = ctx->aux_pids;
2741
ctx->aux_pids = (void *)axp;
2742
}
2743
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2744
2745
axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2746
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2747
axp->target_uid[axp->pid_count] = t_uid;
2748
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2749
security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2750
strscpy(axp->target_comm[axp->pid_count], t->comm);
2751
axp->pid_count++;
2752
2753
return 0;
2754
}
2755
2756
/**
2757
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2758
* @bprm: pointer to the bprm being processed
2759
* @new: the proposed new credentials
2760
* @old: the old credentials
2761
*
2762
* Simply check if the proc already has the caps given by the file and if not
2763
* store the priv escalation info for later auditing at the end of the syscall
2764
*
2765
* -Eric
2766
*/
2767
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2768
const struct cred *new, const struct cred *old)
2769
{
2770
struct audit_aux_data_bprm_fcaps *ax;
2771
struct audit_context *context = audit_context();
2772
struct cpu_vfs_cap_data vcaps;
2773
2774
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2775
if (!ax)
2776
return -ENOMEM;
2777
2778
ax->d.type = AUDIT_BPRM_FCAPS;
2779
ax->d.next = context->aux;
2780
context->aux = (void *)ax;
2781
2782
get_vfs_caps_from_disk(&nop_mnt_idmap,
2783
bprm->file->f_path.dentry, &vcaps);
2784
2785
ax->fcap.permitted = vcaps.permitted;
2786
ax->fcap.inheritable = vcaps.inheritable;
2787
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2788
ax->fcap.rootid = vcaps.rootid;
2789
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2790
2791
ax->old_pcap.permitted = old->cap_permitted;
2792
ax->old_pcap.inheritable = old->cap_inheritable;
2793
ax->old_pcap.effective = old->cap_effective;
2794
ax->old_pcap.ambient = old->cap_ambient;
2795
2796
ax->new_pcap.permitted = new->cap_permitted;
2797
ax->new_pcap.inheritable = new->cap_inheritable;
2798
ax->new_pcap.effective = new->cap_effective;
2799
ax->new_pcap.ambient = new->cap_ambient;
2800
return 0;
2801
}
2802
2803
/**
2804
* __audit_log_capset - store information about the arguments to the capset syscall
2805
* @new: the new credentials
2806
* @old: the old (current) credentials
2807
*
2808
* Record the arguments userspace sent to sys_capset for later printing by the
2809
* audit system if applicable
2810
*/
2811
void __audit_log_capset(const struct cred *new, const struct cred *old)
2812
{
2813
struct audit_context *context = audit_context();
2814
2815
context->capset.pid = task_tgid_nr(current);
2816
context->capset.cap.effective = new->cap_effective;
2817
context->capset.cap.inheritable = new->cap_effective;
2818
context->capset.cap.permitted = new->cap_permitted;
2819
context->capset.cap.ambient = new->cap_ambient;
2820
context->type = AUDIT_CAPSET;
2821
}
2822
2823
void __audit_mmap_fd(int fd, int flags)
2824
{
2825
struct audit_context *context = audit_context();
2826
2827
context->mmap.fd = fd;
2828
context->mmap.flags = flags;
2829
context->type = AUDIT_MMAP;
2830
}
2831
2832
void __audit_openat2_how(struct open_how *how)
2833
{
2834
struct audit_context *context = audit_context();
2835
2836
context->openat2.flags = how->flags;
2837
context->openat2.mode = how->mode;
2838
context->openat2.resolve = how->resolve;
2839
context->type = AUDIT_OPENAT2;
2840
}
2841
2842
void __audit_log_kern_module(const char *name)
2843
{
2844
struct audit_context *context = audit_context();
2845
2846
context->module.name = kstrdup(name, GFP_KERNEL);
2847
if (!context->module.name)
2848
audit_log_lost("out of memory in __audit_log_kern_module");
2849
context->type = AUDIT_KERN_MODULE;
2850
}
2851
2852
void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2853
{
2854
/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2855
switch (friar->hdr.type) {
2856
case FAN_RESPONSE_INFO_NONE:
2857
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2858
"resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2859
response, FAN_RESPONSE_INFO_NONE);
2860
break;
2861
case FAN_RESPONSE_INFO_AUDIT_RULE:
2862
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2863
"resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2864
response, friar->hdr.type, friar->rule_number,
2865
friar->subj_trust, friar->obj_trust);
2866
}
2867
}
2868
2869
void __audit_tk_injoffset(struct timespec64 offset)
2870
{
2871
struct audit_context *context = audit_context();
2872
2873
/* only set type if not already set by NTP */
2874
if (!context->type)
2875
context->type = AUDIT_TIME_INJOFFSET;
2876
memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2877
}
2878
2879
void __audit_ntp_log(const struct audit_ntp_data *ad)
2880
{
2881
struct audit_context *context = audit_context();
2882
int type;
2883
2884
for (type = 0; type < AUDIT_NTP_NVALS; type++)
2885
if (ad->vals[type].newval != ad->vals[type].oldval) {
2886
/* unconditionally set type, overwriting TK */
2887
context->type = AUDIT_TIME_ADJNTPVAL;
2888
memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2889
break;
2890
}
2891
}
2892
2893
void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2894
enum audit_nfcfgop op, gfp_t gfp)
2895
{
2896
struct audit_buffer *ab;
2897
char comm[sizeof(current->comm)];
2898
2899
ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2900
if (!ab)
2901
return;
2902
audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2903
name, af, nentries, audit_nfcfgs[op].s);
2904
2905
audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2906
audit_log_task_context(ab); /* subj= */
2907
audit_log_format(ab, " comm=");
2908
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2909
audit_log_end(ab);
2910
}
2911
EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2912
2913
static void audit_log_task(struct audit_buffer *ab)
2914
{
2915
kuid_t auid, uid;
2916
kgid_t gid;
2917
unsigned int sessionid;
2918
char comm[sizeof(current->comm)];
2919
2920
auid = audit_get_loginuid(current);
2921
sessionid = audit_get_sessionid(current);
2922
current_uid_gid(&uid, &gid);
2923
2924
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2925
from_kuid(&init_user_ns, auid),
2926
from_kuid(&init_user_ns, uid),
2927
from_kgid(&init_user_ns, gid),
2928
sessionid);
2929
audit_log_task_context(ab);
2930
audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2931
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2932
audit_log_d_path_exe(ab, current->mm);
2933
}
2934
2935
/**
2936
* audit_core_dumps - record information about processes that end abnormally
2937
* @signr: signal value
2938
*
2939
* If a process ends with a core dump, something fishy is going on and we
2940
* should record the event for investigation.
2941
*/
2942
void audit_core_dumps(long signr)
2943
{
2944
struct audit_buffer *ab;
2945
2946
if (!audit_enabled)
2947
return;
2948
2949
if (signr == SIGQUIT) /* don't care for those */
2950
return;
2951
2952
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2953
if (unlikely(!ab))
2954
return;
2955
audit_log_task(ab);
2956
audit_log_format(ab, " sig=%ld res=1", signr);
2957
audit_log_end(ab);
2958
}
2959
2960
/**
2961
* audit_seccomp - record information about a seccomp action
2962
* @syscall: syscall number
2963
* @signr: signal value
2964
* @code: the seccomp action
2965
*
2966
* Record the information associated with a seccomp action. Event filtering for
2967
* seccomp actions that are not to be logged is done in seccomp_log().
2968
* Therefore, this function forces auditing independent of the audit_enabled
2969
* and dummy context state because seccomp actions should be logged even when
2970
* audit is not in use.
2971
*/
2972
void audit_seccomp(unsigned long syscall, long signr, int code)
2973
{
2974
struct audit_buffer *ab;
2975
2976
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2977
if (unlikely(!ab))
2978
return;
2979
audit_log_task(ab);
2980
audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2981
signr, syscall_get_arch(current), syscall,
2982
in_compat_syscall(), KSTK_EIP(current), code);
2983
audit_log_end(ab);
2984
}
2985
2986
void audit_seccomp_actions_logged(const char *names, const char *old_names,
2987
int res)
2988
{
2989
struct audit_buffer *ab;
2990
2991
if (!audit_enabled)
2992
return;
2993
2994
ab = audit_log_start(audit_context(), GFP_KERNEL,
2995
AUDIT_CONFIG_CHANGE);
2996
if (unlikely(!ab))
2997
return;
2998
2999
audit_log_format(ab,
3000
"op=seccomp-logging actions=%s old-actions=%s res=%d",
3001
names, old_names, res);
3002
audit_log_end(ab);
3003
}
3004
3005
struct list_head *audit_killed_trees(void)
3006
{
3007
struct audit_context *ctx = audit_context();
3008
if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3009
return NULL;
3010
return &ctx->killed_trees;
3011
}
3012
3013